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Productivity of North American grasslands is
increased under future climate scenarios despite
rising aridity
Koen Hufkens1*, Trevor F. Keenan2, Lawrence B. Flanagan3, Russell L. Scott4, Carl J. Bernacchi5,6,
Eva Joo5, Nathaniel A. Brunsell7, Joseph Verfaillie8 and Andrew D. Richardson1*
Grassland productivity is regulated by both temperature and
theamountand timingofprecipitation1,2. Futureclimatechange
is therefore expected to influence grassland phenology and
growth, with consequences for ecosystems and economies.
However, the interacting e�ects of major shifts in temperature
and precipitation on grasslands remain poorly understood and
existing modelling approaches, although typically complex,
do not extrapolate or generalize well and tend to disagree
under future scenarios3,4. Here we explore the potential
responses of North American grasslands to climate change
using a new, data-informed vegetation–hydrological model,
a network of high-frequency ground observations across a
wide range of grassland ecosystems and CMIP5 climate
projections. Our results suggest widespread and consistent
increases in vegetation fractional cover for the current range
of grassland ecosystems throughout most of North America,
despite the increase in aridity projected across most of our
study area. Our analysis indicates a likely future shift of
vegetation growth towards both earlier spring emergence and
delayed autumn senescence, which would compensate for
drought-induced reductions in summer fractional cover and
productivity. However, because our model does not include
the e�ects of rising atmospheric CO2 on photosynthesis and
water use e�ciency5,6, climate change impacts on grassland
productivity may be even larger than our results suggest.
Increases in the productivity of North American grasslands
over this coming century have implications for agriculture,
carbon cycling and vegetation feedbacks to the atmosphere.

The grassland biome is the largest in the world, covering up to
59 million km2 (over 30% of the global land surface)1. Grasslands
constitute a key component of the terrestrial biosphere and are
fundamental to the meat and dairy industries1, but projections of
grassland growth and productivity from model intercomparison
studies diverge greatly under climate change3,4.

Grassland growth and productivity are highly dynamic on
fast (days-to-weeks) timescales, leading to substantial variability
between years7–9. Grassland growth is largely controlled by soil water
content and the magnitude, frequency and timing of precipitation
events10–12. The response of grasslands to changes in precipitation

varies between ecosystems13,14, as available soil water is also driven
by interactions between soil water potential, atmospheric demand
and the physiology of individual plant species. This argues for
the use of mechanistic grassland ecosystem models14,15, which
should be developed and tested using high-frequency observations,
rather than more aggregated measures (for example, annual
productivity), so that fast growth dynamics can be adequately
characterized. High-frequency eddy-covariance measurements of
ecosystem–atmosphere CO2 exchange have been previously used
to test grassland models14–16. Although such measurements contain
information on photosynthesis and respiration17, they cannot be
used directly to constrain important ecosystem state variables such
as biomass or fractional cover (fCover, the proportion of ground area
covered by green foliage).

Here we develop a coupled vegetation–hydrological model18
to predict daily changes in grassland fCover, based on growth
and senescence relationships that depend on both the prevailing
meteorology and modelled soil hydrology. We constrain the model
parameterization with daily measures of vegetation greenness
(in terms of Gcc, the green chromatic coordinate), derived
from 34 site-years of PhenoCam network imagery19 (Fig. 1).
We independently validate model predictions using 28 years of
abovegroundnet primary productivity (ANPP) data from theKonza
Prairie Biological Station and satellite-derived fCover.

We use the model to predict the response of grassland
productivity to changes in temperature and precipitation as
projected by 10 downscaled Coupled Model Intercomparison
Project Phase 5 (CMIP5) climate projections for a business-as-usual
scenario (Representative Concentration Pathway (RCP) 8.5). The
results indicate widespread increases in grassland fCover over the
coming century across the majority of North American grasslands
despite increased aridity (Fig. 2b)20, with shifts in the growth of
grasslands in spring and autumnbroadly compensating for drought-
induced declines in summer.

Simultaneous optimization of the model to PhenoCam data
from 14 North American grassland sites (Supplementary Fig. 1)
showed that a single set of parameters adequately captured the
timing, magnitude and rate of grassland growth and senescence
(that is, changes in fCover) across a wide range of climate zones
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Figure 1 | Observed and predicted fCover time series for six sites in various
climate regimes and with di�erent growth dynamics. Six time series of
PhenoCam observed and model predicted grassland fCover using the global
optimal parameter set as black dots and a full red line respectively.
Precipitation is shown as blue vertical bars. Inset graphs show scatterplots
and the Pearson correlation coe�cient of observed and predicted fCover.
Site names as mentioned on top of each panel correspond to those in
Supplementary Table 1. See Supplementary Fig. 3 for all sites. Time series
are ordered from humid to arid climate conditions. a,b, Two examples of a
humid subtropical climate (Koppen–Geigen classification Cfa) from
Marena (a) and Freemangrass (b). c, A humid warm summer continental
climate (Dfa). d, A Mediterranean climate (Csb). e, A humid mild summer
continental climate (Dfb). f, A semi-arid or steppe climate (Bsk). IBP, a site
of the US GrasslandBiome project of the International Biological Program.

(Fig. 1 and Supplementary Table 1). For example, the model
captured the rapid response of grasslands dominated by C4 species
to precipitation pulses in both humid subtropical (Fig. 1a,b),
humid warm continental (Fig. 1c) and Mediterranean (Fig. 1d)
climates, and also reproduced the multiple growth cycles occurring
within a single year at those sites. Similarly, the model effectively
captured both the timing and magnitude of fCover dynamics at
grasslands with humid mild summer continental climates (Fig. 1e),
where C3 species predominate and there is typically just a single
annual growth cycle. Across all sites the model explained 75%
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Figure 2 | Predicted changes in grassland fCover and aridity at the end of
the century. a,b, Contrasting the change in percentage mean total annual
grassland fCover between the end (2090–2100) and the start
(2010–2020) of the twenty-first century (a), with changes in the median
di�erence (1) in annual aridity between the start (2010–2020) and the
end (2090–2100) of the twenty-first century (b) for the ensemble mean
across the ten climate scenarios used in this study. Areas with a significant
trend (p<0.05) in grassland fCover over the next century for at least half of
the model scenarios are indicated by diagonal hatching. Aridity is
expressed as the ratio of mean annual precipitation and mean annual
potential evapotranspiration. Increases in the aridity index signify increased
aridity. PhenoCam locations (black filled circle) where ecosystem flux data
were available are marked with single black asterisks (∗). Locations where
further structural parameters (biomass) were available are marked by two
black asterisks (∗∗).

of the observed temporal variability in daily fCover (p< 0.001,
RMSE= 0.17), and we obtained essentially comparable results
(71± 19%, mean± 1 s.d., across sites) in a leave-one-out cross-
validation exercise. When independently validated with satellite-
based estimates, the model explained, on average, 61% of the
temporal variability in fCover (p<0.001, RMSE= 0.16).

We projected future trends in fCover to the year 2100, using
an ensemble of climate scenarios. Despite uncertainties in the
precipitation projections of different climate models, the ensemble
trend in fCover was positive over most of the study area, with the
majority of climate model projections in agreement in terms of
both the sign and magnitude of the response. Our results indicate
significant increases (one-sample t-test, H0: µ= 0, p< 0.001) in
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Figure 3 | Spatial and temporal patterns for four scenarios of changes of grassland fCover by the end of the twenty-first century. Spatial and temporal
profiles in changes in grassland fCover between the end (2090–2100) and the start (2010–2020) of the century for the ensemble mean of the ten CMIP5
climate projections as used in this study. a, The regional groupings of the spatial distribution of pixels described by four possible regional grouping
scenarios (R1–R4), accounting for 90% of the study area. Areas that do not match any of the four prescribed regional groupings are marked with grey.
b–e, Mean daily changes in grassland fCover across the four regional groupings (R1–R4) between the end and start of the century for all pixels across a
regional grouping. Meteorological seasons are marked with vertical dashed grey lines. Plus and minus signs indicate the direction of the integrated change
in fCover across the season as used in the regional grouping.

the integrated annual grassland fCover of 18± 14/9% across the
grassland ecosystems in North America (we report the ensemble
mean± 1 s.d./1 s.d., where the first is the standard deviation of the
spatial mean across the 10 climate scenarios, and the second is the
standard deviation of the ensemble mean of the climate scenarios
across all modelled grid cells).

The overall trend in fCover varied among regions (Fig. 2a
and Supplementary Fig. 12). Regional patterns were typically,
but not always, driven by trends in precipitation (Supplementary
Fig. 9). However, the combined effect of temperature-driven
evaporation and changes in precipitation frequency (Supplementary
Table 3) and intensity (Supplementary Figs 9–11) is an increase
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Figure 4 | Modelled annual fCover and ANPP of tallgrass prairie. ANNP values are based on accumulated herbaceous plant biomass on Florence soils at
the Konza Prairie Biological Station. a, The relation between modelled annual fCover and mean measured ANPP. We report a fitted ordinary least squares
regression shown as a grey dashed line (R2

=0.54, p<0.001). b, The barplot shows the mean measured ANPP (error bars depict+ 1 s.d., between plots) in
relation to the modelled (green dots) annual fCover values at the Konza Prairie Biological Station.

in aridity20 (Fig. 2b). Yet, significant increases in total annual
fCover were most evident in semi-arid northern grasslands, which
accounted for 55% (∼1.4 million km2) of the study area. In
these regions, the climate model ensemble projected increases of
4.8± 0.9/0.3 ◦C in mean annual temperature, and 44± 78/34mm
in mean annual precipitation.

Importantly, changes in annual fCover were also accompanied by
distinct changes in grassland seasonality.We identified four discrete
regional groupings (Fig. 3): R1 includes only areas that exhibit
summer reductions in fCover; R2 includes areas with consistent
increases in growth throughout the whole growing season; and R3
and R4 include regions with reduced spring and summer growth,
but increased winter and fall growth.

Seasonal changes were most evident across regions R1 and R2,
which showed shifts in both the timing and magnitude of grassland
growth during the shoulder seasons (Fig. 3). For example, for
R1 grasslands in the northern part of the study area, a warmer
and wetter winter and spring led to earlier peak productivity
(Supplementary Table 2). For higher-altitude northern grasslands
(R2) the increase in modelled fCover during early summer more
than compensated for a negligible mid-summer decline in fCover.
On average, the start of grassland growth in spring moved forward
by 21± 7/4 days and 25± 8/3 days for R1 and R2 respectively,
where the end of the growing season was postponed 8±13/5 and
13±18/5 days. Thus for R1 and R2, ourmodel indicates an increase
in growing season length of up to∼5 weeks by 2100.

In contrast, for grasslands in the southern part of the study area
(R3 and R4), our model indicates decreases in fCover throughout
spring and summer, with only slight increases in late summer,
autumn and winter (Fig. 3, R3–R4). This decrease in fCover is
associated with projected decreases of up to 25± 38/9mm in spring
precipitation (Supplementary Table 3). Summer precipitation
increases are counteracted by the concomitant increase in
temperature and evaporation, resulting in further decreases in
fCover. As such, increases in fCover in southern regions in winter
and autumn were offset by decreases in fCover during spring and
summer. Overall, there is no statistically significant change in total
annual fCover projected for regions R3 and R4.

Grassland phenology, seasonal variation in fCover and annual
productivity are all strongly interconnected7,21. For example,
28 years of biomass clippings at the Konza Prairie Biological
Station show a significant linear relationship with modelled
fCover (R=0.74, p < 0.001, Fig. 4). Our model captures the
impacts of both short-term droughts and long-term decadal
trends, incrementally better than previous studies22,23. Moreover,

in subalpine shortgrass ecosystems as well as tallgrass prairie,
PhenoCam-derived metrics of vegetation greenness were highly
correlated with gross primary productivity (GPP) as estimated
from eddy-covariance measurements24,25. Yet distinct relations were
found between shortgrass and tallgrass sites, showing higher
yields for the latter (R2

= 0.86, p< 0.001, R2
=0.83 and p< 0.001

respectively, Supplementary Fig. 4). At the Lethbridge site, using
a conservative shortgrass regression-based estimate, we calculated
a mean increase in annual GPP of 76±77 gCm−2 (mean± 1 s.d.,
across all climate models) by 2100. This represented a 15% increase
in annual GPP over current estimates (502± 240 gCm−2; 12 year
mean± 1 s.d., 1999 to 2013; ref. 26). The projected average growing
season increase of 4± 2 weeks (mean± 1 s.d., across all climate
models) at the Lethbridge site suggests an increase in annual GPP
of between 56± 29 gCm−2 and 140± 72 gCm−2. Our regression-
based estimate falls at the lower end of this range, because it accounts
for the influence of changes in both growing season length as well as
summer droughts on GPP.

Applying the conservative shortgrass regression-based estimate
across the current range of grassland ecosystems in North America,
the ensemble trend in GPP was positive over 89% of the study area
(Supplementary Figs 1 and 7). And, both the sign and magnitude
of the GPP response to future climate change was consistent across
most climate models. Thus, our model results indicate increases
in the total annual grassland GPP (annual productivity estimated
as fCover scaled to GPP) of 52± 55/38 gCm−2 or 0.11± 0.08 Pg
(76 ± 57/28 gCm−2 or 0.08± 0.06 Pg C, for the areas with a
significant change).

Experimental evidence suggests that future elevated CO2,
which is not included in our model, should also increase grassland
productivity (in the absence of nutrient limitations27) and
growing season length through species complementarity5 and
increased water use efficiency6, limiting water losses through
transpiration and thereby increasing available soil water. In
an earlier manipulative experiment conducted in a temperate
grassland, growing season extension was most pronounced
when warming was combined with elevated CO2, because water
conservation allowed plants to remain active longer6. However,
the effect of CO2 is likely to depend on ecosystem composition28

and temporal changes in the principal drivers12,29 (Supplementary
Table 3). A mechanistic and generalized understanding of these
complex effects of CO2 on grassland fCover is still lacking.
Our model projections do not account for the effects of CO2
on productivity through increases in photosynthesis and water
use efficiency6. Our results therefore probably represent an
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underestimate of the potential growth response of grasslands to
future climate change28.

Our modelling analysis suggests widespread changes in both the
timing and magnitude of North American grassland growth and
productivity in response to future climate change (Supplementary
Figs 8–11). Overall, our projections indicate significant gains
(18± 14/9%) in grassland fCover by 2100 across more than
half of the region that is dominated by grasslands at present.
Furthermore, we find substantial increases in growing season length
(by ∼5 weeks) across much of this biome. Together, these results
have large implications for agricultural productivity, biophysical
feedbacks to the climate system and terrestrial carbon cycling26,30.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
PhenoCam data. The PhenoCam network uses digital camera imagery to monitor
ecosystem dynamics at a fine spatial and temporal resolution. These near-surface
remote sensing images are processed using a simple image analysis techniques to
extract quantitative colour information of vegetation greenness (Gcc; ref. 31) for an
appropriate region of interest (ROI), providing daily information on the amount of
foliage present and its colour32. We selected 14 PhenoCam grassland sites (Fig. 1,
Supplementary Fig. 2 and Supplementary Table 1), with 34 site-years of data,
spread across North America. PhenoCam imagery for all sites was processed into
normalized (0–1) Gcc time series. These Gcc time series, capturing the relative
amplitude in vegetation growth, were scaled to an fCover range. We use an
asymptotic transfer function, based on the nonlinear relationship between fCover
and MAP (ref. 33), to calculate a scaling factor (Sc) using:

Sc=MAP/(MAP+h) (1)

where MAP is mean annual precipitation, and h is the steepness of the asymptotic
curve estimated during optimization taking into account all available site-years.

Model description. The ‘PhenoGrass’ model is a coupled soil moisture and
vegetation model. The model captures plant–soil moisture dynamics using
nonlinear relationships between available soil water and vegetation. The model is
based on a previously published formulation18 but uses a daily time step and a
temperature response function (equation (10)) to account for rapid changes in
(temperature-dependent) growth conditions, expanding the model outside its
original extent.

In the PhenoGrass model we estimate both soil water content (Wt , equation (2))
and grassland fCover (Vt , equation (3)) at a daily time step (t). Nonlinear changes
in grassland fCover are controlled by a vegetation growth parameter (b1), a
temperature response factor (g ), a light response function depending on
top-of-atmosphere (TOA) radiation (St , equation (8)) and lagged plant available
water (Dt−L). Similarly, a nonlinear response describes losses in fCover that are
mediated by a senescence factor (b2) when plant available water or available light is
decreasing (equation (7), d=1). The status ofWt depends on inputs from
precipitation (Pt ) and losses through evaporation (Et ), transpiration and runoff.

We model evaporation losses as the bare soil fraction, dependent on the relative
soil water content (Dt/(Wcap−Wp))

2 or the squared ratio of the current plant
available water (Dt ), the difference between the current soil water status and (Wt )
and the wilting point, and maximum (Wcap−Wp) soil water content, withWcap and
Wp the field capacity and wilting point, respectively. Plant transpiration is a water-
and temperature-limited process, dependent on Dt , the soil water extraction rate
(b3) and a temperature response34 (g , equation (10)) limiting transpiration in
unfavourable conditions. All precipitation accumulation exceeding field capacity
runs off (equation (5)). Values for the soil field capacity and wilting point were
extracted from the global homogenized soil profile data set35. Evapotranspiration
(Et ) is calculated according to the Hargreaves equation36.

Where the PhenoGrass model can be summarized as:

Wt+1=Wt+Pt−(1−Vt )(Dt/(Wcap−Wp))
2Et−gb3DtVt (2)

Vt+1=Vt+gStb1Dt−L(1−Vt/Vmax)−db2(1−Vt )∗Vt (3)

With
Dt=max(0,Wt−Wp) (4)

Wt=max(0,min(Wcap,Wt )) (5)

Vt=max(0,min(Vmax,Vt )) (6){
Dt−L>Dt−L−1; d=0
Dt−L≤Dt−L−1; d=1

(7)

St=(TOAr−Phmin)/(Phmax−Phmin) (8){
St−1>St ; d=1
St−1≤St ; d=0

(9)

The temperature response function accounts for rapid changes in
(temperature-dependent) growth conditions and is defined as:

g=
(

Tmax−Tm

Tmax−Topt

)(
Tm

Topt

)( Topt
Tmax−Topt

)
(10)

with Tmax set at 45 ◦C, Tm is the running mean air temperature for the previous 15
days and Topt is the optimal temperature, obtained in the process of optimizing g as

part of the global model parameter set. TOA radiation (TOAr) is calculated
according to ref. 37 and scaled between 0–1 using parameters Phmin and Phmax
(equation (8)), where 0 inhibits growth and 1 allows for full growth. Declining
radiation trends enforce senescence even under favourable soil water conditions
(equation (9)).

Model optimization. Time series of vegetation greenness were assimilated to
constrain model parameterization. All model parameters and the vegetation
greenness scaling parameter (h) were estimated during optimization. We optimized
global model parameters (that is, for all sites simultaneously with Daymet38 climate
drivers) using a Markov Chain Monte Carlo approach39, repeating the optimization
process with random initial input values and minimizing a cost function (F)
defined as the mean coefficient of variation of the mean absolute error16 using all
Gcc time series (equation (11)). Preceding years were used as a spin-up period to
equilibrate the soil water pool. A leave-one-out cross-validation was executed,
keeping parameter ‘h’ constant. We report cross-validated parameter estimates and
their uncertainties as well as the mean and standard deviation of the R2 and RMSE
across all sites (Supplementary Table 5).

F=
1
N

N∑
j=1

CVMAEj (11)

with

CVMAEj=

(
n∑

i=1

∣∣fCoveri,obs− fCoveri,pred∣∣)/fCoverobs
With N and n the number of sites and time series values respectively. Where
fCoveri,pred and fCoveri,obs are the predicted and observed fCover values for site j
and sample i; and fCoverobs is the mean observed fCover value for site j.

Validation was provided by comparing model results, using local climate
drivers (AWE01, APT01), with 30 years of end-of-season non-woody biomass
measurements (g Cm−2, PAB01, Fl-soil) at the Konza Prairie Biological Station
(http://www.konza.ksu.edu). In addition, model results, using Daymet38 climate
drivers, were compared with MODIS (MODerate resolution Imaging
Spectrometer) normalized difference vegetation index (NDVI)-based fCover
values40. We extracted NDVI fCover time series at 100 random homogeneous
grassland locations (Supplementary Fig. 1; MOD09A1, tile h10v04, retaining pixels
with ideal product quality—QA bit 00) informed by MODIS Land Cover
(MCD12Q1) data and validated by visual inspection using Google Earth.

Ecosystem fluxes. Eddy-covariance measurements of net ecosystem CO2 exchange
(NEE) were made at 3 shortgrass and 2 tallgrass sites (Lethbridge, Vaira41, Kendall,
Konza and UIEFprairie; Supplementary Table 1 and Supplementary Fig. 1). With
the exception of the UEIFprairie site, which is harvested and has aboveground litter
removed, all sites are native or restored, lightly grazed and unmanaged grasslands.
Measured NEE values were partitioned into total ecosystem respiration (TER) and
GPP using standard protocol for gap filling and partitioning eddy-covariance CO2

fluxes. At the Lethbridge site the standard Fluxnet-Canada protocols42 were used,
whereas all other sites used the standardized methodology as described in ref.43.
The GPP values were calculated as the sum of NEP(=−NEE) and TER (that is,
GPP=NEP+TER). Meteorological instruments used to monitor environmental
conditions have been described previously41,44–47.

We use a linear model to describe the relationship between PhenoCam-derived
grassland fCover and ecosystem flux measurements of GPP at the shortgrass sites
Lethbridge, Kendall and Vaira. Regression parameters were used to estimate the
difference in total annual GPP between the start and the end of our CMIP5
projections. Furthermore, previous studies have shown that an increase in growing
season length can account for much of the observed annual variation in grassland
productivity, with an extended growing season increasing GPP at rates of
2–5 gCm−2 d−1 (refs 5,47). We extrapolate changes in GPP due to a longer growing
season length using the noted range in daily incremental increases in GPP. As such,
productivity was defined as either the product of the scaled fCover value and the
linear regression parameters or in terms of changes in growing season length. To
determine the total change in annual GPP across the study regions, we weighted
model predictions according to the grassland fraction within each CMIP5 raster
cell for those cells showing a significant trend across at least half of all projections.

Future projections.We projected fCover forward until 2100 using global
parameter values, for ten downscaled (∼1/8◦) CMIP5 models48 (Supplementary
Table 6) with the business-as-usual RCP 8.5 projections of temperature and
precipitation covering the continental USA, southern Canada and northern Mexico
(25.125◦ to 52.875◦ N; 124.625◦ to 67.000◦ W). We only considered pixels classified
as more than 50% grassland cover (MODIS Land Cover classes 10 and 7,
Supplementary Fig. 1). Phenological metrics such as the start of the season (SOS),
the end of the season (EOS) and the growing season length (GSL) were calculated
using a 10% threshold. To characterize intra-annual variability we identified four
distinct grassland regional groupings (R1–R4), based on characteristics of
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projected future changes in fCover. All grassland statistics are weighted according
to their fractional coverage within each grid cell where applicable.

Climate summaries and summarizing statistics:We describe changes in
climate scenario drivers as the differences (1) between the end (2090–2100) and
the start (2010–2020) of the twenty-first century. We report changes in the mean
annual precipitation (mm), mean annual temperature (◦C), precipitation frequency
and aridity index, along with changes in mean seasonal precipitation and
temperature. Precipitation frequency was calculated as the change in median
precipitation frequency for precipitation events exceeding 2 mm, with positive
values indicating increased delays between precipitation events. The aridity index
was calculated according to the United Nations Environment Programme
directions as the ratio of mean annual precipitation to mean annual potential
evapotranspiration49.
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In the version of this Letter originally published, the term for available vegetation (Vt) was mistakenly omitted from the end of equation 2. 
This has now been corrected in all versions of this Letter.

Corrigendum: Productivity of North American grasslands is increased under future 
climate scenarios despite rising aridity.
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