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Up to 1900, world population growth over 1500 years fitted the quasi-hyperbolic format
P(t) = a/(D − t)M, but this fit projected to infinite population around 2000. The recent
slowdown has been fitted only by iteration of differential equations. This study fits the mean
world population estimates from CE 400 to present with “tamed quasi-hyperbolic function”
P(t) = A/[ln(B + e(D − t)/τ)]M, which reverts to P = a/(D − t)M when t bbD. With coefficient
values P(t) = 3.83 × 109/[ln(1.28 + e(1980 − t)/22.9)]0.70, the fit is within ±9%, except in
1200–1400, and projects to a plateau at 10.2 billion. An interaction model of population,
Earth's carrying capacity and technological–organizational skills is proposed. It can be
approximately fitted with this P(t) and an analogous equation for carrying capacity.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Fifty years ago, Science published a study with the provoca-
tive title “Doomsday: Friday13November, A.D. 2026” [1]. It fitted
world population during the previous two millennia with P =
179 × 109/(2026.9−t)0.99. This “quasi-hyperbolic” equation (hy-
perbolic having exponent 1.00 in the denominator) projected to
infinite population in 2026— and to an imaginary one thereafter.
Later growth has fallen short of this equation, calling for a
modification that averts “doomsday”. The smoothness of world
population growth curve since CE 400, with a single inflection
point around 2000, suggests that stable long-term factorsmaybe
atwork, rather than accumulation of randomdevelopments. This
underlying basis for quasi-hyperbolic pattern and later slow-
down needs elaboration. Fits based on iterations of differential
equations have been offered [2,3], but no explicit function P(t)
like the one above.

Here a modified explicit equation is proposed, which fits the
meanworld population estimates from CE 400 to present and to
foreseeable future. This “tamed quasi-hyperbolic function” fits
approximately an interaction model of population, Earth's
ll rights reserved.
carrying capacity and technological–organizational skills. This
three-factor model combines two earlier ones, one in terms of
population and technology only [4–6], and the other in terms of
population and Earth's human carrying capacity only [2,7].
Application to other phenomena with apparent asymptotes is
briefly discussed, as well as population growth outside the time
period considered.

2. Quasi-hyperbolic growth up to 1900

Over the last 1600 years human population has increased
35-fold. Up to the mid-1900s, it grew at an ever-increasing
percent rate per year, which the exponential model cannot
express. As early as 1951, André de Cailleux [8] noticed that
the world population fitted a quasi-hyperbolic equation:

P ¼ a= D−tð ÞM ð1Þ

where a, D and M are constants. In differential form,

dP=dt ¼ Ma= D−tð ÞMþ1 ¼ M=a1=M
� �

P1þ1=M ð2Þ

and the relative growth rate is simply dP/Pdt = M/(D − t). At
asymptote t = D, P → ∞. Eq. (1) becomes purely hyperbolic

http://dx.doi.org/10.1016/j.techfore.2013.07.009
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whenM = 1 and exponential whenM → ∞. In 1958–1979, this
pattern was repeatedly rediscovered or confirmed [1,4,9–12],
right at the time when world population began to fall visibly
short of this pattern. The estimates for D ranged from 2005 to
2027 [1,4,9–12]. In retrospect thesewere overestimates, because
they included post-1900 data, when the shift away from the
quasi-hyperbolic pattern had already set in, however mildly.
Correspondingly, exponent M has been also overestimated,
ranging from 0.74 up to 1. By habit, CE 1 has most often been
taken as the starting point for data fitting, but this was the high
point of a previous speedup and leveling-off in world population
growth, to be discussed later. A new smooth upward trend in
population began around CE 400. The best fit for population
estimates from CE 400 to 1900 is close to

PQ ¼ 34:3� 109
= 1980−tð Þ0:70 ð3Þ

where subscriptQ indicates quasi-hyperbolic fit. Mean estimates
of world population during these 1500 years (Table 1) agree
with Eq. (3) within ±5%, except for spurts in 1200–1300 and
1850, and shortfall in 1400 (Black Death).
Table 1
World population from CE 400 to 2010, inmillion: mean and range of estimates,
and as calculated from quasi-hyperbolic and T-function approaches. Shown in
bold are cases where values from Eq. (15) fall outside the range of estimates by
more than ±3%. Time intervals are taken so that successive population ratios
remain between 1.1 and 1.3.

Year Estimates of P PQ from
Eq. (3)

PT from
Eq. (15)

Deviation (%)
of mean from
Eq. (15)Mean Range

400 198 190–206 197.8 197.8 +0.1
600 214 200–237 217.5 217.5 −1.6
800 235 220–261 242.5 242.5 −3.2

1000 281 254–310 276.3 276.3 +1.7
1100 310 301–320 297.8 297.8 +4.1
1200 398 360–450 324.2 324.2 +22.8
1300 396 360–432 356.9 356.9 +11.0
1400 362 350–374 398.9 398.9 −10.2
1500 457 425–500 455.4 455.4 +0.3
1600 544 498–579 536.3 536.1 +1.5
1700 635 603–679 664.2 663.9 −4.6
1750 771 720–824 762.2 761.8 +1.2
1800 941 890–981 904.9 904.5 +4.0
1850 1242 1200–1265 1136.4 1135.5 +9.3
1900 1639 1564–1680 1596.4 1583.5 +3.5
1920 1905 1860–1968 1952 1906 −0.1
1940 2313 2300–2340 2593 2401 −3.8
1950 2526 2499–2556 3172 2748 −8.8
1960 3035 3023–3042 4213 3185 −4.9
1970 3667 3600–3712 6844 3728 −1.7
1980 4442 4436–4453 ∞ 4385 +1.3
1990 5278 5260–5290 5147 +2.5
2000 6021 5750–6115 5980 +0.7
2010 6861 6831–6909 6825 +0.5

Mean estimates and ranges of world population are those of mean estimates
by 9 sources in Wikipedia, http://en.wikipedia.org/wiki/World_population_
estimates, visited 11/9/10: US Census Bureau 2009; Population Reference
Bureau 2008; UN Dept. of Econ. and Soc. Aff. 2008; HYDE 2006, A. Maddison
2003; J. H. Tanton 1994; J.-N. Biraben 1980; C. McEvedy and R. Jones 1978, R.
Thomlinson 1975; J. D. Durand 1974; Clark 1967. Estimates given with only
100 million precision were omitted. During the period since CE 400,
individual estimates deviate from the means by up to 13%. Evaluating the
validity of population estimates in centuries past is beyond the scope of this
study.
This millennial upward curvatures in logP(t) and the
recent downward curvature are quite disparate. To fit them
together, one has to consider deep-set factors boosting
growth and now slowing it down. Differential equations can
be set up, and an iteration process can be used to fit actual
population estimates [2,3], but integration into a single
explicit equation has been lacking. An ultimate ceiling (U)
could easily be inserted into Eq. (2):

dP=dt ¼ KP1þ1=M 1−P=Uð Þ: ð4Þ

Due to P1/M, this is not simple exponential approach to the
ceiling, but it satisfies the basic desiderata — quasi-hyperbolic
initial growth plus a ceiling. No integration formula is available,
however, for non-integer M. The same applies to dP/dt = a/
[(D − t)2 + c2], also proposed [13]. Attempts have beenmade
to use functions P(t) other than quasi-hyperbolic, as reviewed
in [14], but it is hard to match its simplicity and degree of fit
prior to 1900.

What could cause the quasi-hyperbolic pattern, and the
later slowdown? At least two other factors must interact with
population. Some models have focused on technology (T)
[4–6], others on Earth's carrying capacity (C) at a given time
[2,3]. Space limitations on Earth may impose an ultimate
population limit even when technology may uncover new
resources. Dry land area is the ultimate resource, upon which
most others are predicated. A ceiling at U = 10 billion would
mean 1.5 ha per person. If evenly spread out, with 940 million
placed in Antarctica, humanswould stand at about 100 m from
their six closest neighbors. Two models are reviewed next,
respectively based on technology [4] and on carrying capacity
[2]. Weak links are pointed out in each, and a new model
subsuming both will be presented.

3. Interaction with technology and carrying capacity

3.1. The population–technology model

Assume endogenous exponential growth of population.
Assume the same for “technology” [15], using this term in its
broadest meaning, which includes social organization skills as
stressed in the world systems literature [16]. Indeed, “skills”
might express this broad ability more clearly [12], but we'll
stick with the traditional term. Eq. (1) can be derived from
interaction between these exponential growths when they
reciprocally enhance their rate “constants” [4]. Such interaction
might be assumed because more people means more
potential innovators, and higher technological–organizational
skills increase Earth's carrying capacity and hencemake a larger
population possible. Assume that interaction terms can be
approximated by power functions [4].

Then

dP=dt ¼ kTnP ð5Þ

dT=dt ¼ hPmT ð6Þ

Eliminating time, P and T are related as dP/dT = (k/h)
P1−m/T1−n. Integration yields hnPm = kmTn, when we as-
sume that T = 0 when P = 0. Inserting kTn = hnPm/m into
Eq. (5) leads to dP/dt = (hn/m)Pm+1, which is equivalent to

http://en.wikipedia.org/wiki/World_population_estimates
http://en.wikipedia.org/wiki/World_population_estimates
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Eq. (2), with m = 1/M. Simplistic as this model [4] is, it does
lead to the observed pattern in 400–1900. In a simpler form,
with n = m = 1, it was devised again two decades later
[5,6]. This simpler form imposes M = 1 in Eqs. (1) and (2),
which restricts fitting options needlessly.

Similarly to P, T also grows quasi-hyperbolically, in this
model. The model may seem to presume near-instantaneous
technological–organizational interaction worldwide, but this
is not so. It would suffice to presume that spread of major
innovations among the major population centers in Eurasia
takes place within a time appreciably shorter than population
doubling time — and this doubling time after CE 400 was
1000 years.

If the number of innovators mattered,m = 1 should hold,
while if interaction among themmattered, it would be larger.
The observed M = .70 means m = 1.43. The amount of
technology is difficult to quantify, except in special circum-
stances [9,12]. However, T cancels out from the population
equation, so we are not forced to measure it. Moreover,
transformations of type T′ = αTβ do not alter value of m.

3.2. The population-carrying capacity model

The P–T explanation for the quasi-hyperbolic nature of
population growth does not account for the present slow-
down, because it ignores carrying capacity. Alternative
models, based on carrying capacity but ignoring technology,
have addressed this slowdown. In particular, iteration of the
following interaction equations for population and carrying
capacity leads to a numerical illustration that fits population
estimates within ±25% for the period CE 1–1995, except for
1200–1300 [2]. It projects to an ultimate carrying capacity of
U = 17 billion. In our present notation,

dP=dt ¼ kP C−Pð Þ ð7Þ

dC=dt ¼ L=Pð ÞdP=dt ð8Þ

where k and L are constants. (In [2], these are designated as
Eqs. (4) and (6), the iteration of which leads to a numerical
illustration.) Proceeding beyond [2], we can collapse these
two equations into a single one, eliminating C:

dP=dt ¼ kP Lln P=Uð Þ þ U−P½ � ð9Þ

Indeed, it follows from Eqs. (7) and (8) that dC/dt = kL(C − P).
Dividing by Eq. (7) yields dC/dP = LP, which integrates into
C = LlnP + G, where G is integration constant. As dP/dt = 0
when population reaches the ultimate capacity U, this constant
must be G = U − LlnU. Hence C = Lln(P/U) + U. Eq. (7) then
becomes Eq. (9).

For t b 1900, P b bU, and Eq. (9) further simplifies to dP/
dt = kP[Lln(P/U) + U], which differs from Eq. (2) — and the
latter fits the pre-1900 population estimates better. Eq. (9)
also differs markedly from simple Eq. (4). In the numerical
illustration presented [2], carrying capacity exceeds population
by a factor of 5 to 6 during 1550–1800. This persistent gap is
puzzling, because human populations have been quite able to
grow at 2%/year and thus could increase their numbers 6-fold
within 90 years, to catch up with carrying capacity. In sum,
even the most prominent iteration approaches based on
differential equations present difficulties — and they have not
led to an explicit equation P(t).

Both models have their weak points. The weak link in the
P–T model [4] is Eq. (5), which connects dP/dt directly to
technological–organizational skills, without having carrying
capacity as an intermediary. The weak link in the P–C model
[2] is Eq. (8), which connects dC/dt directly to population
(and to dP/dt), without technology as an intermediary.
Now we proceed to combine the stronger parts of the two
approaches.

3.3. The P–C–T model

Accept Eq. (7) from [2], which is like simple logistic,
except that the maximum level C itself varies. Accept Eq. (6)
from [4] — more people means more innovators. Instead of
linking technology to population growth, as in the debatable
Eq. (5), it is linked to growth of carrying capacity, as follows.
Higher technological and organizational skills boost carrying
capacity, limited by ultimate carrying capacity:

dC=dt ¼ gTn U−Cð Þ ð10Þ

where g and n are constants. Together, Eqs. (2), (10) and (6)
form a causal loop P ← C ← T ← P…., where dP/dt depends
on C, dC/dt depends on T, and dT/dt depends on P. However,
this model cannot be solved directly, except by complex
iteration. Before making use of it, we have to reach an
approximate solution by other means.

4. Empirical taming of the quasi-hyperbolic equation

Given that the explicit Eq. (1) serves us well up to 1900, it is
advisable not to dump it but try to modify it, so as to avoid
infinite population growth. This task is mathematically quite
difficult — functions with vertical asymptotes resist capping.
This goal can be achieved only with a complex format,
designated here as “tamed quasi-hyperbolic function” or simply
T-function:

P ¼ A= ln Bþ Eð Þ½ �M ð11Þ

where

E ¼ exp D−tð Þ=τ½ � ð12Þ

and A, B,M, D and τ are constants. Ungainly and hard to visualize
as it is, this is nonetheless the simplest way to impose a cap
on runaway growth in Eq. (1). We will first verify that the
T-function satisfies the requirements, and then show that it can
be made to fit empirical data.

At t b bD, EN N B, and Eq. (11) reverts to Eq. (1), with
a = AτM. At tN N D, E → 0, and P approaches a ceiling at
U = A/[lnB]M, provided that B N 1. For B = 1, Pwould shift to
exponential growth. Decreasing exponential E = e(D−t)/τ is
the central link between P and t.



Table 2
World population from CE 2020 to 2100, in billion: mean estimates and
ranges, and as calculated from Eq. (15) and from its final exponential
approximation, Eq. (17).

Year Estimates of P PT from
Eq. (15)

Deviation (%) of
mean from Eq. (15)

P from
Eq. (17)

Mean Range

2020 7.70 7.56–7.67 7.616 +1.1 6.261
2030 8.24 8.20–8.31 8.301 −0.7 7.655
2040 8.77 8.75–8.80 8.852 −0.9 8.533
2050 9.23 9.15–9.35 9.268 −0.4 9.137
2100 — 10.080 10.077
+∞ 10.197 10.197

Mean estimates and ranges of world population — see Table 1.
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The differential form of Eq. (11) is

dP=dt ¼ MU lnBð ÞM
.
τ

h i
E
.

Bþ Eð Þ ln Bþ Eð Þ½ �Mþ1
n o

ð13Þ

Relative growth rate has a simpler form:

dP=dtð Þ=P ¼ M=τ½ �E= Bþ Eð Þln Bþ Eð Þ½ �: ð14Þ

At maximum dP/dt, we have E(M + 1) = Bln(B + E), and
at maximum relative rate, E = Bln(B + E). These forms are
hardly intuitive; they just reflect the simplest explicit equation
P(t) that puts a lid on quasi-hyperbolic growth, which is
relentlessly propelled by technological–organizational factors.
Is this model stable against population overshooting the limit
U? In the present form, this is not clear. This is clarified in
Section 6.

The crucial question is how well Eq. (11) can fit actual
population estimates. Table 1 shows the fit with constant values
A = 3.83 billion, B = 1.28, D = 1980, τ = 22.9 years and
M = 0.70, which are close to optimal. The resulting equation is

PT ¼ 3:83� 109
= ln 1:28þ Eð Þ½ �0:70whereE ¼ e 1980−tð Þ=22:9 ð15Þ

and subscript T indicates a fit with T-function. As t increases, PT
approaches U = 10.197 × 109. When t b bD, this equation
reverts to Eq. (3), with a = 34.3 billion (years).70. For
t b 1900, Eq. (15) falls short of the quasi-hyperbolic Eq. (3) by
less than 0.8%. For t N 1900, the shortfall grows rapidly. The
relative rate of growth is

dP=PTdt ¼ :03057E= 1:28þ Eð Þln 1:28þ Eð Þ½ �: ð16Þ

The range of E(t) is enormous. In CE 400, E = 9 × 1029; in
1980, E = 1; and in 2100, E = .005.

Mean estimates of world population during the last
1600 years agree with Eq. (15) within ±5% (Table 1), with
the following exceptions. A surge in 1200–1300 preceded
collapse by 1400 (Black Death). A surge in 1850 was followed
by slowdown in 1950, after the two world wars (Table 1).
When measured in terms of shift in years (rather than %
population), the actual population in 1850 was ahead of the
model by 16 years, while trailing it by 5 years in 1950.
During the last 40 years the agreement has been within ±3%
of the population or a time shift of ±2 years.

The constant τ reflects the reaction time of population
growth to closeness of U. If new births caused P to exceed U,
the excess would make itself felt the hard way when these
babies begin to require full amounts of resources, about
20 years after birth. Therefore, it is not surprising that the
empirical value of τ, 22.9 years, is close to the time for
reaching adulthood.

No curve with a single inflection point could fit the mean
population estimates markedly closer. In comparison, the
aforementioned numerical illustration [2] for iteration of
differential equations deviates from mean estimates by more
than ±20% for most of CE 400–1600. The main distinction,
however, is not in having a better fit to data but in having an
explicit function P(t).

Within the observed fluctuation range of ±6% since 1900,
Eq. (15) projects to a population ceiling atU = 10.2 ± .6 billion.
It implies a top growth rate of 85.0 million/year, reached in 2002,
at P = 6.15 billion — 60% of the ultimate limit. The top relative
rate of 1.645%/year was reached in 1977–78, at P = 4.20 billion
— 41% of U. (Higher relative rates actually observed around 1960
reflect catching up after the losses of WWII.)

Projections of Eq. (15) for the century ahead (Table 2)
slightly exceed the mean estimates based on current
demographic data, but only by up to 2%. At very large t,
Eq. (15) can be approximated by exponential approach to
ceiling, but this approximation fits well only after 2100, when
P N 0.99U (Table 2):

U−Pð Þ=U ¼ M= BlnBð Þ½ �e D−tð Þ=τ ¼ 2:215e 1980−tð Þ=22:9
: ð17Þ

Attempting to project an upper limit from early growth
data can lead to major errors. Even while world population
growth curve seems to show a definite inflection point
around 2000, this caution still applies. Estimates based on
current demographic data hesitate going beyond 2050.
Estimates of Earth's ultimate carrying capacity have fluctuat-
ed wildly, with medians of lowest and highest estimates at
7.7 and 12 billion, respectively [2]. The projection to a ceiling
of 10.2 billion depends on the continuing effect of broad
factors that have prevailed during the last 1600 years. A look
into more distant past offers a cautionary note. Prior to CE
400, Eq. (15) falls short of world population estimates from
CE 200 back to 200 BCE, while increasingly exceeding them in
the more remote past (Table 3). It looks as if some basic
factor, which later remained stable from CE 400 to at least
2010, had shifted around CE 200.

This is puzzling. While the period from CE 1 to 400 saw
the gradual demise of Han empire in the east, Rome in the
west, and Andhra and Kushan in the south of Eurasia, this
period of contraction in organized civilization does not stand
out by various pertinent measures used in world systems
literature [16]. Yet the world population in CE 1 to 400 does
show something more than just an inflection point in a rising
curve: It shows 400 years of standstill, with mean estimates
214 million in CE 1 and 198 million in 400 (Tables 1 and 3).
This suggests that population growth prior to stabilization
around CE 1 might be fitted separately with Eq. (11), with D
around CE 100. The projections beyond 2015, based on
Eq. (15), apply only to the extent there is no major shift in
basic underlying factors, comparable to what seems to
have taken place around CE 1 to 200. Fitting the pre-400
population estimates and pondering the potential implica-
tions for distant future requires a separate study.



Table 3
World population from 10,000 BCE to CE 200, in million: geometric mean
estimates and ranges, and as calculated from Eq. (15).

Year Estimates of P PT from
Eq. (15)

Deviation by factor

Mean Range

−10,000 3.6 1–10 47 13×
−8000 6.3 5–8 54 9×
−5000 7 5–10 70 10×
−3000 14 — 88 6×
−2000 27 — 104 4×
−1000 50 — 127 2.5×
−500 100 — 144 1.4×
−200 186 150–230 158 0.8×
1 214 150–300 169 0.8×
+200 220 190–256 181 0.8×

Mean estimates and ranges of world population — see Table 1.
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5. Broader implications

How stable are the constants in Eq. (15), and what do they
mean? A comparable degree of fit can be obtained with
slightly different combinations of constants, depending on
which period one wishes to fit with the least error. In
particular, the following set reduces deviation in the 1900s to
±5%, but increases it to 12% in 1850: A = 3.80 billion, B =
1.27, D = 1980, τ = 21.8 years and M = 0.69, leading again
to U = 10.2 billion. It seems hard to shift D even by a single
year or use a combination of constants leading to U lower
than 10.0 billion or higher than 10.4 billion.

While it is convenient to deal in terms of constant A, it is a
derivative constant. Two basic constants characterize the
initial unlimited quasi-hyperbolic growth:

• M, steepness of quasi-hyperbolic growth;
• D, date of asymptote.

Two further basic constants characterize the slowdown to
ultimate limit:

• U, ultimate population carrying capacity of Earth;
• τ, time of reaction to closeness of U.

A fifth basic constant, B, bridges the two sets and
determines how early on the brakes are applied to the quasi-
hyperbolic growth. Constants A and a are convenient, but they
have no direct substantive meaning. Constant a in Eq. (1)
results from combining almost all substantive constants: a =
U(τlnB)M, omitting only D, while the constant A in Eq. (11) is
A = U(lnB)M. In terms of the basic constants, Eq. (11) could be
rewritten in a possibly more elegant form as

P ¼ U lnB=ln Bþ Eð Þ½ �M ;whereE ¼ exp D−tð Þ=τ½ �: ð18Þ

This format shows clearly that B N 1 is needed so as to
keep P real.

As approaches to a ceiling go, the present one displays a
remarkably sudden slowdown in growth. Space limitation
usually makes itself felt long before the ceiling is reached,
slowing down further growth. In simple logistic growth, it
takes as much time to go from 10 to 25% of the maximum as
from 75 to 90%. For Eq. (15), in contrast, the former time span
is 120 years (1822 to 1942), while the latter is compressed to
26 years (2019 to 2045). An expansion that gradually picked
up speed over 1500 years comes to a screeching halt. This is
so because still-growing technological–organizational capa-
bility keeps counteracting space limitation, pushing carrying
capacity up until its ultimate ceiling is almost reached. The
growth patterns of carrying capacity and technological–
organizational skills themselves are addressed in Section 6.

As technology keeps increasing, it can eventually put
pressure on the ultimate carrying capacity. Having enough
knowledge and resources, the people can conceivably populate
the sea floor and Antarctic, build floating islands, settle other
planets, etc. This could lead to a renewed spurt of population
growth, beyond 10 billion. In the short run, however, increas-
ing technology may have to race against dwindling conven-
tional resources so as to keep Earth's carrying capacity from
dropping.

Quasi-hyperbolic relationships have been noted for various
other phenomena related to population and technology, prior
to 1970s.Most data fits have been restricted to integer values of
M — 1 or 2. The estimated world GDP in 1990 international
dollars, from CE 1 to 1973, has been fitted as g = 17.3 × 1018/
(2005.6-t)2,withM = 2 imposed [17]. Later figures fall short of
this projection. World literacy percentage up to 1980 has been
observed to follow l = 3669/(2040 − t)2, again with M = 2
[18]— until it is capped by the obvious limit of 100%. The same
limit applies to percentage of people living in cities above
a quarter million, fitted as u = 403/(1990 − t); note that
here M = 1 was chosen [18]. The size of the largest single
settlement was again fitted with M = 2: s = 0.104 × 109/
(2040 − t)2 [18]. Here the limit is world population.

The following questions arise in all these cases. At the
quasi-hyperbolic stage, what are the values of exponentM and
asymptote date D, once one accepts non-integer values of M
and omits the post-1900 data, which may already be affected
by slowdown? Within the error range of the data, could the
single value D = 1980 apply to all these phenomena?
Including the recent slowdown stage, would the tamed quasi-
hyperbolic function, Eq. (11), fit the data, and with which
constant values? For percentages literate and “megaurban”, the
fitting is simplified because themaximum is known, and for the
largest settlement, the ceiling on world population imposes a
ceiling. At its broadest, the T-function may be of use for all
phenomena that start out quasi-hyperbolically but then are
bound to level off.

6. Inserting the tamed quasi-hyperbolic function into the
theoretical model

Eqs. (7), (10) and (6) express a causal loop P ← C ←
T ← P…., where dP/dt depends on C, dC/dt depends on T, and
dT/dt depends on P. This theoretical model is easier to handle
when expressed in terms of relative growth rates:

dP=Pdt ¼ k C−Pð Þ ð19Þ

dC=Cdt ¼ gTn U=C−1ð Þ ð20Þ

dT=Tdt ¼ hPm ð21Þ

Note first that this system is stable at population limit U. If
a random fluctuation makes P exceed U, then dP/Pdt in
Eq. (19) becomes negative, bringing P back toward U.
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We will focus on Eq. (19), which looks like simple logistic
equation, except that Earth's carrying capacity C keeps
growing. Given that the tamed quasi-hyperbolic function PT in
Eq. (15) fits the population data, this PT must be close to the
solution of the model above, if this model applies. Hence also
dP/Pdt must fit Eq. (16). Both PT and dP/PTdt are shown in
Table 4, along with the intervening variable E, which decreases
over time from close to 1030 in CE 400 down to 1 in 1980 and to
.005 by 2100.

We could insert the values of PT and dP/PTdt from empirical
Eqs. (15) and (16) into Eq. (19) and use it to calculate the
corresponding C, provided that we knew the value of constant
k. Surprisingly, k can be uniquely determined as follows. At
tN N D, replace dP/Pdt = k(C − P) with dP/Pdt = k(U − P).
Then k = (dP/Pdt)/(U − P), where P and dP/Pdt are supplied
by Eqs. (15) and (16). As t → ∞, we find that k → .00428/109.

(Maybe not by chance, kUτ = 1.00. This means that,
when t is measured in units of 22.9 years and P in fractions of
U, Eq. (19) simplifies into dP/Pdt = (C − P), without any
constant. The same can be donewith simple logistic equation,
when using k resulting from the logistic fit itself. Here,
however, the value of k is imposed from the outside.)

Now carrying capacity can be calculated on the basis of
population:

CP ¼ PT þ dP=PTdtð Þ= :00428� 10−9
� �

; ð22Þ

with PT and dP/PTdt supplied by Eqs. (15) and (16). It turns
out that the resulting values of C, from CE 400 to 2100, can be
fitted with the T-function, within 2% (Table 4):

CT ¼ 10:11� 109
= ln 2:69þ Eð Þ½ �:83; ð23Þ

where E has the value given in Eq. (16) – the same as for
population. The population and carrying capacity calculated
from the T-function, PT and CT, are not exact solutions of dP/
Table 4
Carrying capacity (C) calculated from dP/Pdt = k(C − P), for given population (P),

Year PT in 109 E dP/PTdt

400 .1978 9.213 × 1029 .000443
1000 .2763 3.851 × 1018 .000714
1200 .3242 6.202 × 1014 .000897
1400 .3989 9.991 × 1010 .001207
1600 .5361 1.6093 × 107 .001842
1800 .9045 2592 .00389
1850 1.1355 292.0 .00538
1900 1.5835 32.90 .00833
1920 1.906 13.737 .01032
1940 2.401 5.736 .01283
1960 3.185 2.395 .01531
1980 4.385 1 .01627
2000 5.980 .4175 .01421
2020 7.616 .17443 .00987
2040 8.852 .07280 .00544
2050 9.268 .04704 .00383
2100 10.080 .00530 .000502
+∞ 10.19725 0 0

Population from tamed quasi-hyperbolic fit PT = 3.83 × 109/[ln(1.28 + E)]0.70

ln(1.28 + E)]. C calculated from P: CP = PT + [dP/PTdt]/k where k = .00428
[ln(2.69 + E)].83. In bold: peak values of dP/PTdt and CP/P. Peak C-P = 3.80 billion,
Pdt = k(C − P). Yet, with PT given, a corresponding function
CT can be found so as to satisfy this equation within 2%, while
population grows from 0.2 billion to 10 billion. It is hard to
envisage how this is possible, but it is.

Themodel suggests that, in CE 400, Earth's carrying capacity
was about 1.5 times the actual population (Table 4). Thereafter,
the C/P ratio increased, as technological–organizational skills
boosted carrying capacity faster than population could catch
up. The peak ratio, 2.26, was reached around 1920. Thereafter,
C/P has been gradually decreasing toward 1, as carrying
capacity approaches its ultimate limit and population is
catching up.

In sum,what has been achieved? Ifwe assume that themodel
dP/Pdt = k(C − P) applies, along with P = A/[ln(B + E)]M and
C = A’/[ln(B’ + E)]M’, where E = exp[(D − t)/τ], then we find
that all 9 constants in these equations can be calculated in a
uniqueway, on the basis ofmeanestimates forworld population,
CE 400 to 2000. Deviations from internal consistency do not
exceed 2%, suggesting that the model has some merit.

Using a similar approach, Eqs. (20) and (21) enable us to
estimate the pattern of T from known P and C. This is more
involved and remains to be done. To close the causal loop, the
format of T derived from Eq. (20) must satisfy Eq. (21).
Preliminary results suggest that this is easy for t b 1900, but
disagreements arise for t N 1950. Fine-tuning of constant
values may or may not lead to agreement.

7. Conclusions

Does the world human population growth follow a millen-
nial pattern determined by deep-set demographic and techno-
logical–organizational givens, or has it been a random path,
with no guidance for future? An attempt at a logical model
needs to include at least three factors: exponential growth
propensity of any biological species under steady favorable
conditions, limits imposed by Earth's carrying capacity, and –

specific to humans – impact of technological–organizational
change on the two other factors.
and fitted to the tamed quasi-hyperbolic function.

CP in 109 CP/P CT in 109 Error (%)

.3013 1.52 .3010 −0.1

.4431 1.60 .4474 +1.0

.5351 1.65 .5407 +1.1

.6809 1.71 .6915 +1.6

.9665 1.80 .9822 +1.6
1.8064 2.00 1.826 +1.1
2.391 2.11 2.389 −0.1
3.530 2.23 3.514 − .04
4.317 2.26 4.303 −0.4
5.399 2.25 5.395 −0.1
6.762 2.12 6.752 −0.1
8.186 1.87 8.103 +1.4
9.300 1.56 9.109 +2.1
9.903 1.30 9.691 +1.0

10.124 1.14 9.976 +1.5
10.155 1.10 10.053 +1.0
10.197 1.01 10.182 −0.1
10.19725 1 10.199 0

where E = exp[(1980 − t)/22.9]; hence dP/PTdt = .03057E/[(1.28 + E)
/109 person-year. Tamed quasi-hyperbolic fit to CP: CT = 10.11 × 109/
around 1980.
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The earliest modeling attempts were disappointing. A
simple logistic fit by Pearl and Reed [19] in 1924 confidently
projected to a leveling-off at 2 billion, a number surpassed
almost immediately. But theirs was a purely biological model,
ignoring the technological–organizational impact. They also
swept under the carpet the huge discrepancy for pre-1800
estimates, which would have shown up in a logarithmic graph.

A quasi-hyperbolic pattern yielded a remarkably good fit
for the last 2 millennia. Moreover, it could be derived from
population–technology interaction. However, it did not
include carrying capacity and was leading to a manifestly
impossible future projection: infinitely large population at a
finite time. Capping such a growth, the way simple logistic
model caps exponential growth, proved mathematically
elusive. Attempts to do so resulted in differential equations
that could not be integrated except by iteration.

7.1. The first major result of this study is an explicit equation
P(t) to express empirically world population growth since CE
400

This tamed quasi-hyperbolic function fits the mean world
population estimates about as well as any curve with a single
inflection point could. Short of major shifts in interaction
between population, technological–organizational skills, and
Earth's carrying capacity, the millennial trend projects
toward a stable population of 10 billion by 2100.

A maximum around 10 billion is of course also the
standard UN prediction, which is based on present age
structure and fertility trends. So what does the tamed
quasi-hyperbolic equation add to what we already think we
know? The point is that the equation produces the same
ceiling as the UN prediction, from utterly different type of
data — total world populations going back almost two
millennia. Recent population data beyond 2000 could be
omitted from fitting the equation, and the result would still
be the same. Such agreement between completely different
micro and macro approaches lends credibility to both.

The equation presented enhances the prospect that world
population is subject to deep-set factors. At the very least, it
offers a close fit to the complex actual pattern, from initial
slow growth to steep acceleration up to the 20th century and
the present sharp deceleration.

Why start at CE 400? The data impose it. The T-function
with the given constant values does not apply before this date,
at which another tamed quasi-hyperbolic cycle may have
reached its ceiling. This possibility remains to be investigated
separately. The same applies to distant future, where continu-
ing technological–organizational change may start a new cycle
of population growth, less restricted by dry land area on Earth.

7.2. The second major result of this study is fusing two previous
theoretical models, one based on technology alone, and the
other on carrying capacity alone

If this model were limited to offering unsolvable differ-
ential equations for a causal loop P ← C ← T ← P…., it
would remain an intellectual exercise. But we further show
that the tamed quasi-hyperbolic equation developed for
population supplies a fairly good approximate solution for
the theoretical model. Surprisingly, it also leads to a
complementary explicit equation for Earth's carrying capac-
ity — and possibly for the technological–organizational
factor. This concordance between the empirical equation for
population and the theoretical interaction model lends
credibility to both.

While the T-function does impose a ceiling, it does not cast
any light on the specific process that slows down population
growth when the ultimate limit is being approached. The
specific factors for present slowdown include the loop
technology → higher living standard → reduced birth rate,
largely through artificial contraception. These are recent aspects
of technology, playing little role prior to 1900. Addressing the
difficult mathematical task of capping the asymptote-bound
growth, the present approach involves no such substantive
features expressly. This is a macro approach. Hence it is
remarkable that the T-function devised can be fitted to the
actual path of slowdown, up to now — and into foreseeable
future.

Projections are not predictions. Temporary spurts in popu-
lation growth, like those in 1200 and 1850, cannot be excluded,
nor can population reduction scenarios. Black Death followed
the unusual speedup in growth around 1200, and one may
wonder whether sudden increase in population density was a
factor. Modern technology speeds up the spread of infections,
and conflicts over increasingly scarce resources may become
unpredictable. An increasing rate of technological change will
require evermore people to retrain evermore frequently during
their lifetimes, and a psychological limit may set in.

When viewed against this background, the fit with tamed
quasi-hyperbolic function represents conservative middle
grounds, based on fitting long-term historical data to
interaction of basic factors in limited space. It offers a useful
check on extrapolations based on current demographic data.
Approximate agreement with a theoretical interaction model
adds to the value of both.

Two reservations should be spelled out. First, attempting
to project an upper limit from early growth data can lead to
major errors. Even while world population growth curve
seems to show a definite inflection point around 2000, this
caution still applies.

Second, the population–technology-carrying capacity in-
teraction model presented here is extremely general, lacking
direct and specific causal factors. Onemay argue that the long
sweep of history has washed out specific but ephemeral
causal factors that enter over the course of centuries. Still, it's
an act of faith to presume that the combined outcome of
specific causal factors would amount to a smooth impact of
generalized “technology” and “carrying capacity”. The alter-
native view is that the population growth pattern is random,
so that distant past offers no guidance for future. Given
the remarkable smoothness of the growth curve, over
1600 years, this view also involves an act of faith. The
present study has investigated a possible interaction mech-
anism, if any long-term pattern should exist.

Even if such a pattern has existed in the past, it need not
continue to hold. A major shift in ultimate carrying capacity can
take place, as seems to have happened around CE 400.
Wide-scale colonization of space beyond Earth certainly would
boost ultimate carrying capacity. On the other hand, individual
civilizations have collapsed before, and having now a single
world-wide civilizationmakes humankind singularly vulnerable.
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