
Band-limited topographic mass distribution
generates full-spectrum gravity field:
Gravity forward modeling in the spectral
and spatial domains revisited
Christian Hirt1,2 and Michael Kuhn1

1Western Australian Centre for Geodesy and Institute for Geoscience Research, Curtin University, Perth, Western Australia,
Australia, 2Now at Institute for Astronomical and Physical Geodesy and Institute for Advanced Study, Technische Universität
München, Garching, Germany

Abstract Most studies on gravity forward modeling in the spectral domain truncate the gravitational
potential spectra at a resolution commensurate with the input topographic mass model. This implicitly
assumes spectral consistency between topography and implied topographic potential. Here we demonstrate
that a band-limited topographic mass distribution generates gravity signals with spectral energy at spatial
scales far beyond the input topography’s resolution. The spectral energy at scales shorter than the resolution
of the input topography is associated with the contributions made by higher-order integer powers of the
topography to the topographic potential. The pth integer power of a topography expanded to spherical
harmonic degree n is found to make contributions to the topographic potential up to harmonic degree p
times n. New numerical comparisons between Newton’s integral evaluated in the spatial and spectral domain
show that this previously little addressed truncation effect reaches amplitudes of several mGal for
topography-implied gravity signals. Modeling the short-scale gravity signal in the spectral domain improves
the agreement between spatial and spectral domain techniques to the μGal level, or below 10�5 in terms of
relative errors. Our findings have important implications for the use of gravity forward modeling in
geophysics and geodesy: The topographic potential in spherical harmonics must be calculated to a much
higher harmonic degree than resolved by the input topography if consistency between topography and
implied potential is sought. With the improved understanding of the spectral modeling technique in this
paper, theories, and computer implementations for both techniques can now be significantly better
mutually validated.

1. Introduction

Gravity forward modeling denotes the computation of the gravitational signal (e.g., in terms of
gravitational potential, gravity disturbances, or gravity gradients) induced by a mass-density
distribution, as given, e.g., through topographic mass models. Techniques for gravity forward modeling
are routinely applied in potential field geophysics, e.g., to aid the interpretation of observed gravity
[Jacoby and Smilde, 2009] and in physical geodesy, e.g., in the context of geoid modeling [Tziavos and
Sideris, 2013]. Common to all gravity forward modeling techniques is the evaluation of the well-known
Newton’s integral, which can be done both in the spatial domain and spectral domain [Kuhn and Seitz,
2005; Wild-Pfeiffer and Heck, 2007].

1. Spatial domain forward modeling [e.g., Forsberg, 1984; Nagy et al., 2000; Kuhn et al., 2009; Tsoulis et al., 2009;
Hirt et al., 2010; Grombein et al., 2013; D’Urso, 2014] directly evaluates Newton’s integral. This is commonly
done by decomposing the topographic mass model into elementary bodies (e.g., prisms, tesseroids, and
polyhedra) along with numerical/analytical integration to obtain the gravitational potential implied by the
masses. This technique is also known as Newtonian integration.

2. Spectral domain forward modeling [e.g., Sünkel, 1985; Rummel et al., 1988; Tenzer, 2005; Wieczorek, 2007;
Novák, 2010; Hirt and Kuhn, 2012] evaluates Newton’s integral through transformation into the spectral
domain. This commonly utilizes spherical harmonic series expansions for conversion of spherical harmonic
topography models to the implied gravitational potential. Formulated as a three-step procedure, in spectral
forward modeling (i) the topographic surface (i.e., the topographic heights sampled on a geographical grid)
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and its integer powers are expanded into spherical harmonic series. The resulting coefficients are (ii) directly
used to yield the topographic potential in spherical harmonics (as a series expansion of the integer powers
of the topography), and (iii) gravity effects are obtained from the topographic potential coefficients in the
spatial domain through spherical harmonic synthesis.

Many previous studies concerned with spectral domain forward modeling use a spherical harmonic
topography model to some fixed spectral resolution (as specified through the maximum harmonic
degree of the series expansion, e.g., 360) for the calculation of implied gravitational potential with
identical resolution. As such, spectral consistency (i.e., identical spectral bandwidths) of the topography
and generated gravitational potential is implicitly assumed. Examples of such works are Sünkel [1985],
Rummel et al. [1988], Rapp [1989], Rapp and Pavlis [1990], Pavlis and Rapp [1990], Tsoulis [2001], Kuhn and
Featherstone [2003], Wild-Pfeiffer and Heck [2007], Wieczorek [2007], Makhloof [2007], Novák [2010],
Balmino et al. [2012], Hirt et al. [2012], Hirt and Kuhn [2012], Tenzer et al. [2012], Bagherbandi and Sjöberg
[2012], Novák and Tenzer [2013], and Gruber et al. [2013], among others. However, as will be shown in
this paper, this mostly unwritten assumption does not hold [see also Heck and Seitz, 1991; Papp and
Wang, 1996].

As the main topic of the present study we demonstrate that a band-limited spherical harmonic topography
generates (in good approximation) a full-banded gravitational potential. We show that the generated
gravitational signal features additional high-frequency spectral energy beyond and far beyond the initial
band limitation of the input (source) topography. This effect, which causes “spectral inconsistency” between
topography and gravitational signal, is fairly straightforward to model (section 2), but mostly neglected in the
literature. We will show this effect to be responsible for spurious discrepancies in numerical comparisons
among gravitational signals from spectral and space domain techniques (section 3).

In previous studies concerned with comparisons among gravitational effects from the two techniques,
notable discrepancies were encountered or reported. In terms of relative errors (defined here as the ratio
between the maximum discrepancy between spatial and spectral forward modeling and the maximum
gravitational signal over some test area) Kuhn and Seitz [2005] found relative errors at the level of ~3% for the
gravitational potential, for expansions to harmonic degree 1440;Wild-Pfeiffer and Heck [2007] yielded relative
errors of ~4.5% for gravity gradients over a global test area (maximum signals of ~6.7 E (1 E=1eötvös=10�9 s�2)
versus amaximumdiscrepancy of ~0.3 E);Wang et al. [2010] encountered relative errors at the level of ~10% or up
to ~60mGal(1mGal = 10�5m s�2) discrepancies for gravity disturbances over various mountainous test areas
(e.g., Himalayas, Rocky Mountains, and Andes) for expansions to harmonic degree 2700; Balmino et al. [2012]
published discrepancies at the level of ~10% (or up to ~48mGal) for gravity disturbances over their test area
“Marocco”; and Novák and Tenzer [2013] found relative errors of ~0.8% for gravity gradients at satellite altitude
over a regional test profile crossing the Andes (maximumdiscrepancy of 0.5×10�2 E versus signal of 5.8 E); please
also see discussion in section 4. The five aforementioned studies have in common that they do not investigate
the spectral inconsistency between topography and implied gravity as a key candidate for the differences
encountered. While the spatial domain technique (Newtonian integration) implicitly takes into account the
additional high-frequency spectral constituents beyond the bandwidth of the input topography, explicit
consideration is required in the spectral domain for improved mutual consistency of gravity effects from the
two forward modeling techniques.

From our literature review, the spectral inconsistency among topography and gravity is only little discussed
in the context of gravity forward modeling, though the mechanisms affecting the spectral characteristics are
by no means unknown. Papp and Wang [1996] modeled the gravitational potential in spherical harmonics
and noticed truncation effects in comparisons with Newtonian integration. Theymade the important statement
that “[…] the spectral characteristics of the spherical harmonics in forward local gravity modeling are different
from that of the results obtained from rectangular prism integration.” [Papp and Wang, 1996, p. 63]. Heck and
Seitz [1991] investigated nonlinear effects in the geodetic boundary value problem, showing that the
multiplication of two series expansions to represent second-order effects increases the maximum
harmonic degree by a factor of 2. In the context of the frequently used geodetic reference system (GRS80)
[Moritz [2000]], another analogy is found (S. Claessens, personal communication, 2013). A rotating mass
ellipsoid (as “example” for a most simple spherical harmonic topography) generates a gravitational field
with notable spectral energy at even multiples of degree 2.
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The first and main aim of the present study is the introduction of a novel contribution scheme for spectral
domain forward modeling that relies on spherical harmonic topographic mass models of some given
resolution as input data. Our scheme provides the spectral constituents of the implied gravity signal at all
spatial scales—to and beyond the input topography’s resolution. As second aim of the study, we use the
contribution scheme in new comparisons between spectral and spatial forward modeling techniques to
demonstrate that high-frequency gravity signals (beyond the input topography’s resolution) are naturally
“delivered” by space domain techniques, while the spectral technique requires explicit modeling. Our new
contribution scheme is suitable to do this. As further aims, we demonstrate the practical relevance of the
higher-order integer power contributions of the topography to the implied potential, the importance of the
computation point height in both techniques, and the convergence of series expansions used for field
continuation in the spectral domain.

The paper is organized as follows. Section 2 sets the mathematical framework for spatial and spectral domain
forward modeling, exemplified here for gravity disturbances as radial derivatives of the gravitational
potential. Section 3 then presents a numerical case study which (i) analyzes the spectra of the topography-
implied gravitational potential and (ii) compares gravity from spatial and spectral domain forward modeling.
The case study demonstrates that explicit modeling of the high-frequency spectrum in the spectral domain
significantly improves the agreement with spatial forward modeling. Section 4 discusses the results, also in
the context of the literature, and section 5 draws conclusions for some present and future gravity forward
modeling applications.

2. Theory

We start by introducing Hnm as a shorthand for the fully normalized spherical harmonic coefficients (SHC)

HC;HS
� �

nm of a topography model, whereby n denotes the harmonic degree andm the harmonic order. The

coefficients Hnm are expanded into the spherical harmonic series

H φ; λð Þ ¼ ∑
nmax

n¼0
∑
n

m¼0
HCnm cosmλþ HSnm sinmλ
� �

Pnm sinφð Þ (1)

to maximum degree nmax in order to describe the topographic height H(φ, λ) at geocentric latitude φ and
longitude λ. The term Pnm sinφð Þ denotes the fully normalized associated Legendre function of degree n and
orderm. Topographic heights H are laterally variable and provide the height of the topographic surface with
respect to some height reference surface, e.g., mean sea level. The harmonic coefficients Hnm are assumed to
be readily available from a spherical harmonic analysis of some global topography model (cf. section 3).

The spherical harmonic topography model expanded to maximum degree nmax is used as input (i.e., source
model that generates the topographic gravity field) both for the spatial domain (section 2.1) and spectral
domain forward modeling (section 2.2) along with some constant mass-density value ρ (e.g., of standard
rock). This is done in order to use identical topographic mass models as “source of the gravity field” in both
techniques. We acknowledge that laterally varying mass-density values could be used as a refinement
[e.g., Kuhn and Featherstone, 2003; Eshagh, 2009], but this is not necessary for the topic of our study.

For reasons of simplification, we consistently use the spherical approximation for forward modeling with
both techniques. In the spherical approximation, the topographic height H is “mapped” onto the surface of a
reference sphere with some constant radius R [see, e.g., Balmino et al., 2012]. The spherical approximation is
chosen here over themore advanced ellipsoidal approximation [Claessens and Hirt, 2013;Wang and Yang, 2013]
which uses a reference ellipsoid instead of a reference sphere. The spherical approximation level chosen is
completely suitable to compare the spectral characteristics of the topography with the implied topographic
potential. The spherical approximation is also used for reasons of consistency with the vast majority of previous
works on forward modeling (see references in section 1).

2.1. Spatial Domain Forward Modeling

Spatial domain forward modeling of the global topographic masses is based on discretized Newtonian
integration following the concepts applied in, e.g., Kuhn [2000, 2003] and Kuhn et al. [2009]. In this approach
the mass distribution considered is discretized by a set of regularly shaped mass elements (e.g., point mass,
prism, or tesseroid), and the gravitational signal is obtained through superposition of the individual effects
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from each mass element. This principle is exemplified by equation (2) through Newton’s integral for the
gravitational potential δV generated by the mass distribution M replaced by the sum over the gravitational
potentials δVn generated by Nelem mass elements mn (n= 1,…,Nelem).

δV ¼ G ∭
M

dm
l

≈ ∑
Nelem

n¼1
G ∭

mn

dmn

ln
¼ ∑

Nelem

n¼1
δVn (2)

In equation (2), G is the universal gravitational constant, and dm and dmn denote infinitesimally small mass
elements describing M and mn, respectively. The Euclidian distances l and ln are defined between the
computation point P and the running integration points within M and mn, respectively. We calculate the
gravitational attraction δgz (radial derivative of the potential, also known as gravity disturbance) along the
vertical at P (i.e., in opposite direction to the surface normal on a reference sphere) via

δ→g ¼ δgx ; δgy ; δgz
� �T

¼ grad δVð Þ ≈ ∑
N

n¼1
grad δVnð Þ (3)

where grad denotes the gradient and δgx, δgy, and δgz are the vector components of δ→g given with respect
to a topocentric coordinate system x, y, and z at P (cf. Figure 1). The coordinate axes of the topocentric
coordinate system are orientated so that the x axis points toward geodetic north, the y axis toward geodetic
east, and the z axis toward the zenith (or radial direction).

The approximation errors introduced by equations (2) and (3) depend on how well the elements mn

approximate the original mass distributionM. The use of rectangular prisms is approximate because the vertical
faces of adjoining prisms are not parallel (they intersect or exhibit wedge-like gaps). An upper limit of the
magnitude of this effect on the order of 2μGal (= 2×10�8m s�2) in this study is obtained from the numerical
comparisons between the space and spectral domain techniques (section 3.4). In future application of the space
domain technique, polyhedra [e.g., Benedek, 2004; D’Urso, 2014] can be a viable alternative to prisms because
they avoid the prism approximation. In order to reduce approximation errors caused by mass elements located
in the vicinity of the computation point, we divide the gravitational attraction according to

δ →g ¼ δ →g SH þ δ →g RM (4)

whereδ →g SH is the gravitational attraction of a shell (or more generally a layer) of constant thickness andδ→g RM is
the gravitational attraction of all masses residual to the shell. The shell is selected such that no residual masses
are present at the location of the computation point. In this study wemodel the topographic masses (including
bathymetry and ice sheets, cf. section 3.2) in spherical approximation; thus, δ →g SH corresponds to the
gravitational attraction of a spherical shell (often termed Bouguer shell), andδ →g RM corresponds to the spherical
terrain correction [e.g., Kuhn et al., 2009].

For the practical evaluation of δ→g, in this study, we replace the topographic masses by a series of tesseroids
in spherical approximation, which are further approximated by rectangular prisms with first-order mass

Figure 1. Geometry of a (left) tesseroid replaced by a rectangular prism with first-order mass equivalence and (right) iden-
tical vertical extension. Note, while the intersection points Q and Q′ of the center line with the tesseroid’s top and bottom
surfaces are identical with that of the prism, the corner points are not (e.g., Q1 ≠ eQ1 and Q2 ≠ eQ2).
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equivalence and identical vertical extension. The methodology and corresponding formulae are provided by,
e.g., Anderson [1976], Grüninger [1990], Kuhn [2000], and Heck and Seitz [2007] and will be briefly outlined here.

Tesseroids in spherical approximation are spherical mass elements bounded by surfaces of constant
geocentric latitude (φ1, φ2), longitude (λ1, λ2), and geocentric radii (r1 = R+H1, r2 = R+H2) and can be
considered as the natural mass element when using heights H (here from equation (1)) given on a regular
geocentric latitude-longitude grid (Figure 1). The geometrical center Q0(φ0, λ0, r0) and dimensions (Δφ,Δλ,Δr)
of the tesseroid are given by (cf. Figure 1)

φ0 ¼ φ1 þ φ2ð Þ=2; Δφ ¼ φ2 � φ1
λ0 ¼ λ1 þ λ2ð Þ=2; Δλ ¼ λ2 � λ1
r0 ¼ r1 þ r2ð Þ=2; Δr ¼ r2 � r1

(5)

As the integral over mn in equation (2) cannot be exactly solved for a tesseroid [cf. Heck and Seitz, 2007], we
approximate the tesseroid by a rectangular prism centered at the same location Q0 with its edges being
parallel to the axes x′, y′, and z′ of a topocentric coordinate system located at the center of the tesseroid’s top
surface Q(λ0, φ0, r2) which coincides with the center of the prism’s top surface (cf. Figure 1). For first-order
mass equivalence and identical heights the dimension of the prism is given by [e.g., Anderson, 1976;
Grüninger, 1990; Heck and Seitz, 2007]:

Δx ¼ r0Δφ; Δy ¼ r0 cosφ0Δλ; Δz ¼ Δr (6)

We compute the gravitational attraction of the rectangular prisms based on the well-known analytical formulae
as provided by, e.g., Mader [1951], Nagy [1966], Nagy et al. [2000], and Nagy et al. [2002] and modified to a
numerically more stable expression shown in, e.g., Kuhn [2000] and Heck and Seitz [2007]. Within our numerical
studies we only focus on the z component δgz (the gravity disturbance) of the vector δ

→g (cf. equation (3)) at the
location of the computation point P (cf. Figure 1).

2.2. Spectral Domain Forward Modeling

The technique description is largely based on the work by Hirt and Kuhn [2012], but modified here to
accommodate for the additional high-frequency spectral constituents beyond the bandwidth of the
input topography.
2.2.1. Topographic Potential in the Spectral Domain
The key ingredients for spectral domain forwardmodeling are topographic height functions and their integer
powers. We define the dimensionless topographic height function (THF) as ratio of the topographic height H
and the reference radius R. The THF raised to arbitrary integer power p p∈Nð Þ then reads

H pð Þ ¼ Hp

Rp
(7)

in the spatial domain. The spectral domain representation of H (p), denoted here with H pð Þ
nm ¼ HC;HS

� � pð Þ
nm, is

obtained through spherical harmonic analyses of the H(p). The H pð Þ
nm of the THF are thus related to their spatial

domain counterpart H (p)(φ, λ) via

H pð Þ φ; λð Þ ¼ ∑
Nmax

n ¼ 0
∑
n

m¼0
HC

pð Þ
nm cosmλþ HS

pð Þ
nm sinmλ

� �
Pnm sinφð Þ (8)

where the maximum harmonic degree Nmax is commonly set identical with the maximum degree nmax of the
topography model, and thus considered independent of the integer power p, e.g.,

Nmax ¼ nmax: (9)

The vast majority of past works on spectral domain forward modeling relies (implicitly) on equation (9); see
the list of cited references in section 1. As novelty of this study, we here extend the spectral forward modeling
technique by introducing Nmax as a function of the integer power p for the THFs

Nmax ¼ pnmax; (10)

and therefore,

H pð Þ φ; λð Þ ¼ ∑
pnmax

n¼0
∑
n

m¼0
HC

pð Þ
nm cosmλþ HS

pð Þ
nm sinmλ

� �
Pnm sinφð Þ : (11)
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Increasing the maximum harmonic degree Nmax from nmax to pnmax requires oversampling of the H (p) by

factor p prior to computing the H pð Þ
nm via the spherical harmonic analyses. Compared to the maximum

harmonic degree nmax of the topography model, twice the spectral resolution (2nmax) is thus taken into

account for the squared THF H 2ð Þ
nm, and three times the resolution (3nmax) for the cubed THF H 3ð Þ

nm, and so forth.

The topographic gravitational potential (short: topographic potential) coefficients Vnm are calculated via a

standard series expansion into powers p of the THFs H pð Þ
nm [after Wieczorek, 2007; Hirt and Kuhn, 2012]:

Vnm ¼ 1
2n þ 1

4πR3ρ
M

∑
pmax

p¼1

∏
p

i¼1
nþ 4� ið Þ

p! nþ 3ð Þ H pð Þ
nm (12)

where Vnm is the shorthand for the VC;VS
� �

nm SHCs of the topographic potential, pmax is the maximum
integer power of the series expansion, and M is the mass of the planet. From Hirt and Kuhn [2012,
Figure 1; Wieczorek, 2007], the higher the resolution of the input topography nmax, the more integer
powers p must be taken into account in equation (12) for convergence. The number of terms also
increases with the range of the heights relative to the reference radius R [see Claessens and Hirt, 2013].
For degree 2160 Earth topography mass models, it was shown that pmax = 8 yields truncation errors
(resulting from dropping terms with p> 8) well below the mGal level [cf. Hirt and Kuhn, 2012]. Another
convergence analysis has shown truncation errors below the mGal level for degree 360 models and
pmax = 4 [Wieczorek, 2007].

Equation (12) can easily be evaluated for individual integer powers p, instead of calculating the sum from
p=1 to pmax. Then, the contribution of the pth integer power of the topography to the topographic potential
is obtained. Equation (12) can also be evaluated separately for harmonic band n∈ 0 nmax½ � and for pth
multiples thereof: n∈ p� 1ð Þnmax þ 1 pnmax½ �. This leads to a new, generalized contribution scheme for
spectral domain forward modeling shown in Figure 2.

The left column (light grey boxes in Figure 2) shows the contribution of the pth integer power of the
topography limited to nmax, these were investigated or calculated, e.g., by Rummel et al. [1988], Tsoulis [2001],
Wild-Pfeiffer and Heck [2007], Wieczorek [2007], Makhloof, 2007, Novák [2010], Balmino et al. [2012], and Hirt
and Kuhn [2012], among many others.

New are the columns with n> nmax (dark grey boxes in Figure 2). They reflect the additional high-
frequency signals associated with forming powers of the THF. Raising the THF to power p =2 doubles the
bandwidth of the input topography, and power p =3 triples the input bandwidth, leading to the
triangular contribution scheme in Figure 2. This can be generalized to the statement “The p-th integer
power of a topography expanded to spherical harmonic degree nmax contributes to the topographic
potential up to degree p times nmax.”

Figure 2. Contribution scheme for spectral domain gravity forward modeling: Contributions of integer powers p of the
topography to the topographic potential as a function of the integer power (vertical axis) and the pth multiple of the
input bandwidth (horizontal axis).
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This finding can be easily verified by
the frequencies present in the pth
powers of sine or cosine functions
(cf. Figure 3). For instance, raising the
sine function with frequency f0 to the
second power doubles the
frequency, e.g. 2f0, compared to the
sine function. For the third power the
maximum frequency present is 3f0
and so forth for higher powers
(Figure 3). Raising the sine function
to infinite power will result in an
infinite sequence of equidistant
delta functions of which the Fourier
transform is also an infinite series of
equidistant delta functions covering
infinite multiples of f0 [e.g., Brigham,
1988, p. 21]. This behavior is
exemplified with a sine function
raised to power p = 1000 in Figure 3.

Applying this analogy to the topography function H expressed through a series of sine and cosine
functions (cf. equation (1)) covering the spectral band to a maximum degree nmax, e.g., n∈ 0 nmax½ � the
spectral band of the squared function extends to 2nmax, as noted by Heck and Seitz [1991]. Ultimately,
raising H to infinite power will result in a function covering the full spectrum even though the original
function was band limited. This behavior can also be verified by analyzing the spectra of the powered
THFs (section 3.3), thus confirming the contribution scheme. Further evidence in support of the
contribution scheme is gathered by comparisons between gravity from space and spectral domain
techniques (section 3.4).
2.2.2. Synthesis of Functionals of the Potential
The Vnm can be used to calculate the topographic potential or various functionals thereof in the spatial
domain at the three-dimensional coordinates geocentric latitude φ, longitude λ, and geocentric radius r via
spherical harmonic synthesis [e.g., Holmes and Pavlis, 2008; Hirt, 2012]. Here we evaluate the frequently used
gravity disturbance δg (being the radial derivative of the gravitational potential, equivalent to δgz introduced
in section 2.1), defined through [after Torge 2001, p. 271]:

δg φ; λ; rð Þ ¼ �∂V
∂r

¼ GM
r2

∑
nmax

n¼0
nþ 1ð Þ R

r

� �n

∑
n

m¼0
VCnm cosmλþ VSnm sinmλ
� �

Pnm sinφð Þ: ð13Þ

As geocentric radius r of the evaluation points, we choose the surface of the topographic mass model, as
represented through

r ¼ r φ; λð Þ ¼ Rþ H φ; λð Þ (14)

This is done in order to account for the effect of gravity attenuation with height [cf. Hirt, 2012]. For
reasons outlined in Hirt [2012] and Hirt and Kuhn [2012], evaluation of equation (13) in terms of dense
grids can be computationally demanding when the radii of evaluation r(φ, λ) vary along parallels
(φ=constant), as in equation (14). A numerically efficient and precise approximate solution is obtained here via
field continuation of gravity disturbances with higher-order gradients of δg [Hirt and Kuhn, 2012]

δg kmax φ; λ; rð Þ ≈ ∑
kmax

k¼0

1
k!

∂kδg
∂rk

����
r ¼ R þ Href

H� Hrefð Þk (15)

Figure 3. (top) Sine functions raised to integer powers p=1, 2, 3, and 1000;
(bottom) Fourier spectra (magnitudes) of the powered sine functions.
Figure 3, bottom, exemplifies the gain in bandwidth as the power p
increases. Variable x in radian, frequencies normalized to interval (0 1).
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where kmax is themaximum order of the series expansion, Href is somemean reference height for acceleration
of convergence, and ∂kδg/∂r k is the kth order radial derivative of δg calculated at a constant height
r = R + Href via [Hirt, 2012]

∂kδg
∂rk

¼ �1ð Þk GM
rk þ 2

∑
nmax

n¼0
nþ 1ð Þ ∏

k

i¼1
nþ i þ 1ð Þ

	 

R
r

� �n

·

∑
n

m¼0
VC

pmax
nm cosmλþ VS

pmax
nm sinmλ

� �
Pnm sinφð Þ: ð16Þ

3. Numerical Study
3.1. General

A numerical study is carried out based on the publicly available RET2012 topography model (section 3.2) with
the goals to analyze the spectra of the THFs (section 3.3.1) and of their contributions to the topographic
potential (section 3.3.2) in order to investigate the signal strengths of these contributions for gravity
disturbances in the spatial domain. The study then systematically compares gravity disturbances from spatial
and spectral domain forward modeling as a function of the pth integer power contributions and maximum
harmonic degree Nmax = pnmax taken into consideration (section 3.4). A main motivation for the numerical
study is the verification of the contribution scheme for spectral domain forward modeling (Figure 2).

For the spherical harmonic synthesis of the topography H (equation (1)), and analyses of the THFs H pð Þ
nm

(equation (7)), we use the SHTools package (www.shtools.org), and for spherical harmonic synthesis of gravity
disturbances and their kth order radial derivatives (cf. equation (16)) a modification of the harmonic_synth
software [Holmes and Pavlis, 2008]. Both packages deploy the routines by Holmes and Featherstone [2002] for

the stable computation of the associated Legendre functions Pnm sinφð Þ to degree n= 2700. Given that the

Pnm sinφð Þ are subject to numerical instabilities which increase for n> 2700 [Holmes and Featherstone, 2002],
we confine all of our numerical tests to

Nmax ¼ pnmax≤2700: (17)

As a consequence, the bandwidth 0 nmax½ � of the input topography must be chosen sufficiently narrow to
allow for accurate evaluation of the high-frequency p multiples of 0 nmax½ �. Among many possible
bandwidths, we have chosen the input band 0 nmax ¼ 360½ � as our example for band-limited topographic
mass models. For this band, calculation and analyses of multiples of the input band 0 nmax ¼ 360½ � up to
p=7 are safely possible. As will be shown, this is sufficient to verify the contribution scheme in Figure 1.

We acknowledge that algorithms for the stable computation of Pnm sinφð Þ to arbitrary degree have been
developed [Fukushima, 2012a, 2012b], which could be used in a future case study to ultrahigh degree, once
tested implementations for spherical harmonic analyses become available (for spherical harmonic synthesis
software to ultrahigh degree see, e.g., Bucha and Janák [2013]).

3.2. Data and Constants

As model representing the topographic masses, we use the freely available spherical harmonic data set
RET2012 (rock-equivalent topography model) of Curtin University’s Earth2012 model suite (URL: http://
geodesy.curtin.edu.au/research/models/Earth2012/, file Earth2012.RET2012.SHCto2160.dat). This allows
replication of our study. Based on a range of input data sets, RET2012 represents the masses of the visible
topography, of the oceans and major inland lakes, and major ice sheets using a single-constant mass density
of ρ= 2670 kgm�3. Rock-equivalent heights of ice and water masses were derived through mathematical
compression into rock-equivalent mass layers [e.g., Rummel et al., 1988], see Hirt et al. [2012] and Hirt [2013]
for details on the procedures applied to generate the RET2012 SHCs Hnm. Though the SHCs of RET2012 are
available to degree and order 2160, we use this model only from degree and order 0 to degree and order
360 (= nmax). As such, only the RET2012 spectral band of harmonic degrees 0 to 360 defines the input
(source) topography in this study.

For our tests of the two forward modeling techniques, we use exactly the same topographic mass model as
input: In the spatial domain technique heights H(φ, λ) synthesized from the RET2012SHCs Hnm at various
resolutions, and in the spectral domain technique the Hnm directly as input topography. Also used with
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identical numerical values in both
techniques are the topographic mass
density ρ= 2670 kgm�3, reference
radius R= 6,378,137m (semimajor
axis of GRS80) [Moritz, 2000], the
universal gravitational constant
G= 6.67384 × 10�11m3 kg�1 s�2

[Mohr et al., 2012, p. 72], and total
Earth’s mass (including atmosphere)
M= 5.9725810 × 1024 kg (from the GM
product of GRS80 [Moritz, 2000]).

3.3. Spectral Analyses
3.3.1. Topography
To derive the spectra of the THFs, we
(i) synthesized RET2012 heights H in
spectral band 0 nmax ¼ 360½ � in
terms of regularly spaced geocentric
latitude-longitude grid of 2 arc min

resolution (5400×10,800 heights), (ii) normalized this grid with R, (iii) raised the resulting THFs to integer power
p≥ 1, and (iv) analyzed harmonically the powered THFs H(p) with SHTools (algorithm byDriscoll and Healy [1994]).

This procedure gave us theH pð Þ
nm-SHCs to a maximum degree and order n=m=2700. Note that the THFs assume

very small values as the power increases (e.g., p=5, THF≈ 10�20 for heights around 1 km). To avoid possible
numerical problems in the analysis associated with small numbers, we scaled each THF with its maximum value
before the analysis and undid this scaling at coefficient level. The dimensionless degree variances of the THFs

σH pð Þ
n

2 ¼ ∑
n

m ¼ 1
HC

pð Þ
nm

2 þ HS
pð Þ
nm

2
� �

(18)

are shown in Figure 4 as a function of the degree n for the first four integer powers. For the linear THF H(1), the
spectrum slowly decays from degree 0 to degree 360, drops by 25 orders of magnitude at degree 361, and
stays at the level of ~10�37 for all other degrees (noise level as given by the computational precision). This
behavior is expected, given the bandwidth limitation of the input topography to nmax = 360. The squared THF
H(2) is smaller in amplitude so features less power than H(1). The spectrum of H(2) slowly decays to degree 360,
drops slightly around degree 361, and experiences another slow decay up to degree 720, before falling to
noise level. This behavior shows that the bandwidth of H(2) is extended by factor 2 compared to the input
band (through rising to power 2). Figure 4 further shows for the cubed THF H(3) significant spectral power in
band 0 to 1080 (3 times the input bandwidth) and for H(4) significant spectral power to degree 1440 (4 times
the input bandwidth). Exemplified with the first four integer powers of the THFs, Figure 4 nicely shows the
increase in bandwidth by a factor of p with respect to the input band limitation to nmax = 360.
3.3.2. Potential
We separately evaluated equation (12) for powers p= 1 to 6, giving us the pth contribution of the topography

to the topographic potential V pð Þ
nm. The dimensionless potential degree variances

σV pð Þ
n

2 ¼ ∑
n

m ¼ 1
VC

pð Þ
nm

2 þ VS
pð Þ
nm

2
� �

(19)

are shown in Figure 5, as well as the degree variances of the total topographic potentialVpmax¼6
nm (sum of the six

contributions V pð Þ
nm). As expected from Figure 4, the contribution made by p=1 only possesses power to

nmax= 360, while the other five integer powers contribute to degree 720 (p=2), to 1080 (p=3), all the way to
degree ~2160 (p=6). Assuming that degree variances below the level of about ~10�27 are negligible [see Hirt
and Kuhn, 2012], Figure 5 suggests that the powers p=2 to 5 contribute significantly to Vpmax¼6

nm in band
361 720½ � and powers p=3 to 4 in band [721 1080]. The higher-order contributions of a band-limited
topography to the topographic potential tend to contribute largest well beyond the initial input bandwidth, as
is seen from the degree variances for p=6, which are maximum near degree ~700, though originating from a
topography band limited to nmax= 360.

Figure 4. Degree variances of the first four integer powers p of the topo-
graphic height function (H/R) band limited to degree 360.
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3.4. Spatial Analyses

This section compares gravity
disturbances from spatial forward
modeling (section 2.1) and from
spectral forward modeling (section 2.2)
over the Himalaya test region
(25°< φ< 35° and 85°< λ< 95°).
Because of the most rugged
topography and thus gravitational field,
this area should serve as a “worst case”
test area for the technique comparison.
Common to the application of both
techniques is the dense computation
point spacing of 1 arc min, as well as
the arrangement of computation
points at the surface of the topography
H. This takes into account attenuation
of gravity with height. Over areas
whereH< 0, the computation is carried
out at H=0 (avoiding computations
inside the reference sphere).

In the spatial domain forward modeling, topographic mass effects induced by the global topography were
analytically computed using the discretized Newtonian integration approach described in section 2.1.
Heights from the topography model were synthesized over the test area in terms of densely spaced grids
(20 arc sec resolution) in spectral band 0 nmax ¼ 360½ �. As such, the grid of topographic heights is highly
oversampled by a factor of 90 (note that the maximum harmonic degree of 360 corresponds to a formal
spatial resolution of 1800 arc sec or ~50 km at the equator). In other words, the spherical harmonic
topography is very well represented in the space domain through dense grid point spacing. This
oversampling minimizes discretization errors in spatial domain forward modeling.

To reduce computation times, a number of grid resolutions were used as follows: 20 arc sec within 1° radius, 1 arc
min within 3° radius and 3 arc min beyond. Because of the quadratic attenuation of gravity with distance, the use
of lower grid resolutions outside some radius is commonpractice [e.g., Forsberg [1984]] and—if selected properly
—results in approximation errors well below one μGal. Figure 6 shows the gravity disturbances from input band

0 nmax ¼ 360½ � over our test area, as
obtained from the spatial forward
modeling (Newtonian integration).

Following the contribution scheme of
spectral forward modeling, we computed
gravity disturbances as a function of (i) the
integer power p and of (ii) the bandwidth

0 nmax½ �; p ¼ 1

p� 1ð Þnmax þ 1 pnmax½ �; p > 1 ;

respectively. The calculation of each
individual contribution made by the
topography to the topography-implied
gravity disturbance is based on
continuation with higher-order gravity
gradients to kmax = 10 and an average
reference height Href = 3000m (equations
(15) and (16)). From a comparison with
gravity from direct 3-D spherical

Figure 5. Potential degree variances of the contributionsmade by the first six
integer powers of the topography to the topographic potential (blue to
orange) and of potential degree variances of the (resulting) total topographic
potential (black line). Topography is band limited to degree and order 360.

Figure 6. Topographic gravity over the Himalaya test area from space
domain gravity forward modeling (Newton integration), topographic
input bandwidth limited to degree and order 360, and unit in mGal
(= 10�5m s�2).
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harmonic synthesis (equation (13)) at the surface of the topography, approximation errors were below
0.1μGal (tested for pmax= 6 and Nmax =1440), so safely negligible.

The spectral contributions of the topography to the gravity disturbance are displayed in Figure 7 over our test
area, whereby the arrangement of panels follows the scheme introduced in Figure 2. The bulk of the gravity
signal originates from the linear term (p=1) evaluated to nmax= 360. It is seen that from p=1 to 4 the
contributions gradually decrease to the 0.1mGal level and diminish for higher-order powers. The three columns
to the right show the topography-implied signals in bands 361 720½ �, 721 1080½ �, and 1081 1440½ �. These
are all multiples of the input bandwidth which were not considered in previous “traditional” spectral domain
forward modeling. From Figure 7, the squared and cubed topography generates gravity signals larger than
1mGal, both within and beyond the input band limitation nmax=360. Contributions larger than 10μGal are
made by p=1 to 5 in band 361 720½ �, and p=3 to 4 in band 721 1080½ �, while the contributions associated
with band 1081 1440½ � are below the 1μGal level. Qualitatively, this is in good agreement with the spectral
analyses made in section 3.3.2.

As the central result of this study, Figure 8 shows the differences between gravity disturbances from
spectral domain and spatial domain forward modeling as a function of the maximum integer power pmax

used in equation (12) and the maximum harmonic degree Nmax = pnmax evaluated in the spectral domain.
The arrangement of panels follows Figure 7, but the spectral contributions are accumulated, i.e., sums
computed to pmax and Nmax. Selected descriptive statistics (root-mean-square and maximum absolute
value of the difference) are reported in Table 1. From Figure 8 and Table 1, the agreement among the two
techniques improves with increasing pmax and increasing Nmax, from ~5mGal root-mean-square (RMS)
(31mGal maximum difference) for pmax = 1 and Nmax = nmax = 360 to an excellent level of 0.3 μGal RMS
(~2 μGal maximum difference) for pmax = 6 and Nmax≥ 1080, see Table 1.

Figure 7. Single contributions of the topography to the topographic gravity over the Himalaya area (25°<φ<35°, 85°< λ<95°)
as a function of the integer power p (increasing from top to bottom), and of the pth multiple of the input band (increasing from
left to right). Input band is limited to harmonic degree 360, unit in mGal.
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Focusing on the left column (Nmax =nmax = 360), in Figure 8, the discrepancies among the two techniques
always exceed 5mGal, irrespective of the pmax chosen. The residuals in the left column thus correspond to a
traditional comparison between spectral and spatial forward modeling with spectral consistency among
topography and gravity presumed. Most importantly, it is the consideration ofmultiples of the input bandwidth
that improves the agreement by a factor of ~100 to the 50μGal level (Nmax= 2nmax= 720), and by another
factor of ~25 to the μGal level (Nmax= 3nmax = 1080), also see Table 1.

The comparisons demonstrate that the Newtonian integration inherently “captures” the additional high-
frequency signals (beyond nmax), without explicit modeling as must be done in the spectral domain. The
remaining discrepancies are likely to reflect numerical integration errors in the spatial domain
technique. Further, the comparisons also show (implicitly) sufficient convergence of the series expansions
applied for field continuation (equations (15) and (16)).

Figure 8. Residuals between topographic gravity from spatial and spectral forward modeling as a function of (i) maximum
integer power pmax (increasing from top to bottom) and (ii) maximum harmonic degree Nmax (increasing from left to right)
used in the spectral domain forward modeling. Figure should be read together with Figure 7. Differences are in the sense
spectral minus spatial modeling, units in mGal.

Table 1. Residuals Between Spectral and Spatial Domain Forward Modelinga

Nmax = 360 Nmax = 720 Nmax = 1080 Nmax = 1440

pmax = 1 5.43(31.34) na na na
pmax = 2 1.03(7.83) 0.38 (3.30) na na
pmax = 3 0.96(6.17) 0.03 (0.37) 0.03 (0.36) na
pmax = 4 0.96(6.06) 7.6 × 10�3 (7.5 × 10�2) 2.5 × 10�3 (3.8 × 10�2) 2.5 × 10�3 (3.8 × 10�2)
pmax = 5 0.96(6.06) 7.3 × 10�3 (6.5 × 10�2) 4 × 10�4 (4.4 × 10�3) 4 × 10�4 (4.1 × 10�3)
pmax = 6 0.96(6.06) 7.3 × 10�3 (6.4 × 10�2) 4 × 10�4 (2.5 × 10�3) 3 × 10�4 (2.1 × 10�3)

aReported are the root-mean-square and in brackets the maximum absolute difference between gravity from the two
techniques, unit in mGal. Not applicable = na.
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3.5. Computational Costs

Regarding the computational costs for spectral domain forward modeling, a spherical harmonic analysis of a
single power of the THF took ~3min on a standard office PC (input topography band limited to degree 360
and output coefficients of the THF to degree 2160). With the first six powers of the THF taken into account
(Figure 5), the overall computation time for application of the contribution scheme (Figure 2) and synthesis of
gravity effects with gradients over our 10° × 10° study area (360,000 points) was less than 1 h. Opposed to this,
the Newton integration required more than 10,000 CPU hours on Western Australia’s iVec supercomputer to
provide gravity effects over the same area. The computational costs of the space domain technique were
relatively high because of the oversampling (20 arc sec grid resolution for a degree 360 signal) that was
chosen to reduce discretization errors down to the μGal level. Polyhedral bodies instead of prisms may not
require such extreme oversampling to yield similarly low discretization errors, thus reducing the
computational cost.

While in the case study the spectral technique was numerically more efficient than the spatial technique,
there is a clear tendency of the spectral method becoming much more computationally intensive as the
degree increases. Application of the contribution scheme in Figure 2 for a source topography model to
degree 2160 (10 km resolution) would require multiple harmonic synthesis, e.g., to degree and order 10,800
(5 times oversampling) to capture the short-scale gravity signals at spatial scales less than 10 km. Currently,
there is no software at hand to accurately gauge the computational costs for this or other high-degree
applications of the contribution scheme. Importantly, increasing the spectral resolution will increase the
computation times for spectral forward modeling but not for the Newton integration if the above grid
resolutions remain the same.

4. Discussion

Gravity disturbances obtained from two entirely independent modeling techniques, but from the same input
mass distribution, were compared over a worst case test area, with special focus on the spectral domain
contributions made by (i) the integer powers p of the topography and (ii) multiples p of the input bandwidth.
Our numerical tests unambiguously demonstrate that a band-limited topographic mass distribution implies a
gravitational field with spectral power far beyond the input band limitation to nmax. Our test procedures were
sensitive enough to empirically show the relevance of the first three multiples (Nmax = 4nmax) of the input
band, as well as of higher-order contributions up to p= 6. This provides strong evidence for the validity of the
contribution scheme introduced in Figure 2, and thus justifies the statement that a band-limited topography
generates (in good approximation) a full-spectrum gravity field.

The discrepancies among gravity from the spectral and spatial techniques were found to be smaller than
~2μGal when integer power contributions to pmax = 6 were evaluated, and the bandwidth of the potential
was extended by a factor 4 over the bandwidth of the topography (Nmax = 4nmax). With a maximum signal
strength of ~500mGal (Figure 6), this translates into a relative error of 4 × 10�6. To our knowledge, such a low
relative error among the two forwardmodeling techniques has not yet been reported in the literature. Compared
to the uncertainty of the universal gravitational constant G of about 1.2×10�4 [Mohr et al., 2012, p. 72], these
technique discrepancies play a diminishing role for the accurate computation of topography-generated
gravity. All in all, the level of agreement between the forward modeling techniques can be considered
as excellent.

Holistically, our numerical comparisons provide valuable mutual feedback on the two techniques applied,
contributing to a better understanding of gravity forward modeling. In particular, the comparisons
demonstrate the following:

1. The importance of the computation point height. For the meaningful calculation of gravity disturbances
(or other functionals of the potential), computation points in both techniques were located at the topo-
graphy (other locations are possible). While the attenuation of gravity with height and distance from the
generating masses is accounted for through the choice of computation points in the Newtonian inte-
gration, consideration is possible in the spectral domain through gravity synthesis at the surface of the
topography. The excellent agreement between gravity from the two techniques (Table 1) implicitly shows
convergence of the gradient solution applied here (equations (16) and (17)).
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2. The importance of higher-order integer contributions. For the accurate application of spectral
domain forward modeling higher-order contributions made by integer powers of the topography
become increasingly relevant as the resolution of the input topography increases [see also Hirt and
Kuhn, 2012]. While the theory [e.g., Rummel et al., 1988; Wieczorek and Phillips, 1998] clearly shows
the need for higher-order contributions, there are only few studies concerned with empirical verifi-
cation of these terms based on independent or external methods. Chambat and Valette [2005]
showed the relevance of the squared topographic contribution (via a comparison with geopotential
models). Our technique comparisons now demonstrate the relevance of integer powers up to the
sixth power.

3. The importance of multiples of the input bandwidth. To accurately compute the gravitational field
implied by a topographic mass distribution in the spectral domain, the contributions of the higher-order
powers must be calculated in multiples of the input bandwidth. The additional high-frequency gravity
signals are significant (in our tests up to 4 times the input bandwidth), as was shown by comparison with
the independent Newtonian integration.

When the additional high-frequency signals remained (deliberately) unmodeled in our study (i.e.,
Nmax = nmax), the discrepancies among the two techniques would translate into relative errors of ~1%
(Nmax = nmax = 360, cf. Table 1), but this will be larger for Nmax = nmax> 360. Not shown here for the sake of
brevity, but a second numerical test with input band Nmax = nmax = 2160 yielded ~6.5% relative errors
(34mGal maximum discrepancy among both techniques versus ~530mGal signal) when neglecting signals
beyond the input bandwidth in the spectral technique. Thesemagnitudes are comparable with relative errors
encountered in other studies comparing spectral and spatial forward modeling (0.8% [Novák and Tenzer,
2013]; 3% [Kuhn and Seitz, 2005]; 4.5% [Wild-Pfeiffer and Heck, 2007], and ~10% [Wang et al., 2010]; Balmino
et al., 2012]; please see section 1). Given our relative errors are at the level of 10�4 (0.01%) for
Nmax = 2nmax = 720 and diminish to the level of 4 × 10�6 (0.0004%) for Nmax = 4nmax = 1440, it is safe to
conclude that (unmodeled and usually truncated) topography-generated gravity signals beyond nmax are key
candidates for the discrepancies among spectral and spatial forward modeling encountered in the
aforementioned studies.

Wieczorek [2007] noted in his review paper on the character of the spectral forward modeling equation
(equation (12) in this paper): “While the sum of Eq. 30 [Wieczorek, 2007, p 19] is finite, and hence exact, the
number of terms grows linearly with spherical harmonic degree.” However, our results and the contribution
scheme (Figure 2) show that the sum used byWieczorek [2007] cannot be used for the exact computation of
gravity implied by a given topography, because spectral consistency among gravity and topography is
assumed when using Nmax = nmax. Rather, the exact calculation of gravity from topography by harmonic
expansion requires consideration of Nmax = pmaxnmax (equation (10)), as shown in this study.

5. Conclusions

This paper has investigated the spectral (bandwidth) inconsistency among spherical harmonic topographic
mass models and the generated gravitational field. A generalized contribution scheme was introduced for
the spectral domain forward modeling technique as a function of integer powers and multiples of the input
topography’s bandwidth. This new scheme mathematically describes the extension of the spectrum
associated with the transformation of topography to gravity based on Newton’s law of gravitation. The short-
scale gravity signals generated by a band-limited topography can be surprisingly easily modeled in the
spectral domain as shown in this paper. The validity of the contribution scheme was confirmed through
spectral analyses and space domain comparisons.

Modeling the additional high-frequency signals beyond the input bandwidth has brought together the
spatial domain and spectral domain forward modeling technique from a level of 10�2 to the level of better
than 10�5 in terms of gravity disturbances. This is a considerable improvement by 3 orders of magnitude.

There are applications where the spectral inconsistency between topographic mass models and gravitational
potential is entirely uncritical, for instance comparisons between observed and topography-implied
gravitational fields in spherical harmonics (as in the calculation of spherical harmonic Bouguer gravity). This is
because the fields are spectrally consistent in the gravity domain.
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However, if the gravitational field generated by a spherical harmonic topography is to be exactly calculated,
then multiples of the input topography’s bandwidth should be computed and evaluated in the spectral
domain. Multiples of the input bandwidth can be expected to become more relevant as the resolution
increases (cf. section 4). This has important implications for present and future ultrahigh-degree models of
the topographic potential: For a standard degree 2160 topography model, the implied topographic potential
would have to be modeled to (a coarsely estimated) degree of ~10,800 or higher if sufficient consistency
between the two quantities is sought. For an input bandwidth of a topography model to degree and order
10,800 [e.g., Balmino et al., 2012] would require spectral domain modeling to extremely high degree to
accurately compute the generated gravitational potential.

Finally, with the understanding of the spectral domain technique drawn from this study, comparisons among
spectral domain and spatial domain forward modeling can now be much better utilized for a mutual
validation of forward modeling software implementations and detailed testing of forward modeling
approaches. For instance, this can be helpful for (i) testing integration formulas for gravity effects from mass
bodies [Grombein et al., 2013; D’Urso, 2014] in the spatial domain technique or (ii) investigating the
convergence behavior of series expansions in the spectral domain in some not entirely undisputed cases
(e.g., evaluations inside the masses or inside the reference body).
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