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Abstract. Carrier phase ambiguity resolution is the key
to high-precision global navigation satellite system
(GNSS) positioning and navigation. It applies to a
great variety of current and future models of GPS,
modernized GPS and Galileo. The so-called ‘fixed’
baseline estimator is known to be superior to its ‘float’
counterpart in the sense that its probability of being
close to the unknown but true baseline is larger than
that of the ‘float’ baseline, provided that the ambiguity
success rate is sufficiently close to its maximum value
of one. Although this is a strong result, the necessary
condition on the success rate does not make it hold
for all measurement scenarios. It is discussed whether
or not it is possible to take advantage of the integer
nature of the ambiguities so as to come up with a
baseline estimator that is always superior to both its
‘float’ and its ‘fixed’ counterparts. It is shown that
this is indeed possible, be it that the result comes at
the price of having to use a weaker performance
criterion. The main result of this work is a Gauss–
Markov-like theorem which introduces a new mini-
mum variance unbiased estimator that is always
superior to the well-known best linear unbiased
(BLU) estimator of the Gauss–Markov theorem. This
result is made possible by introducing a new class
of estimators. This class of integer equivariant
estimators obeys the integer remove–restore principle
and is shown to be larger than the class of integer
estimators as well as larger than the class of linear
unbiased estimators. The minimum variance unbiased
estimator within this larger class is referred to as the
best integer equivariant (BIE) estimator. The theory
presented applies to any model of observation equa-
tions having both integer and real-valued parameters,
as well as for any probability density function the data
might have.

Keywords: Global navigation satellite system ambiguity
resolution – Integer equivariant estimation – Minimum
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1 Introduction

Global navigation satellite system (GNSS) ambiguity
resolution is the process of resolving the unknown cycle
ambiguities of double-difference (DD) carrier phase
data. Its practical importance becomes clear when we
realize the great variety of current and future GNSS
models to which it applies. These models may differ
greatly in complexity and diversity. They range from
single-baseline models used for kinematic positioning to
multi-baseline models used as a tool for studying
geodynamic phenomena. The models may or may not
have the relative receiver–satellite geometry included.
They may also be discriminated as to whether the slave
receiver(s) is stationary or in motion. When in motion,
we solve for one or more trajectories, since with the
receiver–satellite geometry included, we will have new
coordinate unknowns for each epoch. We may also
discriminate between the models as to whether or not
the differential atmospheric delays (ionosphere and
troposhere) are included as unknowns. In the case of
sufficiently short baselines they are usually excluded.

Apart from the current global positioning system
(GPS) models, carrier phase ambiguity resolution also
applies to the future modernized GPS and the future
European Galileo GNSS. An overview of GNSS mod-
els, together with their applications in surveying, navi-
gation, geodesy and geophysics, can be found in
textbooks such as Leick (1995), Parkinson and Spilker
(1996), Strang and Borre (1997), Teunissen and Kleus-
berg (1998), Hofmann-Wellenhof et al. (2001) and
Misra and Enge (2001).

Since carrier phase ambiguity resolution is the key to
high-precision GNSS positioning and navigation, the
availability of a theory of integer inference is a pre-
requisite for a proper handling and understanding of the
various intricate aspects of ambiguity resolution. The
usual approach to carrier phase ambiguity resolution is
to resolve the ambiguities once the probability of correct
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integer estimation, the ambiguity success rate, is suffi-
ciently close to one. When this happens we can show
that the so-called ‘fixed’ baseline estimator is superior to
its ‘float’ counterpart in the sense that its probability of
being close to the unknown but true baseline is larger
than that of the ‘float’ baseline. Although this is a strong
result, the down side of it is that it only holds true when
the success rate is sufficiently large. It is this observation
that formed the basis of our motivation for conducting
the present study. The question that will be answered is
whether or not it is possible to take advantage of the
integer nature of the ambiguities so as to come up with a
baseline estimator that is always superior to both its
‘float’ and its ‘fixed’ counterparts. We will show that this
is indeed possible, be it that the result comes at the price
of having to use a weaker performance criterion. The
performance criterion chosen is the mean square error
(MSE). The reason for taking the MSE as the weaker
performance criterion is twofold. First, it is a well-
known probabilistic criterion for measuring the close-
ness of an estimator to its target value. Second, this
criterion is also often used as measure for the quality of
the ‘float’ solution itself.

Although the present study was motivated by the
problem of GNSS ambiguity resolution, the theory that
will be developed is of interest in its own right. It applies
to any model of observation equations having unknown
integer parameters as well as unknown real-valued
parameters. Our main result is a Gauss–Markov-like
theorem which introduces an estimator that is always
superior to the well-known best linear unbiased (BLU)
estimator of the Gauss–Markov theorem. The Gauss–
Markov theorem states that the minimum variance
unbiased estimator within the class of linear estimators is
given by the least-squares (LS) estimator. Our theorem
states that the minimum variance unbiased estimator
within the class of integer equivariant (IE) estimators is
given by the least mean-squared (LMS) estimator. This
estimator, referred to as the best integer equivariant
(BIE) estimator, is superior to the BLU estimator since
the class of linear unbiased estimators can be shown to be
a subset of the class of IE estimators. In the same sense it
can also be shown to be superior to integer estimators.

This contribution is organized as follows. In Sect. 2
we give a brief review of the present theory of integer
estimation. This includes the definition of the class of
admissible integer estimators. This class is taken as our
point of departure for introducing the class of integer
equivariant (IE) estimators in Sect. 3. Although this new
class is larger than the class of integer estimators, it has
been chosen such that its members still obey the integer
remove–restore principle. When estimating ambiguities
in case of GNSS, for instance, it seems reasonable to
require, when adding an arbitrary number of cycles to
the carrier phase data, that the solution of the integer
ambiguities gets shifted by the same integer amount. In
Sect. 3 we show that the class of linear unbiased esti-
mators is a subset of the class of IE estimators. We also
give a useful representation of IE estimators. This rep-
resentation reveals the structure of IE estimators and
easily allows us to devise our own IE estimator.

In Sect. 4 we use the MSE criterion to find the best
estimator within the IE class for any linear function of
both the integer as well as real-valued parameters of
the general GNSS model. We give an explicit expres-
sion for the BIE estimator. Although IE estimators
are not unbiased in general, we show in Sect. 5 that
the BIE estimator is unbiased. This implies that the
BIE estimator is identical to the BIE unbiased esti-
mator. This result gives rise to our Gauss–Markov-like
theorem stating the minimum variance unbiasedness
property of the BIE estimator. Although the BIE
estimator holds true for any probability density func-
tion the data might have, we also consider the special
case of normally distributed data. For this special case
it is shown that the BIE estimator of the baseline can
be obtained in a way which is very similar to the
three-step procedure of current methods of ambiguity
resolution, the only difference being that the integer
ambiguity estimator needs to be replaced by its BIE
counterpart.

2 Integer estimation

2.1 The GNSS model

As our point of departure we take the following system
of linear observation equations:

Efyg ¼ Aaþ Bb; a 2 Zn; b 2 Rp ð1Þ

with Ef�g the mathematical expectation operator, y the
m vector of observables, a the n vector of unknown
integer parameters and b the p vector of unknown real-
valued parameters. The m� ðnþ pÞ design matrix ðA;BÞ
is assumed to be of full rank.

All the linear(ized) GNSS models can in principle be
cast in the above frame of observation equations. The
data vector y will then usually consist of the ‘observed
minus computed’ single- or dual-frequency DD phase
and/or pseudorange (code) observations accumulated
over all observation epochs. The entries of vector a are
then the DD carrier phase ambiguities, expressed in
units of cycles rather than range, while the entries of the
vector b will consist of the remaining unknown param-
eters, such as for instance baseline components (coor-
dinates) and possibly atmospheric delay parameters
(troposphere, ionosphere).

Although the theory that will be developed in this
contribution holds true for any application for which the
observation equations can be formulated as Eq. (1), we
will still refer to it as the GNSS model.

2.2 The three-step solution

The procedure which is usually followed for solving the
GNSS model can be divided into three steps. In the first
step we simply discard the integer constraints a 2 Zn and
perform a standard LS adjustment. As a result we obtain
the LS estimators of a and b as
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âa ¼ ð �AAT Q�1y
�AAÞ�1 �AAT Q�1y y

b̂b ¼ ð �BBT Q�1y
�BBÞ�1 �BBT Q�1y y

ð2Þ

with Qy the vc matrix of the observables, �AA ¼ P?B A,
�BB ¼ P?A B, and the two orthogonal projectors P?B ¼
Im � BðBT Q�1y BÞ�1BT Q�1y and P?A ¼ Im � AðAT Q�1y AÞ�1�
AT Q�1y . This solution is usually referred to as the ‘float’
solution.

In the second step the ‘float’ estimator âa is used to
compute the corresponding integer estimator �aa 2 Zn.
This implies that a mapping S from the n-dimensional
space of reals to the n-dimensional space of integers is
introduced such that

�aa ¼ SðâaÞ; S : Rn 7!Zn ð3Þ

This integer estimator is then used in the third and final
step to adjust the ‘float’ estimator b̂b. As a result we
obtain the so-called ‘fixed’ estimator of b as

�bb ¼ b̂b� Qb̂bâaQ�1âa ðâa� �aaÞ ð4Þ

in which Qâa denotes the vc matrix of âa and Qb̂bâa denotes
the covariance matrix of b̂b and âa. This ‘fixed’
estimator can alternatively be expressed as �bb ¼
ðBT Q�1y BÞ�1BT Q�1y ðy � A�aaÞ. Note that only two of the
three steps are needed if we are only interested in
obtaining an integer solution for a. In the case of GNSS,
however, we are particularly interested in the solution of
the third step as it contains the solution for the baseline
coordinates. All three steps are therefore needed in the
case of GNSS. In the following we will use the
terminology of GNSS and refer to b̂b and �bb as,
respectively, the ‘float’ and ‘fixed’ baseline estimators.

The above three-step procedure is still ambiguous in
the sense that it leaves room for choosing the integer
map S. Different choices for S will lead to different
integer estimators �aa and thus also to different baseline
estimators �bb. We can therefore now think of construct-
ing integer maps which possess certain desirable prop-
erties.

2.3 A class of integer estimators

It will be clear that the map S will not be one-to-one due
to the discrete nature of Zn. Instead it will be a many-
to-one map. This implies that different real-valued
vectors will be mapped to one and the same integer
vector. We can therefore assign a subset Sz � Rn to each
integer vector z 2 Zn

Sz ¼ fx 2 Rn j z ¼ SðxÞg; z 2 Zn ð5Þ

The subset Sz contains all real-valued vectors that will be
mapped by S to the same integer vector z 2 Zn. This
subset is referred to as the pull-in region of z. It is the
region in which all vectors are pulled to the same integer
vector z.

Since the pull-in regions define the integer estimator
completely, we can define classes of integer estimators by
imposing various conditions on the pull-in regions. One

such class was introduced by Teunissen (1999a) and is
referred to as the class of admissible integer estimators.

Definition 1: admissible integer estimators. The integer
estimator �aa ¼ SðâaÞ is said to be admissible if its pull-in
regions satisfy

1.
S

z2Zn Sz ¼ Rn

2. IntðSz1Þ
T
IntðSz2Þ ¼ ;; 8z1; z2 2 Zn; z1 6¼ z2

3. Sz ¼ zþ S0; 8z 2 Zn

This definition is motivated as follows. Each one of the
above three conditions describes a property of which it
seems reasonable is possessed by an arbitrary integer
estimator. The first condition states that the pull-in
regions should not leave any gaps and the second that
they should not overlap. The absence of gaps is needed
in order to be able to map any ‘float’ solution âa 2 Rn to
Zn, while the absence of overlaps is needed to guarantee
that the ‘float’ solution is mapped to just one integer
vector. Note that we allow the pull-in regions to have
common boundaries. This is permitted if we assume to
have zero probability that âa lies on one of the
boundaries. This will be the case when the probability
density function (PDF) of âa is continuous.

The third and last condition of the definition follows
from the requirement that Sðxþ zÞ ¼ SðxÞ þ z;
8x 2 Rn; z 2 Zn. This condition is also a reasonable one
to ask for. It states that when the ‘float’ solution âa is
perturbed by z 2 Zn, the corresponding integer solution
is perturbed by the same amount. This property allows
us to apply the integer remove–restore technique:
Sðâa� zÞ þ z ¼ SðâaÞ. It therefore allows us to work with
the fractional parts of the entries of âa, instead of with its
complete entries.

Using the pull-in regions, we can give an explicit
expression for the corresponding integer estimator �aa. It
reads

�aa ¼
X

z2Zn

zszðâaÞ ð6Þ

with the indicator function szðâaÞ ¼ 1 if âa 2 Sz and
szðâaÞ ¼ 0 otherwise. Note that the szðâaÞ can be inter-
preted as weights, since

P
z2Zn szðâaÞ ¼ 1. The integer

estimator �aa is therefore equal to a weighted sum of
integer vectors with binary weights.

2.4 The performance of the baseline estimators

As mentioned earlier the ‘fixed’ baseline estimator �bb
depends on the chosen integer estimator �aa. We may also
write �bb as

�bb ¼ b̂bðaÞ þ Qb̂bâaQ�1âa ð�aa� aÞ ð7Þ

with the conditional baseline estimator b̂bðaÞ ¼ b̂b�
Qb̂bâaQ�1âa ðâa� aÞ. Since a is assumed known in the case
of b̂bðaÞ, the conditional baseline estimator is the best
possible estimator of b. It is unbiased, it has a precision
which is better than that of b̂b, and in the case that y is
normally distributed its PDF is also more peaked than
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that of the ‘float’ estimator. The best we can hope for in
the case of �bb is therefore that �aa ¼ a. However, this
requires that the probability of correct integer estima-
tion, P ð�aa ¼ aÞ, equals one. Hence, of all admissible
integer estimators the preferred estimator is the one that
maximizes the probability of correct integer estimation.
It was shown by Teunissen (1999b) that in the case
of elliptically contoured distributions, the integer
least-squares (ILS) estimator is the preferred esti-
mator. Thus, if �aaILS ¼ argminz2Znðâa� zÞT Q�1âa ðâa� zÞ,
then P ð�aaILS ¼ aÞ � Pð�aa ¼ aÞ for any admissible estima-
tor �aa. And once the probability of correct integer
estimation is sufficiently close to one, we have

P ð�bb 2 EbÞ � P ðb̂b 2 EbÞ ð8Þ

for any convex region Eb � Rp symmetric with respect to
b. The usual approach taken with GNSS is therefore to
use the ILS estimator for computing the ‘fixed’ baseline
estimator, once it has been verified that Pð�aaILS ¼ aÞ is
sufficiently close to one, see (Teunissen 1993, 1995).

When valid, the inequality of Eq. (8) is a very strong
result. It states that the ‘fixed’ baseline estimator �bb has a
higher probability of being close to b than its ‘float’
counterpart. The down side of the inequality is, however,
that it is ony valid if P ð�aa ¼ aÞ is sufficiently close to one.
This being the case, we may wonder whether it would not
be possible to devise a baseline estimator which always
outperforms its ‘float’ counterpart. Such an approach
can, however, only be successful if we use a weaker per-
formance criterion than that of Eq. (8). Furthermore,
assuming that we will be successful in finding an optimal
estimator using this weaker criterion, then this new esti-
mator will always be better than its ‘float’ counterpart
only if we consider a class of estimators which encom-
passes the class of estimators inwhich the ‘float’ estimator
resides. This means that, as a start, we should at least
consider a class of estimators which is larger than the
above considered class of integer estimators.

3 Integer equivariant estimation

3.1 Class of IE estimators

We will now introduce a new class of estimators which is
larger than the previously defined class of integer
estimators. In order to be general enough, we consider
estimating an arbitrary linear function of the two types
of unknown parameters of the GNSS model of Eq. (1)

h ¼ lT
a aþ lT

b b; la 2 Rn; lb 2 Rp ð9Þ

Thus if lb ¼ 0 then linear functions of the ambiguities
are estimated, whereas if la ¼ 0 then linear functions of
the baseline are estimated. Linear functions of both the
ambiguities and the baseline, such as carrier phases, are
estimated in the case that la 6¼ 0 and lb 6¼ 0.

It seems reasonable that the estimator should at least
obey the integer remove–restore principle. When esti-
mating ambiguities in the case of GNSS, for instance,
when adding an arbitrary number of cycles to the carrier

phase data, we would like the solution of the integer
ambiguities to be shifted by the same integer amount.
For the estimator of h this would mean that adding Az to
y, with arbitrary z 2 Zn, must result in a shift of lT

a z.
Likewise, it seems reasonable to require of the estimator
that adding Bf to y, with arbitrary f 2 Rp, results in a
shift of lT

b f. After all, we would not like the integer part
of the estimator to become contaminated by such an
addition to y. Estimators of h that fulfil these two con-
ditions will be called integer equivariant (IE). Hence,
they are defined as follows.

Definition 2: integer equivariant (IE) estimators. The
estimator ĥhIE ¼ fhðyÞ, with fh : Rm 7!R, is said to be an
IE estimator of h ¼ lT

a aþ lT
b b if

fhðy þ AzÞ ¼ fhðyÞ þ lT
a z; 8y 2 Rm; z 2 Zn

fhðy þ BfÞ ¼ fhðyÞ þ lT
b f; 8y 2 Rm; f 2 Rp

ð10Þ

It is not difficult to verify that the integer estimators of
the previous section are IE. Simply check that the above
two conditions are indeed fulfilled by the estimator
�hh ¼ lT

a �aaþ lT
b

�bb. The converse, however, is not necessarily
true. The class of IE estimators is therefore a larger class.

We will now show that the class of IE estimators is
also larger than the class of linear unbiased estimators.
Let f T

h y, for some fh 2 Rm, be the linear estimator of
h ¼ lT

a aþ lT
b b. For it to be unbiased we require, using

Efyg ¼ Aaþ Bb, that f T
h Aaþ f T

h Bb ¼ lT
a aþ lT

b b,
8a 2 Rn; b 2 Rp holds true, or that both la ¼ AT fh and
lb ¼ BT fh hold true. But this is equivalent to stating that

f T
h ðy þ AaÞ ¼ f T

h y þ lT
a a; 8y 2 Rm; a 2 Rn

f T
h ðy þ BbÞ ¼ f T

h y þ lT
b b; 8y 2 Rm; b 2 Rp

ð11Þ

Comparing this result with Eq. (10) shows that the
condition of linear unbiasedness is more restrictive than
the condition of integer equivariance. Hence, the class of
linear unbiased estimators is a subset of the class of IE
estimators. This result also automatically implies that IE
estimators exist which are unbiased. Thus, if we denote
the class of IE estimators as IE, the class of unbiased
estimators as U, the class of unbiased IE estimators as
IEU , the class of unbiased integer estimators as IU, and
the class of linear unbiased estimators as LU, we may
summarize their relationships as: IEU ¼ IE \U 6¼ ;,
LU � IEU and IU � IEU (see Fig. 1).

3.2 Representation of IE estimators

In order to obtain a better understanding of how IE
estimators operate, it would be useful to have a
representation that reveals their structure. One such
representation is given in the following lemma.

Lemma 1: IE-representation. Let ĥhIE ¼ fhðyÞ be the IE-
estimator of h ¼ lT

a aþ lT
b b, let y ¼ Aaþ Bbþ Cc, with

the m� ðm� n� pÞ matrix C chosen such that ðA;B;CÞ is
invertible, and let ghða; b; cÞ ¼ fhðAaþ Bbþ CcÞ. Then
functions hh : Rn � Rm�n�p 7!R exist such that
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ghða; b; cÞ ¼ lT
a aþ lT

b bþ hhða; cÞ ð12Þ

with hhðaþ z; cÞ ¼ hhða; cÞ for all z 2 Zn.

Proof of Lemma 1 is given in the appendix.
This representation turns out to be useful in some of

the later proofs. Also note that Lemma 1 now easily
allows us to design our own IE estimator. When devising
our own IE estimator, there are essentially two types of
degrees of freedom involved: the choice of the matrix C
and the choice of the function hh.

The following are some examples of IE estimators
obtained for specific choices of C and hh.

Example 1. For arbitrary C and hh ¼ 0 we obtain

ĥhIE ¼ lT
a aþ lT

b b

Note that this is a linear unbiased estimator of h for any
choice of C. Hence, matrix C governs the choice of these
linear unbiased estimators.

Example 2. For hh ¼ 0 and C chosen such that
CT Q�1y ðA;BÞ ¼ 0 we obtain the LS estimator

ĥhIE ¼ lT
a âaþ lT

b b̂b

Example 3. For hhða; cÞ ¼ �ðlT
a þ lT

b Qb̂bâaQ�1âa Þða� SðaÞÞ
and C chosen such that CT Q�1y ðA;BÞ ¼ 0 we obtain the
estimator

ĥhIE ¼ lT
a �aaþ lT

b
�bb

Example 4. For hhða; cÞ ¼ �ðlT
a þ lT

b Qb̂bâaQ�1âa Þða� SðaÞÞ,
SðaÞ ¼ argminz2Znða� zÞT Q�1âa ða� zÞ and C chosen such
that CT Q�1y ðA;BÞ ¼ 0 we obtain the integer LS estimator

ĥhIE ¼ lT
a �aaILS þ lT

b
�bbILS

4 Best integer equivariant estimation

4.1 The BIE estimator

Having defined the class of IE estimators we will now
look for an IE estimator which is ‘best’ in a certain
sense. We will denote our best integer equivariant (BIE)

estimator of h as ĥhBIE and use the MSE as our criterion
of ‘best’. The BIE estimator will therefore be defined as

ĥhBIE ¼ arg min
fh2IE

EfðfhðyÞ � hÞ2g ð13Þ

in which IE stands for the class of IE estimators. The
minimization is thus taken over all IE functions that
satisfy the conditions of Definition 2.

The reason for choosing the MSE criterion is two-
fold. First, it is a well-known probabilistic criterion for
measuring the closeness of an estimator to its target
value, in our case h. Second, the MSE criterion is also
often used as measure for the quality of the ‘float’
solution itself. The following theorem gives the solution
to the above minimization problem of Eq. (13).

Theorem 1: best integer equivariant estimation. Let
y 2 Rm have mean Efyg ¼ Aaþ Bb and pdf pyðyÞ, and
let ĥhBIE be the BIE estimator of h ¼ lT

a aþ lT
b b. Then

ĥhBIE¼
P

z2Zn

R
RpðlT

a zþ lT
b bÞpyðyþAða� zÞþBðb�bÞÞdb

P
z2Zn

R
Rp pyðyþAða� zÞþBðb�bÞÞdb

ð14Þ

Proof of Theorem 1 is given in the appendix.
Note that the BIE estimator can also be written as

ĥhBIE ¼ lT
a âaBIE þ lT

b b̂bBIE ð15Þ

with

âaBIE ¼
X

z2Zn

zwzðyÞ;
X

z2Zn

wzðyÞ ¼ 1

b̂bBIE ¼
Z

Rp

bwbðyÞdb;
Z

Rp

wbðyÞdb ¼ 1

in which the weighting functions wzðyÞ and wbðyÞ are
defined by Eq. (14). This shows that the BIE estimator
of the integer parameter vector a is also a weighted
sum of all integer vectors in Zn, just like �aa of Eq. (6) is.
In the present case, however, the weights are not
binary. They vary between 0 and 1, and their values are
determined by y and its PDF. As a consequence the
estimator âaBIE will in general be real valued, instead of
integer valued.

The above theorem holds true for any PDF the vector
of observables y might have. This is therefore a very
general result indeed. A closer look at Eq. (14) reveals
however, that we need a and b, and therefore h, in order
to compute ĥhBIE. The dependence on a and b is present
in the numerator of Eq. (14) and not in its denominator.
The summation over all integer vectors in Zn and the
integration over Rp makes the dependence on a and b
disappear in the denominator. If the dependence of ĥhBIE
on h persisted we would not be able to compute the BIE
estimator. Note, however, that this dependence disap-
pears in the case that the PDF of y has the structure
pyðyÞ ¼ f ðy � Aa� BbÞ; this property is fortunately still
true for a large class of PDFs.

Fig. 1. The set relationships between the different classes of estima-
tors: integer equivariant estimators IE, unbiased estimators U,
unbiased integer equivariant estimators IEU, unbiased integer
estimators IU, and linear unbiased estimators LU
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4.2 BIE is better than BLU

Adirect and important consequence of the above theorem
is that the BIE estimator is always better than or at least as
good as any integer estimator as well as any linear
unbiased estimator. After all, the class of integer estima-
tors and the class of linear unbiased estimators are both
subsets of the class of IE estimators. The BIE estimator is
therefore also better than the BLU estimator. The BLU
estimator is the minimum variance estimator of the class
of linear unbiased estimators and it is given by the well-
known Gauss–Markov theorem. This theorem, when
adapted to our GNSS model of Eq. (1), reads as follows.

Gauss–Markov Theorem: minimum variance linear unbi-
ased estimation. Let y 2 Rm have mean Efyg ¼ Aaþ Bb
and dispersion Dfyg ¼ Qy , and let ĥhBLU be the BLU
estimator of h ¼ lT

a aþ lT
b b. Then

ĥhBLU ¼ lT
a âaþ lT

b b̂b ð16Þ

with âa and b̂b as given by Eq. (2). We therefore have

MSEðĥhBIEÞ �MSEðĥhBLUÞ ð17Þ

The two estimators ĥhBIE and ĥhBLU both minimize the
MSE within their class. In case of the BLU estimator this
is equivalent to minimizing the variance within LU. We
could now think of applying this Gauss–Markov
approach also to our class of IE estimators. This would
mean that we need to search for the minimum variance
estimator within IEU, which we know is non-empty. Let
us denote this estimator as ĥhBIEU. Since we know that
LU � IEU � IE, we must have the MSE ordering
MSEðĥhBIEÞ �MSEðĥhBIEUÞ �MSEðĥhBLUÞ. It would
therefore seem that from the standpoint of the MSE it
is not advisable to use the minimum variance approach.
But if we value the properties of unbiasedness and
minimum variance, then ĥhBIEU would seem to be the
proper contender for ĥhBLU. For IE estimation it turns
out, however, that this difference is absent, since the two
estimators ĥhBIE and ĥhBIEU can be shown to be identical.
This is a direct consequence of the following Gauss–
Markov-like theorem.

Theorem 2: minimum variance unbiased estimation. The
BIE estimator is unbiased and has an as good or better
precision than the BLU-estimator:

1: EfĥhBIEg ¼ EfĥhBLUg
2: DfĥhBIEg � DfĥhBLUg

ð18Þ

where Df�g denotes the dispersion operator.

Proof of Theorem 2 is given in the appendix.
As the theorem shows, the BIE estimator is already

unbiased by itself. Imposing the condition of unbiased-
ness onto the minimization problem of Eq. (13) would
therefore not alter the solution. Hence ĥhBIE ¼ ĥhBIEU.

The above result is remarkable since it shows that for
a large class of PDFs of y, we can always, with a model

like Eq. (1), improve upon the precision of the BLU
estimator while keeping the estimator unbiased. If we
apply the above theorem to the problem of estimating
the baseline in case of GNSS and make the comparison
with the ‘float’ baseline estimator and an unbiased
‘fixed’ baseline estimator, we have

Dfb̂bBIEg � Df�bbg and Efb̂bBIEg ¼ Ef�bbg
Dfb̂bBIEg � Dfb̂bg and Efb̂bBIEg ¼ Efb̂bg

ð19Þ

The above matrix inequalities imply that
lT Dfb̂bBIEgl � lT Df�bbgl and lT Dfb̂bBIEgl � lT Dfb̂bBLUgl
hold true for all l 2 Rp. The precision of the baseline
estimator b̂bBIE is therefore always better than or at least
as good as the precision of its ‘float’ and ‘fixed’
counterparts.

We are now also in a position to make a comparison
with our earlier result of Eq. (8). It will be clear that the
performance statement of Eq. (19) is weaker than that
of Eq. (8). On the other hand, Eq. (8) is only valid in the
case that the probability of correct integer estimation is
sufficiently close to one, whereas the above result is al-
ways valid.

We know from standard adjustment theory that the
BLU residuals are uncorrelated with the BLU estima-
tors. This is a consequence of the minimum variance
property of the BLU estimator. The following lemma
shows that this property is inherited by the BIE
estimator as well.

Lemma 2: zero correlation. Let the BIE residual be
defined as êeBIE ¼ hIE � ĥhBIE, with hIE an arbitrary IE
estimator, and let rĥhBIE êeBIE

denote the covariance between
ĥhBIE and êeBIE. Then

rĥhBIE êeBIE
¼ 0 ð20Þ

Proof of Lemma 2 is given in the appendix.
Note that since ĥhBLU is an IE estimator as well, ĥhBIE

and ĥhBLU � ĥhBIE are also uncorrelated.

4.3 The Gaussian case

In our derivation of the BIE estimator and its properties
we have not so far made a particular choice for the PDF
of y. In many applications, however, for example GNSS,
it is often assumed that y is normally distributed. In that
case the PDF of y takes the form

pyðyÞ ¼
1

ð2pÞ
m
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detQy

p expf� 1

2
ky � Aa� Bbk2Qy

g ð21Þ

where k � k2Qy
¼ ð�ÞT Q�1y ð�Þ. With this Gaussian PDF the

BIE estimator also takes on a particular shape. We have
the following corollary.

Corollary: BIE in the Gaussian case. Let the PDF of y be
given as in Eq. (21) and let ĥhBIE be the BIE estimator of
h ¼ lT

a aþ lT
b b. Then
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ĥhBIE ¼ lT
a âaBIE þ lT

b b̂bBIE ð22Þ

with

âaBIE ¼
X

z2Zn

z
expf� 1

2 kâa� zk2Qâa
g

P
z2Zn expf� 1

2 kâa� zk2Qâa
g

b̂bBIE ¼ b̂b� Qb̂bâaQ�1âa ðâa� âaBIEÞ

Proof of the Corollary is given in the appendix.
This result shows that in the Gaussian case we may

use the three-step procedure of Sect. 2.2 also for BIE
estimation. The only difference is that we need to replace
the integer estimator �aa by the BIE estimator âaBIE.

Since the space of integers Zn can be seen as a
certain discretized version of the space of real numbers
Rn, we would expect that if the integer grid size gets
smaller in relation to the size and extent of the PDF,
the difference between the two estimators âaBIE and âa
would get smaller as well. Similarly, if the PDF gets
more peaked in relation to the integer grid size, we
would expect that the BIE estimator âaBIE would tend
to an integer estimator. This is made precise in the
following lemma.

Lemma 3: limits of the integer grid.

1. If we replace
P

z2Znby
R

Rn dz in Eq. (22), then

âaBIE ¼ âa

2. Let the vc matrix of âa be factored as Qâa ¼ r2G. Then

lim
r!0

âaBIE ¼ �aaILS

Proof of Lemma 3 is given in the appendix.
It is interesting to observe that the above expres-

sions given for âaBIE and b̂bBIE are identical to their
Bayesian counterparts as given in Betti et al. (1993)
and Gundlich and Koch (2002); see also Teunissen
(2001) and Gundlich and Teunissen (2003). This is not
quite true for the general case. However, the above
equivalence nicely bridges the gap which has existed so
far between the current theory of integer inference and
the Bayesian approach. Despite the similarity in the
above case, however, there are important differences in
the probabilistic evaluation of the solutions. Like the
BLU estimator, the BIE estimator is a random variable
with the property of being unbiased and of minimum
variance. In the Bayesian framework the solution is
considered to be non-random due to the conditioning
that takes place. Furthermore, in the Bayesian frame-
work the unknown parameters are assumed to be
random variables for which probability distributions
need to be specified a priori. The theory developed in
the present contribution is non-Bayesian throughout,
with no need at all to make assumptions about prior
distributions.

5 Summary

This study was motivated by the problem of GNSS
carrier phase ambiguity resolution. We know that when
the ambiguity success rate of the usual GNSS model is
large enough, the ‘fixed’ baseline estimator outperforms
its ‘float’ counterpart in the sense that

Pð�bb 2 EBÞ � Pðb̂b 2 EBÞ ð23Þ

for any convex region Eb � Rp symmetric with respect to
the unknown but true baseline b 2 Rp. This is a strong
result, but unfortunately only valid if the probability of
correct integer estimation is sufficiently close to one. We
therefore raised the question whether it would be
possible to devise a baseline estimator which always
outperforms its ‘float’ counterpart. Our approach to this
problem was to opt for a weaker performance criterion
and a larger class of estimators to choose from. As
performance criterion we chose to use the MSE.

The new class of estimators that we introduced we
referred to as the class of integer equivariant estimators,
IE. This class is larger than the class of integer estima-
tors, but it still obeys the integer remove–restore prin-
ciple. In order to devise our own IE estimator, a useful
representation of the IE estimators was given. We then
presented the BIE estimator of an arbitrary linear
function of the integer as well as real-valued parameters
of the GNSS model. This was done by solving the
problem of minimizing the MSE within the IE class. The
expression given for the BIE estimator holds true for any
PDF the data might have.

It was also shown that the class of linear unbiased
estimators, LU, is a subset of the class of IE estimators,
LU � IE. This automatically implies that, in the MSE
sense, the BIE estimator always outperforms its BLU
counterpart. In addition it was shown that the BIE
estimator is unbiased. Hence, similar to the well-known
Gauss–Markov theorem, which states that the minimum
variance unbiased estimator within the class of linear
estimators is given by the LS estimator BLU, we ob-
tained a Gauss–Markov-like theorem stating that the
minimum variance unbiased estimator within the IE
class is given by the LMS estimator BIE. Both theorems
hold true for any PDF the data might have. For the
BLU solution we need to know the vc matrix of the data
up to a proportionality constant, whereas for the BIE
solution we need to know the PDF up to a propor-
tionality factor.

When the theory is applied to solve for the baseline
vector in the GNSS model, we have as a direct conse-
quence of the theory that

MSEðb̂bBIEÞ �MSEðb̂bÞ and MSEðb̂bBIEÞ �MSEð�bbÞ
ð24Þ

Hence the MSE of the BIE estimator of the baseline is
less than or at the most equal to, that of both its ‘float’
and ‘fixed’ counterparts. Although this is a much weaker
performance statement than Eq. (23), it has the advan-
tage of being valid all the time.
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Appendix

Proof of Lemma 1. We will start with the ‘if’ part: If
ghða; b; cÞ ¼ lT

a aþ lT
b bþ hhða; cÞ with hh periodic in its

first slot, then clearly ghðaþ z; bþ f; cÞ ¼
ghða; b; cÞ þ lT

a zþ lT
b f; 8z 2 Zn; f 2 Rp. Therefore, since

fhðAaþ Bbþ CcÞ ¼ ghða; b; cÞ and y ¼ Aaþ Bbþ Cc
with ðA;B;CÞ invertible

fhðy þ Azþ BfÞ ¼ fhðyÞ þ lT
a zþ lT

b f;

8y 2 Rm; z 2 Zn; f 2 Rp ðA1Þ

which is equivalent to the properties of Definition 2.
For the ‘only if’ part we have: if Eq. (A1) holds true,

the hh function defined as hhða; cÞ ¼ fhðAaþ Bbþ CcÞ�
lT

a a� lT
Bb with ðA;B;CÞ invertible will be periodic in its

first slot and hence ghða; b; cÞ ¼ fhðAaþ Bbþ CcÞ can be
written as ghða; b; cÞ ¼ lT

a aþ lT
Bbþ hhða; cÞ. (

Proof of Theorem 1 Let ĥhIE ¼ fhðyÞ. Then MSEðĥhIEÞ ¼
EfðfhðyÞ � hÞ2g needs to be minimized for all functions
fh 2 IE. We first apply the change of variables
y ¼ Aaþ Bbþ Cc with ðA;B;CÞ invertible, together
with h ¼ lT

a aþ lT
b b and our representation fhðAaþ

Bbþ CcÞ ¼ lT
a aþ lT

b bþ hhða; cÞ. This gives MSEðĥhIEÞ ¼
Ef½lT

a ða� aÞ þ lT
b ðb� bÞ�2g þ HðhhÞ with

HðhhÞ ¼ Ef2½lT
a ða� aÞ þ lT

b ðb� bÞ�hhða; cÞ þ hhða; cÞ2g

Hence we may now concentrate on minimizing
HðhhÞ. Using the expectation property Ef�g ¼
EcfEaf� j a; cg j cg, we may write for H

HðhhÞ ¼ EcfEaf2½lT
a ða� aÞ þ lT

b Ebfb� b j a; cg�hhða; cÞ
þ hhða; cÞ2 j cgg

If we now can find an admissible hh which minimizes the
inner expectation Eaf� j cg for all c, then also HðhhÞ
would be minimized. Using hhðaþ z; cÞ ¼ hhða; cÞ and
the fact that

R
f ðxÞdx ¼

R
S0

P
z2Zn f ðxþ zÞ dx holds true

for any pull-in region S0 and any f , we may write

HðhhÞ ¼ Ec

Z

S0

½ðhhða; cÞ � ĥhhða; cÞÞ2 � ðĥhhða; cÞÞ2�

8
<

:

�
X

z2Zn

pajcðaþ z j cÞda j c
)

with pajcða j cÞ the PDF of a given c and with

ĥhhða;cÞ¼
P

z2Zn

R
½lT

a ða�z�aÞþlT
b ðb�bÞ�pa;b;cðaþz;b;cÞdb

P
z2Zn

R
pa;b;cðaþz;b;cÞdb

ðA2Þ

This shows that hhða; cÞ ¼ ĥhhða; cÞ is the sought-for
minimum. We therefore have, with
f̂f ðAaþ Bbþ CcÞ ¼ lT

a aþ lT
b bþ ĥhhða; cÞ, that

f̂f ðAaþ Bbþ CcÞ

¼
P

z2Zn

R
½lT

a zþ lT
b
�bb�pa;b;cðaþ a� z; bþ b� �bb; cÞ d�bb

P
z2Zn

R
pa;b;cðaþ z; �bb; cÞ d�bb

ðA3Þ

Since y ¼ Aaþ Bbþ Cc with ðA;B;CÞ invertible and
pa;b;cða; b; cÞ ¼ detðA;B;CÞpyðAaþ Bbþ CcÞ, the result
follows. (

Proof of Theorem 2. With the result of Theorem 1,
Theorem 2 is proven once it can be shown that
ĥhBIE is unbiased. Using the IE representation ĥhBIE ¼
lT

a aþ lT
b bþ ĥhhða; cÞ where y ¼ Aaþ Bbþ Cc, we first

note that Efag ¼ a and Efbg ¼ b for any matrix C for
which ðA;B;CÞ is invertible. Therefore EfĥhBIEg ¼ h if
and only if Efĥhhða; cÞg ¼ 0. This is easily verified using
Eq. (A2). (

Proof of Lemma 2 First note that ĥhIE ¼ ĥhBIEþ
kðĥhBLU � ĥhBIEÞ is an IE estimator for any k 2 R.
Application of the error propagation law gives r2

ĥhIE
¼

r2
ĥhBIE
þ 2krĥhBIEðĥhBLU�ĥhBIEÞ þ k2r2

ðĥhBLU�ĥhBIEÞ
.Sincer2

ĥhBIE
� r2

ĥhIE
,

we must have that 2krĥhBIEðĥhBLU�ĥhBIEÞ þk2r2
ðĥhBLU�ĥhBIEÞ

� 0,

8k 2 R. This is only possible if rĥhBIEðĥhBLU�ĥhBIEÞ ¼ 0. Note

that the result also holds when ĥhBLU is replaced by an
arbitrary IE estimator. (

Proof of Corollary. The result Eq. (A3) holds true for
any C for which ðA;B;CÞ is invertible. Let us assume
that matrix C can be chosen such that a and b
become independent of c. Then according to Eq. (A3),
the dependence on c disappears and âaBIE and b̂bBIE can be
written as

âaBIE ¼
X

z2Zn

z
paðaþ a� zÞ

P
z2Zn paðaþ a� zÞ

b̂bBIE ¼ b�
X

z2Zn

Efb� b j aþ a� zg

� paðaþ a� zÞ
P

z2Zn paðaþ a� zÞ ðA4Þ

If we choose C such that CT Q�1y ðA;BÞ ¼ 0, then a ¼ âa,
b ¼ b̂b and Cc ¼ êe, with the LS residual êe ¼ y � Aâa� Bb̂b.
If we further assume that y is normally distributed, then
êe, and thus c, become independent of a ¼ âa and b ¼ b̂b.
The PDF of a ¼ âa and the conditional mean
Efb j aþ a� zg then reduce to

pâaðxÞ ¼
1

ð2pÞ
n
2

ffiffiffiffiffiffiffiffiffiffiffiffi
detQâa

p expf�1
2kx� ak2Qâa

g

Efb j aþ a� zg ¼ b� Qb̂bâaQ�1âa ðz� âaÞ

Substitution into Eq. (A4) proves the result. (
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Proof of Lemma 3.

1. Since
R

x expf� 1
2 kx� âak2Qâa

g dx ¼ âað2pÞ
n
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detQâa

p
andR

expf� 1
2 kx� âak2Qâa

g dx ¼ ð2pÞ
n
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detQâa

p
, the result

follows.
2. Let Su ¼ fx 2 Rn j kx� uk2Qâa

� kx� zk2Qâa
; 8z 2 Zng be

the ILS pull-in region of u 2 Zn. Then Su will be
independent of r if we factor the vc matrix of âa as
Qâa ¼ r2G. From

wuðxÞ ¼
expf� 1

2 kx� uk2Qâa
g

P
z2Zn expf� 1

2 kx� zk2Qâa
g

¼ 1

1þ
P

z6¼u expf� 1
2r�2fkx� zk2G � kx� uk2Ggg

it then follows that limr 7!0 wuðxÞ ¼ 1 and
limr7!0 wzðxÞ ¼ 0, 8z 6¼ u, if x 2 Su. The last equation is
a consequence of

P
z2Zn wzðxÞ ¼ 1, 8x 2 Rn. Since wzðxÞ

reduces in the limit to the indicator function of the ILS
pull-in region, the result follows. (
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