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Abstract

In this paper we address the practical tracking problem for a class of nonlinear systems by dynamic output feedback control. Unlike most
of the existing results where the unmeasurable states in the nonlinear vector field can only grow linearly, we allow higher-order growth of
unmeasurable states. The proposed controller makes the tracking error arbitrarily small and demonstrates nice properties such as robustness to
disturbances and universal property to reference signals.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and problem statement

This paper considers the practical tracking problem of the
following nonlinear system:

ẋi = xi+1 + �i (x, u, d(t)), i = 1, 2, . . . , n − 1,

ẋn = u + �n(x, u, d(t)), y = x1 − yr(t), (1)

where x = [x1, . . . , xn]T ∈ Rn, u ∈ R and y ∈ R are the sys-
tem state, input and output, respectively. yr(t) is the reference
to be tracked and d(t) ∈ Rs represents unknown continuous
disturbances. For i = 1, 2, . . . , n, �i (x, u, d(t))’s are unknown
continuous nonlinear functions of the states, input and distur-
bances. Similar to the output regulation theory (Huang, 2004;
Isidori, 1995) we assume the only measurable signal in sys-
tem (1) to be the error between the output x1 and the reference
yr . Therefore, only y is allowed in the design of the controller.
Notice that such setting is different from the standard track-
ing problem where both the reference and its derivatives are
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assumed to be measurable. There are two reasons to limit the
only measurement to be the error signal. Firstly, in some prac-
tical control applications, it is inevitable that the error signal
is the one to be directly measured. For example, in a missile
guidance system, instead of measuring the absolute position of
the moving target, i.e. yr(t), the onboard radar keeps measuring
the distance/error between the missile and the target. Secondly,
assuming only error signal also makes the actuator design sim-
ple, since the controller does not depend on the signal to be
tracked explicitly. In this way, the controller is more adaptive
to different reference signals.

The global output feedback tracking problem of nonlinear
system (1) is virtually unsolvable if the nonlinear vector fields
�(·)’s grow too fast with respect to the unmeasurable states,
as shown in (Mazenc et al., 1994). Realizing this difficulty,
it is not surprising that most of the existing output feedback
results impose restrictive assumptions on the nonlinear vector
fields. For example, in Chen and Hunag (2005) and Gong and
Lin (2003), the global asymptotic output regulation has been
solved for the nonlinear systems in the output feedback form.
A unique feature for the output feedback form is that the non-
linearities can only depend on the measurement y. In Chen
and Huang (2004), the output regulation problem is solved for
a class of nonlinear systems with lower-triangular structure
and linear dependency on the measurable states. When the
nonlinear systems satisfy global Lipschitz or linear growth
type of conditions, the asymptotic tracking can be tackled by
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the methods presented in Gauthier et al. (1992) and Qian and
Lin (2002).

To the best of our knowledge, most existing global output
regulation/tracking results cannot allow the unmeasurable states
to grow faster than linearly. The main contribution of this paper
is to solve the tracking problem for the systems with higher-
order growing nonlinearities of the unmeasurable states, for
instance,

ẋ1 = x2, ẋ2 = x3 + x2 ln(1 + x2
2 ),

ẋ3 = u + d(t)x2
2 + x

4/3
3 + x

1/3
3 + d(t), (2)

where |d(t)|�1 is a bounded disturbance. One particular dif-
ficulty imposed by higher-order growing nonlinearities is the
lack of observer design tool. So far, many of the global output
feedback design methods are fundamentally based on Luen-
berger type of observer. The linear nature of the observers limits
their ability to handle the higher-order growing nonlinearities
of the unmeasurable states. Nonlinear observer design methods
are proposed in Gauthier et al. (1992) and Krener and Kang
(2003), but the observers are locally convergent and therefore
are not suitable for the global output tracking problems. Re-
cently, a homogeneous nonlinear observer design is introduced
in Qian (2005). This observer is inherently nonlinear and pro-
vides the ability to handle higher-order growing unmeasurable
states. It has been shown in Qian (2005) that the global stabi-
lization of (1) can be solved by output feedback under suitable
growth conditions. In this paper, we extend the result in Qian
(2005) to solve the global practical tracking problem. To this
end, the following condition is introduced.

Assumption 1. There are constants ��0 and c�0 such that,
for i = 1, . . . , n

|�i (·)|�c(|x1|i�+1 + |x2|(i�+1)/(�+1) + · · ·
+ |xi |(i�+1)/((i−1)�+1)) + c.

Remark 1. Clearly, system (2) satisfies A1 (with �=2). System
(2) exemplifies that A1 covers nonlinear systems with higher-
order growing unmeasurable states. It is in sharp contrast to
many existing output feedback design methods, where the non-
linear vector field needs to be Lipschitz or linear growth in
the unmeasurable states (Gauthier et al., 1992; Qian and Lin,
2002). On the other hand, the counter examples in Mazenc et al.
(1994) indicate that, due to the finite escape time phenomenon,
the global output feedback stabilization of systems (1) cannot
be solved if the nonlinear functions �i (·) grow too fast. From
this point of view, A1 is very tight already (see Qian, 2005 for
further explanations).

Remark 2. A1 is slightly more general than the assumption
imposed in Qian (2005) which contains no constant term. By
adding this constant term, we can cover nonlinear systems with
both higher-order and lower-order growing unmeasurable states
(see x2

2 and x
1/3
3 terms in (2)), while the growth condition in

Qian (2005) only permits higher-order growing unmeasurable

states. In this sense, the result in this paper is a generalization
of the result in Qian (2005).

Another difficulty associated with the output tracking prob-
lem of system (1) lies in the appearance of the disturbance and
uncertainty in the reference. In standard output regulation the-
ory (Isidori, 1995), this difficulty is circumvented by assuming
both of the disturbance, d(t), and the reference, yr(t), be gen-
erated by a neutrally stable exosystem. In this paper, we intend
to relax such assumptions. In particular, we assume the refer-
ence signal yr(t) satisfying the following condition.

Assumption 2. The reference signal yr(t) is continuously dif-
ferentiable. Moreover, there is a known constant M > 0, such
that |yr(t)| + |ẏr (t)|�M, ∀t ∈ [0, ∞).

The assumption on the disturbance is imbedded in A1 which
basically allows d(t) to be any bounded signal. Note that, such
relaxations on the reference and the disturbance do not come
free. The price been paid is the solvability to achieve asymp-
totic tracking and asymptotic disturbance rejection. For exam-
ple, in the case of linear systems, the celebrated internal model
principle (Isidori, 1995) indicates that any regulator that solves
the asymptotic tracking problem must incorporate a suitable in-
ternal model of the exosystem which generates the disturbance
and the reference. In our case, since the disturbance d(t) and
the reference yr(t) are assumed to be unknown and do not be-
long to any prescribed class of signals, we do not know what
kind of exosystems can generate them. The lack of information
on the exosystems makes asymptotic tracking extremely diffi-
cult. Being aware of aforementioned difficulties, we pursue a
less ambitious goal and focus on global practical tracking in-
stead of asymptotic one.

The global practical tracking problem: For any given toler-
ance � > 0, design a dynamic output feedback controller u of
the form

�̇ = �(�, y), � ∈ Rm, u = u(�, y) (3)

such that (i) the state of the closed-loop system (1)–(3) is well
defined on t ∈ [0, ∞) and globally bounded; (ii) for any initial
condition (x(0), �(0)), there is a finite time T > 0, such that
|y(t)| = |x1(t) − yr(t)|��, ∀t > T .

In the remainder of this paper, we shall show that the global
practical output tracking problem of system (1) can be solved
under Assumptions 1 and 2.

2. Review of a stabilization result

In this section, we briefly review a new output feedback
stabilization result presented in Polendo and Qian (2006) and
Qian (2005). Based on homogeneous theory, the result pro-
vides a systematic design tool for the construction of dynamic
compensators, and is essential in solving our practical tracking
problem.

Consider the linear system

żi = zi+1, i = 1, . . . , n − 1, żn = v, y = z1, (4)
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where v is the input and y is the output. For system (4), one
can easily design a linear observer plus a linear feedback con-
troller to globally stabilize the system. This method has been
extended to nonlinear system (1) with linear growth condition
on the nonlinear vector field (Qian and Lin, 2002). However,
the linear nature of this type of design makes it inapplicable to
inherently nonlinear systems. For instance, when the nonlinear
vector field has higher-order growth terms such as those sat-
isfying A1, linear dynamic output feedback controller fails to
globally stabilize the system. For the output feedback design of
inherently nonlinear systems, a genuinely nonlinear observer
design method is needed. The recently developed nonlinear ho-
mogeneous observer in Qian (2005) provides such a tool to
handle inherently nonlinear systems.

According to Qian (2005), one can construct a reduced order
homogeneous observer for system (4) as follows:

�̇2 = fn+1(z1, �2) = −l1ẑ2,

ẑ2 = sign(�2 + l1z1)|�2 + l1z1|r2/r1 ,

�̇k = fn+k−1(z1, �2, . . . , �k) = −lk−1ẑk ,

ẑk = sign(�k + lk−1ẑk−1)|�k + lk−1ẑk−1|rk/rk−1 , (5)

where k = 3, . . . , n and ri = (i − 1)� + 1, i = 1, . . . , n are the
homogeneous dilation and the constants li > 0, i =1, . . . , n−1
are observer gains. The sign function is defined as

sign(s) =
{1 if s�0,

−1 if s < 0.

The controller can be constructed as

v = −sign(�̂n)|�̂n|(rn+�)/rn�n (6)

with ẑ1 = z1 and

ẑ∗
1 = 0, �̂1 = ẑ1 − ẑ∗

1,

ẑ∗
k = −sign(�̂k−1)|�̂k−1|rk/rk−1�k−1, �̂k = ẑk − ẑ∗

k,
(7)

for appropriate controller constants �k > 0, k=1, . . . , n. Denote

Z = (z1, z2, . . . , zn, �2, . . . , �n)
T, (8)

F(Z) = (z2, . . . , zn, v, fn+1, . . . , f2n−1)
T. (9)

The closed-loop system (4)–(5)–(6) can be rewritten in a com-
pact form Ż = F(Z). Moreover, it can be verified that F(Z) is
homogeneous of degree � with dilation

	 = (1, � + 1, . . . , (n − 1)� + 1, 1, . . . , (n − 2)� + 1). (10)

Lemma 1 (Qian, 2005). The observer gains li > 0, i =
1, . . . , n − 1 and controller gains �i > 0, i = 1, . . . , n can
be recursively determined such that the closed-loop system
(4)–(5)–(6) admits a Lyapunov function V (Z) with the follow-
ing properties:

(1) V is positive definitive and proper with respect to Z;
(2) V is homogeneous of degree 2rn − �, with dilation (10);

(3) the derivative of V (Z) along (4)–(5)–(6) satisfies

V̇ (Z(t)) = �V

�Z
F(Z)� − C‖Z‖2rn

	 , C > 0, (11)

where ‖Z‖	 =
√∑2n−1

i=1 |Zi |2/ri .

Remark 3. The choice of the gains, �i and li , only depends
on the homogeneous degree, �, and the system dimension, n.
Once � and n are given, one can determine �i and li through
a recursive manner. Instead of giving the detailed procedure
which can be found in Polendo and Qian (2006) and Qian
(2005), later we provide an example to illustrate the idea.

Next, we list several useful lemmas.

Lemma 2 (Hermes, 1991). Given a dilation weight 	 =
(r1, . . . , rn), suppose V1(x) and V2(x) are homogeneous func-
tions of degree �1 and �2, respectively. Then V1(x)V2(x) is
homogeneous with respect to the same dilation 	. Moreover,
the homogeneous degree of V1(x)V2(x) is �1 + �2.

Lemma 3 (Hermes, 1991). Suppose V : Rn → R is a ho-
mogeneous function of degree � with respect to the dilation
weight 	. Then: (1) �V/�xi is homogeneous of degree � − ri
with ri being the homogeneous weight of xi ; (2) there is a con-
stant c̄ such that V (x)� c̄‖x‖�

	; (3) if V (x) is positive definite,
c‖x‖�

	 �V (x) for a positive constant c.

Lemma 4. For x ∈ R, y ∈ R, p�1 is a constant, the following
inequality holds: |x + y|p �2p−1|xp + yp|.

Lemma 5. Let c, d be positive constants. Given any positive
number 
 > 0, the following inequality holds: |x|c|y|d �c/(c +
d)
|x|c+d + d/(c + d)
−c/d |y|c+d .

3. Global practical tracking by output feedback

Theorem 1. Under A1–A2, the global practical output track-
ing problem of system (1) can be solved by a dynamic output
feedback controller of the form (3).

Proof. Define (e1, e2, . . . , en) = (y, x2, . . . , xn). Then

ėi = ei+1 + �̂i (e, u, d(t)), i = 1, . . . , n − 1,

ėn = u + �̂n(e, u, d(t)), (12)

where

�̂1(·) = �1(e1 + yr(t), e2, . . . , en, u, d(t)) − ẏr (t),

�̂i (·) = �i (e1 + yr(t), e2, . . . , en, u, d(t)), i = 2, . . . , n.

Note that, in the definition of the error signal (e1, . . . , en), we
only change the coordinate of the first state x1. It is differ-
ent from the common definition used in solving asymptotic
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tracking, where the error is defined as the difference between all
the states and their steady trajectories. By A1–A2 and Lemma
4, it is readily to show that, for i = 1, . . . , n,

|�̂i (·)|�c(|e1 + yr(t)|i�+1 + |e2|(i�+1)/(�+1) + · · ·
+ |ei |(i�+1)/((i−1)�+1)) + |ẏr (t)| + c

�c(2i�|e1|i�+1 + |e2|(i�+1)/(�+1)

+ · · · + |ei |(i�+1)/((i−1)�+1))

+ 2i�|yr(t)|i�+1 + |ẏr (t)| + c

�c1(|e1|i�+1 + · · · + |ei |(i�+1)/((i−1)�+1)) + c1,

(13)

where c1 > 0 is a constant only depending on c, � (in A1) and
M (in A2). Next, introducing the change of coordinates: zi =
ei/L

i−1, i = 1, . . . , n, and v =u/Ln, where L > 1 is a scaling
constant to be determined later, system (12) is transformed to

żi = Lzi+1 + �̂i (·)/Li−1, i = 1, 2, . . . , n, (14)

where zn+1 =v. Following the homogeneous observer and con-
troller design proposed in Qian (2005), we construct a dynamic
compensator for (14) as

�̇k = −Llk−1ẑk ,

ẑk = sign(�k + lk−1ẑk−1)|�k + lk−1ẑk−1|rk/rk−1 (15)

for k = 2, . . . , n, and a controller

u = −Ln sign(�̂n)|�̂n|(rn+�)/rn�n, (16)

where �̂i is defined in (7). In (15) and (16), li > 0, i=1, . . . , n−
1 and �i > 0, i = 1, . . . , n are constant gains specified as in
Lemma 1 and L > 1 is a constant to be determined later. Note
that the only information used in the construction of (15)–(16)
is the measurement y(t). Next, we will determine the gain L
such that the global practical output tracking is achieved. By
using notations (8) and (9), the closed-loop system (14)–(16)
can be written down in a compact form

Ż = LF(Z) + [�̂1(·), �̂2(·)/L, . . . , �̂n(·)/Ln−1, 0, . . . , 0]T.

By Lemma 1, there exist constants li’s, �i’s and a Lyapunov

function V (Z), such that �V

�Z
F(Z)�−C‖Z‖2rn

	 . Moreover, V is
homogeneous of degree 2rn −� with dilation (10). Hence, with
these choice of li , �i , the derivative of V along the trajectory
of (14)–(16) satisfies

V̇ (Z)� − LC‖Z‖2rn
	 + �V (Z)

�Z
[�̂1(·), �̂2(·)/L, . . . ,

�̂n(·)/Ln−1, 0, . . . , 0]T. (17)

From (13) and the fact L > 1, it is readily to deduce that

|�̂i (·)/Li−1|�c1(|z1|i�+1 + |Lz2|(i�+1)/(�+1) + · · ·
+ |Li−1zi |(i�+1)/((i−1)�+1)) + c1/L

i−1

�c1L
1−1/((i−1)�+1)(|z1|i�+1+|z2|(i�+1)/(�+1) + · · ·

+ |zi |(i�+1)/((i−1)�+1)) + c1/L
i−1. (18)

By Lemmas 3 and 1, �V/�Zi is homogeneous of degree 2rn −
� − ri for all i. Hence, from Lemmas 2 and 3, we can find a
constant �i > 0 such that∣∣∣∣ �V

�Zi

∣∣∣∣ (|z1|i�+1 + · · · + |zi |(i�+1)/((i−1)�+1))��i‖Z‖2rn
	 . (19)

Substituting (19) into (17) leads to

V̇ (Z)� − L

(
C − c1

n∑
i=1

�iL
−1/((i−1)�+1)

)
‖Z‖2rn

	

+ c1

n∑
i=1

∣∣∣∣�V (Z)

�Zi

∣∣∣∣ 1

Li−1 . (20)

On the other hand, by Lemmas 3 and 5, there are positive
constants c2, c3, such that for all 1� i�n,

c1

∣∣∣∣�V (Z)

�Zi

∣∣∣∣ 1

Li−1 �c2‖Z‖2rn−�−ri
	 (L−(i−1)/(�+ri ))�+ri

�‖Z‖2rn
	 + c3L

−(2(i−1)rn)/(�+ri ). (21)

Estimations (20) and (21) lead to

V̇ (Z)� − L

(
C − c1

n∑
i=1

�iL
−1/((i−1)�+1) − nL−1

)
‖Z‖2rn

	

+ c3

n∑
i=1

L−(2(i−1)rn)/(�+ri ).

Choose a sufficiently large L, such that

c1

n∑
i=1

�iL
−1/((i−1)�+1) + nL−1 < C/2,

n∑
i=1

L−2(i−1)rn/(�+ri ) < 2.

Then, V̇ (Z)� −LC/2‖Z‖2rn
	 + 2c3. Next, by Lemma 3, there

are two positive constants �1, �2 such that

�1‖Z‖2rn−�
	 �V (Z)��2‖Z‖2rn−�

	 . (22)

Therefore

V̇ (Z)� − 0.5LC�−2rn/(2rn−�)
2 V (Z)2rn/(2rn−�) + 2c3. (23)

From (22) and (23) it is not difficult to show that there is a
finite time T such that

V (Z)��2(4c3/(CL))(2rn−�)/2rn ∀t �T .
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From here it is clear the global practical tracking can be
achieved with a sufficiently large L. �

Remark 4. The controller (16) and the observer (15) are con-
structed only based on the nominal system (4). No precise in-
formation of the nonlinearities is needed. It means that the
same dynamic controller (15)–(16) can be applied to different
nonlinear systems as long as they satisfy A1. This advantage
greatly reduces the design complexity normally associated with
the dynamic output feedback design. Also note that, there are
only three sets of parameters li , �i and L need to be deter-
mined. The choice of li and �i only depends on the nominal
system (4). Therefore, they can be pre-fixed even for different
nonlinear systems. The gain L needs to be assigned as a suf-
ficiently large number to achieve the given tracking accuracy.
To calculate the precise value of L could be tedious and most
likely conservative. In practice, one can simply choose a large
L such that the closed-loop system is stable and keep increasing
L until the given tracking accuracy is achieved.

In the following we illustrate the proposed controller on a
nonlinear system which describes a particle moving under non-
linear viscous friction. Consider

ẋ1 = x2, ẋ2 = u − sign(x2)|x2|�, y = x1 − sin(t),

where x1 is the displacement, x2 is the velocity and u is the
control force. The term sign(x2)|x2|� represents nonlinear vis-
cous friction. It is assumed that 1��� 5

3 but the precise value
of � is unknown. The control objective is to force the state x1
to track the reference sin(t) using the measurement y(t) only.
Note that, although the parameter � can be estimated by exper-
iment, it may not be a constant due to the change of the work-
ing environment. Therefore, it is quite desirable to construct a
controller not depending on the precise value of �.

A1 can be easily verified with �=2. Then, following (15) and
(16), we can construct the dynamic output feedback tracking
controller as

�̇ = −Ll1x̂2, x̂2 = (� + l1y)3,

u = −L2�2(x̂2 + �1y
3)5/3. (24)

The gains �1, �2 and l1 can be determined according to the
following three-step procedure (Polendo and Qian, 2006; Qian,
2005).

Step 1: �1 and �2 can be found by designing a full state
feedback control, v=−�2(z1 +�1z

3
2)

5/3, for the nominal linear
system ż1 = z2, ż2 = v with the Lyapunov function V (z) =
0.5z6

1 + 0.5(z2 + �1z
3
1)

2. Taking derivative of V (z), we have

V̇ (z) = − 3�1z
8
1 + 3z5

1�2 + �2(v + 3�1z
2
1(�2 − �1z

3
1))

= − 3�1z
8
1 + 3(1 − �2

1)z
5
1�2 + �2v + 3�1z

2
1�

2
2,

where �2 = z2 + �1z
3
1. Applying Lemma 5 to the cross terms

z5
1�2 and z2

1�
2
2, one can find �1 and �2 such that

V̇ (z)� − c1z
8
1 − c2�

8/3
2

0 5 10 15
−2

−1

0

1

2

0 5 10 15

−50

0

50 u

x1
reference

Fig. 1. The trajectory and the control of the closed-loop system with �1 = 1,
�2 = 2, l1 = 1 and L = 30.

for some positive constants c1 and c2. For instance, one possible
choice is �1 = 1 and �2 = 2.

Step 2: With the controller gains having been fixed, one can
now design the dynamic output feedback control for the nom-
inal linear system as

�̇ = −l1ẑ2, ẑ2 = (� + l1z1)
3, v = −�2(ẑ2 + �1z

3
1)

5/3.

With this output feedback control, it is easy to show

V̇ (z)� − c1z
8
1 − c2�

8/3
2 + �2�2(�

5/3
2 − (ẑ2 + �1z

3
1)

5/3).

Step 3: To determine the observer gain l1, according to Qian
(2005), the Lyapunov function

U(z) =
∫ z

5/3
2

(�+l1z1)
5
(s1/5 − (� + l1z1)) ds

can be employed. Taking derivative of U(Z) and applying Lem-
mas 4 and 5, one can find an observer gain l1 such that

d(V (z) + U(z))/dt � − k1z
8
1 − k2�

8/3
2 − k3(z2 − ẑ2)

8/3

for some constants k1, k2 and k3.
Once �1, �2 and l1 are fixed, by Theorem 1 the tracking

error can be made arbitrarily small with properly chosen L in
(24). The value of L can be designed according to Remark 4. In
Fig. 1 we plot out the simulation results when � = 1.5 and
L = 30. The steady tracking error is about 0.2.
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