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A multi-modal scanning system to digitize CBRNE emergency response
scenes

Marco Salathe1, Brian J. Quiter1, Mark S. Bandstra1, Xin Chen1, Victor Negut1, Micah Folsom1,
Gunther H. Weber2, Christopher Greulich3, Mathew Swinney3, Nicholas Prins3, Daniel E. Archer3

Abstract— A handheld system developed to digitize a con-
textual understanding of the scene at a chemical, biological,
radiological, nuclear and/or explosives (CBRNE) events is
described. The system uses LiDAR and cameras to create a
colorized 3D model of the environment, which helps domain
experts that are supporting responders in the field. To generate
the digitized model, a responder scans any suspicious objects
and the surroundings by carrying the system through the scene.
The scanning system provides a real-time user interface to
inform the user about scanning progress and to indicate any
areas that may have been missed either by the LiDAR sensors
or the cameras. Currently, the collected data are post-processed
on a different device, building a colorized triangular mesh
of the encountered scene, with the intention of moving this
pipeline to the scanner at a later point. The mesh is sufficiently
compressed to be sent over a reduced bandwidth connection
to a remote analyst. Furthermore, the system tracks fiducial
markers attached to diagnostic equipment that is placed around
the suspicious object. The resulting tracking information can
be transmitted to remote analysts to further facilitate their
supporting efforts. The paper will discuss the system’s design,
software components, the user interface used for scanning a
scene, the necessary procedures for calibration of the sensors,
and the processing steps of the resulting data. The discussion
will close by evaluating the system’s performance on 11 scenes.

I. INTRODUCTION

There are scenarios where chemical, biological, radiologi-
cal, nuclear and/or explosives (CBRNE)-trained first respon-
ders, arriving at a scene, are remotely supported by expert an-
alysts. These analysts are typically experts in relevant fields
and in the analysis of data generated by onsite diagnostics
equipment. If these analysts were able to quickly obtain a
realistic model of the scene and associated measurement
activities, it would greatly facilitate their understanding of
the context of measurements occurring at the scene and could
facilitate communications with onsite personnel. This work
is focusing on emergency situations involving radiological
and/or nuclear concerns, where a model of the scene could
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serve as input to physics-based simulation codes (e.g., based
on Monte Carlo tools [1][2]). Models and physics-based sim-
ulations could also prove greatly beneficial in understanding
the measurements performed around the object that triggered
the emergency response. Herein, we will refer to such an
object as an item of primary concern (IPC).

Usage of systems with 3D scanning abilities so far has
been spearheaded by criminal forensics using stationary
systems [3]. Using LiDAR-based mapping for enhanced situ-
ational awareness of on-site CBRNE operators has also been
focused on during development and deployment of robotic
systems [4], [5], [6], [7], [8]. Reconstructions of scanner data
have been investigated to support disaster management [9].
Additionally, various backpack-based and handheld systems
have been proposed for use in indoor modeling [10], [11].
Similar systems have been utilized for radiation detection and
imaging [12], [13]. To our knowledge use of 3D scanners to
enhance situational awareness of remote experts has not been
considered in the scientific discourse.

In light of these observations, a team of scientists at
Lawrence Berkeley National Laboratory (LBNL) and Oak
Ridge National Laboratory (ORNL) undertook the Semi-
automated Scenes for Diagnostics (SaS4D) project to create
a prototype handheld scanning system and corresponding
processing algorithms to rapidly generate three-dimensional
(3D) models of scenes that are: several 10’s of MB in size,
have visual labeling, and can be used to formulate water-
tight geometric models. The scanning task is performed with
a portable system, carried through the scene by an onsite
first responder. The scanning system addresses both the
limited coverage that is typical of static scanning and helps
address the complexities arising from autonomous navigation
or remote operation necessary for unmanned vehicles. This
solution does not directly address risks to first responders due
to exposure to dangerous materials, chemicals, radiation, and
explosive forces, but these risks could be reduced through the
use of remotely operated robotic systems.

The SaS4D system incorporates software to detect fiducial
markers placed on detection devices in the image stream
from the camera. These markers can uniquely identify each
item of equipment, simplifying the accounting of these
devices on site and the communication about their placement
around the IPC to remote analysts.

The design of the system, its user interface (UI), the
analysis software, and some example data are summarized
in this paper.



Fig. 1. Photo of the SaS4D handheld scanning system.

II. SYSTEM OVERVIEW

The SaS4D system (see Figure 1) is a hand-portable
sensor system that has been designed as a scanner and
tracker for emergency response CBRNE missions. Presently,
the system is capable of rendering a realistic model of a
scanned geometry in real-time, but performs additional post-
processing in order to formulate better-fidelity models that
are intended to be transmitted to off-site analysts through
limited-bandwidth telecommunications.

Including batteries, the SaS4D scanner weighs about 4 kg
and features the following sensors: a Velodyne Puck LITE
16 (VLP-16) LiDAR [14], a Livox Mid-70 LiDAR [15], a
See3CAM_CU81 RGB camera [16] and a VectorNav VN200
Inertial Navigation System [17]. Additionally, it contains
a NUC 11 computer with Intel 4 core (8 thread) i7 CPU
and an integrated GPU [18]. The NUC’s WiFi antennae are
integrated into the enclosure housing, providing good signal
strength in all directions. Ports to connect external hard
drives for transferring recorded data are easily accessible
on the back of the system. The system can be powered
with one or two batteries or using external wall-power. The
two-battery system gives users hot-swap capabilities; either
battery can be removed and replaced with a new battery
without needing to power down the system in the process.
This means that field operation need not be interrupted during
long campaigns. The system can run about 2.5 hours on
two batteries while performing typical emergency response
activities. A 90+% efficient power distribution units deliver
both 16 V and 5 V outputs to provide power to the onboard
sensors and computer. The handle features a camera cold
shoe which can accept a variety of mountable devices such
as external lighting or a mount to hold a tablet computer to
render the user interface served by the NUC computer.

III. SOFTWARE

All software components are deployed in individual
Docker containers [19]. The containers are pre-built and
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Fig. 2. A flow diagram of the sensor and software components.

stored in an online registry, which enables fast installation
of the software stack on the SaS4D onboard computer and
assures stable operation, without being affected by unwanted
or breaking OS upgrades. Docker compose [19] is leveraged
to orchestrate execution of the various Docker container that
are required for operation of the system. The sensor drivers
and data processing and recording units are based on the
Robot Operating System (ROS) [20] node infrastructure and
leverage the ROS message structure for communication. ROS
is also used to save all sensor outputs to a file.

An overview of the data flow on the system, from sensors
to processing units, is shown in Figure 2. The LiDAR sensors
output data at 75 Hz as a collection of x, y, z coordinates
relative to the sensor position – commonly referred to as
point clouds. Cartographer [21], a real-time simultaneous
localization and mapping (SLAM) framework, leverages the
point clouds from the two LiDARs and the inertial measure-
ment unit’s linear acceleration and rotational velocity data
to predict the systems location and orientation (Pose) at any
point in time during a measurement.

The two point cloud data are combined and randomly
down-sampled to about 5%. This is necessary to not exceed
the NUC’s computing power and assure real-time operation.
The remaining points are projected to the camera’s image
plane, using the camera intrinsic and the extrinsic transfor-
mation between the physical Poses of the LiDARs and the
camera. The camera operates at 20 Hz; the image closest in
time to a given set of points is used to map a RGB color to
each point. This is done by assigning the RGB value of a
given pixel to all the points that were projected into the area
covered by that pixel. Points outside the image are marked
as (0, 0, 0) and thus recognizable in later processing steps.

By leveraging the Pose of the system as predicted by the
SLAM algorithm, the colorized point cloud is assembled
into a 3D voxel grid. The assembled voxel grid is reduced
to a two-dimensional image in the form of an X-ray-like
floor plan of the scanned area (see Figure 3), with walls
and structures being represented by darker colors. During
voxelization, the program keeps track of the fraction of
LiDAR points in each voxel that received a color assignment
during camera projection in the point cloud colorization step.
This information is added as a red-transparent overlay over
the floor plan to indicate areas which have not been seen by



Fig. 3. The web-based user interface enables one to control and monitor
the system.

the camera so far. The transparency is defined with a logic
function based on the occupancy fraction. Figure 4 provides
an example of how the visualization of camera coverage
evolves as a scan progresses.

The camera images are down-sampled to about 5 Hz and
any visible ArUco markers [22] in these images are localized
and identified. The location, timestamp and identifier of
every detected marker is transformed into the reference frame
of the SLAM map and stored in a JavaScript Object Notation
(JSON) file on disk. This file can then be sent, together with
the finalized map to a remote team.

The system serves a web page at a dedicated address to
function as a user interface (UI). The page can be accessed
with an iPad, phone or computer on the same network. A
screen shot of the user interface is shown in Figure 3. It has
a pane that shows the floor plan with the progress overlay
created by the data pipeline, a pane displaying the camera
feed with ArUco markers overlaid, a dialogue to start and
stop a measurement, annotate a measurement with a note and
to drop a pin on the floor plan to mark locations of interest
(which may be the IPC). All these data are displayed and
updated in real-time to aid the user in the scanning process
and to assess the quality of the already recorded data.

IV. DESIGN CONSIDERATION

The choice to use two different LiDARs on the system
was guided by the idea of the system being operated in
two distinct modes. The first mode is ‘scanning’, where the
system is carried through a scene, trying to create an external
model of the dimensions of the IPC and nearby structures
with great detail and sufficient camera coverage to potentially
enable material identification. The second mode is ‘tracking’,

a) b)

c) d)

Fig. 4. Four views of the top-down projection of the point-cloud and
camera-based colorization view in the SaS4D real-time user interface. As
the scan progresses (from a to d), the detail rendered in the black-and-
white point cloud projection increases. Similarly, the amount of area that is
‘uncovered’ by the camera changes significantly.

Fig. 5. The result of co-registration between the VLP-16 (red) and the
Mid-70 (green) in a 40-m-long hallway with an ArUco marker board being
held upright by an office chair at a distance of approximately 2 m. The dark
shading of the green and red points indicate the normal angle relative to the
viewing perspective, with no shading at 0◦ to black at 90◦.

where the system is placed to statically monitor movements
around the scene. The VLP-16 with its 360◦ field of view
has proven very robust in providing the necessary coverage to
reliably perform SLAM with centimeter fidelity. The ability
of the VLP-16 to sense areas that have not yet been observed
by the camera enables coupling with the UI to guide the user
to ensure better camera coverage. The Mid-70, has a limited,
circular field of view of 70◦ opening angle, that overlaps
the field of view of the camera. It uses a variable scanning
pattern, so that within a second more than 90% of the field of
view are covered, with higher density towards the center of
the field of view. Thanks to this dense coverage the LiDAR
point cloud and camera images can be merged for various
tracking tasks in 3D space, even when the system is static.
The two LiDAR scanning patterns are visualized in Figure 5.

The selection of the See3CAM_CU81 camera has been
governed by its observed performance on a portable system
in low light conditions. The camera features a dynamic
range of up to 140 dB, which assures that it can capture
images with a short exposure even in back-lit situations.



Fig. 6. Example of a point cloud overlaid on an image, with the point cloud-
derived position of the cone tip marked in orange and the image-derived
location marked in blue. The distance between the two is minimized in
about 50 images for extrinsics and timing estimation.

This is particularly important to get sharp images during
the scanning phase, where the system often is moved across
surfaces at relatively high rotational speed. The 4k resolution
of the camera, coupled with a custom lens of about 70◦

horizontal field of view enables the tracking of ArUco
markers over large distances. The field of view of the camera
also is similar to the one of the Mid-70 LiDAR. The camera,
operating over USB 3.1 Gen 1, is able to deliver 15 Hz at
4K resolution and 30 Hz at a lower resolution.

V. CALIBRATION

The extrinsic transformation between the two LiDARs
was extracted from a static measurement of a 40-meter-
long hallway by applying the iterative closest point algorithm
implemented in Open3D [23] to the two data streams (see
Figure 5). The intrinsics between the camera and the LiDARs
were estimated by manually marking a cone tip in the
point cloud resulting from SLAM and about 50 images and
using a least-square minimization procedure to get the Pose
difference and the time delay of the camera (see Figure 6).
The transformation between the IMU and the other sensors
was derived from CAD drawing of the system. The camera
intrinsic and lens distortions were measured with a classical
checkerboard calibration procedure.

VI. POST-PROCESSING

The goal is to execute all processing steps on the system
itself. For now, however, the final data products are generated
offline on a separate computer. It takes about 15 minutes to
run the full offline pipeline for a 5-minute collection, from
raw sensor data recorded with ROS to the final mesh of the
scene, or about 3 times slower than real-time.

The first step in the offline pipeline is to re-run Cartogra-
pher with higher fidelity settings to create a file containing
the system’s trajectory through the scene. Next, a colorized
point cloud map is created that has normal vectors estimated
for each point. Images were filtered from 20 Hz to 5 Hz
by selecting the image with the lowest Laplacian variance
[24] to reduce the impact of image blur. Colorization is
accomplished by first projecting each set of points (collected
during a period of 75 Hz) to the surviving camera image

captured nearest in time and assigning RGB values by the
pixel associated with those LiDAR points. The trajectory
from SLAM has been used to correct the difference in Pose
between the recording time of the camera image and the point
cloud. The Cartographer trajectory then is used to project
the points measured at each location into space. A total of
48 point sets are aggregated and the normals are calculated
on the aggregated set with a k-d tree based algorithm [23]
and orientated toward the mean camera location during that
0.64-second period of aggregation. The resulting point cloud
is stored to a PLY file. The data size at this point is about
700 MB per recorded minute and is thus too large to be easily
transferred to offsite analysts. A more compact representa-
tion, that doesn’t limit the interpretability of a scene, is a
triangular mesh. The mesh is calculated by using a Poisson
surface reconstruction algorithm [23] and the 7% quantile
of points with the lowest density is removed. The resulting
mesh is smoothed and reduced with quadric decimation to
about 1 million vertices, again using techniques from [23].
The resulting mesh is about 80 MB which is significantly
more readily transmitted.

VII. EVALUATION

The system was used to capture three outdoor and eight
indoor scenes. Each capture took about 5 minutes to collect
and a selection of the resulting 80 MB meshes is shown in
Figure 7. No issues were discovered while operating the
system, but a few limitations were observed during post-
processing. SLAM worked better in large spaces; SLAM
requires the return distance of points to be above a lower
threshold and can get deprived of points in confined spaces.
This results in a slightly blurred point cloud and lumpy mesh
surfaces. The presence of windows and other transparent
materials causes laser pulses to be partially reflected, which
produces mirror image of the scene on the other side of the
window or vague boundaries along the transparent surfaces.
Normal extraction in areas with large amounts of clutter is
less reliable. This affects the quality of Poisson reconstruc-
tion and results in irregular surfaces.

An important part of the presented workflow is the ability
to produce a compressed mesh that still captures shapes in
the scene with high fidelity. Figure 8 shows the median
distance between the points in the original point cloud and
the nearest surface of the mesh after quadric decimation.
Poisson reconstruction itself reduces the number of vertices
in the mesh limiting the mesh fidelity of large scenes to about
3 cm and close to 1 cm for small scenes. Quadric decimation
retains mesh fidelity well, only below 105 vertices the quality
of the mesh starts to degrade considerably. The 80 MB
meshes displayed in Figure 7 are about a factor of 10 above
that limit so further compression is possible if necessary. The
presented fidelity number does not describe the colorization
aspects of the mesh, where having more points is definitely
important but hard to quantify.

The tracking performance of ArUco markers was system-
atically evaluated by analyzing the board on the chair in
Figure 5 with both LiDAR (for ground truth) and camera
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Fig. 7. A comparison between images recorded with the system (left) and the same view in the mesh (center).The white portions in the mesh are surfaces
not measured by the LiDARs. On the right a x-ray top-down view of the scene is shown. Dark area indicate a lot of structures. The path travelled by the
system is indicated in blue, the camera location and view directions (of the view in the other two panels) is represented with a orange dot and arrows.

images at different distances. It was found that at 3 meters,
the 2-inch markers could reliably be detected with 3 cm
accuracy. This number increases to about 10 cm accuracy at
8 m. Beyond that distance, not all 12 markers on the boards
are consistently detected before losing all detection ability
around the 10 meter mark. The orientation accuracy is about
10◦ for distances of less than 8 meters.

VIII. CONCLUSION

A system was designed and built to be used by a CBRNE
first response team, with a focus on nuclear and radiological
incidents. The system is handheld and allows one to create a
3D representation of an item of primary concern (IPC) and
its surroundings that then can be sent over limited-bandwidth
connections to offsite experts. The colorized mesh provides

these experts with important contextual information and
reduces the complexity of describing a scene verbally or with
a limited number of photographs. The system is designed
to be simple in its usage as a scene scanner and comes
with a web-based user interface that informs the user about
progress and data quality and allows one to annotate both
through note-taking and spatially labeling areas of interest.
The simplicity of the system and its usage is important for
adoption of the system in field deployment missions with
limited additional training needs.

Tracking of equipment is achieved with ArUco markers
that are affixed to equipment surfaces and enable unique
identification and localization of the various detection sys-
tems. Such unique identification can be coupled to equipment
tracking and calibration databases. Tracking data can addi-
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Fig. 8. A metric measuring the fidelity of the final mesh compared to the
initial point cloud as a function of compression through quadric decimation.

tionally be transmitted to analysts to automate the documen-
tation of diagnostic positioning and timing, which can further
be used to automate aspects of formulation of physics-based
simulations of the scene.

Subsequent to the initial scanning, the same handheld
scanner has been designed to function as a passive recording
device that locates the time and position of diagnostic
measurement equipment within the scene over the course
of the response action. Such a modality has been previously
discussed in [25] and could inform the remote team about
activities and changes near the IPC after the initial scan.

The transmitted mesh can be used as a basis to create
models for physics-based simulations and thus help better
understand diagnostic measurements. The process can be
aided with modern computer vision tools, such as semantic
segmentation, to assign distinct labels to volumes in the mesh
and enable inference of material properties. These tools are
actively being developed within the project and will be run
on an upgraded compute platform (Jetson AGX Orin [26])
being installed and tested at present on the system.

Other upgrades will encompass moving the data process-
ing pipeline, currently run offline on a separate device,
onto the system itself. Last, but not least, the goal will be
to enable dedicated scanning and tracking modalities and
automatic switching between these modes based on inertial
measurement unit data.

The lightweight system takes advantage of existing state-
of-the-art sensor technologies and algorithms. It combines
them in a unique and robust way to address existing needs
of emergency response operations. This approach permitted a
first demonstration with end users in early June 2022, where
they could test and interact with the system directly. The
direct feedback provided during the demonstration will guide
further efforts in developing the system and hopefully bring
useful modern computer vision techniques to the field within
the foreseeable future.
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