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Abstract. The enhanced warming trend and precipitation decline in the Mediterranean region make it a climate
change hotspot. We compare projections of multiple Coupled Model Intercomparison Project Phase 5 (CMIP5)
and Phase 6 (CMIP6) historical and future scenario simulations to quantify the impacts of the already changing
climate in the region. In particular, we investigate changes in temperature and precipitation during the 21st
century following scenarios RCP2.6, RCP4.5 and RCP8.5 for CMIP5 and SSP1-2.6, SSP2-4.5 and SSP5-8.5
from CMIP6, as well as for the HighResMIP high-resolution experiments. A model weighting scheme is applied
to obtain constrained estimates of projected changes, which accounts for historical model performance and inter-
independence in the multi-model ensembles, using an observational ensemble as reference. Results indicate a
robust and significant warming over the Mediterranean region during the 21st century over all seasons, ensembles
and experiments. The temperature changes vary between CMIPs, CMIP6 being the ensemble that projects a
stronger warming. The Mediterranean amplified warming with respect to the global mean is mainly found during
summer. The projected Mediterranean warming during the summer season can span from 1.83 to 8.49 ◦C in
CMIP6 and 1.22 to 6.63 ◦C in CMIP5 considering three different scenarios and the 50 % of inter-model spread
by the end of the century. Contrarily to temperature projections, precipitation changes show greater uncertainties
and spatial heterogeneity. However, a robust and significant precipitation decline is projected over large parts
of the region during summer by the end of the century and for the high emission scenario (−49 % to −16 %
in CMIP6 and −47 % to −22 % in CMIP5). While there is less disagreement in projected precipitation than in
temperature between CMIP5 and CMIP6, the latter shows larger precipitation declines in some regions. Results
obtained from the model weighting scheme indicate larger warming trends in CMIP5 and a weaker warming
trend in CMIP6, thereby reducing the difference between the multi-model ensemble means from 1.32 ◦C before
weighting to 0.68 ◦C after weighting.

1 Introduction

The Mediterranean region (10◦W, 40◦ E, 30◦ N, 45◦ N; Itur-
bide et al., 2020) is located between the arid and warm north-
ern African climate and the humid and mild European cli-
mate (Cramer et al., 2018). The contrast between them is
partly explained by the influence of the surrounding oceans,
their interaction with the land surface and the general atmo-

spheric circulation characteristics in the mid-latitudes (Boé
and Terray, 2014).

Global warming is not homogeneous, and Lionello and
Scarascia (2018) suggests that the Mediterranean region is a
climate change hotspot. Consequently, adaptation to chang-
ing climate threats is paramount to countries located around
the Mediterranean Sea (Gleick, 2014; Cramer et al., 2018),
which live in a complex and diverse socioeconomic situation
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and have severe vulnerabilities to climate change and vari-
ability (Barros et al., 2014). The observed warming in the
Mediterranean region during the last decades is expected to
continue and grow larger than the global-mean warming (Li-
onello and Scarascia, 2018). Additionally, total precipitation
declines were observed during the late 20th century (Longo-
bardi and Villani, 2010), and have been projected by differ-
ent multi-model ensembles for the 21st century (Paeth et al.,
2017; Zittis et al., 2019). Characteristics of the projected
Mediterranean climate change have been linked to thermo-
dynamic sources such as land–ocean warming contrast and
lapse rate change in summer (Brogli et al., 2019), and to dy-
namical processes such as the changes in upper-tropospheric
large-scale flow in winter (Tuel and Eltahir, 2020).

Numerical models are used to estimate future climate
change. Accounting for the physical processes and inter-
actions in each climate subsystem (atmosphere, biosphere,
cryosphere, hydrosphere and land-surface), global climate
models (GCMs) aim to project the state of the future climate
system. Model runs over long historical or future periods are
driven by natural forcings (i.e. solar irradiance and volcanic
aerosols) and anthropogenic emissions that alter greenhouse
gas (GHG) concentrations, leading to changes in the radiative
forcing (Hawkins and Sutton, 2011). GCMs are developed
by a number of institutions who always apply the same phys-
ical principles but might use slightly different assumptions.
This opens the door to performing the same experiments with
multiple GCM outputs, leading to more robust estimates.
Modelling uncertainty can be sampled by ensembling var-
ious models (Tebaldi and Knutti, 2007), while running the
same model multiple times (referred to as members), with
differing initial conditions (Eyring et al., 2016), under the
same experiment samples’ internal variability (Hawkins and
Sutton, 2011). To make the results comparable, intercom-
parison projects, where several models perform standardized
experiments, have been organized by the international com-
munity (Meinshausen et al., 2011; Riahi et al., 2016). The
main community effort is the Coupled Model Intercompari-
son Project (CMIP). In this study, we consider the two lat-
est CMIP phases, CMIP5 and CMIP6 (Taylor et al., 2012;
Eyring et al., 2016), and explore their similarities and differ-
ences over the Mediterranean region. The almost 10 years be-
tween CMIP5 and CMIP6 allowed for improvements in the
modelling of certain Earth system processes such as cloud
feedbacks, aerosol forcings and aerosol–cloud interactions
(Voosen, 2019; Wang et al., 2021).

CMIP experiments were performed with a large set of
models and therefore show many differences in projected
changes due to internal variability and the diverse model de-
signs used by the modelling teams. Weighting single model
runs according to their performance in simulating the ob-
served past allows constraining the climate modelling uncer-
tainty and obtaining a potentially more accurate estimate of
regional climate change signals. Various studies have used
different subsetting/weighting approaches such as emergent

constraints (Cox et al., 2018; Hall et al., 2019; Tokarska et al.,
2020), performance-based model subsets (McSweeney et al.,
2015; Langenbrunner and Neelin, 2017; Herger et al., 2019)
and model weighting accounting for performance and inde-
pendence (Knutti et al., 2017; Lorenz et al., 2018; Brunner
et al., 2019). The last approach has been used in this study as
it additionally considers the interdependencies existing be-
tween the models.

This study evaluates and quantifies the Mediterranean cli-
mate change hotspot for each season over the 21st century
by looking into surface air temperature and precipitation
changes in the Mediterranean and how they relate to larger-
scale responses. We consider three different emission scenar-
ios in order to assess the impact of anthropogenic emission
uncertainties over the Mediterranean climate. The CMIP5
and CMIP6 multi-model ensembles are used to estimate the
climate change signal, its uncertainty and to illustrate the dif-
ferences between the two experiments in the region. Finally,
a weighting method is applied to each CMIP ensemble based
on the criteria of model performance and independence to
obtain more robust projections.

Section 2 describes the climate models and observational
data used, and explains the methods used to quantify cli-
mate change and weight the projection members. The cli-
mate change hotspot in the Mediterranean and the weighted
and unweighted projected changes are presented in Sect. 3,
while these results are discussed in Sect. 4. Section 5 con-
cludes and raises questions for further investigation.

2 Data and methods

2.1 Model data

This study is based on the CMIP5 and CMIP6 historical
and future climate projections experiments. The historical
CMIP5 experiments span from 1850 to 2005 (Taylor et al.,
2012) and from 1850 to 2014 in CMIP6 (Eyring et al., 2016).
The future projections are a continuation of the historical
simulations, and we have used runs continuing until the year
2100. The variables are monthly mean near-surface air tem-
perature (TAS), precipitation rate (PR) and sea-level pressure
(PSL). The latter is used to weight the ensemble members to-
gether with TAS (see Sect. 2.3).

The increasing computational power over time has al-
lowed for increased model resolution and complexity, which
leads to the expectation that models have improved from
CMIP5 to CMIP6. Additionally, we have used the High
Resolution Model Intercomparison Project (HighResMIP), a
CMIP6-endorsed MIP (Haarsma et al., 2016) that aims to
compare lower- and higher-resolution versions of the same
global models. The historical and future HighResMIP pe-
riods span from 1950 to 2014 and from 2015 to 2050 re-
spectively. Though only a subset of the CMIP6 models con-
tributed to HighResMIP, this smaller ensemble has also been
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considered in this study in order to assess the impact of in-
creasing model resolution on the Mediterranean climate.

Three radiative forcing scenarios are used to account for
uncertainty in future emissions: the CMIP5 Representative
Concentration Pathways (RCPs; van Vuuren et al., 2011) 2.6,
4.5 and 8.5 and the CMIP6 Shared Socioeconomic Path-
ways (SSPs; Riahi et al., 2016) 1-2.6, 2-4.5 and 5-8.5. The
magnitudes 2.6, 4.5 and 8.5 (in Wm−2) represent the 2100
global radiative forcing in comparison to the pre-industrial
era. However, even if the radiative forcing at the end of
the century is the same in both RCPs and SSPs, the path
to reach it can differ substantially, leading to differences in
the projected climate (Wyser et al., 2020). One of the main
differences between the SSPs and RCPs is that the former
have a compatible socioeconomic scenario associated with
each forcing scenario, SSP1 being based on sustainability,
inclusive development and inequality reduction, SSP2 repre-
senting a middle-of-the-road scenario, where slow progress
is made in achieving sustainable development goals and
with a mild decline in resource and energy use and being
SSP5 based on fossil-fuelled development, rapid technologi-
cal progress and economic growth (Riahi et al., 2016; O’Neill
et al., 2016). The results from CMIP5 and CMIP6 sharing the
same 2100 radiative forcing will be displayed together for
simplicity, but the reader should always bear in mind that the
evolution of GHG concentrations differs between them. They
are not entirely comparable as RCPs and SSPs defined with
the same radiative forcing at the end of the century do not
share the same progression of aerosol and GHG concentra-
tions throughout the 21st century. HighResMIP is only avail-
able for the scenario SSP5-8.5 for future projections.

Many of the models have more than one member, meaning
that the model runs have been started with different initial
conditions, leading to diverging climate trajectories. The aim
of having multiple members is to sample the uncertainty that
arises from internal variability (Lehner et al., 2020; Deser
et al., 2020). Having multi-member models means that the
multi-model ensembles are super-ensembles. A summary of
the simulations performed by each model used and for every
scenario can be found in Appendix A.

2.2 Observational data

We use observational references to compare the model ex-
periments to the observed past and to derive performance
weights of ensemble members. Multiple observational prod-
ucts are used including both reanalysis (ERA5 and JRA55)
and gridded observations (GPCC, CRU, BerkeleyEarth and
HadSLP2) to account for observational uncertainty. A sum-
mary of the observational datasets used is found in Table 1.
JRA55 will not be displayed in the time series plots as it over-
estimates the precipitation over the Mediterranean during the
period 1958–1978 (Tsujino et al., 2018).

2.3 Methods

All datasets are regridded to a 1◦× 1◦ grid using a conserva-
tive interpolation method to allow comparison between dif-
ferent models and observational references. After regridding,
the dataset’s original orography will differ from that of the
1◦× 1◦ grid. Therefore, the TAS values obtained for a spe-
cific altitude might suffer a shift in altitude, which needs to
be corrected by means of the 6.49 Kkm−1 standard lapse
rate (Weedon et al., 2011; Dennis, 2014). This is only nec-
essary when absolute climatologies are used, as computing
the change in TAS climatology from one period to the other
cancels out this height shift.

To assess the seasonal dependence of climate change
over the Mediterranean region, results are computed for the
winter months December–January–February (DJF), spring
months March–April–May (MAM), summer months June–
July–August (JJA) and autumn months September–October–
November (SON). A summary of the time periods used and
the applications of the different diagnostics can be found in
Table 2.

All calculations have been performed using the Earth Sys-
tem Model Evaluation Tool (ESMValTool). ESMValTool is
a community framework that facilitates the processing of
generic climate datasets, allowing for reproducibility of re-
sults (Righi et al., 2020).

Mediterranean TAS and PR are assessed over land to high-
light the impact of climate change over populated regions.
This avoids values over sea influencing results over land
when regridding is performed, i.e. TAS behaves differently
over land than over sea due to differences in surface thermo-
dynamic properties, while PR over sea should not have an
impact on freshwater resources over land.

2.3.1 Projections verification

To verify the projection ensembles used, we compare the lin-
ear trend (TREND) distributions of the observational prod-
ucts against the multi-model ensembles. This is computed by
applying the linear ordinary least square regression fit with
time as an independent variable. The 35-year period 1980–
2014 has been used to calculate trends in each model and
observational dataset, as a period with shorter span would be
too dependent on the effect of internal variability from the
climate system (Merrifield et al., 2020; Peña-Angulo et al.,
2020). Note that CMIP5 years 2006–2014 are taken from the
corresponding scenario simulation. The results are gathered
in the respective OBS, CMIP5, CMIP6 and HighResMIP dis-
tributions (displayed as box plots), and we perform a quali-
tative assessment on the differences between observed and
simulated historical trends.

2.3.2 Mediterranean hotspot evaluation

A climate change hotspot is defined as a region whose
climate is especially responsive to global change (Giorgi,

https://doi.org/10.5194/esd-13-321-2022 Earth Syst. Dynam., 13, 321–340, 2022



324 J. Cos et al.: The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections

Table 1. Summary of the observational references for near-surface air temperature (TAS), precipitation rate (PR) and sea-level pressure
(PSL).

Name Type Institute Variables Reference

JRA55 Reanalysis Japan Meteorological Agency (JMA) TAS, PR, PSL Kobayashi et al. (2015)

ERA5 Reanalysis European Centre for Medium-Range
Weather Forecasts (ECMWF)

TAS, PSL Hersbach et al. (2020)

CRU (v4.04) Gridded observations University of East Anglia (UEA) TAS, PR Harris et al. (2020)

GPCC (v2018) Gridded observations Deutscher Wetterdienst (DWD) PR Schamm et al. (2014)

BerkeleyEarth Gridded observations Berkeley Earth TAS Rohde et al. (2013)

HadSLP2 Gridded observations Met Office (UKMO) PSL Allan and Ansell (2006)

Table 2. Summary of each diagnostic’s use and time period.

Diagnostic Period(s) Use

1 2021–2040/2061–2080/2081–2100 against 1986–2005 weighted and unweighted projection results
DIFF 1980–2014 performance weight
STD 1980–2014 performance weight
TREND 1980–2014 performance weight and verification
CLIM 1980–2014 independence weighting

2006). To characterize the hotspot, we compare the TAS
and PR behaviours in the Mediterranean against the global
and latitudinal band responses respectively. The first step
is to calculate the change in the variables’ magnitude be-
tween the reference period (1986–2005, from Collins et al.,
2013) climatology (CLIM) and a future period CLIM (this
diagnostic is referred to as 1 in this text). To evaluate the
TAS hotspot, we compute the differences between the multi-
model Mediterranean land-only 1TAS and the global land–
ocean 1TAS means (Lionello and Scarascia, 2018). For PR
the land–ocean latitudinal belt 30–45◦ N mean is used in-
stead of the global mean (Lionello and Scarascia, 2018). To
highlight the difference in the impact of the hotspot within
the Mediterranean region, we plot the hotspot maps using
the near-term and long-term 1, which refer to the future pe-
riods 2041–2060 and 2081–2100 respectively. Additionally,
to assess the evolution of the hotspot, we calculate the pro-
jected area-averaged 10-year rolling windows of the Mediter-
ranean 1 and the large-scale 1 for both TAS and PR. For
precipitation, the area aggregations are computed using ab-
solute values and then the relative change with respect to the
reference is calculated (displayed in percentage).

2.3.3 Mediterranean projected changes quantification

To quantify the projected magnitudes of Mediterranean re-
gion climate change, we compute 1 between the reference
period 1985–2005 and the future periods: near term (2021–
2040), mid-term (2041–2060) and long term (2081–2100).
We use 20-year baseline and future periods following the

guidelines from IPCC (2021). Additionally, as CMIP5 his-
torical simulations end in 2005, the reference period 1986–
2005 from IPCC’s AR5 (Collins et al., 2013) is chosen to
avoid overlapping historical and scenario experiments when
extracting projection results. Note that only the near-term pe-
riod is available for HighResMIP as the future experiment
ends in 2050. The advantage of using 1 instead of future
CLIMs is that the GCMs’ mean-state systematic biases are
removed, and we obtain a more easily interpretable compari-
son of the responses among models and between models and
observations (Garfinkel et al., 2020).

With the aim to sample the inherent uncertainty of the
multi-model ensemble, we compute the inter-model spread
from the 5th and 95th percentiles of the ensemble distribu-
tion. To take into account the scenario uncertainty, we dis-
play the distribution of 1 from the three different scenarios
that we have used for each ensemble side by side (RCP2.6,
RCP4.5 and RCP8.5 for CMIP5 and SSP1-2.6, SSP2-4.5 and
SSP5-8.5 for CMIP6).

The statistical significance of TAS and PR mean changes
and the degree of agreement between the models are used
to assess the uncertainty and robustness of the multi-model
ensemble results. A climate change signal is considered ro-
bust when at least 80 % of the models agree on the projected
sign of the 1s (Collins et al., 2013). A change in the multi-
model mean is considered significant when it is beyond the
threshold of a two-tailed paired t test (Ukkola et al., 2020)
at the 95 % confidence level. The paired t test is chosen be-
cause it is invariant to differences in the sample’s variability.
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We consider that the null hypothesis is met when there is no
difference between the multi-model distribution in the refer-
ence and future periods. To compute the t statistic, first, each
model’s mean is computed from its members, and secondly,
the multi-model ensemble mean and standard deviation are
calculated.

2.3.4 Weighting method

It has been argued that more robust projections could be ob-
tained by giving more weight to members with good perfor-
mance (Knutti et al., 2017). Therefore, we compare histori-
cal simulations against the observational ensemble mean and
more weight is given to those members that better reproduce
the observed climate, i.e. weighting them by performance.
Another aspect that can be taken into account when weight-
ing a multi-model ensemble is the independence between
members. Giving equal weight to all members (one model
one vote) is not a fair approach as some share model formu-
lations (either because their runs belong to the same model
or because their models share similarities), and would be
overrepresented in the ensemble. An independence weight-
ing method is applied to correct this issue.

Using the approach developed in Lorenz et al. (2018),
Brunner et al. (2020) and Merrifield et al. (2020), we use
Eq. (1) to give a weight wi to each member i in the pro-
jections ensemble. The distances (measured with the root
mean squared error, RMSE) Di between member i and the
observational reference inform the performance weight, and
the distance Sij between member i and every other mem-
ber j from the multi-model ensemble informs the indepen-
dence weight. The amount of j members is represented bym,
which is the total number of members minus one. σs and
σd are the independence and performance shape parameters
respectively. The mean of the observational ensemble is used
as the observational reference.

wi =
e
−

(
Di
σd

)2

1+
∑m
j 6=ie

−

(
Sij
σs

)2 (1)

The weighting method distances account for different per-
formance and independence diagnostics (trends, differences,
variabilities and climatologies) to avoid weighting members
that could match the performance and independence criteria
of a single diagnostic just by chance. The diagnostics di and
sij , respectively used to evaluate the distancesDi and Sij , are
different, as Merrifield et al. (2020) suggests. The aim when
evaluating performance is to give more weight to members
that resemble the observed past in a more faithful way. Dif-
ferently, the aim of weighting for independence is to clearly
identify members that behave in a similar way. All the di-
agnostics are computed over the period 1980–2014 (Brunner
et al., 2020). The variables used to compute the diagnostics
are TAS and PSL (Merrifield et al., 2020). The performance

diagnostics are the surface temperature 1980–2014 CLIM
minus its area average (TAS-DIFF), the surface temperature
interannual standard deviation (TAS-STD), the surface tem-
perature linear trend (TAS-TREND), the sea-level pressure
1980–2014 CLIM minus its area-average (PSL-DIFF) and
the sea-level pressure interannual standard deviation (PSL-
STD). The independence diagnostics are the 1980–2014 PSL
and TAS climatologies (PSL-CLIM and TAS-CLIM).

The distances between member-observations for each
of the diagnostics are aggregated as in Eq. (2) where
di represents the distance for each diagnostic Xd =

(TAS-TREND,TAS-DIFF,TAS-STD,PSL-DIFF,PSL-STD).
Equation (3) shows how to compute the distances between
models and observations, where g refers to each grid cell and
wg represents its area weight. To find Sij the same method
is followed but using Xs = (TAS-CLIM,PSL-CLIM)
and comparing members against each other instead of
observations.

Di =
∑
Xd

dX
d

i

MEDIANi
(
dX

d

i

) (2)

dX
d

i =

√∑
g

wg
(
Xdi −X

d
obs
)2 (3)

The shape parameters are constant values that determine if
the member-observations or the member–member distances
are enough to downweight a member (σd) or if they are close
enough to determine some dependency between members
(σs) respectively. Each ensemble (CMIP5 and CMIP6), sea-
son and scenario has its own associated shape parameters.
Appendix B explains in further detail the meaning of the
shape parameters, the methods used to compute them and
the diagnostics used to determine performance and indepen-
dence.

3 Results

Apart from the figures displayed in this section and the
Supplement, additional ones generated during the study
can be found in a shiny app in the following link https:
//earth.bsc.es/shiny/medprojections-shiny_app/ (last access:
December 2021).

3.1 Verification

We compare CMIP and HighResMIP ensemble TAS and PR
trends to the observational ensemble trends between 1980
and 2014 as an indication of model performance over the
Mediterranean. PR and TAS trends in the observational en-
semble fall within the range of the multi-model ensem-
bles in all seasons (see Fig. 1 for DJF and JJA results;
MAM and SON not shown). The historical multi-model en-
semble spread of temperature trends is notably larger than
that of the observational ensemble. CMIP6 past warming
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Figure 1. Historical trends for DJF (a, b) and JJA (c, d) temper-
ature (a, c) and precipitation (b, d) of the observational, CMIP5,
CMIP6 and HighResMIP ensembles. The observational distribution
is composed of the different values obtained from each of the ob-
servational products. In the box plots, the black horizontal line rep-
resents the median and the black dot is the mean. The interquartilic
range (IQR) and whiskers are defined by the 25th–75th and 5th–
95th percentiles respectively. HighResMIP models are displayed as
markers, enabling a comparison of the HR (green) and LR (orange)
models within the experiment. The same markers are used for two
different resolution runs of the same model (see Table S1 in the
Supplement).

trends are generally larger than CMIP5. The inter-model
spread for the precipitation projections is large for all en-
sembles and usually has both negative and positive trends
(e.g. DJF CMIP5 precipitation trends range from −0.092 to
0.097 mmd−1 decade−1 for the 5th and 95th percentiles re-
spectively). HighResMIP TAS trends are contained within
the CMIP6 ensemble, but some of the high-resolution (HR)
models exhibit trends outside the CMIP6 range for PR in
JJA (Fig. 1d). The agreement between the different obser-
vational products in past warming trends is shown in Fig. S7
(columns 1 and 5). While the general warming patterns are
similar, there are some notable differences over the Balkans
and western Asia. The figure also highlights the need to con-
sider multiple observational sources, as historical trends dif-
fer both in magnitudes and spatial patterns.

3.2 The Mediterranean as a climate change hotspot

Figure 2 shows CMIP5 and CMIP6 high radiative forcing
scenario differences of1TAS over the Mediterranean against
the 1986–2005 global-mean1TAS (for DJF, JJA and the an-
nual means). The Mediterranean1PR is compared to the 30–
45◦ N latitudinal belt 1PR mean.

The Mediterranean region shows a higher annual tempera-
ture increase than the global mean. When accounting for sea-
sonal differences, the highest amplifications are visible for
JJA over the Iberian Peninsula and the Balkans. CMIP5 and
CMIP6 agree on the regions showing the highest amplified
warming, but the latter projects larger amplification magni-
tudes. There is agreement between both CMIPs in the dis-
tribution and magnitude of the DJF warming amplification,
which is small and even negative in the north-west part of the
domain. While projections agree on a precipitation increase
in the 30–45◦ N latitudinal belt for the long-term period (Li-
onello and Scarascia, 2018), the Mediterranean region shows
a decline in precipitation. The largest amplified drying shifts
latitudinally from the south of the Mediterranean region in
DJF to the north in JJA. The most affected region in JJA
is projected to be the south-west of the Iberian Peninsula.
Both CMIPs agree on the precipitation patterns of change,
but CMIP6 dries more and faster in the amplified drying re-
gions, and projects larger precipitation increases in regions
where the hotspot has a negative sign such as the south-east
of the domain (probably enhanced by using relative precipi-
tation changes).

TAS and PR differences increase in magnitude from the
mid- to the long term, while the spatial pattern remains
the same, indicating that the climate in the Mediterranean
changes faster than the global average when forced by the
8.5 Wm−2 scenarios. The low emission scenario, instead,
shows a hotspot weakening from the mid- to the long term
as the warming amplification is reduced and the precipitation
differences are maintained (see Fig. S1 in the Supplement).
The weakening of the hotspot under the low emission sce-
nario will be further explored below.

Even though CMIP6 projects a larger warming and dry-
ing amplification than CMIP5, Fig. 3 shows that CMIP5 and
CMIP6 agree on the relation between global and local warm-
ing (slopes drawn in the figures). This indicates that CMIP6
does not enhance the hotspot with respect to CMIP5, but
rather the higher amplified warming in the Mediterranean is
the result of a globally warmer multi-model ensemble. For
DJF, additional warming over the Mediterranean is almost
zero with respect to the global mean. Contrastingly for JJA,
additional warming over the Mediterranean is about 1.6 times
higher than the global-mean warming. This relationship ap-
pears to be linearly maintained for higher global warming
levels, i.e. with time and GHG concentrations.

In spite of this strong agreement in the relationship be-
tween global and local warming, CMIP5 and CMIP6 have
slight differences in the projected precipitation over the
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Figure 2. Mediterranean region TAS (upper rows) and PR (lower rows) change differences with respect to the mean global temperature
change and the mean 30–45◦ N latitudinal belt precipitation change respectively. The changes for the periods 2041–2060 (first and third
row) and 2081–2100 (second and fourth row) are evaluated against the 1986–2005 mean. The differences are shown for the CMIP5 (left)
and CMIP6 (right) DJF, JJA and annual mean projections (columns) under the high emission scenario RCP8.5 and SSP5-8.5 respectively. N
indicates the number of models included in the ensemble mean.

Figure 3. Mediterranean region warming against global warming for the three scenarios (columns) shown in DJF (a–c) and JJA (d–f) for the
CMIP5 and CMIP6 ensemble means. Each dot represents a 10 year mean change beginning from 1960–1969 (light colouring) until 2091–
2100 (opaque colouring). The changes are computed with 1986–2005 as baseline. An ordinary least squares linear regression is computed
and the slope and r values are shown. N indicates the number of models included in the ensemble mean.
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Mediterranean in comparison to the 30–45◦ N latitudinal belt
(see Fig. S2). CMIP5 generally shows more negative slopes
than CMIP6, meaning that the former is projecting a larger
amplification of the precipitation hotspot as the relative pre-
cipitation loss in the Mediterranean (ordinate) for the same
amount of precipitation increase in the larger-scale region
(abscissa) is larger. While this is true for all seasons and sce-
narios, the difference between CMIP5 and CMIP6 is more
noticeable during DJF and especially for the low emission
scenario. Figure S3 highlights more extreme relative CMIP6
precipitation changes in the latitudinal band and increases of
over 30 % in Asia and over the Pacific as opposed to CMIP5.
Therefore, conclusions must be drawn carefully from com-
paring area-averaged values of these regions. Nevertheless,
there is agreement between both ensembles on the spatial
distribution of PR changes.

We tried following a second approach to assess the trend
differences of the precipitation hotspot between the CMIPs.
Figure S4 shows changes in precipitation for the Mediter-
ranean region against the global-mean warming, and the en-
semble that dries faster for the same magnitude of global
warming is CMIP5. This is more noticeable during the DJF
season. The results from Fig. S4, together with Fig. S2, give
evidence supporting that CMIP5 projects a larger precipita-
tion hotspot (relative to its own large-scale climate response)
than CMIP6.

Coming back to the hotspot weakening, the low emission
scenario panels (Figs. S2a and d and S4a and d) show more
clearly how a recovery of the precipitation decline is pro-
jected following mitigation. For the rest of the scenarios,
the projected amplified warming, combined with an anoma-
lous precipitation decline, makes the Mediterranean a climate
change hotspot (Lionello and Scarascia, 2018).

3.3 Unweighted projections

3.3.1 Temperature

Figure 4a shows projected multi-model ensemble JJA and
DJF TAS changes under three scenarios and three time hori-
zons over the Mediterranean. The CMIP6 ensemble always
shows larger 1TAS than CMIP5. The inter-model spread
for the end of the century is larger for CMIP6 than CMIP5.
CMIP6 projects JJA temperatures to increase by over 7.4 ◦C
(90 % inter-model spread within 5.6 to 9.1 ◦C) by the end
of the century under the high emission scenario and 2.3 ◦C
(90 % within 1.2 to 3.3 ◦C) under the low emission scenario
(Fig. 4). CMIP5 shows a mean JJA warming of 5.9 ◦C by the
end of the century (90 % within 4.1 to 7.7 ◦C) under RCP8.5
and 1.6 ◦C (90 % within 0.3 to 2.5 ◦C) under RCP2.6. In DJF
the warming is always lower, and 90 % of CMIP6 models
for the high emission scenario project a 1TAS within 3.3
to 6.8 ◦C (CMIP5: 2.7 to 5.0 ◦C). For the remaining seasons
(MAM and SON), CMIP6 shows a larger warming and larger
intermodel spread than CMIP5 (not shown). HighResMIP

HR and low-resolution (LR) projections are contained within
the CMIP5 and CMIP6 distributions (only near term; see
Fig. S5c). No specific relation between the LR and HR model
outputs can be found, and due to the small size of the High-
ResMIP ensemble, further conclusions cannot be drawn. Fi-
nally, from the area-averaged distributions of1TAS (Fig. 4a)
we can see that the largest source of uncertainty for the mid-
and long term is the forcing scenario, and the inter-model
spread for the near term.

The inter-model spread grows larger with emissions both
for TAS and PR (Fig. 4a and c). To check the influence of the
equilibrium climate sensitivity (ECS) on the increasing inter-
model spread, the same plot is computed with a subset of
CMIP5 and CMIP6 models with ECSs constrained between
2.6 and 3.3 ◦C (rather than the original 2.1 to 4.7 ◦C ECS
range from CMIP5, Meehl et al., 2020 and the 1.8 to 5.6 ◦C
ECS range from CMIP6, Hausfather, 2019). From Fig. S6 it
can be seen that ensembles with narrower ECS ranges show
a reduction in inter-model spread growth over time for the
high emission scenarios.

Figure 5 shows the spatial distribution of the projected JJA
warming in the high emission scenario for CMIP5, CMIP6
and HighResMIP in the three future reference periods. JJA
warming is significant and robust for the three future peri-
ods in the Mediterranean region (see Fig. 5). As seen before,
CMIP6 warms more than CMIP5 and at a faster rate. Never-
theless, there is good spatial agreement between the warming
projected by the CMIP experiments over the Mediterranean
region. The Iberian Peninsula, the Balkans and Eastern Eu-
rope are the regions with the largest mean JJA warming, with
values reaching over 8 ◦C.

The remaining scenarios also project robust and signifi-
cant warming for JJA throughout the century with a tendency
of smaller positive trends by 2050 (not shown). CMIP6 sys-
tematically projects higher warming than CMIP5 again with
a similar spatial warming pattern. The regions with larger
warming are the Iberian Peninsula and the Balkans.

The temperature spatial changes during DJF for the high
emission scenario are shown in Fig. S8. The north-eastern
Mediterranean shows the largest projected warming in DJF
(4.5 ◦C according to CMIP5 and 6 ◦C to CMIP6). For the
near term, HighResMIP shows a slightly larger TAS increase
than CMIP6 in eastern Europe. The rest of scenarios agree
with the spatial distribution of changes but with lower warm-
ing magnitudes (not shown).

3.3.2 Precipitation

In contrast to temperature, CMIP5 and CMIP6 show the
same mean JJA 1PR declines of −33 % by the end of the
century under the high emission scenario (Fig. 4c). CMIP6
has a wider inter-model 90 % range than CMIP5. The former
spans −63 % to −4 % and the latter −56 % to −11 %. For
the low emission scenario CMIP6 mean JJA precipitation de-
clines by −7 % (90 % within −23 % to +17 %) and CMIP5
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Figure 4. CMIP5 and CMIP6 JJA and DJF projections for the near-, mid- and long-term periods with respect to the baseline period consider-
ing the 2.6, 4.5 and 8.5 Wm−2 RCP and SSP radiative forcing scenarios for (a) unweighted 1TAS, (b) weighted 1TAS and (c) unweighted
1PR. The black horizontal line in the boxes represents the median and the black dot is the mean. The interquartile range (IQR) and whiskers
are defined by the 25th–75th and 5th–95th percentiles respectively. The number of members in the boxplot distributions is represented by m
in the legend.

by −4 % (90 % within −19 % to +16 %). In DJF and by the
end of the century, CMIP6 precipitation declines by −8 %
(90 % within −20 % to +5 %) and CMIP5 by −9 % (90 %
within −31 % to +4 %) under the high emission scenario.
For the low emission scenario in DJF, CMIP6 shows a mean
+2 % precipitation increase (90 % within −11 % to +18 %)
and CMIP5 a −1 % decline (90 % within −15 % to 9 %).
Seasons JJA, DJF (Fig. 4c), MAM and SON (not shown) for
all scenarios generally project mean1PR declines beginning
from the mid-term period onwards. Nevertheless, there is an
exception in DJF under the low emission scenario, where a
slight increase in mean DJF precipitation is projected. High-
ResMIP near-term projections of PR change are contained
within the CMIP6 ensemble (Fig. S5b and d). Generally, the
signal is considerable, but the inter-model spread is wide for
all multi-model ensembles; therefore, we will later present
the statistical robustness and significance of changes. Finally,
from the area-averaged distributions of1PR (Fig. 4c), we see
that the largest source of uncertainty is the forcing scenario

for long-term JJA projections, and the inter-model spread for
DJF and near and mid-term JJA.

Precipitation spatial changes in the Mediterranean region
only become more robust and significant with time (see
Fig. 6). 1PR projected for the long term during JJA, and un-
der the 8.5 Wm−2 scenarios, indicate significant and robust
decline for most of the region. The mid-term 8.5 Wm−2 and
the long-term 4.5 Wm−2 scenarios show locally robust and
significant changes in the Iberian Peninsula and north of the
Pyrenees. Both CMIPs agree on the south-western Iberian
Peninsula having the strongest precipitation decline, with
long-term CMIP6 changes ranging from −50 % to −60 %
and CMIP5 from−30 % to−40 % for the high emission sce-
nario. Despite lower forcing scenarios projecting less robust
and significant changes (except the western Mediterranean
for long-term SSP2-4.5), the results agree on a general pre-
cipitation decline throughout the region with patterns similar
to high emission scenario projections (not shown). The High-
ResMIP projections agree with CMIP6 mean magnitudes and
spatial pattern for most of the seasons in the near-term pe-
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Figure 5. JJA1TAS according to CMIP5, CMIP6 and HighResMIP ensemble means (columns) for the three relevant future periods (rows),
under the RCP8.5 and SSP5-8.5 scenarios. The time series plot shows the anomalies in the Mediterranean region with respect to the period
1986–2005 for the multi-model ensembles and the observational references. A solid line indicates the one-member-per-model ensemble
mean and the shaded region indicates the 5th–95th percentiles range. The CRU trend for the period 1980–2014 is shown along with the
dashed line, which bounds the Mediterranean region.

riod (the large amount of non-robust and non-significant grid
points must be noted).
1PRs in DJF are different from those in JJA (see Fig. S9).

The southern part of the domain is expected to see a signif-
icant and robust precipitation decline in the long term of up
to −20 % to −40 % over northern Africa. The north of the
Mediterranean is located in a transition zone, as precipitation
in areas north of the Pyrenees, Alps and Balkan Peninsula is
projected to increase and in areas under 38◦ N is projected to
decrease, causing changes for the Iberian, Italian and Balkan
peninsulas to remain uncertain. In comparison to CMIP5,
CMIP6 shows a wider 5th–95th percentile spread over the
Mediterranean region for all the scenarios considered (2.6
and 4.5 Wm−2 scenarios are not shown). As a final remark,
the observed DJF precipitation variability in the time series
falls outside the simulated 90 % inter-model spread (5th-95th
percentiles shown in shading in Fig. 6).

3.4 Weighted projections

The models of CMIP ensembles perform very differently de-
pending on the computed diagnostic, and some models share
similarities. Section 1 of the Supplement explains in further
detail how differently models represent the observed climate
over the Mediterranean region, justifying the need to con-
strain the projection ensembles.

We obtain new projections from applying the performance
and independence weighting method to TAS projections
from the CMIP5 and CMIP6 ensembles. Figure 4b shows
the distribution of 1TAS in the weighted ensembles for the
three emission scenarios and the three future periods. The
weighting increases the CMIP5 mean and median projec-
tions while at the same time decreasing the CMIP6 mean
and median projections, bringing the two ensemble means
closer together: before weighting, the CMIP5 and CMIP6
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Figure 6. Same as Fig. 5 for JJA precipitation and showing CRU in the top left panel.

medians differed by 1.32 ◦C and after weighting the differ-
ence is 0.68 ◦C (for the highest emission scenario in JJA).
Generally, the high emission scenario means are those that
see larger reductions in the CMIP6 ensemble; e.g. differences
between the unweighted and weighted ensemble means are
around −0.3, −0.2 and −0.1 ◦C in JJA and DJF for SSPs
5-8.5, 2-4.5 and 1-2.6 respectively. The IQRs are generally
narrowed for all seasons and scenarios except for the mid-
and long-term JJA SSP2-4.5, SSP1-2.6 and RCP2.6 scenar-
ios. The 90 % spreads are slightly reduced or maintained; ex-
ceptions are the CMIP6 DJF long-term distributions and the
CMIP6 JJA low and middle emission scenarios for the mid-
term. The 75th–95th percentile range in the weighted CMIP6
ensemble increases while the 5th–25th percentile range de-
creases, generating a skewed weighted CMIP6 distribution
towards smaller warming. Weighting the CMIP5 ensemble
leads to a more constrained distribution.

The weighted 1TAS projections in DJF show similar re-
sponses as in JJA: the mean signal in CMIP6 decreases
while it increases in CMIP5, making the differences between

both mean distributions smaller. In some cases the weight-
ing did not lead to large alterations of the projected inter-
model spread, suggesting that uncertainties in the tempera-
ture changes are well sampled by the original ensembles. In
contrast, the large IQR of CMIP6 model projections in the
long term is reduced by half, and the CMIP5 90 % inter-
model spread narrows by up to 1 ◦C, after weighting. Nev-
ertheless, even though the weighting approach reduces the
probability of the most extreme warming values, they remain
possible in the weighted ensemble. Generally speaking, the
90 % inter-model spreads are maintained while the IQRs nar-
row.

To assess the contribution of the performance and indepen-
dence weights in the resulting distribution, we have plotted
the distribution of performance and full weights, and com-
pared the raw ensemble long-term warming distribution with
the performance-weighted and the fully weighted warmings
(Fig. S12). JJA performance shifts both CMIP ensembles to
larger warmings, while the addition of independence weights
shifts the CMIP6 median to lower warmings than the raw en-
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semble. DJF performance weights do not have an effect on
the warming medians but they the narrow CMIP5 spread. The
addition of DJF independence weighting shifts the CMIP6
median warming and broadens its inter-model spread. The
CMIP5 median remains unchanged but its spread grows to-
ward the raw distribution without reaching it.

Note that precipitation-weighted projections are not shown
as there is no evidence that the diagnostics used to assess
temperature (Merrifield et al., 2020) are relevant to the pre-
cipitation response of the models.

4 Discussion

Projections obtained from climate multi-model ensembles
contain various sources of uncertainties. Different modelling
methods and emission scenarios (e.g. land use, GHG emis-
sions) lead to different results (Tebaldi and Knutti, 2007). We
use different multi-model ensembles and radiative forcing
scenarios to consider as many factors as possible contribut-
ing to the uncertainty of the Mediterranean climate change
projections. Additionally, a weighting method constraining
the projections has been applied to reduce uncertainty in the
projections.

We have shown that average Mediterranean temperature
changes were larger than the global-mean average during
JJA, but close to it during DJF, for all scenarios, time periods
and model ensembles. This hotspot is projected to enhance
over the 21st century under the scenarios RCP8.5, SSP5-
8.5, RCP4.5 and SSP2-4.5, and to diminish from the mid-
to long term under the RCP2.6 or SSP1-2.6 scenarios. In-
terestingly, the multi-model ensemble mean projections of
the low emission scenario show a recovery of the precipita-
tion decline towards the end of the century, suggesting that
precipitation could be restored to historical values relatively
fast in the Mediterranean region if strict mitigation policies
are applied. Previous studies also have identified the Mediter-
ranean warming amplification (Lionello and Scarascia, 2018;
Zittis et al., 2019), but it must be stressed that this enhanced
warming does not apply to the DJF season.

We argue that the different results obtained from CMIP5
and CMIP6 for the Mediterranean hotspot and the un-
weighted projections are largely due to the global response
from each multi-model ensemble. Figures 3, S2 and S4 show
how the regional changes relative to the larger scale are sim-
ilar for both CMIPs, indicating that CMIP6 is not producing
a regional enhancement of climate change, but it rather fol-
lows a larger global change. This behaviour is most evident
in JJA than in DJF, as the relative changes with respect to
larger scales are more similar for the two multi-model en-
sembles. To further support this statement, we look at the
spatial distribution of changes within the Mediterranean re-
gion in Figs. 5, 6, S3, S8 and S9. The figures generally agree
on the spatial distribution of changes even if the magnitudes
differ. Therefore, we can argue that the main difference in

TAS and PR output from the older (CMIP5) and newer gener-
ation (CMIP6) multi-model ensembles is an enhancement of
the global change, while its relation with the Mediterranean
region response has been maintained. The work of Palmer
et al. (2021) arrives at a similar conclusion for the European
region.

The drivers of the projected Mediterranean climate change
has been studied by Brogli et al. (2018), Brogli et al. (2019)
and Tuel and Eltahir (2020). They have found that the mecha-
nisms projected to drive the Mediterranean climate are large-
scale upper-tropospheric flow changes (PR in DJF), reduc-
tion in the regional land–sea temperature gradient (PR in
DJF and JJA) and changes in the north–south lapse rate con-
trast (PR in JJA, TAS in DJF and JJA). While these drivers
have been deeply studied for CMIP5, affirming that the same
mechanisms remain valid for the CMIP6 ensemble would be
speculative.

Consistent with basic radiative forcing theory (Wallace
and Hobbs, 2006), temperature projections have shown that
the warming over the 21st century is larger when stronger
radiative forcing scenarios are applied. There is confidence
in a precipitation decline for the high emission scenario over
the whole Mediterranean region in JJA and only in the south
during DJF. Conclusions should be drawn carefully from pre-
cipitation as there is a large inter-model spread. For other
seasons and scenarios, precipitation declines are projected,
although results are uncertain due to the large spread and low
significance and robustness over most of the region. Regard-
ing HighResMIP, the HR near-term precipitation and tem-
perature changes generally fall within the CMIP6 ensemble
distribution and no clear improvement could be seen from
the increased resolution in the historical trends, probably due
to the small number of HighResMIP models available for the
assessment, and the focus on larger-scale changes and tem-
poral resolutions.

The largest source of uncertainty in determining the warm-
ing and precipitation changes over the mid- and long-term
periods is the emission scenario (as seen in Fig. 4). To il-
lustrate scenario uncertainty, let us take the range between
the 5th and 95th percentile of the low (high) and high (low)
emission scenario distributions for temperature (precipita-
tion) changes. CMIP6 shows a range from 1 to 9 ◦C warm-
ing and −62 % to 19 % precipitation long-term changes in
JJA. CMIP5 ranges from 0.1 to 7.5 ◦C warming and −54 %
to 18 %. This broad spectrum of possible futures has various
possible associated outcomes. The inter-model spread grows
at faster rates throughout the 21st century with higher radia-
tive forcing, in part due to the differing climate sensitivities
of the models inside the ensemble (see Fig. S6); i.e. the dif-
ferences between a low and a high climate sensitivity model
will become amplified with larger radiative forcing.

The implications of an 8.5 Wm−2 increase in radiative
forcing from preindustrial times by the end of the cen-
tury could pose severe strains on human health, due to
heat-related illnesses (Lugo-Amador et al., 2004) and al-
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tered transmission of infectious diseases (Patz et al., 2005);
food security due to crop pests and diseases (Newton et al.,
2011) and productivity declines in many countries whose
economies depend on agriculture (Devereux and Edwards,
2004); water insecurity due to droughts (Devereux and Ed-
wards, 2004) and changing rainfall patterns in vulnerable
regions (Sadoff and Muller, 2009). Note that the three cli-
mate change-induced impacts defined above are closely in-
tertwined and may increase existing scarcities.

In face of the very pessimistic future projected by the high
emission scenario, some studies argue that 8.5 Wm−2 forc-
ing is highly unlikely as it is based on an expansion of coal
use throughout the 21st century instead of on a reduction
(Ritchie and Dowlatabadi, 2017a). In the context of energy
transition and decreasing demand for coal, the high emission
scenario has often been criticized (Ritchie and Dowlatabadi,
2017b). Nevertheless, studies on the carbon cycle discuss that
CO2 feedbacks might be underestimated in the GHG concen-
tration scenarios (Booth et al., 2017), and thus we have con-
sidered keeping the 8.5 scenarios as an extreme yet possible
future.

The CMIP6 ensemble is known to have models with no-
tably higher climate sensitivity than CMIP5; i.e. radiative
forcing generates stronger changes and at a faster rate (Haus-
father, 2019). The higher sensitivity could be due to model
design or the definition of the radiative forcing scenario.
Even if SSP and RCP scenarios are labelled after the radia-
tive forcing (in W m−2) by the end of the century, the tran-
sient GHG concentrations are different (Meinshausen et al.,
2011; Riahi et al., 2016). Wyser et al. (2020) suggests that
running the same model with equal 2100 GHG concentra-
tions from SSP and RCP (2.6, 4.5 and 8.5 Wm−2) leads to
larger temperature changes when forcing the model with the
former. It has been argued that improvements in the formula-
tion of clouds and aerosols in CMIP6 are major contributors
to larger climate sensitivities with respect to CMIP5 (Meehl
et al., 2020; Hausfather, 2019). Even if there is higher sen-
sitivity to radiative forcing in some CMIP6 models, this be-
haviour is not reproduced by all of them, resulting in a larger
inter-model spread compared to CMIP5.

In terms of which multi-model ensemble performs bet-
ter, some studies argue that the CMIP6 ensemble shows im-
provements in simulating the climate of historical references
in China (Zhu et al., 2020), Turkey (Bağçaci et al., 2021),
the Tibetan plateau (Lun et al., 2021) and the global mean
(Fan et al., 2020). Nevertheless, as no performance studies
have been made specifically for the Mediterranean region,
we cannot speculate as to which ensemble performs better.
Therefore, this would be a topic of interest for further study.

Assessing the weighted temperature ensemble, we found
that the CMIP6 distribution shifts to lower changes, mean-
ing that models showing larger TAS changes have been
down-weighted, reducing the differences between CMIP6
and CMIP5 experiment medians and means. To find the rea-
son behind this shift we plotted the ensemble warming distri-

bution for the long term after applying only the performance
weights (numerator of equation 1) and compared it to the raw
and fully weighted ensembles (see Fig. S12). We found that
the independence weights are those shifting the CMIP6 en-
semble to lower warmings rather than the performance. In
this regard, CMIP5’s median is unaltered by independence
and its effect can only be seen in inter-model spread changes.
JJA performance weights shift CMIP5 and CMIP6 to larger
warmings, suggesting that a number of the members project-
ing larger changes do a better job at representing the histori-
cal climate. A last remark that can be extracted from Fig. S12
is that both independence and performance weighting play an
important role, which changes between seasons and ensem-
bles. Therefore, there is not a straightforward interpretation
of the general behaviour of the weights.

5 Conclusions

This study aims to analyse the projected temperature and pre-
cipitation changes by the CMIP5 and CMIP6 multi-model
ensembles in the Mediterranean region. Different scenarios
and seasons have been assessed to tackle the uncertainties
inherent to ensemble projections. To complement the tra-
ditional information provided, a weighting method that ac-
counts for historical performance and inter-independence of
the models has been applied to offer an alternative view of
the temperature projections.

The Mediterranean is a climate-change hotspot due to am-
plified warming and drying when compared to the large-scale
climate behaviour. The amplified warming of the Mediter-
ranean is found in JJA and not in DJF. Comparing the
Mediterranean hotspot in CMIP5 and CMIP6, we found that
the ratio of warming amplification is similar for both multi-
model means, meaning that no enhanced regional warming
is projected by the CMIP6 ensemble, but it is rather the con-
sequence of a globally warmer ensemble.

Conclusions must be drawn carefully from multi-model
ensembles as the single models perform very differently and
might share dependencies with each other. Model agree-
ment gives high confidence in significant and robust warm-
ing affecting the entire Mediterranean region throughout the
21st century caused by anthropogenic emissions. The Balkan
Peninsula during DJF and the Balkan and Iberian peninsulas
during JJA are expected to be the most affected regions. Pre-
cipitation changes are less robust and significant and show
greater spatial heterogeneity than the warming. Significant
and robust declines in precipitation are expected to affect the
Mediterranean in JJA and the southern part in winter by the
end of the 21st century if high emission scenarios are con-
sidered. The warming combined with a precipitation decline
could put the whole region under strain, especially the south,
which has fewer resources to adapt to the changing climate.
The biggest source of uncertainty to determine the magni-
tude of TAS and PR changes is the emission scenario, which
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will depend on the future policies and measures for miti-
gation followed. Considering three scenarios, the long-term
projected warming (given by the 50 % inter-model spread)
spans 1.83–8.49 ◦C according to CMIP6 and 1.22–6.63 ◦C
according to CMIP5 in JJA. For precipitation, the decline
ranges from −49 % to −16 % in CMIP6 and from −47 %
to −22 % in CMIP5. It has also been concluded that part of
the increasing warming inter-model spread with time is re-
lated to the wide range of ECS values among the ensemble
members.

A weighting method has been applied to reduce the un-
certainty caused by models that poorly represent key as-
pects of the historical climate and by the high dependence
of the results provided by families of models (that might be
overrepresented in the multi-model ensemble). Based on the
constrained projections, we conclude that CMIP6 overesti-
mates warming in the Mediterranean and its 25th to 50th per-
centile inter-model spread. The shift to lower warming seen
by the weighted CMIP6 ensemble is driven by the indepen-
dence weighting. CMIP5 slightly underestimates warming
and generally overestimates the IQR inter-model spread. The
weighted projections are relevant because they help to recon-
cile the conclusions extracted from the last two CMIP phases,
reducing future climate change uncertainties. The fact that
CMIP6’s 90 % spread range is unaltered shows that the cli-
mate uncertainty might have been underestimated in previ-
ous, less physically advanced, CMIP exercises, which dis-
played smaller inter-model spread when constrained.

Further work is required for the weighting method to iden-
tify the most relevant diagnostics that best assess historical
precipitation model performance. As spatial heterogeneities
can be seen in the Mediterranean region, we suggest con-
sidering subregions for the Mediterranean in order to extract
more user-relevant information from the constrained projec-
tions. Furthermore, it would be of great interest for the com-
munity to update studies on the physical mechanisms and
the performance of the CMIP6 multi-model ensemble in the
Mediterranean region.

Appendix A: Model data summary

A summary of all the initial-condition runs from the multi-
model ensembles CMIP5, CMIP6 and HighResMIP for the
three radiative scenarios used in this study can be found in
Table A1.

Appendix B: Diagnostics, σd and σs of the weighting
method

This Appendix aims to describe the methodology behind the
performance and independence weighting. First, we will ex-
plain the diagnostics chosen to compute the distances and
secondly how to obtain the two constant shape parameters
from Eq. (1).

As the aim is to obtain weighted projections from a multi-
model ensemble, the diagnostics to assess performance and
independence must be relevant for the used variable. The
weighting is going to be optimized for temperature projec-
tions and therefore variables TAS and PSL from the historical
period (1980–2014) will be used, as these variables are rel-
evant for the projected temperature (Merrifield et al., 2020;
Brunner et al., 2020). In order for CMIP5 to comply with the
historical reference period, the diagnostics will include the
first years of the scenario experiments (2006–2014). As there
is a unique ensemble of members for each project, scenario
and season, each ensemble will have its own set of weights.

The diagnostics used are differences, climatologies, trends
and variability. According to Tebaldi and Knutti (2007), TAS
historical trends have an evident physical link and high cor-
relation with future projected warming. The trend is defined
by the linear ordinary least square regression fit for each
grid point with time as the independent variable during the
reference period (TREND); the climatologies are computed
as the time mean of each grid point over the reference pe-
riod (CLIM); the differences are computed by subtracting the
area-averaged climatology to each grid point’s reference pe-
riod climatology (DIFF) and the variability is obtained with
the mean inter-annual standard deviation for each grid point
(STD). As the trend is not relevant for PSL, it is not com-
puted (Merrifield et al., 2020).

When assessing performance, the aim is to identify the
models that more faithfully represent the historical climate.
As all our results are computed as differences from the his-
torical period, model biases in the climatology should not
be relevant. That is why the diagnostics used for perfor-
mance weighting are TAS-TREND, TAS-DIFF, TAS-STD,
PSL-DIFF and PSL-DIFF. Differently, the aim of weighting
for independence is to identify members that have similar
traits. Biases in models should be similar for dependent mod-
els (Merrifield et al., 2020); therefore, we use CLIM for tem-
perature and sea-level pressure (TAS-CLIM and PSL-CLIM)
to compute the distances Sij from Eq. (1). Computing the cli-
matology over relatively long periods is a good approach as
the internal variability becomes minimized and, ideally, it is
the main attribute distinguishing two members of the same
model (Hawkins and Sutton, 2011).

Finally, to compute the actual values of Di and Sij the
single diagnostic distances (e.g. TAS-TREND, TAS-DIFF,
PSL-DIFF) must be combined. This is done by normalizing
the single diagnostics with the median over all members and
then averaging them.

The shape parameters are constant thresholds that inform
how large or small distances should be to determine per-
formance (Di) and independence (Sij ). If σd is overcon-
strained (small value), it will generate a very strict per-
formance weighting as only members with very low val-
ues of Di will receive any weight. Contrarily, if high val-
ues of σd are used, models with large distances will receive
performance weight, leading to too-permissive constraints.

Earth Syst. Dynam., 13, 321–340, 2022 https://doi.org/10.5194/esd-13-321-2022
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The independence shape parameter does not work in such
a straightforward way: small values of σs could weight all
models as being independent, as the distance to consider two
members dependent would have to be too small. This could
result in models receiving similar weights. A similar thing
could happen but for the opposite reason if a large σs was
used, i.e. most models would seem dependent as large dis-
tances between members would be considered small enough.
We therefore must find an optimal σs that is neither too small
nor too large (Knutti et al., 2017).

The ensemble gives the necessary information to make
a best guess of both shape parameters. Regarding the per-
formance parameter, Knutti et al. (2017) suggests applying
perfect model tests for a range of σd candidates to obtain
the optimal magnitude. The candidates are values between
10 % and 200 % of the median Di distance. Consecutively,
all members in the ensemble are once taken as the reference
while the rest are weighted following equation (1), with Di
being the distance between the perfect member and the mem-
ber i. The σd candidates are iteratively tested for all perfect
model tests until the smallest σd that makes 80 % of the per-
fect models fall in between the 10th and 90th percentiles of
their respective weighted ensembles is found. The diagnos-
tics used in the test are the same as those used to weight per-
formance but computed for the future periods (2041–2060
and 2081–2100) as we want σd to be based on the uncer-
tainties of the future projection ensemble. The average σd
between both periods is used for its corresponding season,
scenario and CMIP ensemble.

The parameter σs is informed by models with more than
one initial-condition run. Ideally, members from the same
model should be considered completely dependent as their
modelling assumptions are the same, even though internal
variability makes the runs differ. The independence weight-
ing should identify when initial-condition runs from the same
model are added or subtracted from an ensemble. If the inde-
pendence weights (Eq. 1 denominator) are calculated for an
ensemble with one member per model (wind

j ) and then all the
available members of a model j are added to the ensemble
(Ej represents the amount of members added), the average
independence weights of model j (w̃ind

j ) are expected to de-
crease by a ratio 1 : Ej . Additionally, including members of a
model j to the ensemble should have a minimal effect on the
independence weights of the rest of the models i represented
by only one member in the ensemble.

The optimal σs is found via an iterative process for a range
of σs candidates, looking for the one that minimizes the sum
ε1+ ε2, where ε1 and ε2 are defined as (Brunner et al., 2019)

meanj
[
wind
j (σs)+Ej − w̃ind

j (σs)
]2
= ε1

meanj

{
meani

[
wind
i 6=j (σs)− w̃ind

i 6=j (σs)
]2
}
= ε2 ∀j.

Code and data availability. The tool used for the diag-
nostics is ESMValTool (the version used is available at
https://doi.org/10.5281/zenodo.4562215) (Andela et al., 2021a)
and its core modules are from ESMValCore (the version
used is available at https://doi.org/10.5281/zenodo.4947127)
(Andela et al., 2021b). The observational data used GPCC
(https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_025; DWD,
2020), CRU (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.
04/cruts.2004151855.v4.04/, https://doi.org/10.1038/s41597-
020-0453-3; UEA, 2020), JRA55 (https://jra.kishou.go.
jp/JRA-55/index_en.html#reanalysis; JMA, 2020), ERA5
(https://doi.org/10.1002/qj.3803; ECMWF, 2019), BerkeleyEarth
(http://berkeleyearth.lbl.gov/auto/Global/Gridded/Complete_
TAVG_LatLong1.nc; BerkeleyEarth, 2020) and Had-
SLP (https://doi.org/10.1175/JCLI3937.1; UKMO, 2020).
CMIP data: all CMIP5 and 6 datasets were downloaded
from the Earth System Grid Federation available at
https://esg-dn1.nsc.liu.se/projects/esgf-liu/ (ESGF, 2019). The
models used are listed in Table A1.

The ESMValTool recipes and the code for the diag-
nostics can be found at https://doi.org/10.23728/b2share.
01b483fa953241b2b2d8f5242cae6e8c (Cos, 2021a).

Additional figures not shown in the main text or the Supplement
can be found in the figure repository built with a shiny app following
the link https://earth.bsc.es/shiny/medprojections-shiny_app/ (Cos,
2021b).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-13-321-2022-supplement.
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