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Abstract

Understanding the mechanisms underlying ecosystem resilience – why some systems have an irreversible response

to disturbances while others recover – is critical for conserving biodiversity and ecosystem function in the face of glo-

bal change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empiri-

cal evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the

large landscape and regional scales most relevant to land management and conservation practices has been limited

by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in

large-scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from

small-scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems

influences the recovery of productivity after wildfires across the four-corner region of the United States. We addition-

ally asked how environmental variation (topography, macroclimate) across this geographic region influences such

resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that func-

tional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the

recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope,

elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on

microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empiri-

cal evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of

combining theory based on local-scale studies with tools used in studies at large spatial scales and trait databases to

understand pressing environmental issues.

Keywords: fire resistance, fire tolerance, functional diversity, Landfire, MODIS, NatureServe, path analysis, resprout ability,

seed mass, southwest United States
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Introduction

The anthropogenic alteration of ecosystems – including

climate change, increased nutrient availability, land-use

change, fragmentation, and altered disturbance regimes

– is occurring globally at unprecedented scales and

rates (Vitousek et al., 1997; Ellis, 2011; Diffenbaugh &

Field, 2013). These rapid ecological changes can often

result in full ecosystem collapse or dramatic regime

shifts (Scheffer et al., 2001; Folke et al., 2004). However,

some systems exhibit little change or quickly recover

(Peterson et al., 1998; Gunderson, 2000). A mechanistic

understanding of why some systems have irreversible

response to disturbances while others recover relatively

quickly – what affects resilience – is of key importance

for understanding threats to biodiversity (Sala et al.,

2000) and for preserving ecosystem function (Folke

et al., 2004).

The resilience of an ecosystem can be defined both as

the amount of disturbance a system can absorb while
Correspondence: Marko J. Spasojevic, tel. 425-442-2977,

fax 314-935-4432, e-mail: mspaso@gmail.com

1421© 2015 John Wiley & Sons Ltd

Global Change Biology (2016) 22, 1421–1432, doi: 10.1111/gcb.13174



remaining in the same state and/or function (i.e., ‘eco-

logical resilience’; Holling, 1973, 1996), and as the abil-

ity of a system to recover state/function following

disturbance (i.e., ‘engineering resilience’; Holling,

1996). Many studies have recommended promoting

biodiversity as a practical measure for increasing resili-

ence (e.g., Chapin et al., 2000; Fischer et al., 2006; Sud-

ing, 2011; Bernazzani et al., 2012). For example, several

metrics of biodiversity were promoted as a means of

increasing resilience of Habitat Conservation Plans

under the Endangered Species Act (e.g., native species

diversity in grasslands, diversity in age structure of for-

ests; Bernazzani et al., 2012). Similarly, in sustainability

science, biodiversity is presented as a proxy for ecologi-

cal resilience of ‘critical natural capital’ (Brand, 2009).

Likewise, promoting native species and functional

diversity is put forth as a ‘guiding principle’ for com-

modity production landscapes (Fischer et al., 2006). In

general, biodiversity (particularly functional diversity)

is thought to increase resilience because the function of

any given species lost to a disturbance can be replaced

by other functionally redundant species in high-diver-

sity ecosystem (Holling, 1973; Walker, 1995; Elmqvist

et al., 2003; Suding, 2011).

Despite the widespread acceptance of a generally

positive relationship between biodiversity and resili-

ence both conceptually and in practice, empirical evi-

dence for this relationship remains fairly limited in

scope and localized in scale (Hobbs et al., 2011; Suding,

2011; Mori et al., 2013). To our knowledge, only two

studies to date have explicitly tested the resilience of

productivity to disturbance, both in small-scale experi-

mental grasslands. In one study, recovery of grass bio-

mass was positively related to biodiversity 2 years after

a small-scale (1 m2) disturbance (Pfisterer & Schmid,

2002). In another experimental grassland, recovery of

biomass in 1 m2 plots was positively related to biodi-

versity, but the relationship was driven by a single

grass species (Van Ruijven & Berendse, 2010). To date,

no studies have tested the relationship between biodi-

versity and resilience at the large landscape and regio-

nal scales most relevant to management, conservation,

and restoration practices. Identifying how biodiversity

relates to resilience across larger spatial scales is critical

for projecting the ecological consequences of increas-

ingly widespread large disturbances (Suding, 2011; Li

et al., 2014).

The tools available to link patterns of biodiversity

and resilience at larger scales have been rapidly devel-

oped in recent years. Remote sensing has proved a

powerful tool for biodiversity monitoring and conser-

vation planning (Stoms & Estes, 1993; Gould, 2000;

Duro et al., 2007; Wiens et al., 2009; Li et al., 2014).

For example, wildfires are a large-scale periodic

disturbance, which often have limited in situ access due

to their frequent occurrence in rugged, remote terrain

and their inherent danger to humans (Kennedy et al.,

2012). Remote sensing has been highly effective at mon-

itoring fire potential, severity, frequency, and the recov-

ery of biodiversity (Robinson, 1991; Eva & Lambin,

2000; Lentile et al., 2006; Wiens et al., 2009) providing

data that may not be otherwise available. Similarly, trait

databases (e.g., TRY, USDA plants, Kew SID) now pro-

vide data to more realistically and empirically ground

models that have previously been limited to using taxo-

nomic data that do not consider the functional traits of

species (Kattge et al., 2011). It is important to note

however, these tools are subject to several sources of

uncertainty which are not present in small-scale stud-

ies. For example, vegetation data derived from the

USGS Landfire Existing Vegetation Type classification

system (USGS, 2012) do not include rare and subordi-

nate species. While there is general evidence that

species contribute to ecosystem function based on their

abundance within a given ecosystem (Grime, 1998;

Garnier et al., 2004), supporting the use of these data,

there are some cases where subordinate species may

contribute more strongly to ecosystem functioning

(Mariotte, 2014). Similarly, trait databases often do not

include locally measured trait data or intraspecific trait

variation, both of which may be important for trait-

based studies (Albert et al., 2011; Violle et al., 2012;

Cordlandwehr et al., 2013). Despite their inherent limi-

tations, remote sensing and trait databases allow us to

address fundamental questions in ecology at spatial

scales that would not be feasible through field studies

and have the potential to provide new insights into the

factors influencing ecosystem resilience.

Functional diversity is thought to increase resilience

because communities with a diverse set of response

traits (high functional diversity) are buffered against

environmental change – the function of any given

species lost to a disturbance can be replaced by other

species within high-diversity ecosystems (Holling,

1973; Walker, 1995; Elmqvist et al., 2003; Suding, 2011;

Standish et al., 2014). However, recent advances in

functional ecology suggest that the functional diversity

of a community is comprised of multiple dimensions

(Mason et al., 2005) and two key dimensions that have

proved useful in trait-based studies are functional rich-

ness and functional dispersion (Mouchet et al., 2010;

Schleuter et al., 2010). Functional richness (FRic)

describes the volume of trait space occupied by species

in a community regardless of the shape of the distribu-

tion and can be conceptualized as the multivariate

equivalent of the range of traits within a community

(Cornwell et al., 2006). Functional dispersion (FDis) is

the mean distance in multidimensional trait space of

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 1421–1432

1422 M. J . SPASOJEVIC et al.



individual species to the centroid of all species and can

be conceptualized as the degree of trait dissimilarity

among species within a community (Mason et al., 2005;

Laliberte & Legendre, 2010). Importantly, the relative

importance of these two components of functional

diversity for ecosystem resilience remains untested.

Identifying which component of functional diversity

(FRic: having a wide range of trait strategies, or FDis:

having species with dissimilar strategies) contributes

most to resilience has important implications for land

managers looking for practical recommendations of

how to maximize resilience of a given ecosystem.

In this study, we ‘scale up’ the biodiversity–resilience
relationship to examine whether the functional diver-

sity within woodland and forest ecosystems influences

resilience across a large geographic region. Specifically,

we examine the recovery of productivity after wildfire

across the four-corner region of the southwest United

States of America (Fig. 1). We focus on the resilience of

productivity because it provides a response that is easy

to compare across multiple woody ecosystems and it is

generally correlated with ecosystem health (e.g., Rap-

port et al., 1998). This area encompasses a wide range

of ecosystems from cold desert woodlands to forested

mountains, which vary in functional diversity both

among systems and across climatic and topographic

gradients (Butterfield, 2015). This area is also character-

ized by frequent wildfires (Westerling et al., 2006;

O’connor et al., 2014), providing an easily identifiable

baseline disturbance. Using a novel combination of

remote sensing (to identify fire extent, vegetation types,

and productivity response), trait databases (to deter-

mine functional diversity for each vegetation type), and

path analysis we ask the following: (1) does greater

functional diversity at the regional scale confer ecosys-

tem resilience in productivity to disturbance by fire, (2)

how does variation in environmental conditions (e.g.,

topography, macroclimate) across the region influence

ecosystem resilience, either directly or indirectly via

changes in functional diversity, and (3) which dimen-

sion of functional diversity – functional richness or dis-

persion – contributes most to the biodiversity–
resilience relationship. We additionally compare our

results to a model that includes species richness instead

of functional diversity to aid in the interpretation of our

results.

Materials and methods

Study region

The study area extent, from eastern Arizona to eastern

Colorado and New Mexico, was chosen to span a range of

ecoregions in the four-corner region of the southwest United

States of America (Fig. 1). This area encompasses ecosystems

with a variety of species and functional diversity across cli-

matic and topographic gradients with increasingly frequent

wildfires (Westerling et al., 2006; Littell et al., 2009; O’connor

et al., 2014). We focused on woodlands and forests which were

the most commonly burned ecosystems in the study region.

Vegetation types range from low-elevation basin woodlands

Fig. 1 Study area in the four-corner region of the southwest United States of America highlighting the fire perimeters (red) that

included one or more pixels of high-severity fire burning a single vegetation type used in this analysis. Our study focused on two dom-

inant ecoregions: cold desert, woodlands, and forested mountains.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 1421–1432
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to high-elevation forests, including 16 total types as defined

by the USGS Landfire Existing Vegetation Type (EVT) classifi-

cation system (USGS, 2012; Table S1). Existing vegetation

types are mesoscale classifications representing vegetation

types that recur consistently across similar physical habitats

that can be reliably mapped at 30 m resolution through remo-

tely sensed and topographic data (Corner et al., 2003).

Fire extent and severity

We used the Landfire disturbance product (USGS, 2012) to

identify all ‘wildland fires’ that burned between 1999–2002 in

the study region (1999 is the first year available in the Landfire

dataset). Fires identified by the Landfire disturbance product

are derived from 30 m resolution Landsat imagery via the

Monitoring Trends in Burn Severity (MTBS) and Burned Area

Reflectance Classification (BARC) products. These datasets use

changes in reflectance of the land surface following fire events

to identify both extent and severity (low, medium, high) of the

burn. High-severity fires lead to near 100% loss of green vege-

tation, although high severity does not necessarily indicate a

stand killing fire (USGS, 2012). Individuals or species may sur-

vive fires even if all green leaves are destroyed. However, by

focusing on high-severity fires, we increase the likelihood that

the response measured postfire is predominantly due to recov-

ery (new growth, reseeding, resprouting) and not strongly

influenced by vegetation remnants that did not burn.

We combined the fire disturbance and existing vegetation

type (EVT) layers to identify areas of a single vegetation type

that burned with a high-severity fire. The pixel resolution for

this analysis was 250 m, consistent with the MODIS normal-

ized difference vegetation index (NDVI) products used to

measure recovery (see Resilience metrics below). To be included

in the analysis, at least 95% of the 250 m pixel must have

burned between 1999 and 2002 with more than 50% of the

burned area within the pixel classified as a high-severity fire.

Additionally, at least 90% of the 250 m pixel had to be the

same land cover class based on the existing vegetation layer.

Finally, the pixel could not have any subsequent disturbance

in the Landfire disturbance product during the remaining

time series (2003–2010).

In addition to identifying disturbed pixels, we also identi-

fied undisturbed control pixels to normalize our measure of

resilience (see Resilience metrics, below) among vegetation

types. By normalizing with undisturbed control pixels, we

aimed to control for interannual variability in our resilience

measurement as well as for the large difference in NDVI

between forests and woodlands. Candidate control pixels had

no disturbance from 1999 to 2010 according to the Landfire

disturbance product, were within 2 km of a fire perimeter,

and contained at least 90% of a single existing vegetation type

that matched the disturbed pixel.

Environmental predictors

For every disturbed pixel, we extracted topographic and

macroclimatic covariates. Elevation (in meters), aspect, and

slope (in degrees) were derived from the shuttle radar topog-

raphy mission (SRTM) gridded data at 90 m resolution. As

aspect is a circular variable, we transformed this variable

where cos(aspect) represents the north and south component

of aspect, while sin(aspect) represents the east–west compo-

nent of aspect. Here, we only focus on cos(aspect) (the north–
south component) as microclimate is most strongly influenced

by the differences in incoming solar radiation among north-

and south-facing aspects (Dobrowski et al., 2009). Average val-

ues were calculated at a 250 m resolution aligned with MODIS

pixels used to calculate recovery (see below). Macroclimatic

covariates were mean annual temperature (MAT) and mean

annual precipitation (MAP), both extracted from PRISM (Daly

et al., 2002) interpolated climate data. Here, we use both

macroclimatic and topographic variables as predictors

because the topographic variables can provide an indication

of the importance of microclimatic variation which may not be

evident within the coarse (800 m) scale of our macroclimatic

data (Dobrowski, 2011).

Species and functional diversity

The species present within existing vegetation type (Table S1)

were extracted through NatureServe (www.natureserve.org).

We used the vegetation associations (e.g., Juniperus mono-

sperma/Agave lechuguilla woodland and Pinus edulis/Ach-

natherum scribneri woodland are associated with ‘Colorado

Plateau Pinyon-Juniper Shrubland’) within each vegetation

type to create a list of all species within each vegetation type.

Species richness ranged between 21 and 59 species per vegeta-

tion type. As an estimate of community composition within

each vegetation type, we then used the number of times a spe-

cies occurred in a different vegetation association (e.g., Junipe-

rus monosperma occurred in 22 separate vegetation associations

within the Colorado Plateau Pinyon-Juniper Shrubland vege-

tation type) divided by the total number of occurrences of all

species across all association types within each vegetation

type. While this approach does not include rare and subordi-

nate species, it captures the species that likely contribute most

to ecosystem function (Garnier et al., 2004) by capturing the

species that are widespread across the vegetation type.

Functional diversity was calculated for each of the 16 vege-

tation types based on (1) categorical traits associated with fire

tolerance and resistance and (2) seed mass. We analyzed these

traits separately as they represent different potential strategies

for increasing resilience to fire. Categorical traits associated

with fire tolerance/resistance were extracted from the USDA

Plants database (http://plants.usda.gov) and included growth

habit (graminoid, herb, subshrub, shrub, tree), fire tolerance

(yes, no), fire resistance (low, medium, high), and resprout

ability (yes, no). Growth form is associated with ecophysiolog-

ical adaptations to maximize photosynthetic production and

shelter from severe climatic conditions (Perez-Harguindeguy

et al., 2013). Fire tolerance indicates the ability of a species to

regrow, or reestablish from seed postfire. Fire resistance indi-

cates a set of traits that allow plant species to resist burning

(e.g., height taller than flames, thick bark; Lavorel & Garnier,

2002). Resprout ability indicates a postdisturbance recovery

strategy where species do not have to recruit from seed, but

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 1421–1432
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can resprout after the destruction of most of their above-

ground biomass, and is important for persistence in systems

where disturbances are common (Perez-Harguindeguy et al.,

2013). Growth habit data were available for all 239 species

found across the 16 vegetation types, and data on the remain-

ing three traits were available for 119 species. While other

traits (bark thickness, nonstructural carbohydrates) may be

better indicators of species responses to fire, we chose these

traits because they are freely available for a large number of

species from existing plant trait databases.

Seed mass (the oven-dry mass of an average seed of a spe-

cies) is generally related to dispersal ability, a reproductive

strategy where species that produce few large seeds are

thought to be better competitors and those that produce

many small seeds are thought to be better dispersers

(Cadotte, 2007); however, some large seeds do have modifi-

cations that allow for long-distance dispersal. Seed mass data

were available for 144 of the 239 species in our dataset from

the Kew Royal Botanical Gardens Seed Information Database

(http://data.kew.org/sid/). We classified species into five

categories of seed mass – extra small: <0.1 g/1000 seeds,

small: <1 g/1000 seeds, medium: <10 g/1000 seeds, large:

<100 g/1000 seeds, and extra-large: <1000 g/1000 seeds. Spe-

cies without seed mass data were assigned a category based

on the other members of the genus, as seed mass is generally

phylogenetically conserved (Moles et al., 2005). If individuals

of a given genus fell into multiple categories, we assigned

species without seed mass data to the most common cate-

gory in that genus.

For our two sets of traits (fire resistance/tolerance traits and

seed mass), we calculated functional richness and functional

dispersion using the FD package (Laliberte & Legendre, 2010)

in R 2.15 (R Core Team, 2014). Functional richness (FRic)

measures the ranges of trait values in a community and is cal-

culated as the minimum convex hull volume that includes all

the species considered (Cornwell et al., 2006). When calculated

for a single trait, such as seed mass, functional richness is the

difference between the maximum and minimum functional

values present in the community (Mason et al., 2005). Func-

tional dispersion (FDis), which indicates the degree of trait

dissimilarity (the inverse of functional redundancy) among

species, is calculated as the mean distance of each species in

multidimensional trait space to the centroid of all species and

is statistically independent of species richness (Laliberte &

Legendre, 2010).

Resilience metric: productivity response

To measure recovery of vegetation productivity after a fire,

we obtained remote sensing-based phenology metrics from

2001 to 2010 for the study area from the USGS EROS Center

(http://phenology.cr.usgs.gov/). The phenology metrics

were derived from a time series of weekly maximum NDVI

in the USGS eMODIS collection (https://lta.cr.usgs.gov/

emodis) at 250 m spatial resolution. We used the time-inte-

grated NDVI (TIN), a daily integration of NDVI above the

minimum during the growing season, as a proxy of annual

primary productivity (Pettorelli et al., 2005). To account for

the effects of confounding factors during any given year (e.g.,

interannual variability of climate) and normalize the produc-

tivity response among vegetation types, we calculated the

ratio of TIN in a burned pixel to the median TIN value of cor-

responding control pixels, which have the same vegetation

type as the burned pixel, for every year from 2001 to 2010,

and then fitted a regression line of the ratios on year after fire

(or vegetation age): TINburned

medianTINcontrol

¼ aþ b� age. We then

used the slope of the regression line (b) as an indicator of

recovery of vegetation productivity.

Statistical analysis

To screen data (i.e., test for nonlinear relationships among

our variables) and to aid in the interpretation of our

results, we first explored univariate relationships among

each diversity metric (species richness, FRic, FDis) and our

macroclimatic [mean annual temperature (MAT) and mean

annual precipitation (MAP)] and topographic (slope, aspect,

elevation) variables for each fire. We tested for both linear

and nonlinear (quadratic) relationships for each response

measure and selected the best fit using Akaike information

criteria (Burnham & Anderson, 2004). We then used path

analysis to investigate links among macroclimate, topogra-

phy, diversity, and the recovery of productivity after fire

(resilience). We built an initial model (Fig. 2) that included

the direct effects of climate and topography on the produc-

tivity response as well as their direct effect on diversity,

and subsequently, diversity’s direct effect on the productiv-

ity response.

For each model, we removed variables to find the model

with the lowest Akaike information criterion (AIC), assessed

model fit with chi-square (v2) tests, root mean square error of

approximation (RMSEA), and goodness-of-fit index (GFI). v2

Fig. 2 General form of the path analysis evaluated for produc-

tivity response (resilience) including the role of diversity (rep-

resented as species richness or functional richness (FRic) and

functional dispersion (FDis) in our analysis). Path coefficients

are standardized prediction coefficients (Grace & Bollen,

2005).

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 1421–1432
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values associated with a P-value >0.05 (suggesting that

observed and expected covariance matrices are not different)

and a RMSEA < 0.05 and GFI > 0.95 indicate a good model fit

(Kline, 2010). Path analysis was conducted using the Lavaan

package (Rosseel, 2012) implemented in R (R Core Team,

2014). In our results (Fig. 3a–c), nonsignificant pathways (ar-

rows) have been removed (as compared to the initial model)

and marginally significant pathways (0.05 < P < 0.10) are indi-

cated by gray-dashed lines.

Results

Vegetation recovery dataset

The disturbance dataset identified a total of 7 715 250 m

pixels meeting the selection criteria of high-severity

burns of a single vegetation type, representing 189

unique fire events and including 44 unique land cover

classes. The undisturbed control dataset included a total

of 74 138 pixels, but control pixels with the same vegeta-

tion type as the burned pixels were not always available.

After subsetting this dataset to focus only on woodland

or forest vegetation types with appropriate control pix-

els, our final dataset contained 6603 total pixels from 133

unique fire events (Table S2) and encompassed 16

unique land cover classes (Table S1).

Univariate relationships

Species richness and each metric of functional diversity

for both fire traits and seed mass showed varied direct

linear relationships with topography and climate

(Table 1).

(a)

(c)

(b)

Fig. 3 Path analyses testing the hypothesis that diversity increases the resilience of productivity to fire for (a) species richness, (b)

functional diversity based on fire tolerance/regeneration traits, and (c) functional diversity based on seed mass. Path coefficients are

standardized prediction coefficients (Grace & Bollen, 2005). Pathways not found to be influential (nonsignificant P > 0.1) are removed,

and marginally significant pathways (P < 0.1 and P > 0.05) are represented by gray-dashed lines.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 1421–1432
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Path analysis

The model including species richness was found to

have a close fit to the data (v2 = 0.01, df = 1,

P = 0.94; RMSEA = 0.00; GFI = 0.999), but only

explained a relatively small amount of the variance

in productivity response (R2 = 0.11, Fig. 3a). Impor-

tantly, species richness only marginally positively

influenced the recovery of productivity (P = 0.07). In

the final model, only slope had direct effects on

productivity response to fire, where productivity

recovered more quickly in communities on steeper

slopes (Table 2). Aspect had a marginal influence on

recovery of productivity (P = 0.06). Species richness

was influenced by aspect, with higher richness on

south-facing aspects, but as the species richness only

marginally influenced productivity response the

indirect effect of aspect on productivity is also only

marginal. In summary, we did not find that species

richness significantly predicted the resilience of

productivity to wildfire.

The model including functional diversity based on

fire response/tolerance traits was found to have a close

fit to the data (v2 = 0.52, df = 3, P = 0.91; RMSEA =
0.00; GFI = 0.999) and explained more of the variance

in productivity response (R2 = 0.16, Fig. 3b) than the

model with species richness. In the final model slope,

elevation, functional richness, and functional disper-

sion all had direct effects on productivity response to

fire, where productivity recovered more quickly in

communities on steeper slopes, at lower elevations

(Table 2), with less functional richness, and with

greater functional dispersion. Aspect also influenced

postfire recovery, but only via its indirect effect through

functional richness (Fig. 3b). Elevation also influenced

postfire recovery via its indirect effect through

functional dispersion (Fig. 3b). In summary, we found

that communities with greater functional dispersion in

fire response/tolerance traits were more resilient in

productivity to wildfire.

The model including functional diversity based on

seed mass was found to have a close fit to the data

Table 1 The relationships between the three metrics of biodiversity (SR: species richness, and FRic: functional richness and FDis:

functional dispersion for both fire traits and seed mass) and the predictor variables in our model. Direction of relationship indicated

by + (positive relationship) or � (negative relationship), NS indicates a nonsignificant relationship. ‘N–S aspect’ is cos(aspect)

describing the north–south component of aspect, a circular variable.

Biodiversity measure Response metric Predictor variable Direction of relationship r2 F-statistic

Species richness Species richness Mean annual temperature NS NS NS

Mean annual precipitation NS NS NS

Slope NS NS NS

N–S aspect � 0.04 6.65*

Elevation NS NS NS

Fire resistance/tolerance FRic Mean annual temperature + 0.06 9.31*

Mean annual precipitation � 0.06 9.61*

Slope NS NS NS

N–S aspect � 0.05 6.96*

Elevation � 0.07 10.52*

FDis Mean annual temperature � 0.16 27.34***

Mean annual precipitation + 0.20 36.31***

Slope NS NS NS

N–S aspect NS NS NS

Elevation + 0.43 109.80***

Seed mass FRic Mean annual temperature NS NS NS

Mean annual precipitation NS NS NS

Slope + 0.08 12.76***

N–S aspect NS NS NS

Elevation NS NS NS

FDis Mean annual temperature + 0.22 40.57***

Mean annual precipitation � 0.11 17.74***

Slope NS NS NS

N–S aspect NS NS NS

Elevation � 0.20 35.12***

FRic, functional richness; FDis, functional dispersion; N–S aspect, north–south aspect; NS, nonsignificant relationships. Bold text,

significant relationships: *P < 0.05, **P < 0.001, ***P < 0.001.
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(v2 = 1.53, df = 4, P = 0.82; RMSEA = 0.00; GFI = 0.997)

but explained the least amount of the variance in

productivity response to fire (R2 = 0.10, Fig. 3c). In the

final model, only slope had a direct effect on postfire

recovery with there being a faster recovery of produc-

tivity in communities on steeper slopes (Table 2).

Unlike the model with fire traits, we did not find that

functional diversity (neither FRic nor FDis) of seed

mass influenced postfire recovery.

Table 2 Direct, indirect, and total standardized effects on

resilience (productivity response) based on path analyses. Sig-

nificant effects in bold, NS = nonsignificant relationships. Ital-

icized values indicate marginally significant values (P < 0.1).

Biodiversity

measure Predictor

Pathway to

productivity Effect

Species

richness

Species richness

(SR)

Direct �0.15

Mean annual

temperature

Direct NS

Indirect through

SR

NS

Total effect NS

Mean annual

precipitation

Direct NS

Indirect through

SR

NS

Total effect NS

Slope Direct 0.32

Indirect through

SR

NS

Total effect 0.32

Aspect Direct �0.16

Indirect through

SR

0.02

Total effect �0.14

Elevation Direct NS

Indirect through

SR

NS

Total effect NS

Fire

resistance/

tolerance

Functional

dispersion

(FDis)

Direct 0.28

Functional

richness (FRic)

Direct �0.20

Mean annual

temperature

Direct NS

Indirect through

FDis

NS

Indirect through

FRic

NS

Total effect NS

Mean annual

precipitation

Direct NS

Indirect through

FDis

NS

Indirect through

FRic

NS

Total effect NS

Slope Direct 0.32

Indirect through

FDis

0.09

Indirect through

FRic

NS

Total effect 0.32

Aspect Direct �0.14

Indirect through

FDis

0.04

Indirect through

FRic

NS

Total effect 0.04

Table 2 (continued)

Biodiversity

measure Predictor

Pathway to

productivity Effect

Elevation Direct �0.38

Indirect through

FDis

0.18

Indirect through

FRic

�0.04

Total effect 0.20

Seed mass Functional

dispersion

(FDis)

Direct NS

Functional

richness (FRic)

Direct NS

Mean annual

temperature

Direct NS

Indirect through

FDis

NS

Indirect through

FRic

NS

Total effect NS

Mean annual

precipitation

Direct NS

Indirect through

FDis

NS

Indirect through

FRic

NS

Total effect NS

Slope Direct 0.32

Indirect through

FDis

NS

Indirect through

FRic

NS

Total effect 0.32

Aspect Direct NS

Indirect through

FDis

NS

Indirect through

FRic

NS

Total effect NS

Elevation Direct NS

Indirect through

FDis

NS

Indirect through

FRic

NS

Total effect NS
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Discussion

Ecosystem resilience is increasingly being promoted

as a key concept in the conservation of ecosystem

function in the face of global change (Mori et al., 2013;

Lavorel et al., 2015; Reyer et al., 2015). Moreover, it

has been suggested that functional diversity may help

promote resilience within a given ecosystem because

the function of any given species lost to a disturbance

can be replaced by other species in functionally

diverse ecosystems (Holling, 1973; Sundstrom et al.,

2012). Although small-scale studies support the

importance of functional diversity for resilience (e.g.,

Chillo et al., 2011; Pillar et al., 2013), our study is the

first to scale up this relationship to the large spatial

scales most relevant to land managers and conserva-

tion practitioners. Overall, we found that functional

diversity in traits associated with fire tolerance/resis-

tance was a better predictor of how quickly vegetation

productivity recovered following wildfire than species

richness or the functional diversity of seed mass. Our

results provide novel support that high functional dis-

persion in traits associated with fire tolerance/resis-

tance may contribute to the recovery of productivity

after wildfire across a wide range of ecosystems from

cold desert woodlands to forested mountains

(Table S1).

Species richness was a poor predictor of the resilience

of communities, and our model explained little of the

variation in recovery of productivity with richness only

having a marginal effect (P = 0.07). As the diversity–re-
silience relationship is predicted to be strongest in

ecosystem with many functional strategies for coping

with a disturbance (Holling, 1973; Walker, 1995; Elmq-

vist et al., 2003; Suding, 2011), our results suggest that

species richness is a poor proxy for the diversity of

functional strategies among species within the ecosys-

tems studied here. This result supports trait-based anal-

yses suggesting that functional diversity is a better

metric than species diversity for predicting ecosystem

response to environmental change (Lavorel & Garnier,

2002; Diaz et al., 2004; Mcgill et al., 2006). Importantly,

for the diversity–resilience relationship, our results

reinforce existing concerns about species richness. By

itself, species richness may be a poor indicator of an

ecosystem’s ability to maintain biodiversity and ecosys-

tem function over long time periods (Fleishman et al.,

2006).

We found that communities with high functional dis-

persion and low functional richness in traits associated

with fire tolerance/resistance recovered more quickly

from wildfire (Fig. 3b). Plant species have many

adaptations to fire (Keeley et al., 2011), and our results

suggest that to recover productivity after a wildfire the

breadth of the overall trait space (high functional

richness) is less important than having species with

diverse, but not necessarily broadly different, strategies

(high functional dispersion). For example, our results

suggest that managers could build ecosystems more

resilient to fire by restoring species with a diversity of

just a few strategies (e.g., just resprout ability and fire

tolerance) rather than focusing on including all possible

strategies (e.g., fire tolerance, fire resistance, and

resprout ability). While our results suggest a slightly

more nuanced version of the functional diversity–re-
silience relationship, the basic principle remains the

same – that some degree of increased functional diver-

sity (functional dispersion in our case) promotes

ecosystem resilience. As this is one of the first studies

to assess multiple metrics of functional diversity in the

resilience of productivity, we do not know whether this

is a general trend and additional research investigating

these patterns across other ecosystems and distur-

bances is needed.

The relationship between functional richness in traits

associated with fire tolerance/resistance and resilience

was influenced indirectly by aspect, where communi-

ties on north-facing aspects had higher functional rich-

ness. This negative relationship between functional

richness and aspect may result from cooler/more

benign microclimates on north-facing aspects support-

ing a wider range of functional strategies (Kleidon &

Mooney, 2000; Currie et al., 2004; Spasojevic et al., 2014)

resulting in higher diversity of fire tolerance/regenera-

tion traits and, in turn, lower resilience on north-facing

aspects; these results contrast with work by Ireland &

Petropoulos (2015) who found greater recovery on

north-facing aspects in a fire in Western Canada. More-

over, the relationship between functional dispersion in

traits associated with fire tolerance/resistance and resi-

lience was influenced indirectly by elevation, where

communities on at higher elevations had higher func-

tional dispersion. This positive relationship between

functional diversity and elevation may result from

environmental filtering in low-elevation woodlands

reducing the diversity of functional traits among co-

occurring species (Weiher & Keddy, 1995; Spasojevic &

Suding, 2012). Furthermore, we found that slope and

elevation directly influenced resilience – greater recov-

ery of productivity was observed on steeper slopes and

at lower elevations. Lower elevations in this system

have longer growing seasons (Weiss et al., 2004; Crim-

mins et al., 2008, 2011; Inouye, 2008) which may allow

productivity to recover more quickly than higher-eleva-

tion systems where recovery may be hindered by the

shorter growing season. The greater recovery of

productivity on steeper slopes may not be an effect of

slope per se, but could suggest that systems within
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topographically complex landscapes may be more resi-

lient to fire. Specifically, mesic sites (often found on

flat/shallow slopes) often support greater densities of

fire-intolerant species (Lydersen & North, 2012; Kane

et al., 2015) which may reduce the recovery of produc-

tivity postfire.

Functional diversity of seed mass did not influence

recovery from wildfire (Fig. 3b). Seed mass is often

related to a trade-off between dispersal ability and

competitive ability where species often produce few

large seeds that are thought to be better competitors or

many small seeds that are thought to be better dis-

persers (Grime, 1977; Cadotte, 2007). In xeric forests

with stand-destroying fires, this competition–coloniza-
tion mechanism has been proposed to be one method

in maintaining diversity (Clark & Ji, 1995), but our

results do not support this hypothesis. However, it is

important to note that while seed mass is generally,

phylogenetically conserved (Moles et al., 2005), the

coarse nature of our seed mass data may have masked

potential responses. Examinations with species-specific

seed mass data may resolve the relationship between

functional diversity of seed mass and the resilience of

productivity to fire. Moreover, understanding the

potential role of competition–colonization trade-offs for

the recovery of productivity after a wildfire may have

benefited from data on other dispersal traits (dispersal

syndrome, seed release height) or traits associated with

competition (specific leaf area, wood density), which

together better describe these different plant strategies.

However, these data are not currently available in exist-

ing trait databases for our focal species.

Understanding the properties underlying the resili-

ence of an ecosystem can help to identify ecological dis-

turbance thresholds past which ecosystem recovery

may no longer be possible (Hobbs et al., 2011; Suding,

2011). We found that topography may directly influ-

ence ecosystem resilience (slope directly influenced the

recovery of productivity after wildfire) and macrocli-

mate may influence underlying functional diversity

within an ecosystem (Figs 3b,c). This result suggests

that changes to these underlying ecosystem properties

may fundamentally alter the resilience of an ecosystem

in ways that may only be discernable by examining the

multivariate links between ecosystem properties, func-

tional diversity, and resilience. Combining path analy-

sis, remote sensing, and trait databases with predictive

models of vegetation change may prove a powerful

approach to understand changes to ecosystem resili-

ence and, more importantly, the potential for ecological

thresholds to be crossed and subsequent regime shifts

or ecosystem collapse (Scheffer et al., 2001; Folke et al.,

2004).

Despite growing interest in the causes and conse-

quences of ecosystem resilience and in understanding

how local-scale processes ‘scale up’ to larger spatial

scales, most studies to date have yet to integrate

these concepts explicitly when testing the diversity–
resilience relationship. It is important to note that

issues still remain in scaling up local-scale processes

to larger spatial scales. Our models explained a rela-

tively small amount of the variation in the productiv-

ity response. Some of this unexplained variation

likely reflects the coarse nature of the variables we

used. For example, variation within a pixel in pro-

ductivity, fire, or vegetation may contribute to our

relatively low explanatory power. Similarly, research

has shown that larger-scale climate data, such as the

PRISM data we used here, are sensitive to topo-

graphic complexity (Luoto & Heikkinen, 2008), which

may explain the lack of a role of macroclimatic vari-

ables in our study. Future research incorporating

heterogeneity in factors such as stand age (e.g., Ste-

phens et al., 2013; Taylor et al., 2014), finer resolution

recovery measures (e.g., metrics derived from 30 m

Landsat time series), or higher-resolution climate data

(e.g., downscaled climate variables) may help

increase the predictive power of our approach and

lead to a greater understanding of the biodiversity–
resilience relationship. However, our goal here was

to assess the biodiversity–resilience relationship with

existing tools that are readily available to land man-

agers. While more detailed data could be collected

using field surveys or by conducting trait measure-

ments, the logistic support to conduct these studies

is often lacking. Nonetheless, our study provides

some of the first direct empirical evidence for func-

tional diversity increasing resilience at the scale rele-

vant to large-scale management.

Conclusions

Numerous studies have argued that resilience may be

threatened by the observed and projected loss of spe-

cies (Sala et al., 2000) or functional diversity (Lalibert�e

et al., 2010) due to global change (Chapin et al., 2000;

Standish et al., 2014). By merging the tools used in

large-scale studies of biodiversity (i.e., remote sensing)

with trait databases and multivariate analyses, our

results highlight the power of combining theory based

on local-scale studies with data from large spatial

scales to understand pressing environmental issues.

This approach has great potential to allow us to better

predict how global change may alter ecosystem resili-

ence and recognize when critical thresholds may be

crossed.
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