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Abstract. Global Navigation Satellite System (GNSS)
carrier phase ambiguity resolution is the process of
resolving the carrier phase ambiguities as integers. It is
the key to fast and high precision GNSS positioning and
it applies to a great variety of GNSS models which are
currently in use in navigation, surveying, geodesy and
geophysics. A new principle of carrier phase ambiguity
resolution is introduced. The idea is to give the user the
possibility to assign penalties to the possible outcomes
of the ambiguity resolution process: a high penalty for
an incorrect integer outcome, a low penalty for a correct
integer outcome and a medium penalty for the real
valued float solution. As a result of the penalty
assignment, each ambiguity resolution process has its
own overall penalty. Using this penalty as the objective
function which needs to be minimized, it is shown which
ambiguity mapping has the smallest possible penalty.
The theory presented is formulated using the class of
integer aperture estimators as a framework. This class of
estimators was introduced elsewhere as a larger class
than the class of integer estimators. Integer aperture
estimators, being of a hybrid nature, can have integer
outcomes as well as non-integer outcomes. The minimal
penalty ambiguity estimator is an example of an integer
aperture estimator. The computational steps involved
for determining the outcome of the minimal penalty
estimator are given. The additional complexity in
comparison with current practice is minor, since the
optimal integer estimator still plays a major role in the
solution of the minimal penalty ambiguity estimator.
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1 Introduction

As our point of departure we take the following system
of linear observation equations:

E{y} =Aa+Bb,acZ", becR! (1)

with E{-} the mathematical expectation operator, y the
m-vector of observables, a the n-vector of unknown
integer parameters and b the g-vector of unknown real
valued parameters. All the linear(ized) Global Naviga-
tion Satellite System (GNSS) models can in principle be
cast in the above frame of observation equations. The
data vector y will then usually consist of the ‘observed
minus computed’ single-, dual- or multi-frequency
double-difference (DD) phase and/or pseudorange
(code) observations accumulated over all observation
epochs. The entries of vector a are then the DD carrier
phase ambiguities, expressed in units of cycles rather
than range, while the entries of the vector » will consist
of the remaining unknown parameters, such as, for
instance, baseline components (coordinates) and possi-
bly atmospheric delay parameters (troposphere, iono-
sphere).

The procedure for solving the above GNSS model
can be divided conceptually into three steps. In the first
step we simply discard the integer constraints @ € Z" and
perform a standard adjustment. As a result we obtain
the so called float solution @ and b. This solution is real
valued. In the second step the float solution a is further
adjusted so as to take the integerness of the ambiguities
into account in some pre-defined way. This gives

as = S(a) (2)

in which § is an n-dimensional mapping that takes the
integerness of the ambiguities into account. This esti-
mator is then used in the final step to adjust the float
estimator b. As a result we obtain the so called fixed
estimator of b as

bs =b— 0;,0;" (@ — as) (3)

in which Q; denotes the variance—covariance (VC)
matrix of @ and Q;, denotes the covariance matrix of b
and a.

The above three-step procedure is still ambiguous in
the sense that it leaves room for choosing the n-dimen-
sional map S. Different choices for S will lead to dif-
ferent ambiguity estimators and thus also to different
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baseline estimators bg. We can therefore now think of
constructing a family of maps S with certain desirable
properties. Three such classes of ambiguity estimators
are the class of integer estimators, the class of integer
equivariant estimators and the class of integer aperture
estimators. These classes were introduced by the author
in, respectively, Teunissen (1999, 2002, 2003a). These
three classes of estimators are subsets of one another.
The first class is the most restrictive class. This is due to
the fact that the outcomes of any estimator within this
class are required to be integer. The most relaxed class is
the class of integer equivariant estimators. These esti-
mators are real valued and they only obey the integer
remove-restore principle. The class of integer aperture
estimators is a subset of the integer equivariant estima-
tors but it encompasses the class of integer estimators.
The integer aperture estimators are of a hybrid nature in
the sense that their outcomes are either integer or non-
integer.

The optimal integer estimator and the optimal integer
equivariant estimator are given in, respectively, Teunis-
sen (1999, 2002). In the present contribution we will
introduce the optimal ambiguity estimator for the class
of integer aperture estimators. The idea is to give the
user the possibility to assign penalties to the outcomes of
an integer aperture estimator; for example, a high pen-
alty for an incorrect integer outcome and a low penalty
for a correct outcome. Each integer aperture estimator
will then have its own average penalty. The optimal
integer aperture estimator is the one which has the
smallest possible average penalty.

This contribution is organized as follows. In order to
introduce the underlying principle of integer aperture
estimation we first consider the definition of integer
estimators in Sect. 2. The pull-in regions of integer
estimators need to obey three conditions: they need to be
translational invariant and fill the complete ambiguity
space R" without gaps and overlaps. Integer aperture
estimators, however, only need to satisfy two of these
three conditions. For the integer aperture estimators we
skip the condition that their pull-in regions need to fill
the ambiguity space completely. Gaps are therefore al-
lowed. The exact definition of integer aperture estima-
tors is given in Sect. 2. Since there is a whole class of
such estimators many different examples can be given.
We will give three different examples of integer aperture
estimators and show that two of them are already in use
as so called ‘discernibility tests’. This also illustrates how
the use of ‘discernibility tests’ fits into the theory of
integer aperture estimation.

In Sect. 3 we introduce the possibility of assigning
penalties to the outcomes of an integer aperture esti-
mator. The optimal integer aperture estimator is then
defined as the estimator which returns the smallest
possible average penalty. It turns out that the average
penalty can be minimized in three different ways. The
first two are constrained minimization problems,
whereas the third one is an unconstrained minimization
problem. The solutions of all three problems, together
with the computational steps involved, are given in Sect.
3. These solutions also clearly show the relationships

that exist between optimal integer aperture estimation
and optimal integer estimation. Although the proofs are
given for an arbitrary probability density function
(PDF) of the float solution, we also give the explicit
solutions for the Gaussian case. The contribution is
concluded with a summary in Sect. 4.

2 Integer aperture estimation
2.1 Integer estimation

The class of integer aperture (IA) estimators is larger
than the class of integer (I) estimators. In order to
understand the underlying principle of A estimation, we
first consider the definition of integer estimators.

Definition 1 (integer estimators). The mapping a@ = S(a),
S : R"—Z", is said to be an integer estimator if its pull-in
regions

S.={xeR" |z=8(x)}, ze€Z" (4)

satisfy

(1) Uz S: =R
2) Int(S.,))NInt(S.,) =0, Vzi,z0 € Z",z1 # 2,
3) S.=z+8), VzeZ

This class of estimators was introduced in Teunissen
(1999) with the following motivation. Each one of the
above three conditions describes a property which it
seems reasonable is possessed by an arbitrary I estimator.
The first condition states that the pull-in regions should
not leave any gaps and the second that they should not
overlap. The absence of gaps is needed in order to be able
to map any float solution @ € R" to Z", while the absence
of overlaps is needed to guarantee that the float solution
is mapped to just one integer vector. Note that we allow
the pull-in regions to have common boundaries. This is
permitted if we assume to have zero probability that a lies
on one of the boundaries. This will be the case when the
PDF of a is continuous. The third and last condition of
the definition follows from the requirement that
S(x+z)=8(x)+zVxeR",zeZ". This condition is
also a reasonable one to ask for. It states that when the
float solution a is perturbed by z € Z", the corresponding
integer solution is perturbed by the same amount. This
property allows us to apply the integer remove—restore
technique: S(a — z) +z = S(a). It therefore allows us to
work with the fractional parts of the entries of &, instead
of with its complete entries.

Using the pull-in regions, we can give an explicit
expression for the corresponding I estimator 4. It reads

P Zzsz(a) with s.(a) = { (1) if a&;sz G)

zeZ"

Note that the s.(d) can be interpreted as weights, since
> .emnSz(@) = 1. The I estimator a is therefore equal to a
weighted sum of integer vectors with binary weights.
Also note that the above given definition of I estimators
allows us to devise our own I estimator. Once we have



come up with disjoint subsets which are translated
copies of one another and which cover R” completely, we
have defined our own I estimator. Well-known examples
of I estimators are the estimators based on integer
rounding, integer bootstrapping and integer least
squares (LS). In two dimensions their pull-in regions
are given respectively as squares, parallelograms and
hexagons.

2.2 Optimal integer estimation

For the evaluation of the I estimator we need the
distribution of a. This distribution is of the discrete type
and it will be denoted as P(a =z). It is a probability
mass function (PMF), having zero masses at nongrid
points and nonzero masses at some or all grid points. In
order to obtain this PMF we need the PDF of the float
solution a. This PDF will be denoted as f;(x | a), in
which we explicitly show the dependence on the
unknown but integer vector a. In the Gaussian case
the PDF will be given as

(x| a :;ex 1 x—al?
T ML LU SO

with || - [|5,= ()"Q;'(-). The PMF P(a=z) follows
from integrating f;(x | @) over the pull-in regions S.:

P(Zz:z):/sfd(x|a)dx,z€Z” (7)

This distribution is of course dependent on the pull-in
regions S, and thus on the chosen I estimator. Since
various I estimators exist which are admissible, some
may be better than others. Having the problem of GNSS
ambiguity resolution in mind, we are particularly
interested in the estimator which maximizes the prob-
ability of correct I estimation. This probability equals
P(a = a), but it will differ for different estimators. The
answer to the question of which estimator maximizes the
probability of correct integer estimation was given in
Teunissen (1999).

Theorem 1 (optimal integer estimation). Let f;(x | a) be
the PDF of the float solution a and let

dyy = arg mezled(& | 2) (8)
zeZ"

be an integer estimator. Then
P(ayg =a) > Pla=a) 9)

for any arbitrary integer estimator a.

The above theorem holds true for an arbitrary PDF
of the float solution a. In most GNSS applications
however, we assume the data to be normally distributed.
The estimator a will then be normally distributed too,
with mean a € Z" and VC matrix Qg d ~ N(a,Q;). In
this case the optimal estimator becomes identical to the
integer LS estimator
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. P, 2
drs = argmin Il a—z| 0, (10)
The above theorem therefore gives a probabilistic
justification for using the integer LS estimator when
the PDF is Gaussian. For GNSS ambiguity resolution
we are thus better off using the integer LS estimator than
any other admissible I estimator. A well known and very
efficient method for GNSS integer LS ambiguity reso-
lution is the LAMBDA method. Examples of its
application can be found in, for example de Jonge and
Tiberius (1996b), de Jonge et al. (1996), Boon and
Ambrosius (1997), Boon et al. (1997) and Cox and
Brading (1999). For more information on the LAMB-
DA method, we refer to, for example Teunissen (1993,
1995) and de Jonge and Tiberius (1996a), or to the
textbooks of Strang and Borre (1997), Teunissen and
Kleusberg (1998), Misra and Enge (2001), Hofmann-
Wellenhof et al. (2002) and Seeber (2003).

2.3 Aperture pull-in regions

The outcome of an I estimator is always integer. It may
happen, however, that we are not willing to accept the
integer outcome. In that case we would prefer to work
with the real valued float solution, than with the integer
solution even though it is known that the parameter to
be estimated is integer. The rationale of this choice is
that the usage of an incorrect integer outcome is more
harmful than the usage of the non-integer float solution.
The decision whether or not to make use of the integer
outcome can be made in different ways. One approach is
to base the decision on the probability of correct integer
estimation, also referred to as the success rate. The
decision is then made in favour of the float solution if
this probability falls below a certain user-defined
threshold. This approach can be referred to as being
model driven, since the probability of correct integer
estimation depends on the strength of the underlying
mathematical model but not on the actual outcome of
the estimator. With this approach, the decision whether
or not to make use of the I estimator can thus be made
before the actual measurements are collected and
processed. Next to this model-driven approach, we can
also make use of a more data driven approach. In many
GNSS ambiguity resolution procedures we also have
such a data-driven approach in place. They are referred
to as the ‘discernibility tests’. They come to reject the
integer outcome when it appears difficult, using the float
solution, to discern between the ‘best’ and the ‘second
best’ integer solution. In the case of a rejection the
decision is made in favour of the float solution. As with
the model driven approach, the rationale of the ‘dis-
cernibility tests’ is that we want to avoid the situation of
having to work with an incorrect integer solution. Since
the aim of both approaches is essentially the same, we
may wonder whether or not it is possible to formulate an
overall framework in which both approaches find their
natural place. This indeed turns out to be possible. The
required framework is given by the class of integer
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aperture (IA) estimators as introduced in Teunissen
(2003a). The IA estimators are defined by dropping one
of the three conditions of Definition 1, namely the
condition that the pull-in regions should cover R”
completely. The pull-in regions of the TA estimators
are therefore allowed to have gaps, thus making it
possible that their outcomes could be equal to the float
solution as well.

In order to introduce the class of IA estimators from
first principles, let Q C R" be the region of R" for which a
is mapped to an integer if a € Q. It seems reasonable to
ask of the region Q that it has the property that if @ € Q
then also a +z € Q, for all z € Z". If this property would
not hold, then float solutions could be mapped to inte-
gers whereas their fractional parts could not. We thus
require Q to be translational invariant with respect to an
arbitrary integer vector: Q+4+z=Q, for all z€ Z".
Knowing Q is however not sufficient for defining our
estimator. Q only determines whether or not the float
solution is mapped to an integer; it does not tell us yet to
which integer the float solution is mapped. We therefore
define

Q.=QnS.,VzeZ" (11)

where S, is a pull-in region satisfying the conditions of
Definition 1. Then

(1) UQ =U@QNS) =QN(US)=QNR" =0
2 0, N0, =(QNQ.,)N(QNAQ,)
= QO(SZI ﬁSZZ) = [Z), VZl,Z2 S Zn,Zl 7522
B) Q+z=(QNSH)+z=(Q+2)N(S)+2)
=QNsS. =Q,, VzeZ"

This shows that the subsets Q, C S, satisfy the same
conditions as those of Definition 1, be it that R” has now
been replaced by Q C R”. Hence, the mapping of the A
estimator can now be defined as follows. The IA
estimator maps the float solution a to the integer vector
z when a € Q, and it maps the float solution to itself
when a ¢ Q. The class of TA estimators can therefore be
defined as follows.

Definition 2 (integer aperture estimators) Integer aper-
ture estimators are defined as

ap =a+ Z(Z —a)w:(a) (12)
zeZ!

with w;(x) the indicator function of Q. =QNS. and

Q C R" translational invariant.

Note that the class of IA estimators is larger than the
class of I-estimators. That is, every I estimator is also an
IA estimator, but not vice versa. That every I estimator
is an TA estimator can also be seen by showing that
every I estimator can be written as Eq. (12). Since the
indicator functions s.(x) of the pull-in regions S, sum up
to unity, >, ,. s-(x) = 1, the I estimator of Eq. (5) may
indeed be written as

a=a+» (z—a)s:(a) (13)

zeZ"

Comparing this expression with that of Eq. (12) shows
that the difference between the two estimators lies in
their binary weights, s,(x) versus w,(x). Since the s.(x)
sum up to unity for all x € R”, the outcome of an I
estimator will always be integer. This is not true for an
TA estimator, since the binary weights w,(x) do not sum
up to unity for all x € R". The IA estimator is therefore a
hybrid estimator having as outcome either the real
valued float solution a or an integer solution. The 1A
estimator returns the float solution if @ ¢ Q and it will be
equal to z when a € Q.. Note that, since Q is the
collection of all Q,=Qy+z the IA estimator is
completely determined once € is known. Thus
Qy C Sy plays the same role for the IA estimators as Sy
does for the I-estimators. By changing the size and shape
of Qy we change the outcome of the IA estimator. The
subset Q) can therefore be seen as an adjustable pull-in
region with two limiting cases: the limiting case in which
Qp is empty and the limiting case when Q) equals Sy. In
the first case the TA estimator becomes identical to the
float solution a, and in the second case the IA estimator
becomes identical to an I estimator. The subset €
therefore determines the aperture of the pull-in region.

2.4 Three examples of 1A estimators

Various examples can be given of IA estimators. In
fact, we can devise our own IA estimator by
specifying the aperture pull-in region. Since the output
of an IA estimator is given as ay =z if a€ Q, C S,
and as ajy = a if a ¢ Q C R", there are essentially two
steps involved when computing the integer aperture
estimate: (1) the computation of an integer estimate
and (2) the verification whether or not the ambiguity
residual resides in Q.

In the first step the integer estimate ¢ is computed
from the float solution as a=z< acS,. These
computations depend very much on the type of pull-in
region. They are straightforward in the case of integer
rounding and integer bootstrapping, whereas in the
case of integer LS we would need an efficient integer
search procedure such as the mechanized one in the
LAMBDA method. Once the integer estimate ¢ has
been computed, the second step amounts to the veri-
fication of whether or not the ambiguity residual
¢ =a — a resides in Q. This is equivalent to the ver-
ification of whether or not a € Q;. The output of the
IA estimator then equals the integer estimate when the
residual resides in Qp and it equals the real valued
float solution otherwise. These two computational
steps can be recognized in any TA estimator. We will
now give three examples of A estimators.

2.4.1 The ratio testimator

In the practice of GNSS carrier phase ambiguity
resolution various tests are in use for discriminating
between the ‘best’ and the so called ‘second-best’
solution. These tests are usually referred to as discern-
ibility tests. One such test is the popular ratio test. The
ratio test is defined as follows. Let a be the float
solution, & = argmin,ez || & —z H2Qa the integer solution



and @ = argmin.ezn, || @ —z ||, the ‘second-best” solu-
tion. Then 4 is accepted as the fixed solution if

la—al},
e < (14)
la—alp,

This test has been used in, for example, Euler and
Schaffrin (1990), Wei and Schwarz (1995), Han and
Rizos, (1996). Thus, with the ratio test, a is accepted as
the fixed solution if the float solution a is sufficiently
closer to a than to the ‘second-best’ solution &'. The non-
negative scalar p is a user-defined tolerance level.

In Teunissen (2003c) it was shown that the proce-
dure underlying the above test is actually that of an
IA estimator. The rejection region of the above test is
integer translational invariant and thus an example of
R"\ Q. For this region the outcome will be a. The
outcome will be the integer z € Z", however, when the
test is passed and a lies in the integer LS pull-in re-
gion of z. The aperture of the pull-in region of the
ratio test is governed by the choice of the single
parameter p. We have a zero aperture in the case that
p =0 and a maximum aperture in the case that p = 1.
In the first case the procedure of the ratio test will
always output the float solution, while in the second
case it will always output the integer LS solution a.
Changing the value of the aperture parameter p will
thus change the performance of the ratio test.

2.4.2 The difference testimator

Although perhaps less popular, tests other than the ratio
test have been proposed in the GNSS literature as well.
One such test is the difference test. This test was
introduced in Tiberius and de Jonge (1995). This test
also makes use of the integer LS solution and the
‘second best’ solution. It is defined as follows. The
integer LS solution a is accepted as the fixed solution
with the difference test if

la—d g —lla-alg>0o (15)

where the non-negative scalar 0 is a user-defined
tolerance level. As with the ratio test, the difference test
accepts a as the fixed solution if the float solution is
sufficiently more closer to & than to the ‘second best’
solution &'. ‘Closeness’ is, however, measured differ-
ently. The procedure underlying the difference test can
also be shown to be that of an IA estimator (see

Teunissen 2003b).

2.4.3 The ellipsoidal 14 estimator

The procedures currently in place for GNSS ambiguity
resolution all make use of comparing, in some pre-
defined sense, the ‘best’ solution with the ‘second best’
solution. But when we think of the concept of the
aperture region, there is in principle no need to compute
or to make use of the ‘second-best’ solution. That is, we
can do without the ‘second-best’ solution, as long as we
are able to measure and evaluate the closeness of the
float solution to an integer. The ellipsoidal IA estimator
is one such IA estimator. The aperture pull-in regions of
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the ellipsoidal integer aperture (EIA) estimator are
defined as

E.=FEy+z, Ey=S8SNC., VzeZ" (16)

with Sy being the integer LS pull-in region and
Ceo = {x € R" ||| x ||} < €’} an origin-centred ellipsoidal
region the size of w ich is controlled by the aperture
parameter e.

Thus the EIA estimator equals dgjqa =z if a € E, and
agia = a otherwise. From the definition it follows that
E.={xeS.|||x—z|[z,< ¢} This shows that the
procedure for computing the EIA estimator is rather
straightforward. Using the float solution 4, its VC ma-
trix Q; and the aperture parameter € as input, we only
need to compute the integer LS solution ¢ and verify
whether or not the inequality

la—allp,< ¢ (17)

is satisfied. If the inequality is satisfied then dga = a,
otherwise agjpa = a. A comparison with the ratio test [Eq.
(14)] and with the difference test [Eq. (15)] shows that [Eq.
(17)] is indeed the simplest of the three inequalities.
Instead of working with a distance ratio or a distance
difference, the EIA estimator simply evaluates the dis-
tance to the closest integer directly. There is therefore no
need to make use of a ‘second-best’ solution.

The simple choice of the ellipsoidal criterion of Eq.
(17) 1s motivated by the fact that the squared norm of a
normally distributed random vector is known to have a
Chi-square distribution. That is, if & is distributed as
a~N(a,0;) then P(a€C..)=P(y*(n,u.) <€), in
which y?(n, ) denotes a random variable having as
PDF the noncentral Chi-square distribution with n de-
grees of freedom and noncentrality parameter
1. = (z—a)"Q;'(z — a). This implies that we can give
an exact solution to the success rate of the EIA esti-
mator, provided the ellipsoidal regions C.. do not
overlap (see Teunissen, 2003c).

3 Penalized IA estimation
3.1 Minimizing the average penalty

So far we have discussed the class of IA estimators and
have given three examples of IA estimators of which the
aperture pull-in regions were chosen a priori. In fact,
using the general definition of IA estimators it is not too
difficult to define our own IA estimator. In order to do
so we only have to define an aperture pull-in region €
which satisfies the conditions of Definition 2. Since
many different TA estimators exist, which one do we
choose? In order to answer this question we first need to
define a criterion by means of which we can compare
different IA estimators, followed by solving the problem
of which of the TA estimators meets this criterion best.
In order to tackle this problem we introduce the
principle of penalized 1A estimation.

To understand this principle it is helpful to first
classify the possible outcomes of an A estimator. An TA
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estimator can produce one of the following three out-
comes: a € Z" (correct integer), z € Z" \ {a} (incorrect
integer) or a € R"\ Z" (no integer). A correct integer
outcome may be considered a success, an incorrect
integer outcome a failure, and an outcome where no
correction at all is given to the float solution as inde-
terminate or undecided. The idea of penalized IA esti-
mation is now to assign penalties to each of the above
three possible outcomes. The three different penalties
assigned are: a success penalty, ps, a failure penalty, pr,
and a penalty for undecided, py. The penalty assignment
therefore reads

psifacQ,
prifaeQ\Q, (18)
puifac "\ Q

Through this assignment we have now constructed a
discrete random variable, the penalty p, having the three
possible outcomes, p = {ps,pr,pu}. These outcomes
have the following probabilities of occurrence:

Ps :/Q Sfa(x | a)dx (success)

P = ; /Q Z fa(x | a)dx (failure) (19)

Py =1—Ps—Pr (undecided)

where f;(x | a) denotes the PDF of the float solution 4.
In the case of GNSS this PDF is usually assumed to be
Gaussian, @ ~ N(a, Q;). Note that the success probabil-
ity Ps equals the integral of the PDF over the aperture
pull-in region centred at a € Z”", the true but unknown
integer ambiguity vector. The failure probability Pg
equals the integral of the PDF over all pull-in regions
except the one centred at a, and the undecided
probability Py equals the integral of the PDF over
R"\ Q.

We may now consider the average of the discrete
random variable p, the average penalty E{p}. It is a
weighted sum of the individual penalties, with the
weights being equal to the three probabilities Ps, Pr and
Py

E{p} = psPs + prPr + puPu (20)

The average penalty depends on the chosen individual
penalties and—through the probabilities—on the chosen
aperture pull-in region Qy C Sp. Changes in any of these
will change the average penalty. The penalties are
chosen by the user. Their size will depend on the
application at hand, e.g. a severe penalty pg will most
likely be chosen if a wrong integer outcome of the TA
estimator is considered to have unacceptable conse-
quences. The penalties satisfy ps < py < pg. That is, a
failure will be given the highest penalty and a success the
lowest penalty.

Since the average penalty depends on €, any changes
in Q) will also change the average penalty. Thus different
IA estimators will have a different performance as far as

their average penalty is concerned. The idea now is to
select the IA estimator which minimizes the average
penalty.

3.2 Minimizing the penalty for a given integer estimator

The average penalty can be minimized in three different
ways. In order to understand this properly we have to
take a closer look at the role played by Q and Sj in
defining an IA estimator. We have seen that any IA
estimator is uniquely characterized by its aperture pull-
in region Qy = QN .Sy. The translational invariant region
Q = U,Q, is the region for which the float solution is
mapped to an integer. This region is independent of S.
Thus if S. and S, are two different sets of pull-in regions,
then Q. =QNS. #Q. =QNS, but Q=U.Q, =U,Q.
The fact that Q and Sy can be chosen independently
when defining an IA estimator implies that we can
minimize the average penalty in three different ways,
namely for a given Sy as function of Q, or for a given Q
as function of Sy, or as function of both Q and Sy. The
first two are constrained minimization problems,
whereas the third one is an unconstrained minimization
problem. We will first consider the minimization of the
average penalty as function of Q for a given Sy. The
solution to this problem is given in the following
theorem.

Theorem 2a ( penalized IA estimation with given I-
estimator) Let f;(x | a) be the PDF of the float solution a,
let a=7Y",_,zs.(a) be the chosen I estimator which is
uniquely characterized by its pull-in region Sy, and let
Q=Q+zCR" be the translational invariant aperture
region for which the float solution is mapped to an integer.
The 1A estimator having

m&n E{p} subject to Sy (21)

as average penalty is then given as

au=a+y (z—a)w(a)

zeZ"
with
Q={xecS| Y filx+z|a)
PF —PSZEZ” (22)
<——filx+ala)}
PF —PpU

and where ®,(x) denotes the indicator function of
Q, =Qy+z.

Proof. See Appendix.

This theorem is applicable to the situation where we
have already decided which I estimator to use. This
could be integer rounding, integer bootstrapping, integer
LS or variations thereof. Given the integer estimator
chosen, the theorem shows how we need to choose the
aperture pull-in region in order to have the smallest
possible average penalty. The algorithmic steps for



computing the corresponding A estimator are then as
follows. Consider that we have decided to use the
bootstrapped estimator ag as I estimator. The first step
consists then of computing the outcome of this estima-
tor, say dg = z. Then in the second step we compute the
corresponding bootstrapped residual ég =ad —z and
verifies whether or not ég € Q. The outcome of the IA
estimator equals then d;4 = z if the residual resides in €,
and it equals the float solution ajpo = a otherwise.

Note that the theorem shows that the assigned pen-
alties come together in the single ratio

,=Pr—Ps (23)
PF —PU

This ratio governs the aperture of the penalized pull-in
region Q. The larger this value, the larger the aperture.
Note that the absolute level of the penalties is of no
consequence. It is the relative values of the penalties that
count. If the success penalty is set to zero, ps = 0, the
ratio becomes driven by the penalty ratio py/pr. The
smaller this ratio is, the more serious a failure is
considered and the smaller the aperture of € is taken
to be.

3.3 Minimizing the penalty for a given aperture region

We will now consider the second constrained minimiza-
tion of the average penalty. This applies to the situation
where we have already decided for which region the IA
estimator will have to output the float solution. What
remains to be determined is the integer outcome which
minimizes the average penalty of the IA estimator.

Theorem 2b (penalized IA estimation with given aper-
ture region). Let f;(x | a) be the PDF of the float solution
a, let Q be the chosen translational invariant aperture
region for which the float solution is mapped to an integer,
and let Sy be the pull-in region of the I estimator. The 14
estimator having

rr;in E{p} subject to Q (24)
0

as average penalty is then given as
ay=a+y (z—a)o.(a)

zeZ"
with

So={x€eR"| O:argm%xfé(x |z)} (25)
zel"

and where ®,(x) denotes the indicator function of
Q. =QnS§..

Proof. See Appendix

This result shows that the I estimator which mini-
mizes the average penalty for a given Q does not depend
on the assigned penalties or on the choice made for Q.
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Hence, whatever choice is made for the size and shape of
the translational invariant region Q, we will always have
to use the same I estimator in order to have the smallest
possible average penalty for the IA estimator. Note that
this estimator is identical to the one which maximizes the
success rate within the class of I estimators, [see Eq. (8)].
In fact, the above result can be seen as a generalization
of Theorem 1. If the translational invariant aperture
region is chosen without gaps, then Q = R" and thus
Q. = S.. But the absence of gaps implies that Py = 0 and
thus that Pr = 1 — Ps, from which it follows that the
average penalty becomes E{p} = pr+ (ps — pr)Ps.
Minimizing the average penalty in this case then corre-
sponds to a maximization of the success rate.

3.4 1A estimation with minimal penalty

So far we considered the minimization of the average
penalty given the I estimator or given the aperture
region. Both minimization problems are of the con-
strained type. We will now consider the unconstrained
minimization of the average penalty. The minimum so
obtained will be smaller than, or at most equal to, the
two constrained minima. The solution of the uncon-
strained minimization problem is given in the following
theorem.

Theorem 2¢ (minimal penalty IA estimation) Let
fa(x | a) be the PDF of the float solution a and let
Qo =QnNSy be the aperture pull-in region of the IA
estimator. The IA estimator having

omin E{p} (26)

as average penalty is then given as

y=a+ Y (z—a)w(a)

zeZ"
with
Q={xeS| > filx+z|a)
zeZ"
_ (27)
<PETPS piv i)}
PF —PuU
and

So={xeRrR"| 0= argm%xfd(x |z)}
zeZ"

and where ®,(x) denotes the indicator function of
Q. =QnS§S..

Proof. See Appendix

Note how the above result relates to the solutions of
the two previous minimization problems. The two con-
strained minimizers combined make up for the uncon-
strained minimizer of Eq. (27). This can be explained by
the fact that the solution for the pull-in region of the
constrained minimization problem of Eq. (25) is inde-
pendent of the constraint put on the aperture region Q.
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The above result applies to an arbitrary PDF of a. In
most cases, however, the PDF of the float solution is
assumed to be Gaussian. In the case that the float
solution is normally distributed as a ~ N(a,Q;), the
minimal penalty aperture pull-in region becomes

1
Q={xeS| Y exp{—EHX—ZHzQﬁ}
ZGZ"\{O} (28)
< PU—Ps 2
e - = R
S xp{ || x g, }}

with Sy being the integer LS pull-in region. The
computational steps involved in computing the optimal
IA estimator are now as follows. First compute the
integer LS solution

drs = argmingez || a—z ||2 Then form the ambi-
guity residual é;g = a — drs dnd check whether ¢ 5 € Q.
If this is the case then the outcome of the optimal esti-
mator is dig, otherwise the outcome is a. For the pur-
pose of computational efficiency it is advisable to
compute drs with the LAMBDA method and use the
LAMBDA-transformed ambiguities also for the evalu-
ation of é 5 € Q.

Note that the contribution of the exponentials in the
sum of Eq. (28) gets smaller the more peaked the PDF of
the float solution is. The aperture pull-in region Q) will
therefore get larger the more peaked the PDF is. This is
also what we would expect. With Eq. (28) we are now also
in a position to make an interesting link with one of the IA
estimators presented in the previous section, namely the
difference testimator. If we approximate €, by retaining
only the largest term in the sum of the inequality of Eq.
(28) we obtain the inequality of the difference test. This
shows that the difference testimator is a close to optimal
IA estimator in the case that the PDF is peaked.

4 Summary

In this contribution a new principle of GNSS carrier
phase ambiguity resolution was introduced. The idea is
to give the user the possibility to assign penalties to the
outcomes of the ambiguity resolution process. The
optimal ambiguity estimator is then the one which
achieves the smallest possible penalty. The theory was
presented in the framework of TA estimation.

When comparing [ estimators with TA estimators
and, in particular, with the minimal penalty IA estima-
tor, the following conclusions can be drawn. Since the
outcome of an I estimator is always integer, we usually
use the probability of correct integer estimation of the I
estimator as criterion for deciding whether or not to
make use of the integer outcome of the I estimator. This
probability, also referred to as the ambiguity success
rate, describes the expected performance of the I
estimator. It depends on the choice of I estimator and on
the strength of the underlying mathematical model. The
success rate can be computed a priori, i.e. before the
actual measurements are taken. When the success rate
turns out to be too low, we ignore the integer outcome

and rely on the float solution. Although this is a sound
procedure, it is somewhat conservative in the sense that
the decision is based on the expected outcome of the I
estimator and not on its actual outcome.

With TA estimators the user has gained more flexi-
bility. This flexibility stems from the fact that the class of
IA estimators encompasses the class of I estimators.
Thus every I estimator is an IA estimator, but not vice
versa. Every IA estimator can be represented as

aa=a+ > (- do(a) (29)

zeZ"

with w.(x) the indicator function of Q. =QnNS; and
Q C R" being invariant for an arbitrary integer transla-
tion. An IA estimator reduces to an I estimator if Q is
chosen equal to R". Every IA estimator is uniquely
characterized by its aperture pull-in region €. The
flexibility of integer aperture estimation shows itself in
the possibility given to the user to set the size and shape
of the aperture pull-in region. Once the aperture pull-in
regions have been defined, the decision of which
outcome to use is dictated by the actual data. That is,
the outcome is ze€Z" if a€Q,, and it is a€R"
otherwise. We can therefore conclude, when comparing
IA estimators with the practical use of I estimators, that
the decision between an integer outcome or a noninteger
outcome is data driven in the case of IA estimators, but
model driven in the case of I estimators.

In order for IA estimators to make sense, a guiding
principle is needed to set the size and shape of the aperture
pull-in region. In this contribution we have given the user
the possibility to assign penalties to the outcomes of an IA
estimator. Using this framework we have shown which
aperture pull-in region minimizes the average penalty.
This aperture pull-in region can be computed once the
user has assigned the penalties for his or her application.
The actual outcome of the optimal IA estimator can then
be computed in two steps. The first step consists of com-
puting the outcome of an I estimator and the second step
consists of verifying whether or not the residual resides in
the origin-centred aperture pull-in region €. It is
rewarding to see that, in the Gaussian case, the first step
consists of computing the well-known integer LS solution
ars. The second step then consists of verifying whether or
not the ambiguity residual é g = @ — drg resides in Q.
The first step thus consists of computing

o (30)

while the second step consists of verifying whether

1. 1.
> exp{ ~gllas—zl}, f<ien{ ~3lasl, |

zeZ"\{0}

drs =argmin || 4 —z |
zeZ"

(31)

in which the scalar 4 is determined by the assigned
penalties. Both Egs. (30) and (31) can be computed
efficiently with the LAMBDA method. The outcome of
the minimal penalty TA estimator is then equal to drg if



the above inequality is satisfied and it equals a
otherwise. When comparing this procedure with the
practice of GNSS ambiguity resolution, we can thus
conclude that for an optimal result we need to replace
the existing ‘discernibility tests’ with the above given
inequality. Thus although the procedures underlying the
usage of the existing ‘discernibility tests’ are those of an
IA estimator, they are not optimal in the sense of
achieving the smallest possible penalty.

5 Appendix
Proof of Theorem 2

Theorem 2 consists of three parts. It gives the solution to
the following three minimization problems:

. min E{p} subject to Sy (Ala)
Q=0nS)
2. ngl)n E{p} subject to Q (Alb)
0
3. nglzgsoE{p} (Alc)
with the average penalty
E{p} = psPs + prPr + puPu (A2)
and the probabilities of occurrence
P = / falx | @)dx
(A3)

PF—Z/faXW

z#a
Pu=1-Ps—Pr

We will first solve Eq. (Ala). Note that the average
penalty can be written as

ﬂﬂ=m+AdF®M
with
F(x) = (ps — pe)falx+al @) + (o — po) 3 falx +2 ).

zeZ"

The smallest possible value of fQ cs, F(x)dx is then
obtained if the region of 1ntegrat10n Qo is chosen to
cover that part of Sy for which the function values of
F(x) are all negative. Thus Qy = {x € Sy | F(x) <0} or

Qoz{x€S0| Zﬁ;(x—l—z|a)
zeZ" (A4)
Smfé(xﬂlla)}
PF — Pu

which proves Theorem 2a.
We will now solve Eq. (Alb). Note that the average
penalty can be written as
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Hﬂ=m+@vm@éﬂﬂ@®
+(PF—PS)/ Y flr+z|a)dx
NSy 7

Hence, when minimizing the average penalty as function
of Sy, we may restrict attention to the third term in this
sum. We will now show that this term is minimized for

So={xeR"| 0= argm%xfd(x |z)} (AS)
ze/l"
From Theorem 1 it follows that

fd(x—&—a|a)dx2/ﬁ;(x+a|a)dx
So s,

for any arbitrary pull-in region S satisfying the
conditions of Definition 1. We therefore also have

falx+a|a)dx >
ans, Qns,

falx+a|a)dx

Using this result in the identity

Z f(lx+a\adx Z (x+ala)dx
zeZ" zeZ" QOSI

gives the inequality

Z fax+a]adx<z Jfalx+a|a)dx

240 QNS. 240 Qns!

and therefore

/ +z|adx</ fo+z|a
QnsSo z;éa NSy z#a

This proves Theorem 2b.

The solution of Eq. (Alc) is now easy to obtain. Note
that Eq.(AY) is independent of Q. Hence, Sy of Eq. (A5)
is the solution of mingng, E{p} for any translational
invariant region Q. The solution of the unconstrained
minimization problem of Eq. (Alc) is therefore given by
Eqgs. (A4) and (AS5). This proves Theorem 2c.
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