

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Understanding and Generating Language

with Abstract Meaning Representation

Marco Damonte
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2019

Abstract

Abstract Meaning Representation (AMR) is a semantic representation for natu-

ral language that encompasses annotations related to traditional tasks such as

Named Entity Recognition (NER), Semantic Role Labeling (SRL), word sense

disambiguation (WSD), and Coreference Resolution. AMR represents sen-

tences as graphs, where nodes represent concepts and edges represent seman-

tic relations between them.

Sentences are represented as graphs and not trees because nodes can have

multiple incoming edges, called reentrancies. This thesis investigates the im-

pact of reentrancies for parsing (from text to AMR) and generation (from AMR

to text). For the parsing task, we showed that it is possible to use techniques

from tree parsing and adapt them to deal with reentrancies. To better ana-

lyze the quality of AMR parsers, we developed a set of fine-grained metrics

and found that state-of-the-art parsers predict reentrancies poorly. Hence we

provided a classification of linguistic phenomena causing reentrancies, cate-

gorized the type of errors parsers do with respect to reentrancies, and proved

that correcting these errors can lead to significant improvements. For the gen-

eration task, we showed that neural encoders that have access to reentrancies

outperform those who do not, demonstrating the importance of reentrancies

also for generation.

This thesis also discusses the problem of using AMR for languages other

than English. Annotating new AMR datasets for other languages is an ex-

pensive process and requires defining annotation guidelines for each new lan-

guage. It is therefore reasonable to ask whether we can share AMR annota-

tions across languages. We provided evidence that AMR datasets for English

can be successfully transferred to other languages: we trained parsers for Ital-

ian, Spanish, German, and Chinese to investigate the cross-linguality of AMR.

We showed cases where translational divergences between languages pose a

problem and cases where they do not. In summary, this thesis demonstrates

the impact of reentrancies in AMR as well as providing insights on AMR for

languages that do not yet have AMR datasets.

iii

Lay summary

Smartphones, tablets, and personal computers can predict the words we are

about to type, correct spelling mistakes and show us relevant advertisements,

among other applications. Personal assistants are becoming increasingly pop-

ular with products such as Google Assistant, Microsoft Cortana, Amazon Alexa,

and Apple Siri. Automatic translation services such as Google Translate are

becoming increasingly reliable. The area of research that enabled these appli-

cations is known as Natural Language Processing (NLP).

NLP deals with human-computer interactions based on a natural language,

such as English. Its goal is to enable machines to understand the meaning of

what we say and to generate responses and perform actions based on these

conversations. Understanding refers to the process of converting natural lan-

guage into a language interpretable by machines. Generation is the process of

allowing machines to generate new text, for instance, in response to a question.

A crucial issue faced by NLP researchers is how to devise a language that

is interpretable by machines. It needs to express the meaning of natural lan-

guage, yet allow machines to easily process it. For instance, when reading the

sequence of words John’s red car, we know that the writer is talking about a car,

which is of color red and is owned by John. To facilitate machines to under-

stand such a phrase, we instead use a more explicit language which specifies

the relationships between the person John, the color red, and the object car.

To represent the meaning of natural language in machines, this thesis uses

a language called Abstract Meaning Representation (AMR). We study both the

problem of understanding natural language and the problem of generating

natural language. We implement and analyze algorithms that can automati-

cally convert natural language into AMR (understanding) and vice-versa (gen-

eration).

v

Acknowledgements

Inizio i ringraziamenti con la parte sentimentale. La persona che ringrazio di

più, per l’amore incondizionato e la fiducia che non ho sempre meritato, è mia

madre. Grazie anche a mio padre e mia sorella per avermi dato la possibilità di

studiare e perchè, nel bene e nel male, ci sono sempre stati. Nonostante non ce

lo diciamo spesso, ci vogliamo bene. Grazie zia, per essere stata un salvagente

in momenti difficili. Un grazie anche a tutti i miei amici e le persone che mi

sono state vicine e mi hanno convinto di continuare a studiare.

Gracias a mi novia y cómplice, amor de mi vida, por el apoyo moral. Gra-

cias por ser tan juguetona y bromista como yo. Somos un equipo fantastico.

The beginning of my Ph.D. coincided with the start of a sport, Taekwondo,

which has been incredibly strategic for not losing my mind. When things do

not go your way, kicking people in a safe setting is better than throwing your

laptop out the window. I want to thank my instructor Jonathan and all the

fantastic people I have met at the UETKD club in these years. Academically,

I express immense gratitude to those teachers that, together with my mom,

convinced me that it was worth investing in my education. Thank you Davide

Testuggine for telling me about Natural Language Processing. I am especially

thankful to Shay Cohen and Adam Lopez, who allowed me to work on this

thesis and taught me all I know about research. I also want to thank Giorgio

Satta, who worked with me during my first year, as well as my MSc supervisor

Nathan Schneider and Lexi Birch, who also convinced me to join the Ph.D. pro-

gram. There is a large group of Ph.D. students that I need to acknowledge for

lunch conversations, social gatherings, and for being great friends: Joachim,

Joana, Sameer, Sorcha, Ida, Clara, Federico, Esma, Nicola, Kristina, and many

others. Thanks to EdinburghNLP, formerly known as ProbModels, for host-

ing great talks and inviting amazing speakers. I would also like to thank all

of those who gave me feedback on drafts, papers, and presentations, even the

harshest anonymous reviewers. Finally, I thank the examiners Johan Bos and

Ivan Titov for their useful feedback on this thesis.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and that

this work has not been submitted for any other degree or professional qualifi-

cation except as specified.

(Marco Damonte)

vii

A mia mamma

viii

Contents

1 Introduction 1

1.1 Thesis Contributions . 4

1.1.1 AMR Parsing . 4

1.1.2 Evaluation of AMR Parsers 4

1.1.3 Analysis of Reentrant Structures 5

1.1.4 Cross-linguality . 5

1.1.5 AMR-to-text Generation 6

1.2 Thesis Structure . 6

2 Abstract Meaning Representation 9

2.1 AMR Annotations . 10

2.1.1 Named Entity Recognition 12

2.1.2 Word Sense Disambiguation 13

2.1.3 Semantic Role Labeling 13

2.1.4 Negation Detection . 14

2.1.5 Coreference Resolution 14

2.2 AMR Datasets . 14

2.3 AMR Parsing . 15

2.3.1 Transition-based Parsing 16

2.3.2 Neural-based Parsing . 19

2.3.3 Evaluation . 21

2.4 AMR-to-text Generation . 21

2.5 AMR Alignments . 24

2.6 Applications of AMR . 24

2.7 AMR for Other Languages . 25

2.8 Alternatives to AMR . 26

ix

3 Transition-based AMR Parsing 27

3.1 Notation . 28

3.2 Alignments . 28

3.3 Non-Projectivity . 29

3.4 Reentrancies . 31

3.5 Transition System for AMR Parsing 31

3.6 Preprocessing Pipeline . 33

3.7 Training the System . 34

3.7.1 Oracle . 34

3.7.2 Transition Classifier . 35

3.7.3 Concept Identification . 37

3.7.4 Reentrancy Classifier . 37

3.7.5 Edge Classifier . 39

3.8 Experimental Setup . 39

3.9 Results . 41

3.10 Related Work . 43

3.11 Summary . 44

4 Evaluation and Analysis of Reentrant Structures in AMR Parsing 45

4.1 Fine-grained Evaluation . 46

4.1.1 Evaluation Results . 52

4.2 Reentrancies . 53

4.2.1 Phenomena Causing Reentrancies 53

4.2.2 Quantitative analysis . 56

4.2.3 Reentrancy-related Parsing Errors 59

4.2.4 Oracle . 60

4.2.5 Oracle Results . 63

4.2.6 Automatic Error Correction 66

4.3 Related Work . 66

4.4 Summary . 68

5 Cross-lingual AMR Parsing 69

5.1 Task definition . 71

5.2 Machine Translation . 71

5.3 Annotation Projection . 72

5.4 Evaluation . 73

x

5.5 Experimental Setup . 73

5.6 Results . 75

5.7 Qualitative Analysis . 75

5.7.1 Manual Inspection . 77

5.7.2 Translational Divergence 79

5.7.3 Discussion . 82

5.7.4 Analysis of Evaluation Methods 82

5.8 Related Work . 84

5.9 Summary . 85

6 AMR Generation with Structured Neural Encoders 87

6.1 Input Representations . 89

6.1.1 Graph-structured AMRs 89

6.1.2 Tree-structured AMRs . 90

6.1.3 Sequential AMRs . 90

6.2 Encoders . 90

6.2.1 Recurrent Neural Network Encoders 90

6.2.2 TreeLSTM Encoders . 91

6.2.3 Graph Convolutional Network Encoders 92

6.3 Stacking Encoders . 93

6.3.1 Structure on Top of Sequence 94

6.3.2 Sequence on Top of Structure 95

6.4 Experiments . 95

6.4.1 Reentrancies . 98

6.4.1.1 Manual Inspection 99

6.4.1.2 Contrastive Pairs 99

6.4.2 Long-range Dependencies 101

6.5 Summary . 103

7 Conclusions 105

7.1 Future Directions . 106

7.2 Software and Data . 108

Bibliography 111

A Implementation mistake in parsing evaluation metrics 127

xi

1

Introduction

“Open the pod bay doors, Hal.”

“I’m sorry, Dave. I’m afraid I can’t do that.”

– 2001: A Space Odyssey

Smartphones, tablets, and personal computers use Natural Language Process-

ing (NLP) to predict the words we type, correct spelling mistakes and show

us relevant advertisements, among other applications. Smartphones, tablets,

and personal computers can predict the words we are about to type, correct

spelling mistakes and show us relevant advertisements, among other appli-

cations. Personal assistants are becoming increasingly popular with products

such as Google Assistant, Microsoft Cortana, Amazon Alexa, and Apple Siri.

Automatic translation services such as Google Translate are becoming increas-

ingly reliable, especially for high-resource language pairs (Wu et al., 2016).

Healthcare has also started exploiting NLP to facilitate or speed up informa-

tion retrieval and improve diagnostics (Hodgson and Coiera, 2015; Demner-

Fushman et al., 2009). We now expect machines to understand the meaning of

what we say and to generate responses and perform actions based on these con-

versations. Ultimately, NLP promises to enable human-computer interfaces,

or even computer-computer interfaces, entirely based on natural language, as

greatly anticipated by the movie industry. 1

A pipeline for human-computer interaction A traditional human-computer

interaction pipeline includes several components, as shown in Figure 1.1. The

1In 1968, Stanley Kubrick released “2001: A Space Odyssey”. In 2019, NLP technologies are
far behind the psychotic computer from Kubrick’s masterpiece, ethics considerations aside.

1

2 1. Introduction

ASR NLU
Open the door, HAL

Inference

open-01

HAL
:ARG0

door
:ARG1

NLG
sorry-01

I
:ARG1

person
:beneficiary

Dave

:name

TTS
I’m sorry, Dave

Figure 1.1: Diagram of a pipeline that receives speech, processes it and produces

speech in output.

entry point is an Automatic Speech Recognition (ASR) component that trans-

forms input speech into written language. A Natural Language Understand-

ing (NLU) component then converts written language into a Meaning Repre-

sentation Language (MRL), a process known as semantic parsing. In the ex-

ample of Figure 1.1, the input sentence Open the door, HAL is converted into

a meaning representation, which is a tree where the node open has two chil-

dren: HAL and door. The output of the NLU component is then passed into an

inference component (for example, a dialogue manager in dialogue systems

and chatbots), which can reason over the meaning representation. The output

of this component is the meaning representation of a response (such as an an-

swer or a translation). A Natural Language Generation (NLG) component can

then generate text from it. Finally, a Text-To-Speech (TTS) step generates the

output speech. Figure 1.1 describes an application of such a pipeline: the mod-

eling of dialogues. Other typical applications are Machine Translation (MT),

where a sentence is automatically translated into a different language, and text

summarization, where the goal is to shorten a text document (or documents).

Recent advancements in end-to-end approaches attempt to implicitly cap-

ture the meaning representations through distributed representations (Bah-

danau et al., 2015; Luong et al., 2015; Vinyals and Le, 2015). The pipeline above

however remains the de facto standard, and an arguably more elegant solu-

3

beg-01

I you excuse-01
:ARG0 :ARG1 :ARG2

:ARG0

:ARG1

Figure 1.2: AMR graph for the sentence I beg you to excuse me.

tion, to commercial human-computer interfaces. In this thesis, we focus on

two components of the pipeline: NLU and NLG.

Abstract Meaning Representation The MRL we adopt is Abstract Meaning

Representation (AMR; Banarescu et al. 2013). AMR has gained popularity due

to its easy-to-read annotation scheme at the sentence level and the success of its

shared tasks (May, 2016; May and Priyadarshi, 2017). In the AMR literature,

the NLU task is called AMR parsing, where a sentence has to be converted

into its corresponding AMR. The NLG task is called AMR-to-text generation,

where an AMR has to be converted into the sentence it represents. While AMR

is biased towards English, AMR datasets have been created also for other lan-

guages (Li et al., 2016; Xue et al., 2014; Anchiêta and Pardo, 2018).

Reentrancies AMR annotations are rooted and directed acyclic graphs where

nodes represent concepts and edges represent semantic relations between them.

They are graphs and not trees because nodes can have multiple incoming

edges, called reentrancies. Reentrancies can be caused by various linguistic

phenomena. For instance, the AMR graph in Figure 1.2 contains two reen-

trancies: one is caused by a coreference and one is caused by a control verb.

Coreference occurs when multiple words in the sentence refer to the same en-

tity. The two words I and me refer to the same entity, causing the node I in the

AMR to have two incoming edges (parents). Control structures such as beg you

to excuse cause reentrancies because two predicates share an argument. In this

case, you is an object of begging and a subject of excusing.

Graph algorithms have higher computational complexity and are less un-

derstood than tree algorithms (Gilroy, 2019). As a consequence, reentrancies

make parsing and generation more challenging. Previous work removed reen-

4 1. Introduction

trancies to reduce AMR graphs to sequences (Konstas et al., 2017) or trees (Liu

et al., 2015; Takase et al., 2016). Others maintained them but did not analyze

their impact on performance (e.g., Song et al., 2018; Beck et al., 2018).

Thesis Statement This thesis studies machine learning models to perform

AMR parsing and AMR-to-text generation, with a focus on reentrancies. We

claim that our ability to parse reentrancies and to generate from them is of

paramount importance to improve performance and implement high-quality

systems. Furthermore, we propose AMR parsers for languages other than En-

glish and discuss the extent to which is it possible to transfer AMR datasets

across languages.

1.1 Thesis Contributions

This thesis contributes to several aspects of AMR: parsing, evaluation, analysis

of reentrancies, cross-linguality, and generation.

1.1.1 AMR Parsing

We approached AMR parsing by noting its similarities with dependency pars-

ing. Dependency parsing is a well-studied form of syntactic parsing where

dependency edges are created between words in the input sentence. Greedy

transition-based methods (Nivre, 2008) are one of the most popular choices for

dependency parsing, because of their balance between efficiency and accuracy.

We introduced AMREAGER, a transition-based parser for AMR inspired by

the ARCEAGER dependency transition system (Nivre, 2004). AMREAGER is a

linear-time AMR parser that can recover non-projective and reentrant nodes

caused by control structures. We observed that the overall parsing score was

not affected by a transition specifically designed for capturing reentrancies.

This unexpected discovery motivated a more careful analysis of how AMR

parsers are evaluated.

1.1.2 Evaluation of AMR Parsers

The traditional way of evaluating AMR parsers is through a metric called

Smatch (Cai and Knight, 2013). AMR parsing involves a large number of sub-

1.1. Thesis Contributions 5

tasks and linguistic phenomena, but Smatch provides only a single score sum-

marizing the overall quality of the parse. In order to allow for a more detailed

analysis of AMR parsers, we introduced a suite of fine-grained evaluation met-

rics. The metrics assess the performance of AMR parsers with respect to sev-

eral subtasks, one of which is reentrancy prediction. We found that current

parsers cannot accurately parse reentrancies, warranting a closer inspection of

the role of reentrancies and their impact on parsing performance.

1.1.3 Analysis of Reentrant Structures

While reentrancies are central to AMR, a detailed analysis of their role is yet

not available. To address this, we provided a classification of linguistic causes

of reentrancy and quantified their prevalence in the corpus. We then took a

closer look at how well state-of-the-art AMR parsers deal with reentrancies by

analyzing their errors. Finally, we demonstrated that correcting reentrancy-

related errors leads to significant improvements in parsing performance.

1.1.4 Cross-linguality

One of the potential applications for the NLP pipeline of Figure 1.1 is MT. In or-

der to translate between two languages, we need to parse text in one language

and generate text in the other language. However, AMR is heavily based on

English and AMR datasets exist only for a handful of languages. Moreover,

the only available AMR dataset large enough to train state-of-the-art machine

learning models is for English.2 Annotating new AMR datasets for other lan-

guages is an expensive process and requires defining guidelines for each new

language.

We address the lack of training data for other languages by asking whether

it is possible to share the same AMR annotation across languages. To an-

swer this question, we trained AMR parsers that take input sentences in other

languages and produce English AMR graphs. We analyzed the parsers and

showed that structural differences between languages can be often overcome.

Our results suggest that this approach can be a viable way to implement AMR

tools for other languages when it is not possible to build dedicated datasets.

2The largest AMR dataset for non-English is the Chinese dataset, which only contains 1562
sentences. The AMR dataset for English contains 39260 sentences.

6 1. Introduction

1.1.5 AMR-to-text Generation

The NLG task, called AMR-to-text generation or AMR generation, is the op-

posite problem of AMR parsing: given an AMR graph, we wish to generate a

possible realization of the sentence. An important challenge for this task is that

there are multiple ways to express the meaning of a given AMR graph. More-

over, because AMR abstracts away from syntax, it also lacks the information

required to reproduce the reference realization precisely. One such example is

tense information. For instance, the annotation of Figure 1.2 for the sentence I

beg you to excuse me would not change for the sentence I begged you to excuse me.

In previous work, Konstas et al. (2017) linearized AMR graphs to sequences

in order to use sequence-to-sequence architectures (Bahdanau et al., 2015). The

linearization process loses reentrancy information. Graph encoders, which do

not discard reentrancies, were later shown to yield better results (Song et al.,

2018; Beck et al., 2018).

When the AMR annotations do not contain reentrancies, they can be en-

coded as trees rather than graphs. A comparison between tree and graph en-

coders can therefore shed lights on the impact of reentrancies on AMR-to-text

generation. We showed that graph encoders outperform tree encoders, high-

lighting the importance of reentrancies for the task. Our tree and graph models

are based on a novel combination of sequential and structural encoding, out-

performing previous work.

1.2 Thesis Structure

The thesis is structured as follows:

• Chapter 2. We review previous work on annotation scheme, parsing,

generation, and downstream applications.

• Chapter 3. We investigate the similarities between AMR parsing and de-

pendency parsing by developing a transition system, inspired by depen-

dency tree parsing, with transitions aimed at recovering reentrant struc-

tures caused by control verbs. This chapter is based on Damonte et al.

(2017).

1.2. Thesis Structure 7

• Chapter 4. We introduce a fine-grained evaluation suite for AMR pars-

ing. Inspired by the poor performance of state-of-the-art parsers at re-

covering reentrancies, we discuss what phenomena that cause them and

quantify their prevalence in the AMR corpus. We then analyze the im-

pact of reentrancy-related errors on parsing performance. This chapter is

based on Damonte et al. (2017) and Damonte et al. (2019).

• Chapter 5. We extend the parser of Chapter 3 to Italian, Spanish, Ger-

man and Chinese via cross-lingual techniques. We provide evidence

that AMR annotations, up to a certain extent, can be successfully shared

across languages. We also present a novel evaluation procedure for cross-

lingual settings. This chapter is based on Damonte and Cohen (2018).

• Chapter 6. We finally turn to the AMR-to-text generation problem and

compare neural architectures based on how they deal with reentrancies.

We show that graph encoders, which account for reentrancies, outper-

form tree and sequential encoders, which do not. This chapter is based

on Damonte and Cohen (2019).

• Chapter 7. We summarize and discuss future work. We highlight the

findings and contribution with respect to both parsing and generation,

with particular attention to reentrancies.

2

Abstract Meaning Representation

Advancements in syntactic parsing have been greatly favored by the devel-

opment of a public corpus of sentences annotated with syntactic trees: the

Penn Treebank (Marcus et al., 1993). The motivation behind the creation of an

AMR dataset (Banarescu et al., 2013) is to replicate this success story for se-

mantic parsing by creating a single dataset covering a wide range of semantic

problems. AMR includes semantic tasks that were previously studied indi-

vidually such as Coreference Resolution (Hobbs, 1979), Named Entity Recog-

nition (NER; Nadeau and Sekine 2007), Word Sense Disambiguation (WSD;

Navigli 2009) and Semantic Role Labeling (SRL; Palmer et al. 2010). AMR is

biased towards English as the annotation guidelines only consider the English

language and many AMR node labels are English words, as discussed in Sec-

tion 2.1.1 AMR does not include alignments between the semantics and the

words in the sentence. The AMR dataset consists of a corpus of sentences an-

notated with AMR representations. The publication of this dataset gave rise to

the introduction of NLU and NLG tasks for AMR, known as AMR parsing and

AMR-to-text generation, respectively. The goal of AMR parsing is to automat-

ically convert a sentence into its AMR representation. AMR-to-text generation

is the opposite task: to generate a sentence from its AMR.

In the remainder of this chapter, we first review the most salient properties

of AMR and the semantic tasks included in the AMR annotation scheme. We

then discuss the relevant literature.

1https://github.com/amrisi/amr-guidelines/blob/master/amr.md

9

10 2. Abstract Meaning Representation

2.1 AMR Annotations

Sentences are annotated into AMR using the PENMAN notation (Mann, 1983),

following annotation guidelines mentioned above. AMR annotations can be

represented as rooted Directed Acyclic Graphs (DAGs). Nodes in the graphs

represent core concepts in the sentence. They can either be words (typically

adjectives or stemmed nouns and adverbs) or frames extracted from Propbank

(Kingsbury and Palmer, 2002).2 For example, the AMR for the sentence The car

is red contains the word car and the frame red-02:

red-02

car

:ARG1
(w / red-02

:ARG1 (m / car))

We represent the AMR annotations both graphically (on the left) and in the

PENMAN format used by the human annotators (on the right). Each concept

is identified by a variable in the PENMAN annotations, highlighted in bold.

Labeled edges between a parent node and a child node indicate a semantic

relationship between them. Edges can be inverted, through the use of the -of

suffix. For instance, the edge in the previous AMR can be inverted, resulting

in the following AMR:

car

red-02

:ARG1-of (m / car

:ARG1-of (w / red-02))

While the direction of the edge does not impact the meaning expressed by

the AMR, the two previous AMR graphs are not equivalent because their roots

are different. The root of an AMR, i.e., the only node with no incoming edges,

2https://amr.isi.edu/doc/propbank-amr-frames-arg-descr.txt

2.1. AMR Annotations 11

identifies the focus of the sentence, and it is therefore chosen accordingly by

the annotators. In the former example, the focus of the sentence is red, while in

the latter the focus becomes the car, for instance for the phrase The red car.

Inverted edges are sometimes used to maintain a single root, as in the AMR

for the phrase The boy saw the girl who wanted him:

see-01

boy girl

want-01

:ARG0 :ARG1

:ARG0-of:ARG1

(s / see-01

:ARG0 (b / boy)

:ARG1 (g / girl

:ARG0-of (w / want-01

:ARG1 b)))

In fact, if we inverted the ARG0-of edge, the resulting graph would have

two roots:

see-01

boy girl

want-01

:ARG0 :ARG1 :ARG0

:ARG1

Edges are classified in core and non-core roles. Core roles have a ARG-x pre-

fix. They specify semantic roles between AMR concepts, as further discussed

in Section 2.1.3. The following AMR for the sentence The 4 million-dollar project

contains only non-core roles:

project

monetary-quantity

dollar 4000000

:mod

:unit :quant

(p / project

:mod (m / monetary-quantity

:unit (d / dollar)

:quant 4000000))

In the previous AMR graph, 4000000 is not a variable but a constant literal.

Constant literals are used in AMR to define names and numbers.

12 2. Abstract Meaning Representation

An important property of AMR is the presence of nodes with multiple par-

ents, known as reentrancies. Reentrancies are specified in the PENMAN format

by the use of co-indexed variables. For instance, the AMR graph for the sen-

tence I beg you to excuse me contains two reentrancies:

beg-01

I you excuse-01
:ARG0 :ARG1 :ARG2

:ARG0

:ARG1

(b / beg-01

:ARG0 (i / I)

:ARG1 (y / you)

:ARG2 (e / excuse-01)

:ARG0 y

:ARG1 i)

The two words I and me refer to the same entity, causing the reentrancy for

the node I. Because of the control verb beg, the word you is argument of both

beg and excuse, causing another reentrancy.

We now review the semantic tasks enclosed in the AMR annotations.

2.1.1 Named Entity Recognition

NER is the task of classifying named entity mentions into coarse categories

such as location, person, and organization. See Nadeau and Sekine (2007) for

a survey of NER. In AMR, named entities are annotated through specific con-

cepts and roles. For instance, Edinburgh is annotated as follows, where Edin-

burgh and City_of_Edinburgh are constant literals:

city

City_of_Edinburghname

Edinburgh

:wiki:name

:op1

(c / city

:wiki "City_of _Edinburgh "

:name (n / name

:op1 Edinburgh))

The annotation also includes a :wiki role, which identifies a canonical name

for the named entity, corresponding to its Wikipedia page (or -, if the named

entity has no Wikipedia page).

2.1. AMR Annotations 13

2.1.2 Word Sense Disambiguation

The goal of WSD is to automatically disambiguate between the meaning of

words in context (Navigli, 2009). Consider for example the two following sen-

tences, where the word ran has different meanings:

(1) The athlete ran yesterday.

(2) They ran the company.

AMR uses Propbank frames to determine the specific sense of predicates.

For instance, the AMR for the sentence The athlete ran yesterday uses the frame

run-02, which means to walk quickly and not run-01, which means to operate:

run-02

athlete yesterday

:ARG0 :time
(r / run-02

:ARG0 (a / athlete)

:time (y / yesterday))

Frames are mainly used for verbs but can be also used for other part of

speech categories. For instance, the AMR for the noun phrase bond investor

uses the invest-01 frame (an investor is a person who invests):

person

invest-01

bond

:ARG0-of

:mod

(p / person

:ARG0-of (i / invest-01

:ARG2 (b / bond)))

2.1.3 Semantic Role Labeling

In SRL we look for relations and roles between words in a sentence. See Palmer

et al. (2010) for a survey. In AMR, Propbank frames are also used to extract SRL

information. For instance, the frame give-01 (to transfer) specifies three roles:

the giver, the thing given, and the entity given to. These are represented in the

following AMR for the sentence I gave you a book by the :ARG0, :ARG1, and

:ARG2 arguments:

14 2. Abstract Meaning Representation

give-01

I book you
:ARG0 :ARG1 :ARG2

(g / give-01

:ARG0 (i / I)

:ARG1 (b / book)

:ARG2 (y / you))

2.1.4 Negation Detection

In negation detection, the aim is to identify negation cues and scope (Morante

and Blanco, 2012). AMR does not mark scope or cues information but it anno-

tates negation with the :polarity role, as shown in the following graph for the

sentence Don’t panic:

panic-01

− imperative

:polarity :mode
(p / panic-01

:polarity −
:mode imperat ive)

2.1.5 Coreference Resolution

Coreference is a source of reentrancies in AMR. To predict these structures

accurately, parsers need to perform Coreference Resolution. Coreference has

been defined as a relation holding between noun phrases that refer to the same

entity (Hirschman et al., 1997). While by this definition an anaphora is not a

coreference (Van Deemter and Kibble, 1999), in the remainder of the thesis we

also refer to anaphoric relations as coreference relations. While coreference is a

discourse phenomenon (Hobbs, 1979), pronomial anaphora is often sentence-

level, such as for The man saw himself in the mirror:

2.2 AMR Datasets

Datasets of English sentences annotated with AMR graphs are periodically re-

leased through the Linguistic Data Consortium (LDC).3 The two most com-

monly adopted datasets are the LDC2015E86, containing 19,572 sentences, and
3https://www.ldc.upenn.edu

2.3. AMR Parsing 15

see-01

man mirror
:ARG1

:ARG0 :instrument

(s / see-01

:ARG0 (m / man)

:ARG1 m

:ARG1 (m2 / mirror))

LDC2017T10, containing 39,260 sentences. The datasets include sentences from

newswire and web data (Banarescu et al., 2013).

2.3 AMR Parsing

AMR parsing is the task of converting natural language into AMR graphs. The

first parser, called JAMR, was introduced by Flanigan et al. (2014). JAMR first

identifies the nodes of the graph (concept identification), framing the prob-

lem as sequence labeling. It then approaches the prediction of edges between

the nodes as a constrained combinatorial optimization problem. Werling et al.

(2015) noticed that concept identification is the most challenging part of the

process. They proposed an action classifier to generate concepts by applying

predetermined actions.

Various other strategies have been used for AMR parsing. Peng et al. (2015)

used a Synchronous Hyperedge Replacement Grammar (Habel, 1992). Pust

et al. (2015) presented a syntax-based Machine Translation (MT) parser where

a rule extraction step creates a grammar of string-to-tree rules. In order to use

tree-based grammars, graphs are converted into trees by removing all reen-

trancies. The parser by Vanderwende et al. (2015) used a pre-existing logical

form parser and a set of rules to transform the output of the parser to AMR

graphs. The logical formalism is similar to AMR so that for most relations it is

enough to perform simple label renaming steps. Because they do not rely on

the AMR annotated data, they can generate AMR for languages for which an

AMR dataset is not available yet. Artzi et al. (2015) proposed to parse AMR

graphs by first parsing a lambda-calculus representation with a Combinatory

Categorial Grammar (CCG; Steedman 1996, 2000) using placeholders to mark

non-compositional aspects that are then resolved by a factor graph model.

16 2. Abstract Meaning Representation

We now focus on two of the most prevalent strategies for AMR parsing:

transition-based parsing and neural parsing.

2.3.1 Transition-based Parsing

Transition-based parsing is a popular approach to dependency parsing. In this

section, we first introduce transition-based parsing in the context of depen-

dency parsing. We then discuss attempts to apply it to AMR parsing.

Transition Systems for Dependency Parsing

Dependency parsing is based on the idea that the syntactic structure of a sen-

tence is given by binary relationships (dependencies) between the words in the

sentence. Dependencies are labeled and directed edges from one word in the

sentence (the head) to another word in the sentence (the dependent). A depen-

dency tree for a sentence w0, . . . ,wn is defined by its vertices (or nodes) V and

labeled directed edges E:

T = (V,E,L),

V = {0,1, . . . ,n},

E ⊆V ×L×V,

where V is the set of indexes corresponding to the position of a word in the

sentence. Each edge in E is a triple (i, l, j), where i ∈ V is the head, ` ∈ L is

the label, and j ∈ V is the dependent. The dependency tree for the sentence

I beg you to excuse me is shown in Figure 2.1. By comparing the dependency

tree with the AMR of Figure 2.2, it is possible to observe similarities between

dependency trees and AMR graphs. For instance, in both structures there are

edges connecting beg (beg-01) with I, you, and excuse (excuse-01). AMR graphs

follow dependency trees in defining binary relationships between items in the

sentence. The similarities between the two structures motivate the use of de-

pendency parsing techniques also for AMR parsing.

Transition-based parsing is a general approach to parsing where an input

sentence is fed into a transition system, which then outputs a parse tree or

graph. A transition system is an abstract machine characterized by a set of

states and actions between them. Starting from an initial state, the system

applies actions until a terminal state, containing the final parse, is reached.

2.3. AMR Parsing 17

I beg you to excuse me

Figure 2.1: Dependency tree for the sentence I beg you to excuse me.

beg-01

i you excuse-01
:ARG0 :ARG1 :ARG2

:ARG0

:ARG1

Figure 2.2: AMR graph for the sentence I beg you to excuse me.

In dependency parsing, a transition system is usually defined as a quadru-

ple: T = (S,A, I,E), where S is a set of states, A is a set of actions, I is the initial

state, and E is a set of end states. A state is composed of a buffer, a stack, and

a set of arcs: S = (β,σ,A). In the initial state, the buffer contains all the words

in the input sentence, the stack contains a special root node (◦) and the set of

subtrees are empty: S0 = (w0| . . . |wN , [◦], /0). Terminal states have empty buffer

and only the root symbol in the stack: ST = (/0, [◦],A). The buffer is used to store

the input sentence, which is usually consumed left-to-right. The stack, initially

empty, is used to store words that have been consumed from the buffer but

have not been fully processed yet.

A key advantage of transition-based parsing is that, when greedy decod-

ing is used, it allows linear-time parsing. The two most common transition

systems for greedy dependency parsing are ARCSTANDARD and ARCEAGER

(Nivre, 2004). In ARCSTANDARD, arcs are created among the two top-most el-

ements in the stack, and the dependent is always removed from the stack. It

parses sentences in a bottom-up fashion, limiting the parsers’ incrementality

(left-to-right). ARCEAGER, on the other hand, was designed to support incre-

mentality by mixing bottom-up and top-down approach.

Classifiers, learned from data in a supervised setting, are used to deter-

mine which action to apply given the current state of the transition system.

Titov and Henderson (2007) used a latent variable model based on Incremen-

tal Sigmoid Belief Networks (ISBN), a form of Sigmoid Belief Networks (SBN;

18 2. Abstract Meaning Representation

Neal 1992). SBNs are latent variable networks related to feed-forward neu-

ral networks. Early attempts also used the perceptron algorithm to train the

action classifiers (Zhang and Clark, 2008). Later, Chen and Manning (2014)

used feed-forward neural networks. Recurrent neural networks (RNNs) such

as Long Short-Term Memory Networks (LSTMs; Hochreiter and Schmidhuber

1997) have gained popularity in NLP, due to their ability to encode sequences

of variable lengths. To use RNNs to encode the state of a transition system’s

stack, Dyer et al. (2015) introduced a variant of LSTM that allows for push and

pop operations, called Stack-LSTM.

Transition Systems for AMR Parsing

Due to the similarities between AMR parsing and dependency parsing, transi-

tion systems have also become popular for AMR parsing. CAMR (Wang et al.,

2015b) used a transition system to convert a dependency tree, predicted by

a dependency parser, into the desired AMR graph. The main advantage of

CAMR is that the dependency parser can be trained on a much larger training

set than the one available for AMR. Wang et al. (2015a) later showed that spe-

cific handling of abstract concepts (i.e., AMR nodes not syntactically related to

any word in the sentence) results in further improvements.

Sawai et al. (2015) used a variant of the ARCSTANDARD transition system

to address a simpler task, where single noun phrases (NPs), instead of full

sentences, are parsed.

Rao et al. (2016) adopted SEARN (Daumé III et al., 2009), a learning-to-

search algorithm akin to transition-based parsing. SEARN solves structured

prediction problems by decomposing it into classification problems: the AMR

parsing problem is decomposed in concept identification, root identification,

and relation predictions. For each subproblem, SEARN learns a policy to find

what is the right action in a given state.

Traditional transition-based parsers were devised for tree-structured out-

put. To parse graphs, transition systems with ad-hoc actions for reentrancies

and non-projective structures have also been proposed. We discuss our solu-

tion to this problem in Chapter 3, where additional edges are created between

siblings, hence allowing reentrancies. Other transition systems that include

mechanisms to include reentrancies have been proposed (Wang et al., 2015b;

Ballesteros and Al-Onaizan, 2017; Peng et al., 2018).

2.3. AMR Parsing 19

2.3.2 Neural-based Parsing

Parsing sentences into AMR graphs can be seen as a translation task, where

English is the source language, and AMR is the target language. Neural Ma-

chine Translation (NMT; Bahdanau et al. 2015) is an approach to translation

that is proving very successful (Wu et al., 2016; Vaswani et al., 2017; Barone

et al., 2017). NMT-based parsing has been explored for AMR parsing. We first

review the basics of NMT and then explore its application to AMR parsing.

Neural Machine Translation

In the NMT approach, a sentence in the source language is usually fed, one

word at the time, into an LSTM network, called an encoder. For each input

word, the LSTM updates its state, representing the sentence up to that word.

Unlike standard RNNs, LSTM networks use gates to maintain only the im-

portant information and handle long-range dependencies, while avoiding the

vanishing and exploding gradient problems (Bengio et al., 1994). In LSTMs,

words in a sentence are fed into the network from left to right, so that the

context of each word is given only by the words on its left. Bidirectional LSTM

(BiLSTM; Graves et al. 2013) networks can be used to take into account also the

words on their right, by combining the left-to-right reading with a right-to-left

reading. Recent work showed that non-recurrent layers based on self-attention

can also be used as encoders (Vaswani et al., 2017).

The encoder’s output is then used to initialize another LSTM, called a de-

coder. The decoder network is used to predict an output word to generate and

subsequently update its state. Each step of the decoder generates one word

from the output sentence, left-to-right, until an end-of-sentence token is pro-

duced, signaling the end of parsing.

The production of a target word often does not depend on the entire input

sentence but only on a small portion of it. To account for this, an attention

mechanism is often used (Bahdanau et al., 2015). Its aim is to learn which

words carry more information for each word prediction. This is achieved by

learning a context vector that specifies how much each encoder step affects the

current decoder step.

Instead of processing a word at the time, it is possible to use subword items,

such as characters (Chung et al., 2016; Lee et al., 2017). This alleviates the

20 2. Abstract Meaning Representation

youI beg <eos>

youbeg-01 (:ARG0 I :ARG1)

Figure 2.3: Sketch of a sequence-to-sequence model to parse the English sentence I beg

you into the linearized AMR. The sentence is encoded one word at the time and the

AMR is decoded one token at the time, where each token can be either a node label,

an edge label or a bracket.

problem of out-of-vocabulary words, as all characters are seen in training.

Neural Machine Translation for AMR Parsing

In order to use vanilla NMT models, like the one discussed above, the AMR

graphs must be converted into sequences, as shown in Figure 2.3. The pro-

cess, called linearization, loses structural information such as all reentrancies.

The alleviate the problem (van Noord and Bos, 2017a) discusses pre- and post-

processing steps to better deal with reentrancies.

Barzdins and Gosko (2016) carried out experiments with a character-level

NMT architecture for AMR parsing. Konstas et al. (2017) achieved competitive

results with a word-level architecture. To deal with data sparsity, sentences

and AMR were preprocessed by replacing names and rare words with coarse

categories — a process called anonymization. Van Noord and Bos (2017b) later

introduced a character-level model that outperforms the word-level models of

Konstas et al. (2017). To outperform non-neural parsers, Konstas et al. (2017)

and van Noord and Bos (2017b) use additional data, obtained by automatically

parsing extra unlabeled sentences.

Significantly better results were later obtained by a neural model based on

a joint model of concepts, relations, and alignments (Lyu and Titov, 2018). The

current state of the art was achieved by an NMT-based parser who implements

a target-side copy mechanism (See et al., 2017) aimed at recovering reentran-

cies (Zhang et al., 2019).

2.4. AMR-to-text Generation 21

2.3.3 Evaluation

AMR parsers are often evaluated using a semantic graph matching algorithm,

called Smatch (Cai and Knight, 2013). It determines how close a predicted

AMR is to a reference AMR. AMR annotations are viewed as a conjunction

of triples, as shown in Figure 2.4. Each triple represents either an edge be-

tween two variables, or the mapping between a variable and its AMR concept.

Annotators use arbitrary variable names to identify concepts. The predicted

and reference graphs will therefore have different variable names. Therefore,

Smatch needs to predict the correct alignments between the variables in the

two graphs. For instance, in the example of Figure 2.4, w is to be aligned to

v1, i to v2, b to v3, and y to v4. Different methods can be used to predict the

alignments, such as Integer Linear Programming and hill-climbing (Cai and

Knight, 2013). Once the alignments are predicted, Smatch computes precision,

recall, and F1 of the triples. In the example of Figure 2.4, the precision is 1.0,

the recall is 0.89, and the F1 is 0.94.

The Smatch score consists of a single number that does not assess the qual-

ity of each semantic subtask separately. To address the issue, in Chapter 4 we

propose a suite of fine-grained evaluation metrics to assess the performance

on subtasks such as unlabeled parsing, NER, SRL, and reentrancy prediction.

Recently, an alternative evaluation method based on the popular BLEU score

(Papineni et al., 2002) has been proposed by Song and Gildea (2019), where it

is found to be faster and correlate better to human judgment than Smatch.

2.4 AMR-to-text Generation

AMR-to-text generation is the task of generating natural language from AMR

graphs. The same AMR graph can be used to represent the meaning of several

sentences. Consider the following sentences:

1. I beg you to excuse me.

2. I am begging you to excuse me.

3. Excuse me, I beg you.

The first and second sentences only differ in the tense of the verb to beg. Tense

information is considered as a morphological category which can be retrieved

22 2. Abstract Meaning Representation

(w / want-01

:ARG0 (i / I)

:ARG1 (b / believe-01

:ARG1 i

:ARG0 (y / you)))

(v1 / want-01

:ARG0 (v2 / I)

:ARG1 (v3 / believe-01

:ARG0 (v4 / you)))

root (w) ∧
i n s t a n c e (w , want−01) ∧
i n s t a n c e (i , I) ∧
i n s t a n c e (b , be l ieve −01) ∧
i n s t a n c e (y , you) ∧
ARG0(w , i) ∧
ARG1(w , b) ∧
ARG1(b , i) ∧
ARG0(b , y)

root (v1) ∧
i n s t a n c e (v1 , want−01) ∧
i n s t a n c e (v2 , I) ∧
i n s t a n c e (v3 , be l ieve −01) ∧
i n s t a n c e (v4 , you) ∧
ARG0(v1 , v2) ∧
ARG1(v1 , v3) ∧
ARG0(v3 , v4)

Figure 2.4: On the top left, the gold standard annotation for the sentence I want to

believe you. On the top right, the predicted annotation. On the bottom, the respective

triples.

from the sentence itself. Hence, annotators are not required to annotate it.

There can be other syntactic differences that are not annotated in the AMR

such as the use of synonyms or specific function words. The task is therefore

to generate one of the possible syntactic realizations of the sentence.

The first AMR-to-text generation system was introduced by Flanigan et al.

(2016b), where graphs are converted to trees and fed into a tree-to-string trans-

ducer to produce the output sentence. The conversion from graphs to trees is

necessary as DAG-to-string transducers are not currently available. However,

this process removes all reentrancies, which are an essential characteristic of

AMR graphs. The system by Song et al. (2016) converts single AMR fragments

and decides their order by solving a traveling salesman problem. Lampouras

and Vlachos (2017) introduced a transition-based approach. The system of

2.4. AMR-to-text Generation 23

Gruzitis et al. (2017) first converts AMR graphs to Grammatical Framework

syntax trees (Ranta, 2004). It then uses already available surface realization

English grammars to produce the output text.

A popular approach to AMR-to-text generation is to frame it as a transla-

tion task. For a survey on MT-based solutions, see Ferreira et al. (2017). Pour-

damghani and Knight (2016) developed a phrase-based MT system to convert

AMR into sentences. AMR graphs are linearized into a sequence with English-

like order of the AMR nodes, losing structural information such as reentran-

cies. NMT-based approaches, discussed in Section 2.3.2 for parsing, have also

been used for AMR-to-text generation. As for parsing, Konstas et al. (2017)

reduced the AMR graphs to sequences in order to use sequence-to-sequence

models. Song et al. (2018) and Beck et al. (2018) proposed ways to encode

AMR as graphs, instead of sequences, resulting in better performance. This

allows to explicitly encode structural information such as the reentrancies. In

Chapter 6 we investigate their impact on performance by directly comparing

sequential, tree and graph encoders.

More recently, Guo et al. (2019) achieved state-of-the-art results with a deeper

graph encoder. Cao and Clark (2019) recently proposed a different approach

to the task by first predicting the syntactic structure, from which the surface

form is then generated.

We mentioned that AMR can be realized in several ways. As a result, eval-

uation of this task is problematic, as only one reference sentence is given for

each AMR graph. AMR-to-text generation systems are usually evaluated with

BLEU (Papineni et al., 2002), traditionally used for machine translation tasks.

By using BLEU with a single reference, we may penalize generation systems

for using a different way to phrase the same meaning.

Meteor (Banerjee and Lavie, 2005) can be used to address this limitation.

Meteor is based on matching stems, synonyms, and paraphrasing, hence al-

lowing for different surface realizations. It is a sentence-level metric. On the

contrary, BLEU is a corpus-level metric, and it cannot be reliably used to com-

pute the score of a single example. CHRF++ (Popović, 2017) has also been

used for evaluating AMR-to-text systems (Beck et al., 2018; Guo et al., 2019).

CHRF++ looks for exact matches, similarly to BLEU, but it is a sentence-level

metric.

24 2. Abstract Meaning Representation

I beg you to excuse me

beg-01

i you excuse-01

Figure 2.5: AMR alignments for the sentence I beg you to excuse me. We omit the edge

labels for clarity.

2.5 AMR Alignments

AMR annotations do not include alignments between words in the sentence

and nodes in the graph (Figure 2.5). However, parsing and generation al-

gorithms often require them. Flanigan et al. (2014) introduced a rule-based

aligner. Pourdamghani et al. (2014) presented a data-driven approach based

on unsupervised IBM models (Och and Ney, 2000), traditionally used for word

alignments in Machine Transition. Chu and Kurohashi (2016) tackled the prob-

lem in a supervised setting as a constituency-based alignment task. The AMR

graphs were converted into constituency trees following the method by Pust

et al. (2015). The similarities between dependency trees and AMR graphs mo-

tivate producing alignments between these structures (Chen, 2015; Chen and

Palmer, 2017; Szubert et al., 2018).

A different approach to AMR alignments is to treat them as latent variables

during parsing (Lyu and Titov, 2018; Zhang et al., 2019).

2.6 Applications of AMR

There have been early attempts to use AMR graphs for downstream NLP prob-

lems. One such example is text summarization, which is the task of generat-

ing summaries from one or more documents. Liu et al. (2015) introduced an

AMR-based summarizer where the sentences of a document are first parsed

into AMR graphs. The graphs are then collapsed in a single summary graph,

from which the summary is finally generated. A related task is that of headline

2.7. AMR for Other Languages 25

generation, for which an NMT-based model has been proposed (Takase et al.,

2016). AMR has also been shown to be beneficial in English-German NMT to

encode extra information on the source language (Song et al., 2019).

In the biomedical domain, AMR has been used to improve the performance

of bio-molecular interaction extraction (Garg et al., 2016, 2018; Rao et al., 2017).

In this task, the goal is to identify biological entities and interactions between

them. AMR-based embeddings were also used as features in a classifier for the

task of Drug-Drug Interaction Extraction (Wang et al., 2017).

Entity Linking, the task of binding named entities to their knowledge base

record, has also been tackled with AMR. Pan et al. (2015) used AMR to disam-

biguate entity mentions and cluster them into coherent sets.

As previously discussed, semantically related sentences may be represented

by the same AMR graph. Thus, when two sentences are paraphrases of each

other, they should have equivalent or close AMR representations. Issa et al.

(2018) used this intuition to build a paraphrase identification model based on

AMR features. It was shown that the features extracted by AMR parsers out-

perform those extracted by a syntactic parser.

2.7 AMR for Other Languages

Sentences in other languages have been annotated with AMR using language-

dependent labels: Chinese (Li et al., 2016; Xue et al., 2014), Czech (Xue et al.,

2014) and Brazilian Portuguese (Anchiêta and Pardo, 2018). Bojar (2014) cate-

gorized different kinds of divergences in the annotation between English and

Czech AMR graphs. Moreover, Xue et al. (2014) showed that structurally align-

ing English AMR graphs with Czech and Chinese AMR graphs is not always

possible but that refined annotation guidelines suffice to resolve some of these

cases. The presence of structural differences between AMR graphs for differ-

ent languages supports the claim of bias towards English. However, structural

differences do not always occur and it is worth investigating whether it is pos-

sible to deal with them when they do. We attempt to answer this question in

Chapter 5, where we train parsers for Italian, Spanish, German and Chinese

via cross-lingual techniques. We provide evidence that AMR annotations, up

to a certain extent, can be successfully shared across languages.

26 2. Abstract Meaning Representation

2.8 Alternatives to AMR

Broad-coverage semantic representation schemes for natural languages sim-

ilar to AMR have been proposed, such as Universal Conceptual Cognitive

Annotation (UCCA; Abend and Rappoport 2013), Discourse Representation

Structure (DRS; Bos 2004), and Minimal Recursion Semantics (MRS; Copestake

et al. 2005). Each scheme has different underlying formalism: AMR does not

have an underlying theoretical formalism but follows a neo-Davidsonian event

specification (Davidson, 1969), UCCA follows Basic Linguistic Theory (Dixon,

2010), and DRS is also based on neo-Davidsonian events and follows Discourse

Representation Theory (Kamp and Reyle, 1993). AMR, like UCCA, cannot han-

dle scope or tense information. Moreover, similarly to DRS, it abstracts away

from syntax. One of the advantages of AMR is that the annotations are easy to

read by humans, even though annotators require training. In the Groningen

Meaning Bank (Bos et al., 2017), which uses DRS, annotations are generated

semi-automatically. Related to our cross-lingual approach to AMR parsing of

Chapter 5, the Parallel Meaning Bank introduces shared DRS representations

for sentences in English, German, Dutch, and Italian (Abzianidze et al., 2017).

3

Transition-based AMR Parsing

In Chapter 2 we reviewed an approach to parsing called transition-based pars-

ing. The approach allows for left-to-right, linear-time, incremental processing

and has been successfully applied to dependency parsing (Nivre, 2004, 2008;

Chen and Manning, 2014).1

Similarly to dependency parsing, AMR parsing is based on the identifica-

tion of predicate-argument structures. The similarity of AMR structures to de-

pendency structures suggests that transition systems can be helpful for AMR

parsing. AMR parsing differs from dependency parsing in three main aspects.

First, in AMR parsing there are no direct alignments between words in the

sentence and nodes in the graph. Second, AMR graphs for English are not

projective structures. Finally, AMR graphs allow for reentrancies.

In this chapter, we ask whether transition-based parsing can be success-

fully applied also to AMR. We introduce AMREAGER, a parser for AMR in-

spired by the ARCEAGER dependency parser (Nivre, 2004). It accounts for the

main differences between dependency trees and AMR graphs. AMREAGER

brings dependency parsing and AMR parsing closer by showing that depen-

dency parsing algorithms can be adapted to AMR parsing. Key properties

such as left-to-right processing, incrementality, and linear complexity further

strengthen the relevance of our parser.

Our contributions in this chapter are as follows:

• We develop a left-to-right, linear-time transition system for AMR pars-

ing, inspired by transition systems for dependency tree parsing;

1Strictly speaking, transition-based parsing does not always achieve full incrementality,
which requires to have a single connected component at all times (Nivre, 2004).

27

28 3. Transition-based AMR Parsing

• We evaluate our parser with Smatch and compare it with previous work.

We show that AMREAGER achieves competitive parsing scores;

• We run ablation results on a transition aimed at recovering reentrancies

and discover that the Smatch score remains surprisingly unaffected.

3.1 Notation

We define an AMR structure as a tuple (G,x,π), where x = x1 · · ·xn is a sentence,

with each xi, i ∈ {1, . . . ,n}, a word token, and G is a directed graph G = (V,E)

with V and E the set of nodes and edges, respectively. We assume G comes

along with a node labeling function and an edge labeling function. Finally,

π : V → {1, . . . ,n} is a total alignment function that maps every node of the

graph to an index i for the sentence x, with the meaning that node v represents

(part of) the concept expressed by the word xπ(v).2

We note that the function π is not invertible, since it is neither injective nor

surjective. For each i ∈ {1, . . . ,n}, we let

π
−1(i) = {v | v ∈V, π(v) = i}

be the pre-image of i under π (this set can be empty for some i), which means

that we map a token in the sentence to a set of nodes in the AMR. In this way

we can align each index i for x to the induced subgraph of G. More formally,

we define
←−
π (i) = (π−1(i),E ∩ (π−1(i)×π

−1(i))), (3.1)

with the node and edge labeling functions of ←−π (i) inherited from G. Hence,
←−
π (i) returns the AMR subgraph aligned with a particular token in the sen-

tence.

3.2 Alignments

In AMR there is no direct mapping between a word in the sentence and a node

in the graph: words may generate no nodes, one node or multiple nodes. In

addition, the node labels are often not easily determined by the words in the

2π is a function because we do not consider coreference, which would otherwise cause a
node to map to multiple indices.

3.3. Non-Projectivity 29

beg-01

i you excuse-01

I beg you to excuse me

Figure 3.1: Alignments between the AMR graph and the sentence I beg you to excuse

me. The edge labels were omitted for the sake of clarity.

◦ I beg you to excuse me

Figure 3.2: Edges of the AMR in Figure 3.1 mapped back to the sentence, according to

the alignment. ◦ is a special token representing the root.

sentence. For instance, the word teacher translates to the two nodes teach-01

and person, connected through an :ARG0 edge, expressing that a teacher is a

person who teaches. Figure 3.1 shows the alignments between the sentence I

beg you to excuse me and its AMR.

We define AMR alignments between a token xi and a subgraph in AMR as
←−
π (i), defined in Equation (3.1).

3.3 Non-Projectivity

Dependency trees in English are usually projective, roughly meaning that when

drawing the edges in the semi-plane above the words, none are crossing. More

formally, we first define the reflexive transitive closure of the dependency, which

we denote as wi→∗ w j: wi→∗ w j if and only if i = j or both the following hold

for some wi′ ∈ V : a) wi→∗ wi′ and b) (wi′ , l,w j) ∈ E for some label l. A depen-

dency edge (wi, l,w j) ∈ E can be then said to be projective when:

wi→∗ wk, for all

i < k < j, if i < j

j < k < i, if j < i.

30 3. Transition-based AMR Parsing

Non-projective edges 6%

AMR graphs with at least one non-projective edge 51%

Reentrant edges 41%

AMR graphs with at least one reentrancy 93%

Table 3.1: Statistics for non-projectivity and reentrancies in 200 AMR manually

aligned with the associated sentences.3A reentrant edge is an edge pointing to a node

that has other incoming edges.

We now generalize the notation of projectivity to AMR graphs. The intu-

ition is that we can use the alignment π to map AMR edges back to the sentence

x, and test whether there exist pairs of crossing edges. Figure 3.2 shows this

mapping for the AMR of I beg you to excuse me, where the edge connecting

excuse to I crosses another edge.

More formally, consider an AMR edge e = (u, `,v). Let π(u) = i and π(v) = j,

so that u is aligned with xi and v is aligned with x j. The spanning set for e,

written S(e), is the set of all nodes w such that:

π(w) = k,

i < k < j, if i < j

j < k < i, if j < i.

We say that e is projective if, for every node w ∈ S(e), all of its parent and

child nodes are in S(e)∪{u,v}; otherwise, we say that e is non-projective. An

AMR is projective if all of its edges are projective, and is non-projective oth-

erwise. This corresponds to the intuitive definition of projectivity for DAGs

introduced by Sagae and Tsujii (2008) and is closely related to the definition of

non-crossing graphs by Kuhlmann and Jonsson (2015).

While non-projectivity is not frequent in syntactic theories for English Kubler

et al. (2009), it is for AMR structures. Table 3.1 demonstrates that a relatively

small percentage of all AMR edges are non-projective. Yet, a large fraction of

the sentences contain at least one non-projective edge. Our parser can con-

struct non-projective edges, as described in Section 3.5.

3https://github.com/jflanigan/jamr/blob/master/docs/Hand_Alignments.md

3.4. Reentrancies 31

Shift (σ,β0|β,A)→ (σ|root(a(β0)),β,A∪Ea)

where a(β0) = (Va,Ea)

LArc(`) (σ|σ1|σ0,β,A)→ (σ|σ0,β,A∪{〈σ0, `,σ1〉})
RArc(`) (σ|σ1|σ0,β,A)→ (σ|σ1|σ0,β,A∪{〈σ1, `,σ0〉})
Reduce (σ|σ0,β,A)→ (σ,β,A)

or (σ,β,A∪ (σ0,sib(σ0))) for reentrancies, see text for details.

Table 3.2: Transitions for AMREAGER. sib(σ0) refers to the latest created node with

the same parent as σ0.

3.4 Reentrancies

As discussed in Chapter 2, AMR annotations are represented as graphs and not

trees because nodes can have multiple incoming edges, known as reentrancies.

A node u is said to be reentrant if and only if ∃v,v′ such that (v, l,u) ∈ E and

(v
′
, l
′
,u) ∈ E, for some edge labels l, l

′
. Reentrancies are common in AMR, as

shown in Table 3.1. Dependency parsers do not allow to create reentrancies so

they need to be modified accordingly. In Chapter 2, we noted that control verbs

result in edges between siblings, which lead to reentrancies. AMREAGER is

able to recover such reentrancies, as discussed in Section 3.5.

3.5 Transition System for AMR Parsing

A stack σ = σn| · · · |σ1|σ0 is a list of nodes of the partially constructed AMR

graph, with the top element σ0 at the right. We use the symbol ‘|’ as the con-

catenation operator. A buffer β = β0|β1| · · · |βn is a list of indices from x, with

the first element β0 at the left, representing the word tokens from the input

sentence still to be processed. A configuration of our parser is a triple (σ,β,A),

where A is the set of AMR edges that have been constructed up to this point.

In order to introduce the transitions of AMREAGER, we need some addi-

tional notation. We use a function a that maps indices from the sentence x to

AMR graph fragments, implementing the function←−π (·). For each i∈ {1, . . . ,n},
a(i) is a graph Ga = (Va,Ea), with single root root(Ga), representing the semantic

contribution of word xi to the AMR for the sentence x. As already mentioned,

Ga can either have a single node, several nodes, or be empty.

32 3. Transition-based AMR Parsing

The initial configuration of the system has a ◦ node (representing the root)

in the stack and the entire sentence in the buffer. The terminal configuration

consists of an empty buffer and a stack with only the ◦ node.

We define four transitions, specified by the rewriting rules shown in Ta-

ble 3.2:

1. Shift. The transition Shift is used to decide if and which AMR node to

push onto the stack after consuming a token from the buffer. Intuitively,

the graph fragment a(β0) obtained from the token β0, if not empty, is

“merged” with the graph we have constructed so far. We then push onto

the stack the node root(a(β0)) for further processing.

2. RArc. RArc(`) creates an edge with label ` between the second top-most

node and the top-most node in the stack.

3. LArc. LArc(`) is the symmetric operation: it creates an edge with label `

between the top-most node and the second top-most node in the stack.

Moreover, LArc pops the top-most node in the stack (the dependent of

the newly created edge). The choice of popping the dependent in the

LArc transition is inspired by ARCEAGER, where left-arcs are constructed

bottom-up to increase the incrementality of the transition system (Nivre,

2004). This affects our ability to recover some reentrant edges (edges

that participate in a reentrancy): consider a node u with two parents v

and v′, where the arc v→ u is a left-arc and v′→ u is any arc. If the first

arc to be processed is v→ u, we use LArc that pops u, hence making it

impossible to create the second arc v′→ u. Nevertheless, we discovered

that this approach works better than a completely unrestricted allowance

of reentrancy. The reason is that if we do not remove dependents at all

when first attached to a node, the stack becomes larger, and nodes which

should be connected end up being distant from each other, and as such,

are never connected.

4. Reduce. Finally, Reduce pops the top-most node from the stack, and it

also determines whether to create an additional edge between the node

being removed and the previously created sibling in the partial graph.

These edges lead to reentrancies between siblings and are often caused

by control structures, where two predicates share an argument, as dis-

3.6. Preprocessing Pipeline 33

cussed in Chapter 2. The transition system can therefore capture non-

projective patterns, according to the definition given in Section 3.3. This

way of handling control structures is related to the REENTRANCE tran-

sition by Wang et al. (2015a).

The transitions required to parse the sentence The boy and the girl are shown

in Table 3.3, where the first line shows the initial configuration and the last line

shows the terminal configuration.

We now show that our transition-based AMR parser takes linear time in n,

the length of the input sentence x. We first show that the output graph has size

O(n), then bound the maximum number of transitions:

1. Graph size. Each token in x is mapped to a subgraph by Shift, but only

its root is stored in the stack. Thus the number of nodes that can go in

the stack is O(n). Furthermore, each node can have at most three parent

nodes, created by transitions RArc, LArc and Reduce, respectively. Thus

the number of edges is also O(n).

2. Number of transitions. It is possible to bound the maximum number of

transitions required to parse x: the number of Shift is bounded by n, and

the number of Reduce, LArc and RArc is bounded by the size of the graph,

which is O(n). Since each transition can be carried out in constant time,

we conclude that our parser runs in linear time.

3.6 Preprocessing Pipeline

We preprocess the input sentences to the transition system by first running a to-

kenizer. We then collapse consecutive tokens representing multi-word named

entities into a single token (e.g., United Kingdom becomes United_Kingdom).

To accomplish this, we also run a Named Entity Recognizer (NER), in order

to identify multi-word named entities. Moreover, we extract Part-Of-Speech

(POS) tags and run a dependency parser, to extract additional features to train

the parser, as discussed in Section 3.7.

34 3. Transition-based AMR Parsing

Action Stack Buffer Edges

- [◦] [the,boy,and,the,girl] {}
Shift [◦] [boy,and,the,girl] {}
Shift [◦, boy] [and,the,girl] {}
Shift [◦, boy, and] [the,girl] {}
LArc [◦, and] [the,girl] {〈and,:op1,boy〉}= A1

RArc [◦, and] [the,girl] A1∪{〈◦,:top,and〉}= A2

Shift [◦, and] [girl] A2

Shift [◦, and, girl] [] A2

RArc [◦, and, girl] [] A2∪{〈and,:op2,girl〉}= A3

Reduce [◦, and] [] A3

Reduce [◦] [] A3

Table 3.3: Parsing steps for the sentence The boy and the girl.

3.7 Training the System

Training a transition-based parser from data requires an oracle—an algorithm

that given a gold-standard AMR graph and a sentence returns transition se-

quences that maximize the overlap between the gold-standard graph and the

graph dictated by the sequence of transitions. Several components of our

parser have to be learned from the oracle:

• A transition classifier that predicts the next transition given the current

configuration;

• A concept identification routine to be called after each Shift to compute

a(β0);

• A reentrancy classifier that decides whether or not to create a reentrancy

between siblings after each Reduce;

• An edge classifier to predict the edge label after each LArc or RArc.

3.7.1 Oracle

We adopt a shortest-stack static oracle similar to Chen and Manning (2014).

Static means that if the actual configuration of the parser has no mistakes, the

3.7. Training the System 35

oracle provides a transition that does not introduce any mistake. Shortest-stack

means that the oracle prefers transitions where the number of items in the stack

is minimized. Given the current configuration (σ,β,A) and the gold-standard

graph G = (Vg,Ag), the oracle is defined as follows, where we test the condi-

tions in the given order and apply the action associated with the first match:

1. if ∃`[(σ0, `,σ1) ∈ Ag] then LArc(`);

2. if ∃`[(σ1, `,σ0) ∈ Ag] then RArc(`);

3. if ¬∃i, `[(σ0, `, root(a(βi)) ∈ Ag∨ (root(a(βi)), `,σ0) ∈ Ag] then Reduce;

4. Shift otherwise.

The oracle first checks whether an edge should be constructed from the two

elements at the top of the stack (conditions 1 and 2), in which case it also de-

termines the label of the edge. If neither LArc nor RArc are possible, the oracle

checks whether all possible edges in the gold graph involving σ0 have already

been created, in which case it chooses Reduce (condition 3). To this end, it suf-

fices to check the buffer, since LArc and RArc have already been excluded and

the parser can no longer access elements in the stack deeper than the second

position. If this transition is chosen, the oracle can also decide whether or not

to create an additional edge between σ0 and its previous sibling. If Reduce is

not possible, Shift is finally chosen (condition 4), removing β0 from the buffer.

The oracle needs the AMR alignments for the next token in the sentence. If the

next token is not aligned with any node in the AMR graph, the stack does not

change. Otherwise, if the next token is aligned to a subgraph, the root of the

subgraph is copied to the top of the stack.

3.7.2 Transition Classifier

The transition classifier predicts which transition to apply given the current

parser configuration. The examples from which we learn the classifier are ex-

tracted by applying the oracle of Section 3.7.1 to the training data. Each exam-

ple consists of a parser configuration and the transition chosen by the oracle.

To learn this and the other classifiers, we use feed-forward neural net-

works. The input to the network consists of the concatenation of embeddings

for words, POS tags, and edges of the dependency tree. In addition, we use

36 3. Transition-based AMR Parsing

Name Feature template

depth d(σ0),d(σ1)

children #c(σ0),#c(σ1)

parents #p(σ0),#p(σ1)

lexical w(σ0),w(σ1),w(β0),w(β1),

w(p(σ0)),w(c(σ0)),w(cc(σ0)),

w(p(σ1)),w(c(σ1)),w(cc(σ1))

POS s(σ0),s(σ1),s(β0),s(β1)

entities e(σ0),e(σ1),e(β0),e(β1)

dependency `(σ0,σ1), `(σ1,σ0),

∀i ∈ {0,1}: `(σi,β0), `(β0,σi)

∀i ∈ {1,2,3}: `(β0,βi), `(βi,β0)

∀i ∈ {1,2,3}: `(σ0,βi), `(βi,σ0)

Table 3.4: Features used in the transition classifier. The function d maps a stack ele-

ment to the depth of the associated graph fragment. The functions #c and #p count the

number of children and parents, respectively, of a stack element. The function w maps

a stack/buffer element to the word embedding for the associated word in the sen-

tence. The function p gives the leftmost (according to the alignment) parent of a stack

element, the function c the leftmost child and the function cc the leftmost grandchild.

The function s maps a stack/buffer element to the POS embedding for the associated

word. The function e maps a stack/buffer element to its entity. Finally, the function `

maps a pair of symbols to the dependency label embedding, according to the edge (or

lack of) in the dependency tree for the two words these symbols are mapped to.

one-hot vectors for named entities and additional sparse features, extracted

from the current configuration of the transition system. The features used are

reported in more detail in Table 3.4. For lexical information, we also extract the

leftmost (in the order of the aligned words) child (c), leftmost parent (p) and

leftmost grandchild (cc). Leftmost and rightmost items are common features

for transition-based parsers (Zhang and Nivre, 2011; Chen and Manning, 2014)

but we found only leftmost items to be helpful in our case.

3.7. Training the System 37

3.7.3 Concept Identification

This routine is called every time the transition classifier decides to do a Shift;

it is denoted by a(·) in Section 3.5, approximating the function←−π (·). Even this

component could be learned in a supervised manner, but we were not able to

improve on a simple heuristic, where we pick the most frequent subgraph for

the given input word. During training, for each Shift decided by the oracle, we

store the pair (β0,
←−
π (i)) in a phrase-table. During parsing, the most frequent

subgraph H for the given token is chosen. In other words, a(i) approximates
←−
π (i) with the graph most frequently seen among all occurrences of token xi in

the training set.

An obvious problem with the most-frequent heuristic is that it does not

generalize to unseen words. In addition, our heuristic relies on the automati-

cally generated alignments, which contain mistakes. In order to alleviate this

problem, we observe that there are classes of words such as named entities and

numeric quantities that can be treated in a deterministic manner. We define a

set of hooks that are triggered by the named entity tag of the next token in the

sentence, computed during the preprocessing step (Section 3.6). The hooks

override the normal concept identification mechanism and apply a fixed rule

instead. Table 3.5 reports examples for all hooks we implemented. We employ

the same rule for states, cities, countries, and people. To generate the correct

root node, which depends on the specific type of entity, we extracted lists of

states, cities, and countries. We also have hooks for ordinal numbers (gener-

ating the AMR concept ordinal-entity), percentages (percentage-entity), money

(monetary-quantity) and dates (date-entities). For these hooks, we also need to

normalize the tokens. For instance, dates have to be converted in the dd/m-

m/yyyy format. We normalize dates and other entities during the preprocessing

step.

3.7.4 Reentrancy Classifier

We train a binary classifier to decide whether or not to create a reentrant edge

during a Reduce transition. The features used for this classifier are shown in

Table 3.6. We use word and POS embeddings for the two nodes of the candi-

date reentrancy and their shared parent. If the dependency tree of the sentence

contains edges between the two nodes of the candidate edge, dependency em-

38 3. Transition-based AMR Parsing

Type Token AMR

Name New_York

country

name New_York

New York

:name :wiki

:op1 :op2

Date 05/10/2019

date-entity

2019 10 05

:year :month :day

Ordinal Third

ordinal-entity

3

:value

Percentage 50%

percentage-entity

50

:value

Money 20$

monetary-quantity

20 dollar

:value :unit

Table 3.5: Example of hooks for names, dates, and numbers. The type “Name” include

states, countries, cities, people, and organizations.

beddings are also used as features.

Name Feature template

lexical w(σ0), w(sib(σ0))

POS s(σ0), s(sib(σ0))

dependency `(σ0,sib(σ0)), `(sib(σ0),σ0)

Table 3.6: Features used in the reentrancy classifier. See Table 3.4 for a legend of

symbols. sib(σ0) refers to the latest created sibling of σ0.

3.8. Experimental Setup 39

3.7.5 Edge Classifier

Every time the transition classifier decides to take an LArc or RArc operation,

the edge labeler needs to decide on a label for it. There are more than 100

possible labels such as :ARG0, :ARG0-of, :ARG1, :location, :time and :polarity.

The features for the edge classifier are shown in Table 3.7.

Name Feature template

depth d(σ0), d(σ1)

children #c(σ0), #c(σ1)

parents #p(σ0), #p(σ1)

lexical w(σ0), w(σ1),

w(p(σ0)), w(c(σ0)), w(cc(σ0)),

w(p(σ1)), w(c(σ1)), w(cc(σ1))

POS s(σ0), s(σ1)

entities e(σ0), e(σ1)

dependency `(σ0,β0), `(β0,σ0)

Table 3.7: Features used in the edge classifier. See Table 3.4 for a legend of symbols.

If unconstrained, the classifier could predict a label that does not satisfy the

requirements of AMR. For instance, the label :top can only be applied when

the node from which the edge starts is the special ◦ node. In order to avoid

generating such erroneous labels, we use a set of rules, shown in Table 3.8.

These rules determine which labels are allowed for the newly created edge so

that we only consider those during prediction. The possible ARG-x roles for

each predicate are extracted from Propbank. For example, while add-01 and

add-02 allow for :ARG1 and :ARG2, add-03 and add-04 only allow :ARG2.

3.8 Experimental Setup

The AMR dataset used in these experiments is the LDC2015E86 release. We

use the JAMR aligner (Flanigan et al., 2014) to obtain alignments between the

tokens in the sentence and the nodes in the respective AMR graph.4 All clas-

sifiers are feed-forward neural networks with two hidden layers of 200 tanh

4https://github.com/jflanigan/jamr

40 3. Transition-based AMR Parsing

Label Ex. Start End

:top Yes ◦
:polarity Yes -

:mode Yes inter.|

expr.|imp.
:value No \w+ |[0-9]+

:day No d-ent [1|2|· · ·|31]
:month No d-ent [1|2|· · ·|12]+

:year No d-ent [0-9]+

:decade No d-ent [0-9]+

:century No d-ent [0-9]+

:weekday Yes d-ent [monday|· · ·|
sunday]

:quarter No d-ent [1|2|3|4]+

:season Yes d-ent [winter|fall|

spring|summer]+

:timezone Yes d-ent [A−Z]3

Table 3.8: Labeling rules: For each edge label, we provide regular expressions that

must hold on the labels at the start node (Start) and the end node (End) of the edge.

Ex. indicates when the rule is exclusive, d-ent is the AMR concept date-entity, inter. is

the AMR constant interrogative, expr. is the AMR constant expressive, imp. is the AMR

constant imperative.

units each. We train using SGD with an initial learning rate set to 0.1 and lin-

ear decaying. Batch size is set to 32. The embeddings for words and POS tags

were pre-trained on a large unannotated corpus consisting of the first 1 billion

characters from Wikipedia.5 All POS tags, dependencies and named entities

are generated using Stanford CoreNLP (Manning et al., 2014).

We first evaluate the performance of each classifier on the development

split of LDC2015E86. We also run ablation experiments to inspect the contri-

bution of the hooks used to improve concept identification (Section 3.7.3) as

well as the additional sibling edges in the Reduce transition for reentrancy pre-

diction (Section 3.7.4). We then compare AMREAGER against previous work

5http://mattmahoney.net/dc/enwik9.zip

3.9. Results 41

System Accuracy Frequency

Shift 91.45% 28187

LArc 84.86% 10189

RArc 79.43% 5616

Reduce 65.93% 6090

Table 3.9: Accuracy and frequency of each transition for the transition classifier on the

development set of LDC2015E86.

on the test split. JAMR (Flanigan et al., 2014) and CAMR (Wang et al., 2015b,a)

were popular previous parsers. JAMR works by first predicting the concepts

and then identifying the relations between them. CAMR converts the depen-

dency tree of a sentence into an AMR graph through a transition system. Both

parsers were also updated for SemEval-2016 Task 8 (Flanigan et al., 2016a;

Wang et al., 2016). We further compare against two parsers published after

we released AMREAGER: the parser discussed in Peng et al. (2018) also uses a

transition system where edges can be created among nodes stored in a cache,

while Lyu and Titov (2018) was the state-of-the-art parser at the time of our

experiments. It relies on a joint model of concepts, relations, and alignments.

To evaluate the parsers we use Smatch (Cai and Knight, 2013), which finds

the optimal alignments between a pair of graphs and then computes precision,

recall, and F1 of their edges. Since Smatch is an approximate randomized al-

gorithm, decimal points in the results vary between different runs and are not

reported. This approach was also taken by Wang et al. (2015b), inter alia.

3.9 Results

The accuracy of the transition classifier is reported in Table 3.9. The reentrancy

classifier, which makes a binary decision, has an accuracy of 97.18%. Finally,

the edge classifier achieves an accuracy of 77.51%.

Table 3.10 shows that without hooks the parser achieves lower scores. This

demonstrates the effectiveness of the rule-based approach to concept identi-

fication for named entities. To investigate the contribution of the additional

edges between siblings in Reduce, we test a variant of the transition which does

not add them. This change makes the parser projective and limits its ability to

42 3. Transition-based AMR Parsing

System Precision Recall F1

AMREAGER 68 63 65

AMREAGER - hooks 67 59 63

AMREAGER - siblings 69 62 65

Table 3.10: Ablation experiments on the development set of LDC2015E86.

System Precision Recall F1

JAMR (2014) 62 54 58

CAMR (2015) 69 59 63

JAMR (2016) 70 64 67

CAMR (2016) 70 63 67

AMREAGER (2017) 67 62 64

Peng et al. (2018) 69 59 64

Lyu and Titov (2018) 75 71 73

Table 3.11: Smatch scores on the test set of LDC2015E86. All models were trained on

the LDC2015E86 dataset.

recover reentrancies. Table 3.10 shows that, in this case, the recall is lower, due

to the fact that some reentrancies cannot be parsed. However, the precision

is higher and the F1 does not change. Reentrancies are common in the AMR

data (Table 3.1) and as such the parsers’ ability to recover them should be re-

flected in the parsing score. This observation motivates the development of

fine-grained evaluation metrics for AMR parsing, which we address in Chap-

ter 4.

The scores of all parsers on the test set of LDC2015E86 are shown in Ta-

ble 3.11, where we note that the proposed parser is competitive with previous

parsers. The most closely related parser is that of Peng et al. (2018), which

achieves the same F1 score, with higher precision but lower recall than AM-

REAGER. It is however difficult to closely compare parsers on the sole basis

of the Smatch score. We address this in Chapter 4, where we define a suite of

evaluation metrics to make this comparison easier.

3.10. Related Work 43

3.10 Related Work

As AMR graphs are non-projective strcutures, as discussed in Section 3.3, non-

projective transition systems are related to AMREAGER. For non-projective

dependency parsing, pseudo-projective parsing has been proposed, where trees

are projectivized via a pre-processing step (Nivre and Nilsson, 2005). Attardi

(2006) and Cohen et al. (2011b) instead included transitions to create edges

between items at non-adjacent positions in the stack, hence allowing cross-

ing edges. Yet another alternative solution to parse non-projective depen-

dency trees is to include a transition that reverses the order of the two topmost

items in the stack. This idea has been applied to both dependency parsing

(Nivre, 2009; Bohnet and Nivre, 2012) and SRL (Titov et al., 2009). For SRL,

the pseudo-projective approach has also been used (Henderson et al., 2008).

Unlike these approaches to non-projectivity, AMREAGER can only parse non-

projective structures caused by reentrant edges between siblings.

As discussed in Chapter 2, several approaches to AMR parsing have been

proposed, one of which is transition-based parsing. AMREAGER draws from

the rich literature on transition systems for dependency parsing (Nivre, 2004,

2008; Sagae and Tsujii, 2008; Covington, 2011; Chen and Manning, 2014). Zhou

et al. (2016) presented a transition system for AMR parsing, based on ARC-

STANDARD (Nivre, 2004). The CAMR parser (Wang et al., 2015a), also defines a

transition system. Instead of processing the sentence left-to-right, they process

its dependency tree in a bottom-up traversal. In order to recover reentrancies,

they also include a transition specifically design to recover reentrancies be-

tween siblings, as AMREAGER does. Ballesteros and Al-Onaizan (2017); Peng

et al. (2018) proposed transition-based parsers with different ways to deal with

reentrancies. The parser by Ballesteros and Al-Onaizan (2017) uses a swap

transition, which allows for a restricted subset of reentrancies but is not lim-

ited to those between siblings. The parser by Peng et al. (2018) introduces a

cache system that allows recovering (with an appropriate cache size) all reen-

trancies.

Our transition system is also related to an adaptation of ARCEAGER for

DAGs, introduced by Sagae and Tsujii (2008). The latter is also the basis for

Ribeyre et al. (2015), a transition system used to parse dependency graphs.

Similarly, Du et al. (2014) also addressed dependency graph parsing with tran-

44 3. Transition-based AMR Parsing

sition systems. Analogously to dependency trees, dependency graphs have

the property that their nodes consist of the word tokens, which is not true for

AMR. As such, these transition systems are more closely related to those used

for dependency parsing.

3.11 Summary

In this chapter, we presented a transition system that builds AMR graphs in

linear time by processing the sentences left-to-right, trained with feed-forward

neural networks. AMREAGER provides linear worst-case complexity and al-

lows for incremental AMR parsing. The parser demonstrates that it is possi-

ble to perform AMR parsing using techniques inspired by dependency pars-

ing with few adjustments. Our parser is available at https://github.com/

mdtux89/amr-eager and a demo is available at http://cohort.inf.ed.ac.uk/

amreager.html.

We analyzed the contributions of single components of our transition sys-

tem and showed that it is competitive with previous work. The Smatch score

is not affected by the creation of siblings, which however increases the recall

of reentrancy structures. A more in-depth comparison of the parsers is dis-

cussed in the next chapter, where we introduce a set of fine-grained evaluation

metrics, including one for reentrancy prediction, which facilitates comparisons

between parsers.

4

Evaluation and Analysis of

Reentrant Structures in AMR

Parsing

As discussed in Chapter 2, several semantic subtasks are involved in AMR

parsing, such as coreference resolution, NER, and SRL. However, Smatch pro-

vides only a single score summarizing the overall quality of the parse. In Chap-

ter 3, we discussed the difficulty in analyzing the differences between parsers

when Smatch is the only available evaluation metric. In this chapter, we in-

troduce a set of metrics to alleviate these problems and better compare parsers

against each other.

One of the main properties of AMR, and the reason why sentences are

represented as graphs rather than trees, is the presence of reentrancies, as

discussed in Chapter 2. Reentrancies complicate AMR parsing and require

the addition of specific transitions in transition-based parsing (Wang et al.,

2015a; Damonte et al., 2017) or of pre- and post-processing steps in sequence-

to-sequence parsing (van Noord and Bos, 2017a). Enabling AMR parsers to

predict reentrancy structures correctly is particularly important because it sep-

arates AMR parsing from semantic parsing based on tree structures (Steed-

man, 2000; Liang, 2013; Cheng et al., 2017). Reentrancy is however not an

AMR-specific problem (Kuhlmann and Jonsson, 2015), and other formalisms

can benefit from a better understanding of how to parse such structures. For

these reasons, one of the metrics that we propose evaluates parsers with re-

spect to reentrancies. We found that the performance of parsers at recovering

45

46 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

reentrancy structures is generally poor, ranging between 40% and 54% F1 on

LDC2015E86.

We argue that a better understanding of the role of reentrancies in AMR

parsing can improve parser performance. To our knowledge, the AMR liter-

ature lacks a detailed discussion of reentrancies. Hence, we provide a classi-

fication of linguistic causes of reentrancy and quantify their prevalence in the

corpus. We also take a closer look at how well AMR parsers deal with reen-

trancies and how to improve their performance. For this purpose, we analyze

errors made by the parsers and use an oracle to demonstrate that correcting

reentrancy-related errors leads to parsing score improvements.

Our contributions in this chapter are as follows:

• We propose a set of metrics to overcome the problems of using a single

score for AMR parsing and better compare parsers;

• We use these metrics to more closely evaluate AMREAGER (Chapter 3);

• We classify the phenomena causing reentrancies, some which have not

been discussed yet;

• We quantify their prevalence in the AMR corpus and discover additional

sources of reentrancies;

• We categorize types of reentrancy errors made by the parsers and per-

form oracle experiments showing that correcting these errors can lead to

improvements up to 20% in reentrancy prediction and 5% Smatch over

state-of-the-art results;

• We establish baselines to correct the errors automatically as a post-processing

step.

4.1 Fine-grained Evaluation

AMR parsers were traditionally evaluated using the Smatch score (Cai and

Knight, 2013), as discussed in Chapter 2. We note that the Smatch score has

two flaws: (1) while AMR parsing involves a large number of subtasks, the

Smatch score consists of a single number that does not assess the quality of

each subtask separately; (2) the Smatch score weighs different types of errors

4.1. Fine-grained Evaluation 47

in a way which is not necessarily useful for solving a specific NLP problem. For

example, for a given application, concept detection might be deemed more im-

portant than edge detection, or guessing the wrong sense for a concept might

be considered less severe than guessing the wrong verb altogether.

Consider two alternative parses for the sentence Silvio Berlusconi gave Lucio

Stanca his current role of modernizing Italy’s bureaucracy in Figure 4.1: Parse 1

is not able to deal with named entities. Parse 2 overpredicts the edge label

:ARG0. The Smatch scores for the two parses are 56% and 78% respectively.

Both parses contain obvious mistakes, but Smatch penalizes more the three

named entity errors in Parse 1 than the six wrong edge labels in Parse 2. This

behavior, depending on the downstream application, may not be desirable.

In order to better understand the limitations of AMR parsers, find their

strengths and gain insight in which downstream tasks they may be helpful,

we instead define a set of fine-grained evaluation metrics.

The first set of metrics rely on Smatch. We preprocess the input AMR or

select a subset of the AMR’s triples, before running the Smatch algorithm. See

Chapter 2 for an explanation of how Smatch extracts triples from the input

AMR.

• UNLABELED. Before running Smatch, we preprocess the input graphs by

replacing all the edge labels with the same dummy label. We do not nor-

malize the inverse roles, unlike Smatch. In this way, we only assess the

graph topology and the node labels. A good UNLABELED score may be

enough to perform well at certain downstream applications, as it iden-

tifies the basic predicate-argument structure. For instance, we may be

interested in knowing whether two events or entities are related to each

other, while not being concerned with the precise type of relation hold-

ing between them. In the case of Parse 2, the UNLABELED score is 100%

as the wrong edge labels are not taken into consideration for this metric.1

• NO WSD. AMR uses Propbank frames to disambiguate between senses.

For example, run-01 means to operate while run-02 means to walk quickly.

Before running Smatch, we preprocess the input graphs by removing the

suffix from all concepts labeled with a Propbank frame, so that we can

1Similarly to how we report Smatch results, we report these scores as percentages.

48 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

Gold

(g / give-01

:ARG0 (p3 / person :wiki " S i l v i o _ B e r l u s c o n i "

:name (n4 / name :op1 " S i l v i o " :op2 " Ber lusconi "))

:ARG1 (r / role :poss p4 :time (c2 / current)

:mod (m / modernize-01 :ARG0 p4

:ARG1 (b / bureaucracy

:part-of (c3 / country :wiki " I t a l y "

:name (n6 / name :op1 " I t a l y ")))))

:ARG2 (p4 / person :wiki −
:name (n5 / name :op1 " Lucio " :op2 " Stanca ")))

Parse1

(g / give-01

:ARG0 (p3 / silvio :mod (n4 / berlusconi))

:ARG1 (r / role :poss p4 :time (c2 / current)

:mod (m / modernize-01 :ARG0 p4

:ARG1 (b / bureaucracy :part-of (c3 / italy))))

:ARG2 (p4 / lucio :mod (n5 / stanca)))

Parse2

(g / give-01

:ARG0 (p3 / person :wiki " S i l v i o _ B e r l u s c o n i "

:name (n4 / name :op1 " S i l v i o " :op2 " Ber lusconi "))

:ARG0 (r / role :ARG0 p4 :ARG0 (c2 / current)

:ARG0 (m / modernize-01 :ARG0 p4

:ARG0 (b / bureaucracy

:ARG0 (c3 / country :wiki " I t a l y "

:name (n6 / name :op1 " I t a l y ")))))

:ARG0 (p4 / person :wiki −
:name (n5 / name :op1 " Lucio " :op2 " Stanca ")))

Figure 4.1: At the top, the gold AMR graph for the sentence Silvio Berlusconi gave Lucio

Stanca his current role of modernizing Italy’s bureaucracy. In the middle, Parse 1, that

scores 56% Smatch. At the bottom, Parse 2, that scores 78% Smatch. The mistakes of

each parse are highlighted in red.

4.1. Fine-grained Evaluation 49

evaluate the parsers without taking WSD errors into account. For exam-

ple, we preprocess the AMR representations in Figure 4.1 by replacing

give-01 with give and modernize-01 with modernize. When the parsers do

not make any WSD errors, this score is equivalent to Smatch, as seen for

Parse 1 and Parse 2.

• NP-ONLY. Similarly to Sawai et al. (2015), we evaluate the parsers on

noun phrase parsing. We extract all noun phrases in the AMR dataset

that are not included in another noun phrase and contain more than one

noun. For the sentence in Figure 4.1, these are Silvio Berlusconi, Lucio

Stanca, and his current role of modernizing Italy’s bureaucracy. We then eval-

uate parsing on these phrases using Smatch. In Sawai et al. (2015), sen-

tences with named entities, pronouns and conjunctions, which are diffi-

cult to either align or parse, are also filtered out. Our metric is agnostic

to the specific alignment and parsing algorithms employed and therefore

does not apply such constraints.

• REENTRANCIES. As we previously discussed, the presence of reentrancy

is a very important characteristic of AMR graphs and is often difficult

to handle. We therefore implement a test for reentrancy prediction. We

run Smatch on the subset of the triples that involve variables with more

than one parent, together with the instance triples of all the variables

that appear in the selected triples. The triples extracted for the parses

in Figure 4.1 are shown in Table 4.1. Before extracting triples, we follow

Smatch in normalizing the inverse roles. As a result of this normalization,

there can appear additional reentrancies. For instance, the triples for the

Gold parse and Parse 1 include those for the node bureaucracy because the

edge part-of is inverted, hence creating a reentrancy. According to the

REENTRANCIES metric, Parse 1 produces two wrong triples, while Parse

2 misses four triples and produces two wrong triples.

• SRL. SRL is an important subtask of AMR concerned with the identifica-

tion of predicate-argument structures. We compute this metric similarly

to REENTRANCIES, by running the Smatch score on the subset of normal-

ized triples with a core (:ARG) role and the relative instance triples.

Furthermore, we define a second set of metrics which focuses on concepts

50 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

Gold Parse 1 Parse2

root (g)

i n s t (m, modernize−01)

i n s t (p4 , person)

i n s t (r , r o l e)

i n s t (b , bureaucracy)

i n s t (c3 , country)

i n s t (g , give−01)

ARG0(m, p4)

ARG2(g , p4)

poss (r , p4)

ARG1(m, b)

part (c3 , b)

root (g)

i n s t (m, modernize−01)

inst(p4,lucio)

i n s t (r , r o l e)

i n s t (b , bureaucracy)

inst(c3,italy)

i n s t (g , give−01)

ARG0(m, p4)

ARG2(g , p4)

poss (r , p4)

ARG1(m, b)

part (c3 , b)

root (g)

i n s t (m, modernize−01)

i n s t (p4 , person)

i n s t (r , r o l e)

inst(p4,lucio)

inst(p4,lucio)

i n s t (g , give−01)

ARG0(m, p4)

ARG0(g,p4)

ARG0(r,p4)

inst(p4,lucio)

inst(p4,lucio)

Table 4.1: Triples extracted by the REENTRANCIES score for Gold (left), Parse1 (middle),

and Parse 2 (right) of Figure 4.1. Bold and missing triples higlight the differences

between the parses.

and not triples. As a consequence, Smatch is not needed and we use the F1

metric instead:

• CONCEPTS. Concept identification is another critical component of the

parsing process. Identifying the correct concepts is fundamental: if a

concept is not identified, it will not be possible to retrieve any edge in-

volving that concept. To evaluate concept identification, we extract the

list of concepts appearing in the predicted graph and the list of concepts

appearing in the reference graph. We then compute the overlap between

the two lists with the F1 metric. For instance, from both the Gold parse

and Parse 2 in Figure 4.1 we extract the following list of concepts: per-

son, bureaucracy, person, give-01, modernize-01, role, country, current, name,

name, and name. The set extracted from Parse 1 does not have any per-

son, country, or name concepts and instead have the concepts italy, lucio,

stanca, silvio, and berlusconi.

• NAMED ENTITIES. We further compute the F1 score on the of concepts

that participate in an outgoing edge with role :name. For Gold and Parse

2, these are person, person, and country, while there are no such concepts

4.1. Fine-grained Evaluation 51

Metric Parse 1 Parse 2

SMATCH 56 78

UNLABELED 65 100

NO WSD 56 78

NP-ONLY 39 86

REENTRANCIES 83 50

CONCEPTS 48 100

NAMED ENTITIES 0 100

WIKIFICATION 0 100

NEGATIONS 0 0

SRL 83 60

Table 4.2: Evaluation of the two parses in Figure 4.1 with the proposed evaluation

suite.

for Parse 1. Consequently, the score is 0% for Parse 1 and 100% for Parse

2.

• WIKIFICATION. We also compute the F1 score on the concepts that partic-

ipate in an ingoing edge with role :wiki, hence extracting the wikipedia

identifiers: Silvio_Berlusconi, -, and Italy for Gold and Parse 2, none for

Parse 1. Therefore, as for NAMED ENTITIES, the WIKIFICATION score is

0% for Parse 1 and 100% for Parse 2.

• NEGATION. Finally, we define a metric for negation detection by com-

puting the F1 score on the concepts that participate in an outgoing edge

with role :polarity, hence extracting all negated concepts.

Using this evaluation suite we can evaluate AMR parsers on a wide range

of metrics that can help us find the strengths and weaknesses of each parser,

hence speeding up research in this area. Table 4.2 reports the scores for the two

parses in Figure 4.1, where we see that Parse 1 gets a high score for SRL while

Parse 2 is optimal for NER. We can also observe that Parse 2 is optimal with

respect to unlabeled score and that Parse 1 is better at recovering reentrancies.

52 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

Metric J (2014) C (2015) J (2016) A (2017) L&T (2018)

SMATCH 58 63 67 64 73

UNLABELED 61 69 69 69 73

NO WSD 58 64 68 65 74

NP-ONLY 54 57 64 61 63

REENTRANCIES 40 43 45 44 54

CONCEPTS 77 78 81 81 84

NAMED ENTITIES 73 72 76 81 86

WIKIFICATION 0 0 71 60 73

NEGATIONS 17 17 45 50 56

SRL 58 65 63 61 71

Table 4.3: Results on test split of LDC2015E86. A stands for AMREAGER, J for JAMR,

C for CAMR, L&T is the parser by Lyu and Titov (2018).

4.1.1 Evaluation Results

We use the proposed evaluation metrics to compare AMREAGER with publicly

available parsers: JAMR (Flanigan et al., 2014, 2016a), CAMR (Wang et al.,

2015a), and a more recent parser by Lyu and Titov (2018).

Table 4.3 shows the results.2 The parser by Lyu and Titov (2018) outper-

forms the others for all metrics, often by a large margin. The evaluation suite

is most useful to compare parsers with similar performance, where we want

to discern what are the advantages and disadvantages of using a parser rather

than another one. Compared to the JAMR and CAMR parsers, who performs

similarly to AMREAGER in terms of Smatch, our parser obtains the best results

for UNLABELED, CONCEPT, NAMED ENTITIES, and NEGATIONS.

The good results we obtain for UNLABELED suggests that our parser has

more difficulty in labeling the arcs than creating them. We also perform well at

CONCEPTS. We predict concepts by choosing the most frequent subgraph for a

given token based on a phrase-table (Chapter 3). Achieving good results with

such a simple approach suggests that there is a relatively low level of token

ambiguity in the dataset. We achieve good performance for NAMED ENTI-

TIES and WIKIFICATION thanks to a rule-based approach (Chapter 3). With-

2The version of the evaluation suite used in this thesis differs from the one previously
released, see Appendix A.

4.2. Reentrancies 53

out these rules, NAMED ENTITIES drops from 83% to 77% and WIKIFICATION

drops from 76% to 75%.

Most parsers do not perform well at NEGATIONS, possibly due to wrong

automatic alignments with respect to polarity: words bearing negative polar-

ity like not, illegitimate and asymmetry are sometimes not aligned to the - (mi-

nus) node in the AMR graph. To alleviate this problem, we perform a simple

post-processing step on the aligner output: we collect a list of words bearing

negative polarity. Every time that a - (minus) node is unaligned, we align it

with one of these words, if they appear in the sentence. This resulted in an

increase of the NEGATIONS score from 47% to 50%.

In Chapter 3, we discussed the use of the Reduce transition, which targets

reentrancies between siblings, often caused by control verbs. We showed that

the transition does not have an impact on the Smatch score but argued that

it is useful to recover more reentrancies. The REENTRANCIES score, which

drops from 44% to 39% when Reduce is removed, confirms this hypothesis.

We note that all parsers do not perform well at recovering reentrancies, which

motivates a more careful study of reentrancies in AMR.

4.2 Reentrancies

In Chapter 3, we reported that more than 40% of 200 manually annotated sen-

tences contain at least one reentrancy. Kuhlmann and Oepen (2016) showed

detailed statistics of the presence of reentrancies in AMR and other graph for-

malisms. Van Noord and Bos (2017a) proved that strategies to pre- and post-

process reentrancies can improve the performance of sequence-to-sequence

AMR parsers. Pop et al. (2018) reported a similar analysis for a transition-

based parser. The importance of reentrancies for AMR therefore warrants an

analysis of the phenomena that cause them and the errors that AMR parsers

typically make when predicting them.

4.2.1 Phenomena Causing Reentrancies

Before diving into the errors caused by reentrancies, we first discuss what phe-

nomena cause them (Table 4.4), and quantify the prevalence of those causes in

the AMR corpus. We introduce three broad types of reentrancy triggers: syn-

54 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

tactic, pragmatic, and AMR-specific.

We consider a reentrancy as syntactically triggered if the syntactic structure

of a sentence forces an interpretation in which one entity performs more than

one semantic role. In the examples above, we denote this by co-indexing:

(3) The mani saw himselfi in the mirror.

(4) Theyi want εi to believe.

(5) I asked youi εi to sing.

(6) Shei ate and εi drank.

Some of the syntactic triggers are commonly discussed in the AMR literature:

pronominal anaphora resolution (3), prototypical subject and object control

(4 and 5), and coordination (6) (Groschwitz et al., 2017; van Noord and Bos,

2017a). In addition to those, other kinds of control structures, primarily ad-

junct control, are frequent reentrancy triggers. In adjunct control the clause

which lacks a subject is an adjunct of the main clause, as in the following ex-

amples:

(7) Ii went home before εi eating.

(8) Shei left the room εi crying.

Such adjuncts express various additional information regarding the main

clause, for example the goal, reason, or timing of an event. Unlike the proto-

typical cases of control, there is by definition no finite list of verbs associated

with adjunct control.

It is worth noting that one would expect relative clauses to be one of the

syntactic reentrancy triggers, because the noun involved has a semantic role in

both the main and relative clause:

(9) I saw the womani who εi won.

In the example above, the woman is the object of seeing and the subject of

winning. However, according to the AMR guidelines (Banarescu et al., 2013)

relative clauses should be annotated as attaching to the noun with an inverse

role, thereby avoiding a reentrancy (see Table 4.4). Relative clauses therefore

cause reentrancies only when normalizing all inverse edges, as done in Smatch

and the evaluation metrics of Section 4.1. Because of this, the REENTRANCIES

metric also considers reentrancies caused by relative clauses.

4.2. Reentrancies 55

Phenomenon Sentence AMR

Coreference The man saw himself in the mirror

see-01

man mirror

:ARG1
:ARG0 :instrument

Coordination She ate and drank

and

eat-01 drink-01

she

:op1 :op2

:ARG0 :ARG0

Control I asked you to sing

ask-01

I you sing-01

:ARG0 :ARG1 :ARG2

:ARG0

:ARG1

Adjunct control I went home before eating

go-01

I home before

eat-01

:ARG0 :ARG1 :time

:op1

:ARG0

Relative clause I saw the woman who won

see-01

win-01

I woman
:ARG0 :ARG1

:ARG0-of

Verbalization I received instructions to act

receive-01

I instruct-01

act-02

:ARG0 :ARG1

:ARG1
:ARG0

:ARG0

Table 4.4: Several linguistic phenomena causing reentrancies in AMR. In the relative

clause example, a reentrancy appears when the :ARG0-of role is inverted.

56 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

The human annotators resolve instances of coreference even in the absence

of definite syntactic clues, giving rise to pragmatically triggered reentrancies.

To this class belongs general coreference resolution. While coreference is, in

general, a discourse phenomenon (Hobbs, 1979), it is also applicable to indi-

vidual sentences such as those in the AMR corpora:

(10) The coach of FC Barcelona said the team had a good season.

In the example above, it is pragmatically understood that FC Barcelona and the

team refer to the same entity, even though the coach could have been talking

about another team. Another example is provided by control-like structures

within nominal and adjectival phrases:

(11) Theyi have a right εi to speak freely.

(12) Hei was crazy εi to trust them.

An AMR annotation will state that that the possessor of the right and the sub-

ject of speak are the same. The recovery of the subject of the infinitival clause

in such constructions is driven by semantics or pragmatics rather than syntax

(Huddleston and Pullum, 2002).

Finally, the last source of reentrancies is AMR conventions:

(13) I received instructions to act.

The guidelines encourage annotators to use OntoNotes predicates whenever

possible (verbalization), regardless of the part of speech of the word. In the

sentence above, the plural noun instructions appears in the AMR graph as a

predicate node instruct-01. This encourages explicitly annotating inferred se-

mantic roles and so I becomes an object of instruct-01, causing a reentrancy.

Additionally, because of the control-like structure, I is also annotated as an

object of acting.

4.2.2 Quantitative analysis

In order to assess the prevalence of the various reentrancy triggers, we de-

signed heuristics to assign each reentrancy in the AMR corpus to one of the

above phenomena. 3 We automatically align AMR graphs to their source sen-

3Ida Szubert, a co-author of Damonte et al. (2019), contributed to the classification of the
causes of reentrancies and designing of the heuristics.

4.2. Reentrancies 57

tences using JAMR (Flanigan et al., 2014) and identify the spans of words asso-

ciated with reentrant nodes.4 Heuristics based on Universal Dependency (UD)

parses (Manning et al., 2014) and automatic coreference resolution are applied

to the spans and the AMR subgraphs containing the reentrancy to classify the

cause.5 We use the NeuralCoref project for coreference resolution.6

We recognize syntactic reentrancy triggers primarily with UD-based heuris-

tics. For prototypical cases of control we look for common control verbs such

as want, try, and persuade,7 with an outgoing xcomp dependency. To identify

other types of control, such as adjunct control, we look for xcomp, ccomp or

advcl dependency between words aligned to parents of a reentrant node. For

coordination we only check the AMR itself, looking for coordination nodes

(i.e., nodes labeled with and, contrast-01, or or). For coreference, we look for

reentrant nodes associated with more than one span and check if those spans

corefer. Finally, for verbalization, we look for nouns or adjectives aligned

with OntoNotes predicates in the AMR graph. We tried to identify nominal

control-like structures by looking for nominals with an acl dependent infini-

tive or gerund subject-less verb. However, as the precision of the rule is low,

and most examples uncovered by this heuristic also fall into the verbalization

category, we do not include it in our statistics.

The results of this analysis are in Table 4.5. The most common cause of

reentrancy is coreference. Control is almost as frequent but control verbs only

account for 15% of all control reentrancies, the rest being mostly adjunct con-

trol.

We note that our heuristics cannot find the cause for 46% of all reentrancies.

This can happen for several reasons. First, the coreference resolution system

is noisy, which can impact the coreference heuristic. Consider the following

sentence:

(14) The countries signed an agreement that binds the signatories.

The coreference resolution system can fail to detect that The countries and the

signatories corefer, which causes a reentrancy. Similarly, the alignments be-

tween words in the sentence and AMR nodes can contain mistakes, which af-

4https://github.com/jflanigan/jamr
5https://stanfordnlp.github.io/CoreNLP
6https://github.com/huggingface/neuralcoref
7https://en.wiktionary.org/wiki/Category:English_control_verbs

58 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

Phenomenon Frequency

Coreference 18%

Control 16%

Coordination 11%

Verbalization 9%

Rest 46%

Table 4.5: Percentage of reentrancies in the LDC2015E86 training set found by our

heuristics. “Rest” are all reentrancies for which our heuristics fail to detect the cause.

fects the heuristics that rely on them. The dependency parser and the POS

tagger introduce additional noise.

Unaccounted reentrancies may also be caused by other phenomena that we

did not anticipate. We therefore selected a random sample of 50 sentences and

annotated the causes of their 79 unaccounted reentrancies. We found that 8%

of these were due to the annotators overreaching in their pragmatic interpre-

tation of the sentence. Consider the sentence:

(15) The group said the foreign broadcasters are battering their culture and that it

is insulting behavior.

In its AMR, the node insult-01 takes group as its :ARG1, making an arguably un-

warranted assumption that the behavior is insulting to the group. We note that

the inclusion of this type of reentrancies in AMR is controversial as it annotates

beyond what semantics should represent. Ellipsis cause 5% of the reentrancies,

as in the sentence:

(16) Who can afford it and who can’t.

In this case, the AMR contains a reentrancy for it. Nominal control-like struc-

tures are responsible for 5% of the unaccounted reentrancies. We discussed

this case in Section 4.2.1 but could not devise a reliable heuristic for it. Fi-

nally, 11% of the unaccounted reentrancies were due to mistakes in the AMR

annotations. For example, in the following sentence, the annotator created an

erroneous edge between remove-01 (removed) and the make-19 (make).

(17) People were removed from their homeland to make way for the base.

4.2. Reentrancies 59

eat-01

he pizza finger

he

:ARG0 :ARG1 :instrument

:part-of

eat-01

he pizza finger
:ARG0 :ARG1 :instrument

:part-of

Figure 4.2: Left: a coreference-related reentrancy error for the sentence He ate the pizza

with his fingers. Right: the correct reentrancy. The difference is highlighted in red.

want-01

boy believe-01

:ARG0 :ARG1

girl
:ARG1

want-01

boy believe-01

:ARG0 :ARG1

girl
:ARG1

:ARG0

Figure 4.3: Left: a control-related reentrancy error for the sentence The boy wants to

believe the girl. Right: the correct reentrancy.

4.2.3 Reentrancy-related Parsing Errors

In order to identify the reentrancy errors made by an AMR parser, we com-

pare the predicted AMR graphs with the gold standard. We use Smatch to

find the best alignments between variables of the predicted and gold graph.

We can then find cases where the predicted graph is either missing a reen-

trancy or contains an unnecessary one. A typical reentrancy error involves the

parser generating two nodes in place of one in the gold standard, as shown in

Figure 4.2. The opposite is also possible, where two nodes are erroneously col-

lapsed. Reentrant edges often occur between siblings. This happens in some

cases of coreference (Figure 4.2) as well as control (Figure 4.3).8

The process of extracting the error patterns is prone to error. The align-

ments between the predicted and the gold graph are computed by Smatch,

introducing noise. When the predicted graph contains errors, the correct align-

ment may not be found, which can affect our ability to find the error patterns.

8It is possible to classify errors by phenomena following Section 4.2.2. However, we found
that this approach is too noisy and greatly diminishes the number of errors that can be de-
tected.

60 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

4.2.4 Oracle

Our oracle introduces corrections for the errors discussed, implemented as ac-

tions that modify the edges and nodes of the predicted AMR.

Let the predicted graph, containing n nodes, be defined as:9

S = (Vs,Es),

Vs = {s1,s2, . . . ,sn},

Es =⊆Vs×Vs.

and the target graph, containing m nodes, be defined as:

T = (Vt ,Et),

Vt = {t1, t2, . . . , tm},

Et =⊆Vt×Vt .

Let A(·) be an alignment (computed using Smatch) that maps a node in Vs to a

node in Vt , or nil if the node is not in present in Vt . Let A−1(·) be an alignment

that maps a node in Vt to a node in Vs, or nil if the node is not in present in Vs.

Then, given a source node si, we define ti = A(si) and si = A−1(·).
The oracle introduces the following actions:

• ADD: An edge is added (Figure 4.4a).

• ADD-ADDN: An edge and a node are added (Figure 4.4b).

• RM: An edge is removed (Figure 4.4c).

• RM-RMN: An edge and a node are removed (Figure 4.4d).

• MERGE: Two nodes are merged (Figure 4.5a).

• MERGE-RMN: Two nodes are merged and a node removed (Figure 4.5b).

• SPLIT: A node is split in two already existing nodes (Figure 4.5c).

• SPLIT-ADDN: A node is split in one existing node and a new node (Fig-

ure 4.5d).

• ADD-SIB: An edge between siblings is added (Figure 4.6a).

9Note that, for the purpose of our oracle, we ignore the edge labels of the AMR graphs.

4.2. Reentrancies 61

• ADD-SIB-ADDN: A node is added and an edge with one of its sibling

nodes is added (Figure 4.6b).

• RM-SIB: An edge between siblings is removed (Figure 4.6c).

• RM-SIB-RMN: An edge between siblings and one of the sibling nodes are

removed (Figure 4.6d).

a)

sa

sb

sc ta tb

tc

ADD

b)

sa

sb

ta tc

tb

ADD-ADDN

c)

sa

sb

sc ta tc

tb

RM

d)

sa

sb

sc ta

tb

RM-RMN

Figure 4.4: Actions to solve errors caused by missing or extra reentrancies.

For instance, for ADD (Figure 4.4a), we identify three variables sa, sb, sc and

the aligned variable in the target graph ta = A(sa), tb = A(sb), tc = A(sc) such that:

(sa,sb) ∈ Es,(sc,sb) 6∈ Es,

(ta, tb) ∈ Et ,(tc, tb) ∈ Et .

The oracle then creates an edge between the two siblings:

Es = Es∪ (sc,sb).

The definition of all actions is reported in Table 4.6. We also consider the

combination of all actions (ALL). We do so by correcting one error type at the

time in a pre-determined order:10 for each error type, we re-run the oracle to

find all errors after the actions for the previous type were applied.
10We sort the actions by the REENTRANCY score on LDC2017T10 in decreasing order.

62 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

a)

sa

sb

sc

sd

ta tc

tb td

MERGE

b)

sa

sb

sc

sd

ta tc

tb

MERGE-RMN

c)

sa

sb

sc ta tc

tb td

SPLIT-ADDN

d)

sa

sb

sc

sd

ta tc

tb td

SPLIT

Figure 4.5: Actions to solve errors due to duplicated or collpased nodes.

a)

sa

sb sc

ta

tb tc

ADD-SIB

b)

sa

sb

ta

tb tc

ADD-SIB-ADDN

c)

sa

sb sc

ta

tb tc

RM-SIB

d)

sa

sb sc

ta

tb tc

RM-SIB-RMN

Figure 4.6: Actions to solve errors due to reentrancies between siblings.

4.2. Reentrancies 63

Action Condition Effect

ADD (sa,sb) ∈ Es,(sc,sb) 6∈ Es,(ta, tb) ∈ Et Es = Es∪ (sc,sb)

(tc, tb) ∈ Et

ADD-ADDN sa,sb) ∈ Es,A−1(tc) = nil,(ta, tb) ∈ Et Vs =Vs∪ tc,

(tc, tb) ∈ Et Es = Es∪ (sc,sb)

RM (sa,sb) ∈ Es,(sc,sb) ∈ Es,(ta, tb) ∈ Et Es = Es− (sc,sb)

(tc, tb) 6∈ Et

RM-RMN (sa,sb) ∈ Es,(sc,sb) ∈ Es,(ta, tb) ∈ Et Vs =Vs− sc,

A(sc) = nil Es = Es− (sc,sb)

MERGE (sa,sb) ∈ Es,(sc,sd) ∈ Es,(sc,sb) 6∈ Es Es = Es∪ (sc,sb)− (sc,sd)

(ta, tb) ∈ Et ,(tc, td) 6∈ Et ,(tc, tb) ∈ Et

MERGE-RMN (sa,sb) ∈ Es,A(sd) = nil,(sc,sb) 6∈ Es Vs =Vs− sd,

(ta, tb) ∈ Et ,(tc, td) 6∈ Et ,(tc, tb) ∈ Et Es = Es∪ (sc,sb)− (sc,sd)

SPLIT (sa,sb) ∈ Es,(sc,sb) ∈ Es,(sc,sd) ∈ Es Es = Es∪ (sc,sd)− (sc,sb)

(ta, tb) ∈ Et ,(tc, td) ∈ Et

SPLIT-ADDN (sa,sb) ∈ Es,(sc,sb) ∈ Es,A−1(td) = nil Vs =Vs∪ td,

(ta, tb) ∈ Et ,(tc, td) ∈ Et Es = Es∪ (sc, td)− (sc,sb)

ADD-SIB (sa,sb) ∈ Es,(sa,sc) ∈ Es,(sc,sb) 6∈ Es Es = Es∪ (sc,sb)

(ta, tb) ∈ Et ,(ta, tc) ∈ Et ,(tc, tb) ∈ Et

ADD-SIB-ADDN (sa,sb) ∈ Es,A−1(tc) = nil,(ta, tb) ∈ Et Vs =Vs∪ tc,

(ta, tc) ∈ Et ,(tc, tb) ∈ Et Es = Es∪ (tc,sb)

RM-SIB (sa,sb) ∈ Es,(sa,sc) ∈ Es,(sc,sb) ∈ Es Es = Es− (sc,sb)

(ta, tb) ∈ Et ,(ta, tc) ∈ Et ,(tc, tb) 6∈ Et

RM-SIB-RMN (sa,sb) ∈ Es,(sa,sc) ∈ Es,(sc,sb) ∈ Es Vs =Vs− tc,

(ta, tb) ∈ Et ,A(sc) = nil Es = Es− (sc,sb)

Table 4.6: Definition of all oracle actions.

4.2.5 Oracle Results

We run oracle experiments to explore the impact of reentrancy-related errors,

on both Smatch score and REENTRANCIES score (Section 4.1). We experiment

64 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

with the parser by Lyu and Titov (2018) and follow their experimental setup,

evaluating on both LDC2015E86 and LDC2017T10 datasets.

Because Smatch is randomized, different runs of the oracle can identify dif-

ferent errors to correct: we therefore compute the mean and standard deviation

of 3 runs.

Results are shown in Table 4.7.11

While the largest improvements are observed when correcting all error

types, the most relevant single oracle action is ADD. For this action, we obtain

considerable improvements for both corpora, especially for reentrancy predic-

tion (increase by 10.4 and 10.3 points), but also for Smatch (increase by 1.7

points for both corpora). The ADD corrections provide more than half of the

reentrancy score improvement provided by ALL corrections, and slightly less

than half of the Smatch improvement. Actions ADD-SIB and RM-SIB do not

account for large improvements. This explains the ablation results of Chap-

ter 3, where we observed that a transition that recovers reentrancies between

siblings did not affect the overall Smatch score.

Because of the use of noisy alignment in oracle action prediction, the oracle

provides a lower band estimate of the possible gains. Overall, we argue that

the room for improvement is large enough to warrant more careful treatment

of reentrancies, either during training or as a post-processing step.

11To find and correct errors, we act directly on the triples, not on the PENMAN notation
used by Smatch. We therefore implemented a variant of Smatch that directly read triples.

4.2. Reentrancies 65

LD
C

20
15

E8
6

LD
C

20
17

T
10

A
ct

io
n

Fr
eq

.
Sm

at
ch

R
ee

nt
.

Fr
eq

.
Sm

at
ch

R
ee

nt
.

V
A

N
IL

L
A

-
73

.9
54

.3
-

75
.2

56
.9

A
L

L
31

08
.3

(1
1.

59
)

+4
.6

+1
8.

8
30

93
.7

(1
0.

12
)

+4
.4

+1
8.

0

A
D

D
12

92
.0

(7
.9

4)
+1

.7
+1

0.
4

13
05

.7
(3

.2
1)

+1
.7

+1
0.

3

A
D

D
-A

D
D

N
33

0.
0

(4
.3

6)
+0

.8
+4

.2
28

1.
3

(5
.5

1)
+0

.7
+3

.1

R
M

54
5.

7
(3

.0
6)

+0
.4

-0
.1

57
2.

3
(4

.0
4)

+0
.4

-0
.1

R
M

-R
M

N
21

7.
0

(2
.0

0)
+0

.3
+0

.6
22

4.
7

(3
.0

6)
+0

.2
+0

.8

M
E

R
G

E
18

7.
3

(1
.5

3)
+0

.4
+1

.6
19

3.
3

(3
.0

6)
+0

.4
+1

.7

M
E

R
G

E
-R

M
N

94
.3

(1
.1

5)
+0

.3
+1

.0
84

.0
(2

.0
0)

+0
.2

+0
.9

SP
L

IT
57

4.
7

(3
.2

1)
+1

.2
+1

.8
54

1.
3

(4
.1

6)
+1

.1
+1

.7

SP
L

IT
-A

D
D

N
33

3.
0

(1
.0

0)
+0

.9
-0

.2
34

7.
3

(3
.7

9)
+0

.9
-0

.0

A
D

D
-S

IB
12

8.
0

(1
.0

0)
+0

.2
+1

.3
11

9.
7

(1
.1

5)
+0

.1
+1

.2

A
D

D
-S

IB
-A

D
D

N
99

.7
(3

.0
6)

+0
.1

-0
.1

10
4.

3
(1

.5
3)

+0
.1

-0
.0

R
M

-S
IB

69
.3

(0
.5

8)
+0

.1
+0

.2
89

.3
(0

.5
8)

+0
.0

+0
.2

R
M

-S
IB

-R
M

N
0.

0
(0

.0
0)

+0
.0

-0
.1

0.
0

(0
.0

0)
+0

.0
+0

.0

Ta
bl

e
4.

7:
R

el
at

iv
e

Sm
at

ch
im

pr
ov

em
en

ts
w

it
h

re
sp

ec
tt

o
Ly

u
an

d
Ti

to
v

(2
01

8)
of

al
la

ct
io

ns
on

th
e

te
st

sp
lit

of
LD

C
20

15
E8

6
an

d
LD

C
20

17
T1

0.

Fr
eq

.
is

th
e

nu
m

be
r

of
ti

m
es

th
e

ac
ti

on
co

ul
d

be
ap

pl
ie

d,
Sm

at
ch

is
th

e
pa

rs
in

g
sc

or
e

an
d

R
ee

nt
.

is
th

e
R

E
E

N
T

R
A

N
C

IE
S

sc
or

e.
A

L
L

is
th

e

co
m

bi
na

ti
on

of
al

la
ct

io
ns

.
V

A
N

IL
L

A
ar

e
th

e
sc

or
es

ob
ta

in
ed

by
th

e
or

ig
in

al
pa

rs
er

s.
In

pa
re

nt
he

se
s,

w
e

re
po

rt
th

e
st

an
da

rd
de

vi
at

io
n

of
th

e

ac
ti

on
s’

fr
eq

ue
nc

y.
Th

e
st

an
da

rd
de

vi
at

io
n

fo
r

th
e

Sm
at

ch
an

d
R

E
E

N
T

R
A

N
C

IE
S

sc
or

es
is

le
ss

or
eq

ua
lt

ha
n

0.
12

.

66 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

4.2.6 Automatic Error Correction

We provide baseline systems that learn when to apply the ADD action:

• RANDOM. We randomly select two nodes in the predicted graph that are

not connected by an edge and add one with the most likely label (ARG0).

• PATTERNS. We store frequent patterns in the training set that cause the

application of the action ADD. Patterns consist of the labels of the nodes

sa, sb, sc on the left-hand side of Figure 4.4a. During testing, when one of

the stored patterns is found, we apply the action ADD.

• SEQ2SEQ. We train a OpenNMT-py (Klein et al., 2017) sequence-to-sequence

model (Bahdanau et al., 2015) with a copy mechanism (Gulcehre et al.,

2016). The input sequence is the predicted graph and the output se-

quence is the sequence of edges to add. For each edge, the output con-

tains three tokens: the parent node, the child node, and the edge label.

Table 4.8 shows the reentrancy prediction results. To study the impact of reen-

trancies on a different parser, we also report results on the character-level neu-

ral parser by van Noord and Bos (2017b). None of the baselines can improve

over the predictions of the original parsers (VANILLA), with SEQ2SEQ being

the baseline that gets closer to improve results. While sequence modeling of

the output is convenient, other options can be attempted. We are also only ex-

ploiting the input AMR parse but not the input sentence. We leave it to future

work to address these issues and achieve better results.

4.3 Related Work

Traditional evaluation of AMR parsers with Smatch was discussed in Chap-

ter 2. The proposed evaluation suite has been widely used (May and Priyadarshi,

2017; van Noord and Bos, 2017b; Anchiêta and Pardo, 2018; Lyu and Titov,

2018, inter alia). The REENTRANCIES metric demonstrated the poor perfor-

mance of parsers at predicting reentrancy structures, and motivated ad-hoc

processing of reentrancies (van Noord and Bos, 2017a; Pop et al., 2018), not ex-

clusively in AMR (van Noord et al., 2018). Opitz and Frank (2019) introduced

the task of automatically predicting the scores of our evaluation metrics.

4.3. Related Work 67

System L&T V&B

VANILLA 56.9 (0.00) 53.3 (0.00)

ORACLE +10.3 (0.00) +12.3 (0.06)

RANDOM -4.2 (0.06) -3.8 (0.06)

PATTERNS -0.5 (0.06) -0.6 (0.06)

SEQ2SEQ -0.1 (0.25) -0.1 (0.00)

Table 4.8: Relative improvements in reentrancy prediction scores on the test set of

LDC2017T10, obtained by the oracle and the proposed baselines. L&T is Lyu and

Titov (2018) and V&B is van Noord and Bos (2017b). VANILLA are the scores obtained

by the original parsers. Results are the mean of three runs, with standard deviation in

parentheses.

Our classification of the phenomena causing reentrancies extends previous

work in this direction (Groschwitz et al., 2017). van Noord and Bos (2017a)

previously attempted to improve the prediction of reentrancies in a neural

parser. They experiment with several pre- and post-processing techniques and

showed that co-indexing reentrancies nodes in the AMR annotations yields the

best results. Several transition-based parsers have been specifically designed

to handle reentrancies, as discussed in Chapter 3.

Transformation-based learning (Brill, 1993) inspired the idea of correcting

existing parses. This approach has been mostly used for tagging (Ramshaw

and Marcus, 1999; Brill, 1995; Nguyen et al., 2016) but it has also shown promises

for semantic parsing (Jurčíček et al., 2009). A similar approach has been also

used to add empty nodes in constituent parses (Johnson, 2002), with consid-

erable success. The PATTERN baseline we presented is related to the approach

by Johnson (2002) in generating transformation rules based on gold standard

data, but the rules themselves are considerably different. Our rules are lexical-

ized and do not contain the relation labels, while the rules by Johnson (2002)

focus only on unlexicalized syntactic structures. Moreover, our pattern extrac-

tion procedure relies on a noisy matching between gold standard and parser

output graphs. The SEQ2SEQ baseline is a simple adaptation of the popular

sequence-to-sequence modeling (Bahdanau et al., 2015).

68 4. Evaluation and Analysis of Reentrant Structures in AMR Parsing

4.4 Summary

In this chapter, we discussed the evaluation of AMR parsers. We noted that it

is less informative to evaluate the entire parsing process with Smatch than to

use a collection of metrics aimed at evaluating the various subproblems in the

parsing process. We proposed a suite of evaluation metrics to better assess the

quality of AMR parsers, which is available at https://github.com/mdtux89/

amr-evaluation. We evaluated the parser of Chapter 3 with the proposed met-

rics, shedding lights on its strengths and limitations. Using the REENTRANCIES

score, we could demonstrate that the Reduce transition we proposed in Chap-

ter 3 improves reentrancy prediction.

Building upon previous observations that AMR parsers do not perform

well at recovering reentrancies, we carried out an in-depth analysis of the lin-

guistic phenomena responsible for reentrancies in AMR. We found sources of

reentrancies which have not been acknowledged in the AMR literature such

as adjunct control, verbalization, ellipsis, and pragmatics. We then quantified

their prevalence in an AMR corpus. The inclusion of reentrancies due to prag-

matics is controversial; we hope that this work can spur new discussions on the

role of reentrancies. Our heuristics fail to detect the causes of many reentran-

cies. For a more precise estimate of the most common causes of reentrancies, it

is necessary to manually annotate the reentrancies in the AMR corpora, which

we leave for future work.

Our oracle experiments show that there is room for improvement in pre-

dicting reentrancies, which in turn can translate to better parsing results. Fu-

ture work is necessary to outperform the proposed baselines and more effec-

tively learn how to correct reentrancy errors. An alternative approach is to

reduce reentrancy errors by better informing training so that the errors are

avoided in the first place. We note that a recent AMR parser (Zhang et al.,

2019) outperforms the previous state of the art (Lyu and Titov, 2018) by imple-

menting a copy mechanism aimed at recovering reentrancies, confirming that

reentrancies are critical for achieving good AMR parsing performance.

In the next chapter, we temporarily put aside the issue of reentrancies to

discuss another aspect that has not received enough attention in the AMR lit-

erature: AMR parsing for other languages and the cross-linguality of the AMR

annotation scheme.

5

Cross-lingual AMR Parsing

So far, we have focused only on AMR parsing for English. Annotating new

AMR datasets for other languages is an expensive process and requires defin-

ing guidelines for each new language. It is therefore reasonable to explore

whether we can transfer AMR annotations across languages. The cross-lingual

properties of AMR have been the subject of preliminary discussions: the AMR

guidelines state that AMR is not an interlingua (Banarescu et al., 2013). Bo-

jar (2014) categorized different kinds of divergences in the annotation between

English AMRs and Czech AMRs. Xue et al. (2014) showed that structurally

aligning English AMRs with Czech and Chinese AMRs is not always possible

but argue that refined annotation guidelines would suffice to resolve some of

these cases.

In this chapter, we ask whether it is possible to use the AMR annotated for

English sentences as semantic representations for their translations in other

languages, as in Figure 5.1, while maintaining good parsing accuracy. We

therefore introduce cross-lingual AMR parsing, the task of parsing natural lan-

guage sentences for languages other than English to AMR graphs annotated

for English. The task has two distint purposes: to allow parsing for other lan-

guages, and to explore the cross-linguality aspects of AMR.

A trivial way to perform cross-lingual AMR parsing is to use MT to trans-

late the input sentences into English so that an available English AMR parser

can be employed. This method only requires translation models between the

target languages and English. While we show that this method provides a

compelling engineering solution for the problem of parsing AMR for other

languages, its performance uniquely depends on translation quality.

69

70 5. Cross-lingual AMR Parsing

This is the sovereignty of each country

sovereignty

countrythis

each

Questa è la sovranità di ogni paese

:poss:domain

:mod

Figure 5.1: AMR alignments for a English sentence and its Italian translation.

To investigate the cross-linguality aspects of AMR, we need to train AMR

parsing models for the target languages. Hence, we adapt AMREAGER (Chap-

ter 3) to Italian, Spanish, German and Chinese. To achieve this we use anno-

tation projection, where existing annotations are projected from a source lan-

guage (English) to a target language through a parallel corpus (e.g., Yarowsky

et al., 2001; Hwa et al., 2005; Padó and Lapata, 2009; Evang and Bos, 2016).

We refer to parsers for the target languages as target parsers. We show that

the cross-lingual parsers can be successful even in the presence of translational

divergences (Dorr, 1994).

To evaluate the target parsers, similarly to Evang and Bos (2016), we per-

form SILVER evaluation: we evaluate them on data obtained by parsing the

English side of a parallel corpus and projecting the AMR graphs to the target

languages. We also propose a novel method that we call FULL-CYCLE evalua-

tion: using the same method used to go from English to the target language,

we then go from the target language to English, which we know how to eval-

uate. To assess the reliability of these evaluation methods, we collect data to

perform GOLD evaluation.

Our contributions in this chapter are as follows:

• We introduce the task of cross-lingual AMR parsing and propose two

methods that do not require annotated datasets;

• We provide evidence that AMR annotations can be successfully shared

across languages, though some translational divergences between lan-

guages can be challenging to overcome;

5.1. Task definition 71

• We propose FULL-CYCLE, a novel method to evaluate non-English AMR

parsers when gold annotations in the target languages are missing;

• We release human translations of the test set of LDC2015E86 to Italian,

Spanish, German and Chinese. We use the translations to show that

FULL-CYCLE approximates GOLD better than SILVER does.

5.1 Task definition

The goal of AMR is to abstract away from the syntactic realization of the orig-

inal sentences while maintaining its underlying meaning. As a consequence,

different phrasings of one sentence are expected to provide identical AMR rep-

resentations. This canonicalization does not hold across languages: two sen-

tences that express the same meaning in two different languages are not guar-

anteed to produce identical AMR structures due to translational divergence

and language-specific guidelines (Bojar, 2014; Xue et al., 2014). However, Xue

et al. (2014) showed that in many cases AMR graphs align well structurally

across languages (i.e., their nodes and edges can be aligned). We are encour-

aged by this finding and argue that it should be possible to develop algorithms

that account for some of these differences when they arise. We introduce a

new task, which we call cross-lingual AMR parsing: given a sentence in any lan-

guage, the goal is to recover the AMR graph that would have been generated

for its English translation. This task is harder than traditional AMR parsing

as it requires to recover English labels as well as to deal with structural dif-

ferences between languages, usually referred to as translation divergence. We

use this task as a way to explore the cross-linguality aspects of AMR and see

if we can successfully learn models that can overcome the differences between

the languages and recover the AMR from a sentence in another language.

5.2 Machine Translation

By definition of the task, the reference AMR used for evaluation is the AMR

of the reference English translation. A simple way to address the task is there-

fore to use MT to translate the sentence in English and then use an available

English parser to predict its AMR graph. Naturally, the quality of the output

72 5. Cross-lingual AMR Parsing

graph depends on the quality of the translations. If the automatic translation is

close to the reference translation, then the predicted AMR graph will be close

to the reference AMR graph. The quality of these parses is therefore not an in-

dication of the cross-lingual properties of AMR. However, its simplicity makes

it a compelling engineering solution for parsing other languages.

5.3 Annotation Projection

We propose an alternative method where we use annotation projection to train

cross-lingual parsers. By means of parallel corpora, we project the AMR an-

notations from English to other languages. Unfortunately, there are no avail-

able parallel corpora which are also annotated with AMR. Hence, we obtain

the AMR annotations using an available AMR parser for English, which intro-

duces noise.

In order to train most AMR parsers, we also need to project the AMR align-

ments between AMR nodes and words in the sentence. Similarly to other an-

notation projection work (Yarowsky et al., 2001), we use unsupervised word

aligners (Dyer et al., 2013) to compute alignments between words in English

and words in the target languages.

Our approach depends on the underlying assumption that we make. Let

S = s1 . . .s|s| be the source language sentence and T = t1 . . . t|t| be the target lan-

guage sentence; As(·) be the AMR alignment mapping word tokens in S to the

set of AMR nodes that are triggered by it; At(·) be the same function for T ; v

be a node in the AMR graph; and finally, W (·) be an alignment that maps a

word in S to a subset of words in T . Then, if a source word si is word-aligned

to a target word t j and it is AMR aligned with an AMR node v, then the target

word t j is also aligned to the AMR node v:

∀i, j,v t j ∈W (si)∧ v ∈ As(si)⇒ v ∈ At(t j)

In the example of Figure 5.1, Questa is word-aligned with This and there-

fore AMR-aligned with the node this, and the same logic applies to the other

aligned words. The words is, the and of do not generate any AMR nodes, so

we ignore their word alignments.

5.4. Evaluation 73

5.4 Evaluation

We now turn to the problem of evaluation. There are no available parallel

corpora with AMR annotations that we can exploit for evaluation. Hence, to

obtain gold evaluation data, we collected professional translations for the 1371

English sentences in the AMR test set of LDC2015E86.1 We acquired transla-

tions to Italian, Spanish, German, and Chinese, which are currently available

upon request. We then paired the translated sentences to the original AMR

graphs.

We also consider the case where we have no access to gold evaluation data.

We explore two different ways to evaluate parsers in such conditions:

• SILVER. We can generate a silver test set by running an (English) AMR

parser on the English side of a parallel corpus and use the output AMR

graphs as references. However, the silver test set is affected by mistakes

made by the English AMR parser.

• FULL-CYCLE. In order to evaluate on a gold test set, we propose an al-

ternative method: after learning the target parser from the English parser,

we invert this process to learn a new English parser from the target parser.

The resulting English parser is then evaluated against the (English) AMR

gold standard. We hypothesize that the score of the new English parser

can be used as a proxy for the score of the target parser.

A diagram summarizing the different evaluation stages is shown in Fig-

ure 5.2. In the case of MT-based systems, FULL-CYCLE scores are obtained by

first translating from English to the target language and then back to English

(back-translation), and then parsing the resulting sentences with the English

AMR parser.

5.5 Experimental Setup

We run experiments on four languages: Italian, Spanish, German and Chinese.

We use Europarl (Koehn, 2005) to obtain parallel corpora for English-Italian,

English-Spanish, and English-German. These datasets contain around 1.9M

1https://translated.com

74 5. Cross-lingual AMR Parsing

Gold e Silver f Gold f

Parser e Parser f

Parser eFULL-CYCLE

Ref

Eval

SILVER

Ref
Eval

GOLD

Ref

Eval

Figure 5.2: Description of SILVER, FULL-CYCLE and GOLD evaluations. e stands for

English and f stands for the target (foreign) language. Dashed lines represent the

process of transferring learning across languages (e.g. with annotation projection).

SILVER uses a parsed parallel corpus as reference (“Ref”), FULL-CYCLE uses the En-

glish gold standard (Gold e) and GOLD uses the target language gold standard we

collected (Silver f).

sentences for each language pair. For English-Chinese, we use the first 2M

sentences from the United Nations Parallel Corpus (Ziemski et al., 2016).

In order to train and evaluate the AMR parsers, for each target language,

we extract two parallel datasets of 20,000/2,000/2,000 (train/dev/test) sen-

tences for the two steps of the annotation projection. The first step is English

→ target, for the target parser, and the second step is target → English, for

FULL-CYCLE evaluation. The projection approach also requires training the

word aligner, for which we use all the remaining sentences from the paral-

lel corpora (Europarl for Spanish/German/Italian and UN Parallel Corpus for

Chinese). We use the same data to train the MT models. The gold AMR dataset

is LDC2015E86, containing 16,833 training sentences, 1,368 development sen-

tences, and 1,371 testing sentences.

Word alignments (i.e., the function W (·)) were generated using fast_align

(Dyer et al., 2013), while AMR alignments (i.e., the function A(·)) were gen-

erated with JAMR (Flanigan et al., 2014). AMREAGER (Chapter 3) was cho-

sen as the pre-existing English AMR parser. It requires tokenization, POS tag-

ging, NER tagging and dependency parsing, which for English, German and

Chinese are provided by CoreNLP (Manning et al., 2014). We use Freeling

(Carreras et al., 2004) for Spanish, as CoreNLP does not provide dependency

parsing for this language. Italian is not supported in CoreNLP: we use Tint

(Aprosio and Moretti, 2016), a CoreNLP-compatible NLP pipeline for Italian.

5.6. Results 75

For the translation approach, we experimented with different translation

systems. Google Translate2, which has access to a much larger training corpus,

Moses (Koehn et al., 2007), a Statistical MT (SMT) toolkit, and Nematus (Sen-

nrich et al., 2017), an NMT toolkit. We train Moses and Nematus with the same

training data we use for the projection method and default hyper-parameters.

The original English parser achieves 65% Smatch score on the test split of

LDC2015E86. The FULL-CYCLE and GOLD evaluation methods use the same

dataset. SILVER is performed on the 2,000 sentences reserved for testing, as

discussed above.

5.6 Results

The parsing results are shown in Table 5.1. The Google Translate (MT-GOOGLE)

system outperforms all other systems, but is not directly comparable to them,

as it has the advantage of being trained on a much larger dataset. The BLEU

scores of all translation systems are shown in Table 5.2.

There are several sources of noise in the PROJECTION method: 1) the parsers

are trained on noisy AMR graphs, obtained by an automatic parser for English;

2) the projection uses noisy word alignments; 3) the AMR alignments on the

source side are also noisy; 4) translation divergences exist between the lan-

guages, making it sometimes difficult to project the annotation without loss of

information. Nevertheless, the PROJECTION parsers allow us to investigate the

cross-linguality aspects of AMR, as we will discuss in the next section.

5.7 Qualitative Analysis

We first look at the graphs produced by the PROJECTION parsers to observe the

overall quality of producing cross-lingual AMR representations. We then focus

our attention on known translational divergences that may pose a problem for

cross-lingual AMR parsing.

2https://translate.google.com/toolkit.

76 5. Cross-lingual AMR Parsing

Language Method GOLD SILVER FULL-CYCLE

Italian

PROJECTION 43 45 45

MT-SMT 52 51 51

MT-NMT 43 49 41

MT-GOOGLE 58 52 59

Spanish

PROJECTION 42 44 44

MT-SMT 53 53 51

MT-NMT 43 51 42

MT-GOOGLE 60 56 60

German

PROJECTION 39 45 43

MT-SMT 49 50 49

MT-NMT 38 47 39

MT-GOOGLE 57 54 59

Chinese

PROJECTION 35 45 32

MT-SMT 42 57 48

MT-NMT 39 57 40

MT-GOOGLE 50 64 55

Table 5.1: SILVER, GOLD and FULL-CYCLE Smatch scores for projection-based (PRO-

JECTION), MT with Moses (MT-SMT), MT with Nematus (MT-NMT), and MT with

Google Translate (MT-GOOGLE).

Model SMT NMT Google

EN-IT 23.83 21.27 61.31

IT-EN 23.74 19.77 42.20

EN-ES 29.00 26.14 78.14

ES-EN 27.66 21.63 50.78

EN-DE 15.47 15.74 63.48

DE-EN 21.50 14.96 41.78

EN-ZH 9.19 8.67 26.75

ZH-EN 10.81 10.37 22.21

Table 5.2: BLEU scores for Moses (SMT), Nematus (NMT), and Google Translate

(Google) on the (out-of-domain) LDC2015E86 test set

5.7. Qualitative Analysis 77

adopt-01

date-entity

commission

communicate-01

1998final another

Infine,

Lastly,

nel

in

1998,

1998,

la

the

Commissione

Commission

ha

have

adottato

adopted

un’altra

another

comunicazione

communication

:ARG0

:time :ARG1

:year:mod :mod:ARG0

Figure 5.3: Parsed AMR graph and alignments (dashed lines) for the Italian translation

of Lastly, in 1998, the Commission adopted a further communication.

5.7.1 Manual Inspection

We note that most errors involve concept identification, that is the task of pre-

dicting the nodes in the AMR graphs. In the Italian example of Figure 5.3, the

only evident error is that Infine (Lastly) should not trigger the node final in the

graph. In the Spanish example of Figure 5.4, the word medida (measure) is in-

correctly ignored: it should be used to generate a child of the node impact-01.

Some of the :ARG roles are also not correct. In the German example of Fig-

ure 5.5, meines (my) should reflect the fact that the speaker is talking about his

own country. Finally, in the Chinese example of Figure 5.6, there are several

mistakes including yet another concept identification mistake: the intend-01

node is erroneously added to the graph.

We argue that concept identification mistakes are often due to the problem

of noisy alignments, discussed in Section 5.6. The parsers learn what words

are likely to trigger a node in the AMR — we refer to those as content-bearing

words — by looking at their AMR alignments. These are induced by the word

alignments and the original English-AMR alignments. Accurate alignments

are therefore crucial in order to achieve good parsing results.

To study the extent of the problem, we computed the percentage of words

in the training data that are learned to be non-content-bearing (Table 5.3). We

found that the Chinese parser, which is our least accurate parser, is the one that

most suffers from this, with almost 42% non-content-bearing words. On the

other hand, in the German parser, which is the highest scoring, less than 26%

of the words are non-content-bearing, which is the lowest percentage amongst

78 5. Cross-lingual AMR Parsing

assess-01

impact-01

type export-01

this

Una

One

evaluación

evaluation

de

of

el

the

impacto

impact

de

of

una

a

medida

measure

de

of

este

this

tipo

type

sobre

on

las

the

exportaciones

exports

:ARG1

:ARG1 :ARG1

:mod
:ARG0

Figure 5.4: Parsed AMR graph and alignments (dashed lines) for the Spanish transla-

tion of A study into the impact of such a measure on the export.

do-02

country state
-

many have-org-role-91

member

Viele

Lots

Mitgliedsländer,

Member State,

inklusive

included

meines

my

eigenen

own

Landes,

country,

haben

have

dies

this

nicht

not

getan

done

:location :polarity:ARG0

:ARG0-of:quant

:ARG2

Figure 5.5: Parsed AMR graph and alignments (dashed lines) for the German transla-

tion of Many Member States, including my own, did not do as required.

5.7. Qualitative Analysis 79

and

intend-01 societyrepatriate-01

refugee

:op2 :op2:op1

:ARG1

nán mín

refugee

dí

of

qiǎn fǎn

repatriation

hé

and

zhòng xīn

re-

róng rú

assimilate into

shè huì

society

Figure 5.6: Parsed AMR graph and alignments (dashed lines) for the Chinese transla-

tion of Repatriation and reintegration of Malian refugees.

Language %

EN 9.85

IT 28.93

ES 28.32

DE 25.53

ZH 41.85

Table 5.3: Percentage of words predicted as non-content-bearing in each parser.

all non-English parsers. It appears that the percentage of tokens that trigger

nodes has an impact on parser performance. To achieve better performance,

parsers for other languages should aim to achieve a percentage of non-content-

bearing words closer to the one for English, which is less than 10%.

5.7.2 Translational Divergence

We now turn to the hypothesis that AMR can, to some extent, be shared across

languages. We look at translational divergence and discuss how it affects pars-

ing, following the classification used in previous work (Dorr, 1994; Dorr et al.,

2002; Sulem et al., 2015).

Categorical This divergence happens when two languages use different POS

tags to express the same meaning. For example, the English sentence I am

80 5. Cross-lingual AMR Parsing

EN: I am jealous of you

a)

envy-01

youI

:ARG0 :ARG1

ES: Tengo envidia de ti

envy

I

:domain

b)

EN: We will answer

answer-01

we

:ARG0

IT: Noi daremo una risposta

answer-01

we

:ARG0

c)

EN: He entered the house

enter-01

he house

:ARG1:ARG0

IT: Lui è entrato nella casa

enter-01

home

:ARG1

d)

EN: I like eating

like-01

I eat

:ARG0 :ARG1
:ARG0

(d) DE: Ich esse gern

eat-01

I

:ARG0

e)

EN: I fear

fear-01

I

:ARG0

IT: Io ho paura

fear-01

I I

:ARG0 :ARG0

f)

EN: I like grapes

like-01

I grape

:ARG1:ARG0

ES: Me gustan uvas

like-01

I grape

:ARG1:ARG0

:ARG0

Figure 5.7: Parsing examples in several languages involving common translational

divergence phenomena: (a) contains a categorical divergence, (b) and (e) conflational

divergences, (c) a structural divergence, (d) an head swapping and (f) a thematic di-

vergence. For each example, we report the gold AMR for the English sentence (top) as

well as the parsed AMR for the target language (bottom).

5.7. Qualitative Analysis 81

jealous of you is translated into Spanish as Tengo envidia de ti (I have jealousy of

you). The English adjective jealous is translated in the Spanish noun envidia. In

Figure 5.7a we note that the parser, while making other mistakes, correctly rec-

ognized that envidia (jealousy/envy) should be used as the predicate, regardless

of its POS tag.

Conflational This divergence happens when verbs expressed with a single

word in a language can be expressed with more words in another language.

Two subtypes are distinguished: manner and light verb.

Manner refers to a manner verb that is mapped to a motion verb plus a

manner-bearing word. For example, We will answer is translated in the Ital-

ian sentence Noi daremo una riposta (We will give an answer), where to answer is

translated as daremo una risposta (will give an answer). Figure 5.7b shows that the

Italian parser generates the correct AMR for this sentence by creating a single

node labeled answer-01 for the expression dare una riposta.

In a light verb conflational divergence, a verb is mapped to a light verb plus

an additional meaning unit, such as when I fear is translated as Io ho paura (I

have fear) in Italian: to fear is mapped to the light verb ho (have) plus the noun

paura (fear). Figure 5.7e shows that also this divergence is dealt properly by the

Italian parser: ho paura correctly triggers the root fear-01.

Structural This divergence happens when verb arguments result in differ-

ent syntactic configurations, for example, due to an additional PP attachment.

When translating He entered the house with Lui è entrato nella casa (He entered in

the house), the Italian translation has an additional in preposition. Figure 5.7c

shows that, regardless of the missing preposition, the parse contains a ARG1

role between the node for entrato (entered) and the node for casa (house/home).

The missing node he is due to pronoun-dropping (the pronoun can be omit-

ted). The parser could not learn to align Lui with the node He because, in the

training data, the pronoun Lui is often omitted in sentences corresponding to

AMR graphs containing the node He.

Head Swapping This divergence occurs when the direction of the depen-

dency between two words is inverted. For example, I like eating, where like

is head of eating, becomes Ich esse gern (I eat likingly) in German, where the

82 5. Cross-lingual AMR Parsing

dependency is inverted. In this case, the German parser does not cope well

with this divergence: it is unable to recognize like-01 as the main concept in the

sentence, as shown in Figure 5.7d.

Thematic Finally, the parse in Figure 5.7f has to deal with a thematic diver-

gence, which happens when the semantic roles of a predicate are inverted.

In the sentence I like grapes, translated to Spanish as Me gustan uvas, I is the

subject in English while Me is the object in Spanish. Even though we note an

erroneous reentrant edge between grape and I, the thematic divergence does

not create problems: the parser correctly recognizes the :ARG0 relationship

between like-01 and I and the :ARG1 relationship between like-01 and grape.

5.7.3 Discussion

As mentioned in Section 5.2, the MT-based systems do not help answer the

question of cross-linguality of AMR, and we instead focus on the projection-

based parsers. Qualitative analysis showed that the parsers can overcome at

least some of the translational divergences. However, we also showed an ex-

ample of head swapping where the parsers did not handle the divergence suc-

cessfully. We speculate that concept identification must be more accurate to

provide good cross-lingual parsing results. We further argue that the subopti-

mal performance of the parsers in terms of Smatch scores is due to the many

sources of noise in the annotation projection approach rather than the insta-

bility of AMR across languages. We found that the Chinese parser is the one

that most suffer from noisy alignments, which explains its lower performance

compared to the other languages. We provide evidence that cross-lingual AMR

parsing is feasible. We hope that the release of the gold standard test sets will

motivate further work in this direction.

5.7.4 Analysis of Evaluation Methods

We computed the Pearson correlation coefficients for the Smatch scores of Ta-

ble 5.1 to determine how well SILVER and FULL-CYCLE correlate with GOLD.

FULL-CYCLE correlates better than SILVER: the Pearson coefficient is 0.95 for

FULL-CYCLE and 0.47 for SILVER. Figure 5.8 shows linear regression lines,

where it is easy to note the closer relationship between FULL-CYCLE and GOLD.

5.7. Qualitative Analysis 83

Unlike SILVER, FULL-CYCLE uses the same dataset as GOLD and gold AMR

graphs as references, which makes it more reliable than SILVER. Interestingly,

if we ignore the scores obtained for Chinese, the correlation between SILVER

and GOLD dramatically increases, indicative of the lower performance of the

Chinese pipeline compared to the other languages: the Pearson coefficient be-

comes 0.97 for FULL-CYCLE and 0.87 for SILVER.

A good proxy for GOLD should rank different systems similarly. To test

the ranking ability of the evaluation methods, we use the Kendall-tau score

(Kendall, 1945), a measure for the similarity between two permutations. We

extracted the rankings from Table 1 and computed its Kendall-tau scores. The

results further confirm that FULL-CYCLE approximate GOLD better than SIL-

VER does: the score is 0.40 for SILVER and 0.82 for FULL-CYCLE.

40 50 60 70

40

50

60

70

GOLD

SI
LV

E
R

40 50 60 70

40

50

60

70

GOLD

FU
L

L
-C

Y
C

L
E

Figure 5.8: Linear regression lines for SILVER and FULL-CYCLE.

84 5. Cross-lingual AMR Parsing

5.8 Related Work

AMR parsing for languages other than English has made only a few steps for-

ward. In previous work (Li et al., 2016; Xue et al., 2014; Bojar, 2014), nodes

of the target graph were labeled with either English words or with words in

the target language. We instead use the AMR annotation used for English

for the target language as well, without translating any word. To the best of

our knowledge, the only previous work that attempts to parse AMR graphs

for non-English sentences automatically is by Vanderwende et al. (2015). Sen-

tences in several languages (French, German, Spanish and Japanese) are parsed

into a logical representation, which is then converted to AMR using a small set

of rules. A comparison with this work is difficult, as the authors do not report

results for the parsers (due to the lack of an annotated corpus) or release their

code.

Besides AMR, other semantic parsing frameworks for non-English languages

have been investigated (Hoffman, 1992; Cinková et al., 2009; Gesmundo et al.,

2009; Evang and Bos, 2016). The system by Evang and Bos (2016) is the most

closely related to our work. They used a projection mechanism similar to ours

for CCG. The main difference is that, in order to project CCG parse trees to the

target languages, only literal translations were used. Previous work has also

focused on assessing the stability across languages of semantic frameworks

such as AMR (Xue et al., 2014; Bojar, 2014), UCCA (Sulem et al., 2015) and

Propbank (van der Plas et al., 2010).

Cross-lingual techniques can cope with the lack of labeled data on lan-

guages when this data is available in at least one language, usually English.

The annotation projection method, which we follow in this work, is one way

to address this problem. It was introduced for POS tagging, base noun phrase

bracketing, NER tagging, and inflectional morphological analysis (Yarowsky

et al., 2001) but it has also been used for dependency parsing (Hwa et al.,

2005), role labeling (Padó and Lapata, 2009; Akbik et al., 2015) and semantic

parsing (Evang and Bos, 2016). Another common thread of cross-lingual work

is model transfer, where parameters are shared across languages (Zeman and

Resnik, 2008; Cohen and Smith, 2009; Cohen et al., 2011a; McDonald et al.,

2011; Søgaard, 2011).

Our PROJECTION parser has since been used as a baseline for a rule-based

5.9. Summary 85

Brazilian Portuguese AMR parser (Anchiêta and Pardo, 2018).

5.9 Summary

In this chapter, we introduced the task of parsing AMR structures, annotated

for English, from sentences written in other languages. We devised the task as

a way to test the cross-lingual properties of AMR. We provided evidence that

AMR can be shared across the languages tested but that it may be challeng-

ing to overcome some translational divergences. The multilingual parser is

available at http://www.github.com/mdtux89/amr-eager-multilingual and

a demo is available at http://cohort.inf.ed.ac.uk/amreager.html. The re-

sults indicate that there is room for improvements, especially in terms of gener-

ating better alignments. We encourage further work in this direction by releas-

ing professional translations of the AMR test set into four languages. Notably,

recent state-of-the-art AMR parsers (Lyu and Titov, 2018; Zhang et al., 2019) do

not rely on automatically generated alignments, therefore reducing the noise

that our annotation projection method would introduce.

We further proposed a novel way to evaluate the target parsers that does

not require manual annotations of the target language. The FULL-CYCLE pro-

cedure, which we show to correlate well with GOLD evaluation, is not limited

to AMR parsing and could be used for other cross-lingual problems in NLP.

So far, we focussed on the task of AMR parsing. In the next chapter, we

turn to AMR-to-text generation, where natural language sentences are gener-

ated from AMR graphs, and investigate the importance of explicitly encoding

reentrancies and other structural information.

6

AMR Generation with Structured

Neural Encoders

In the previous chapters, we looked at AMR parsers that convert sentences

into AMR graphs. Downstream NLP applications such as summarization and

MT also require the ability to generate language. Hence, in this chapter, we

look at AMR-to-text generation, the task of converting AMR graphs into text.

As discussed in Chapter 2, attentive encoder/decoder architectures com-

monly used for NMT have been explored for this task. Konstas et al. (2017)

linearized AMR graphs to sequences in order to use sequence-to-sequence ar-

chitectures (Bahdanau et al., 2015). The linearization process loses reentrancy

information. Graph encoders, which do not discard reentrancies, were later

shown to yield better results (Song et al., 2018; Beck et al., 2018). When the

AMR annotations do not contain reentrancies, they can be encoded as trees

rather than graphs. A comparison between tree and graph encoders can there-

fore shed lights on the impact of reentrancies on AMR-to-text generation. Fig-

ure 6.1 shows an example of an AMR and its sequential, tree, and graph repre-

sentations.

In this chapter, we compare three types of encoders for AMR: 1) sequential

encoders, which reduce AMR graphs to sequences and ignore reentrancies;

2) tree encoders, which consider structural information but still ignores reen-

trancies; and 3) graph encoders, which include reentrancies. As in the rest of

this thesis, we pay particular attention to reentrancies: we investigate whether

explicitly encoding them results in better generation results. We further in-

vestigate the impact of long-range dependencies in the AMR graph, which are

87

88 6. AMR Generation with Structured Neural Encoders

(a)
eat-01

he pizza finger

:arg0 :arg1 :instrument

part-of

eat-01 :arg0 he :arg1 pizza :instrument finger :part-of he
(b)

eat-01 :arg0 he :arg1 pizza :instrument finger :part-of he

(c)

eat-01 :arg0 he :arg1 pizza :instrument finger :part-of he

(d)

Figure 6.1: (a) AMR for the sentence He ate the pizza with his fingers and different input

representations: (b) sequential; (c) tree-structured; (d) graph-structured. The nodes

and edges in bold highlight a reentrancy.

also expected to benefit from structural encoding.

Our contributions in this chapter are as follows:

• We present structural encoders for the encoder/decoder framework and

show the benefits of graph encoders not only compared to sequential

encoders but also compared to tree encoders;

• We show that better treatment of reentrancies and long-range dependen-

cies contributes to improvements in the graph encoders.

Our best model, based on a graph encoder, improves on previous results

for both the LDC2015E86 dataset (24.40 on BLEU and 23.79 on Meteor) and the

LDC2017T10 dataset (24.54 on BLEU and 24.07 on Meteor).

6.1. Input Representations 89

6.1 Input Representations

In this section, we describe in detail the difference between encoding AMR as

a graph, tree, and sequence.

6.1.1 Graph-structured AMRs

AMRs are normally represented as labeled and directed graphs:

G0 = (V0,E0,L),

V0 = {v1,v2, . . . ,vn},

E0 ⊆V0×L×V0,

L = {`1, `2, . . . , `l},

where V0 are the graph vertices (or nodes), E0 are the graph edges, and L is the

set of edge labels. Each edge e ∈ E0 is a triple: e = (i, `, j), where i ∈ V0 is the

parent node, ` ∈ L is the edge label and j ∈V0 is the child node.

In order to obtain unlabeled edges, thus decreasing the total number of

parameters required by the models, we replace each labeled edge e = (i, `, j)

with two unlabeled edges: e′1 = (i, `),e′2 = (`, j):

G = (V,E),

V =V0∪L = {v1, . . . ,vn, `1, . . . , `l},

E ⊆ (V0×L)∪ (L×V0).

Each unlabeled edge e′ ∈ E is a pair: e′ = (i, j), where one of the following

holds:

1. i ∈V0 and j ∈ L;

2. i ∈ L and j ∈V0.

For instance, the edge between eat-01 and he with label :arg0 in Figure 6.1(a)

is replaced by two edges in Figure 6.1(d): an edge between eat-01 and :arg0 and

another one between :arg0 and he. The process, also used in Beck et al. (2018),

tranforms the input graph into its equivalent Levi graph (Levi, 1942).

90 6. AMR Generation with Structured Neural Encoders

6.1.2 Tree-structured AMRs

In order to obtain tree structures, it is necessary to discard the reentrancies

from the AMR graphs. Similarly to Takase et al. (2016), we replace nodes with

k > 1 incoming edges with k identically labeled nodes, each with a single in-

coming edge.

6.1.3 Sequential AMRs

Following Konstas et al. (2017), the input AMR graphs is a linearized into a

sequence:

x = x1, . . . ,xN ,

xi ∈V.

The depth-first traversal of the graph defines the indexing between nodes and

tokens in the sequence. For instance, the root of the graph is x1, its leftmost

child is x2 and so on. Nodes with multiple parents are visited more than once.

At each visit, their labels are repeated in the sequence, effectively losing reen-

trancy information, as shown in Figure 6.1(b).

6.2 Encoders

In this section, we review the encoders adopted as building blocks for our

encoders.

6.2.1 Recurrent Neural Network Encoders

We reimplement the sequential encoder by Konstas et al. (2017), where the

sequential linearization is the input to a bidirectional LSTM (BiLSTM; Graves

et al. 2013) network. The hidden state of the BiLSTM at step i is used as a

context-aware word representation of the i-th token in the sequence:

o1:N = BiLSTM(x1:N),

where x1:N denotes the sequence x1, . . . ,xN , oi ∈ Rd , o1:N denotes the sequence

o1, . . . ,oN , and d is the size of the output embeddings.

6.2. Encoders 91

6.2.2 TreeLSTM Encoders

Tree-Structured Long Short-Term Memory Networks (TreeLSTM; Tai et al. 2015)

have been introduced primarily as a way to encode the hierarchical structure

of syntactic trees (Tai et al., 2015). However, they have also been applied to

AMR for the task of headline generation (Takase et al., 2016). TreeLSTMs as-

sume tree-structured input, hence reentrancies must be removed.

We use the Child-Sum variant introduced by Tai et al. (2015), which pro-

cesses the tree in a bottom-up pass. When visiting a node, the hidden states

of its children are summed up in a single vector which is then passed into

recurrent gates.

In order to use information from both incoming and outgoing edges, we

employ bidirectional TreeLSTMs (Eriguchi et al., 2016), where the bottom-up

pass is followed by a top-down pass. The top-down state of the root node

is obtained by feeding the bottom-up state of the root node through a feed-

forward layer:

h↓root = tanh(Wrh
↑
root +b),

where h↑i is the hidden state of node xi ∈V for the bottom-up pass and h↓i is the

hidden state of node xi for the top-down pass.

The top-down states for the other nodes are computed by feeding the bottom-

up state of each node h↑i into an LSTM, with the cell state given by the top-

down state of its parent node h↓p(i):

h↓i = LSTM(h↓p(i),h
↑
i),

where p(i) is the parent of node xi in the tree. The final hidden states are ob-

tained by concatenating the states from the bottom-up pass and the top-down

pass:

hi =
[
h↓i ;h↑i

]
.

The hidden state of the root node is usually used as a representation of

the entire tree. In order to use attention over all nodes, as in traditional NMT

(Bahdanau et al., 2015), we need to build embeddings for each node in the

AMR. We do so by extracting the hidden states of each node in the tree:

o1:N = h1:N ,

92 6. AMR Generation with Structured Neural Encoders

where oi ∈ Rd , d is the size of the output embeddings.

The encoder is related to the TreeLSTM encoder by Takase et al. (2016),

which however encodes labeled trees and does not use a top-down pass.

6.2.3 Graph Convolutional Network Encoders

Graph Convolutional Network (GCN; Duvenaud et al. 2015; Kipf and Welling

2017) is a neural network architecture that learns embeddings of nodes in a

graph by looking at its nearby nodes. In NLP, GCNs have been used for Se-

mantic Role Labeling (Marcheggiani and Titov, 2017), NMT (Bastings et al.,

2017), Named Entity Recognition (Cetoli et al., 2017) and text generation (Marcheg-

giani and Perez-Beltrachini, 2018).

A graph-to-sequence neural network was first introduced by Xu et al. (2018).

The authors review the similarities between their approach, GCN and another

approach, based on GRUs (Li et al., 2015). The latter recently inspired a graph-

to-sequence architecture for AMR-to-text generation (Beck et al., 2018). Song

et al. (2018) also proposed a graph encoder based on LSTMs.

The architectures of Song et al. (2018) and Beck et al. (2018) are both based

on the same core computation of a GCN, which sums over the embeddings of

the immediate neighborhood of each node:

h(k+1)
i = σ

(
∑

j∈N (i)

W (k)
(j,i)h

(k)
j +b(k)

)
,

where h(k)i is the embeddings of node xi ∈ V at layer k, σ is a non-linear acti-

vation function, N (i) is the set of the immediate neighbors of xi, W (k)
(j,i) ∈ Rm×m

and b(k) ∈ Rm, with m being the size of the embeddings.

It is possible to use recurrent networks to model the update of the node em-

beddings. Specifically, Beck et al. (2018) used a GRU layer where the gates are

modeled as GCN layers. Song et al. (2018) did not use the activation function

σ and perform an LSTM update instead.

The systems of Song et al. (2018) and Beck et al. (2018) further differ in

design and implementation decisions such as in the use of edge label and

edge directionality. Throughout the rest of the chapter, we follow the tradi-

tional, non-recurrent, implementation of GCN also adopted in other NLP tasks

(Marcheggiani and Titov, 2017; Bastings et al., 2017; Cetoli et al., 2017). In our

6.3. Stacking Encoders 93

experiments, the node embeddings are computed as follows:

h(k+1)
i = σ

(
∑

j∈N (i)

W (k)
dir(j,i)h

(k)
j +b(k)

)
, (6.1)

where dir(j, i) indicates the direction of the edge between x j and xi (i.e., out-

going or incoming edge). The hidden vectors from the last layer of the GCN

network are finally used to represent each node in the graph:

o1:N = h(K)
1:N ,

where K is the number of GCN layers used, oi ∈ Rd , d is the size of the output

embeddings.

To regularize the models we apply dropout (Srivastava et al., 2014) as well

as edge dropout (Marcheggiani and Titov, 2017). We also include highway

connections (Srivastava et al., 2015) between GCN layers.

While GCNs are intended to encode graphs, they can also be applied to

the trees obtained by removing reentrancies from the input graphs. In the

experiments of Section 6.4, we explore GCN-based models both as graph en-

coders (reentrancies are maintained) as well as tree encoders (reentrancies are

ignored).

6.3 Stacking Encoders

We aimed at stacking the explicit source of structural information provided by

TreeLSTM layers and GCN layers with the sequential information which BiL-

STM layers extract well. This was shown to be effective for other tasks with

both TreeLSTMs (Eriguchi et al., 2016; Chen et al., 2017) and GCNs (Marcheg-

giani and Titov, 2017; Cetoli et al., 2017; Bastings et al., 2017).

In previous work, the structural encoders (tree or graph) were used on top

of the BiLSTM network: first, the input is passed through the sequential en-

coder, the output of which is then fed into the structural encoder. While we

experiment with this approach, we also propose an alternative solution where

the BiLSTM network is used on top of the structural encoder: the input em-

beddings are refined by exploiting the explicit structural information given by

the graph. The refined embeddings are then fed into the BiLSTM networks.

See Figure 6.2 for a graphical representation of the two approaches. In our

experiments, we found the latter approach to be more effective.

94 6. AMR Generation with Structured Neural Encoders

x1

x2 . . . xN

GCN/TreeLSTM

h1

h2 . . . hN

h1 h2 . . . hn

BiLSTM

o1 o2 . . . on

x1

x2 . . . xN

x1 x2 . . . xn

BiLSTM

h1 h2 . . . hn

h1

h2 . . . hN

GCN/TreeLSTM

o1

o2 . . . oN

Figure 6.2: Two ways of stacking recurrent and structural models. Left side: structure

on top of sequence, where the structural encoders are applied to the hidden vectors

computed by the BiLSTM. Right side: sequence on top of structure, where the struc-

tural encoder is used to create better embeddings which are then fed to the BiLSTM.

The dotted lines refer to the process of converting the graph into a sequence or vice-

versa.

Compared to models that interleave structural and recurrent components

such as the systems of Song et al. (2018) and Beck et al. (2018), stacking the

components allows us to test for their contributions more easily.

6.3.1 Structure on Top of Sequence

In this setup, BiLSTMs are used as in Section 6.2.1 to encode the linearized

AMR. The context provided by the BiLSTM is a sequential one. We then ap-

ply either GCN or TreeLSTM on the output of the BiLSTM, by initializing the

6.4. Experiments 95

GCN or TreeLSTM embeddings with the BiLSTM hidden states. We call these

models SEQGCN and SEQTREELSTM.

6.3.2 Sequence on Top of Structure

We also propose a different approach, by swapping the order of the BiLSTM

and the structural encoder. We use the structured information provided by the

AMR graph as a way to refine the original word embeddings. To achieve this,

we first apply the structural encoder to the input graphs. The GCN or TreeL-

STM representations are then fed into the BiLSTM network, which provides

the final encoding. We call these models GCNSEQ and TREELSTMSEQ.

The motivation behind this approach is that we know that BiLSTM net-

works, given appropriate input embeddings, are very effective at encoding

the input sequences. In order to exploit their strength, we do not amend their

output but rather provide them with better input embeddings.

6.4 Experiments

We use both BLEU (Papineni et al., 2002) and Meteor (Banerjee and Lavie, 2005)

as evaluation metrics.1 We report results on LDC2015E86 and LDC2017T10, as

relevant previous work report results on either dataset. Following Konstas

et al. (2017), we anonymize the input AMR graphs. Anonymization removes

names and rare words with coarse categories to reduce data sparsity.2 All sys-

tems are implemented in PyTorch (Paszke et al., 2017) using the OpenNMT-py

framework (Klein et al., 2017). Hyperparameters of each model were tuned on

the development set of LDC2015E86. For the GCN components, we use two

layers, ReLU activations, and tanh highway layers. We use single-layer LSTM

networks. We train with SGD with the initial learning rate set to 1 and decay

set to 0.8. Batch size is set to 100.

We first evaluate the overall performance of the models, after which we

focus on two phenomena that we expect to benefit most from structural en-

coders: reentrancies and long-range dependencies. Table 6.1 shows the com-

parison on the development split of the LDC2015E86 dataset between sequen-

1We used the evaluation script available at https://github.com/sinantie/NeuralAmr.
2An alternative to anonymization which we did not explore is to employ a copy mechanism

(Gulcehre et al., 2016), where the models learn to copy rare words from the input itself.

96 6. AMR Generation with Structured Neural Encoders

Input Model BLEU Meteor

Seq SEQ 21.40 22.00

Tree

SEQTREELSTM 21.84 22.34

TREELSTMSEQ 22.26 22.87

TREELSTM 22.07 22.57

SEQGCN 21.84 22.21

GCNSEQ 23.62 23.77

GCN 15.83 17.76

Graph

SEQGCN 22.06 22.18

GCNSEQ 23.95 24.00

GCN 15.94 17.76

Table 6.1: BLEU and Meteor (%) scores on the development split of LDC2015E86.

tial, tree and graph encoders. The sequential encoder (SEQ) is a re-implementation

of Konstas et al. (2017). We test both approaches of stacking structural and se-

quential components: structure on top of sequence (SEQTREELSTM and SE-

QGCN), and sequence on top of structure (TREELSTMSEQ and GCNSEQ).

To inspect the effect of the sequential component, we run ablation tests by

removing the RNNs altogether (TREELSTM and GCN). GCN-based models

are used both as tree encoders (reentrancies are removed) and graph encoders

(reentrancies are maintained). TreeLSTM-based models are only used as tree

encoders.

For both TreeLSTM-based and GCN-based models, we achieve better re-

sults with our proposed approach of applying sequential encoding on top of

structural encoding. This is more evident for GCN-based models. We also

note a drastic drop in performance when the RNN is removed, highlighting

the importance of including a sequential component. On the other hand, RNN

layers seem to have less impact on TreeLSTM-based models. This outcome is

not unexpected, as TreeLSTMs already include LSTM gates.

The results show a clear advantage of tree and graph encoders over the

sequential encoder. The best performing model is GCNSEQ, both as a tree and

as a graph encoder, with the latter obtaining the highest results.

Table 6.2 shows results on the test set of LDC2015E86 and LDC2017T10.

6.4. Experiments 97

Model BLEU Meteor

LDC2015E86

SEQ 21.43 21.53

TREE 23.93 23.32

GRAPH 24.40 23.60

Konstas et al. (2017) 22.00 -

Song et al. (2018) 23.30 -

LDC2017T10

SEQ 22.19 22.68

TREE 24.06 23.62

GRAPH 24.54 24.07

Beck et al. (2018) 23.30 -

Table 6.2: Scores on the test split of LDC2015E86 and LDC2017T10. TREE is the tree-

based GCNSEQ and GRAPH is the graph-based GCNSEQ.

We report results for our best sequential (SEQ), tree (GCNSEQ without reen-

trancies, henceforth called TREE) and graph encoders (GCNSEQ with reen-

trancies, henceforth called GRAPH). We also include previous results reported

on these datasets for sequential encoding (Konstas et al., 2017) and graph en-

coding (Song et al., 2018; Beck et al., 2018).3 To mitigate the effects of random

seeds, we train five models with different random seeds and report the results

of the median model, according to their BLEU score on the development set

(Beck et al., 2018). We outperform previous work with both tree and graph en-

coders, demonstrating the efficacy of our GCNSEQ approach. The differences

between our graph encoder and that of Song et al. (2018) and Beck et al. (2018)

were discussed in Section 6.2.3. The results demonstrate the benefit of struc-

tural encoders over purely sequential ones. They also highlight the advantage

of explicitly including reentrancies, as graph encoders always outperform tree

encoders.

98 6. AMR Generation with Structured Neural Encoders

reentrancies # dev sents. # test sents.

0 619 622

1-5 679 679

6-20 70 70

Table 6.3: Counts of reentrancies in the development and test split of LDC2017T10

Model Number of reentrancies

0 1-5 6-20

SEQ 42.94 31.64 23.33

TREE +0.63 +1.41 +0.76

GRAPH +1.67 +1.54 +3.08

Table 6.4: Differences, with respect to the sequential baseline, in the Meteor score of

the test split of LDC2017T10 as a function of the number of reentrancies.

6.4.1 Reentrancies

We observed an advantage of graph encoders over tree and sequential en-

coders, but it is not yet clear which factors contribute to the improvements.

Since graph encoders are the only type of encoders to model reentrancies ex-

plicitly, we expect them to deal better with these structures. However, AMR

datasets contain a large number of examples that do not involve any reentran-

cies, as shown in Table 6.3. Hence, the ability of models to capture reentrancies

may not be reflected in the overall BLEU scores. We therefore expected that the

benefit of the graph models will be more evident for those examples containing

more reentrancies. To test this hypothesis, we evaluate the various scenarios

as a function of the number of reentrancies in each example, using the Meteor

score as a metric.4 Table 6.4 shows that the gap between the graph encoder

and the other encoders is widest for examples with a large number of reen-

trancies. The Meteor score of the graph encoder for these cases is 3.1% higher

than the score for the sequential encoder and 2.3% higher than the score for the

tree encoder. The large gaps demonstrate that explicitly encoding reentrancies

3We run comparisons on systems without ensembling nor additional data.
4For this analysis we use Meteor instead of BLEU because it is a sentence-level metric,

unlike BLEU, which is a corpus-level metric.

6.4. Experiments 99

is more beneficial than the overall BLEU scores would suggest. Interestingly,

it can also be observed that the graph model outperforms the tree model also

for examples with no reentrancies, where tree and graph structures are iden-

tical. This suggests that preserving reentrancies in the training data has other

beneficial effects that lead to better node embeddings.

6.4.1.1 Manual Inspection

In order to further explore how the graph model handles reentrancies differ-

ently from the other models, we performed a manual inspection of the models’

output. We selected examples containing reentrancies, where the graph model

performs better than the other models. These are shown in Table 6.5. In Exam-

ple (1), we note that the graph model is the only one that correctly predicts the

phrase he finds out. The wrong verb tense is due to the lack of tense informa-

tion in AMR graphs. In the sequential model, the pronoun is chosen correctly,

but the wrong verb is predicted, while in the tree model the pronoun is miss-

ing. In Example (2), only the graph model correctly generates the phrase you

tell them, while none of the models use people as the subject of the predicate

can. In Example (3), both the graph and the sequential models deal well with

the control structure caused by the recommend predicate. The sequential model,

however, overgenerates a wh-clause. Finally, in Example (4) the tree and graph

models deal correctly with the possessive pronoun to generate the phrase tell

your ex, while the sequential model does not. Overall, we note that the graph

model produces a more accurate output than sequential and tree models by

generating the correct pronouns and mentions when control and coreference

are involved.

6.4.1.2 Contrastive Pairs

For a quantitative analysis of how the different models handle reentrancies,

we use a method to inspect NMT output for specific linguistic analysis based

on contrastive pairs (Sennrich, 2017). Given a reference output sentence, a

contrastive sentence is generated by introducing a mistake related to the phe-

nomenon we are interested in evaluating. The probability that the model as-

signs to the reference sentence is then compared to that of the contrastive sen-

tence. The accuracy of a model is determined by the percentage of examples

100 6. AMR Generation with Structured Neural Encoders

(1) REF i dont tell him but he finds out ,

SEQ i did n’t tell him but he was out .

TREE i do n’t tell him but found out .

GRAPH i do n’t tell him but he found out .

(2) REF if you tell people they can help you ,

SEQ if you tell him , you can help you !

TREE if you tell person_name_0 you , you can help you .

GRAPH if you tell them , you can help you .

(3) REF i ’d recommend you go and see your doctor too .

SEQ i recommend you go to see your doctor who is going

to see your doctor .

TREE you recommend going to see your doctor too .

GRAPH i recommend you going to see your doctor too .

(4) REF (you) tell your ex that all communication needs to go

through the lawyer .

SEQ (you) tell that all the communication go through lawyer .

TREE (you) tell your ex , tell your ex , the need for all the

communication .

GRAPH (you) tell your ex the need to go through a lawyer .

Table 6.5: Examples of generation from AMR graphs containing reentrancies. REF is

the reference sentence.

in which the reference sentence has a higher probability than the contrastive

sentence.

We produce contrastive examples by running CoreNLP (Manning et al.,

2014) to identify coreference, which is one of the main causes of reentrancies,

and introducing a mistake. When an expression has multiple mentions, the

antecedent is repeated in the linearized AMR. For instance, the linearization

in Figure 6.1(b) contains the token he twice, which instead appears only once

in the sentence. This repetition may result in generating the token he twice,

rather than using a pronoun to refer back to it. To investigate this possible

mistake, we replace one of the mentions with the antecedent (e.g., He ate the

pizza with his fingers is replaced with He ate the pizza with he fingers, which is

6.4. Experiments 101

Model Antec. Type Num. Gender

SEQ 96.02 97.70 94.89 94.74

TREE 96.02 96.38 93.70 92.63

GRAPH 96.02 96.49 95.11 95.79

Table 6.6: Accuracy (%) of models, on the test split of LDC201T10, for different

categories of contrastive errors: antecedent (Antec.), pronoun type (Type), number

(Num.), and gender (Gender).

ungrammatical and as such should be less likely).

An alternative hypothesis is that even when the generation system correctly

decides to predict a pronoun, it selects the wrong one. To test for this, we

produce contrastive examples where a pronoun is replaced by either a different

type of pronoun (e.g., He ate the pizza with his fingers is replaced with He ate

the pizza with him fingers) or by the same type of pronoun but for a different

number (He ate the pizza with their fingers) or different gender (He ate the pizza

with her fingers). Note from Figure 6.1 that the graph-structured AMR is the

one that more directly captures the relation between finger and he, and as such

it is expected to deal better with this type of mistakes.

From the test split of LDC2017T10, we generated 251 contrastive examples

due to antecedent replacements, 912 due to pronoun type replacements, 1840

due to number replacements and 95 due to gender replacements. The results

are shown in Table 6.6. The sequential encoder performs well at this task,

with better or on par performance with respect to the tree encoder. The graph

encoder outperforms the sequential encoder only for pronoun number and

gender replacements. The models achieve similar accuracies and more subtle

contrastive examples may be needed to empirically confirm the results of the

qualitative analysis of Section 6.4.1.1. Other approaches to inspect phenomena

of coreference and control verbs can also be explored, for instance by devising

specific training objectives (Linzen et al., 2016).

6.4.2 Long-range Dependencies

When we encode a long sequence, interactions between items that appear dis-

tant from each other in the sequence are difficult to capture. The problem of

102 6. AMR Generation with Structured Neural Encoders

max length # dev sents. # test sents.

0-10 292 307

11-50 350 297

51-250 21 18

Table 6.7: Counts of longest edges in the development and test split of LDC2017T10

Model Max dependency length

0-10 11-50 51-200

SEQ 50.49 36.28 24.14

TREE -0.48 +1.66 +2.37

GRAPH +1.22 +2.05 +3.04

Table 6.8: Differences, with respect to the sequential baseline, in the Meteor score of

the test split of LDC2017T10 as a function of the maximum edge length.

long-range dependencies in natural language is well known for RNN architec-

tures (Bengio et al., 1994). Indeed, the need to solve this problem motivated

the introduction of LSTM models, which are known to model long-range de-

pendencies better than traditional RNNs.

Because the nodes in the graphs are not aligned with words in the sentence,

AMR has no notion of distance between the nodes taking part in an edge. In

order to define the length of an AMR edge, we resort to the AMR linearization

discussed in Section 6.1. Given the linearization of the AMR x1, . . . ,xN , as dis-

cussed in Section 6.1, and an edge between two nodes xi and x j, the length of

the edge is defined as | j− i|.

In order to verify the hypothesis that long-range dependencies contribute

to the improvements of graph models, we compare the models as a function of

the maximum edge length in each example. Longer dependencies are some-

times caused by reentrancies, as in the edge between :part-of and he in Fig-

ure 6.1. To verify that the contribution in terms of longer dependencies is

complementary to that of reentrancies, we exclude sentences with reentran-

cies from this analysis. Table 6.7 shows the statistics for this measure. Results

are shown in Table 6.8. The graph encoder always outperforms both the se-

quential and the tree encoder. The gap of both structural encoders (tree and

6.5. Summary 103

graph) with the sequential encoder increases for longer dependencies. This in-

dicates that longer dependencies are an important factor in improving results

for structural encoders.

6.5 Summary

In this chapter, we shifted our focus from parsing to generation. We introduced

models for AMR-to-text generation to investigate the difference between se-

quential, tree and graph encoders. We showed that tree encoders, which en-

code most structural information, outperform the sequential encoder and that

reentrancies further improve generation results in the graph encoders. These

results support the hypothesis that taking into account reentrancies is impor-

tant for AMR-to-text generation. As expected, we observed larger improve-

ments in the structural encoders when the input AMR graphs have a larger

number of reentrant structures and longer dependencies. Our best graph en-

coder, which consists of a GCN wired to a BiLSTM network, improves over

previous work on all tested datasets. AMR-to-text generation systems that re-

port higher BLEU scores have since been published (Cao and Clark, 2019; Guo

et al., 2019). The source code of our system is available at https://github.

com/mdtux89/OpenNMT-py-AMR-to-text and a demo is available at http://

cohort.inf.ed.ac.uk/amrgen.html.

We inspected the differences between the models in terms of pronominal

anaphora and control structures, which are caused by reentrancies. Using con-

trastive pair analysis, we tested the hypothesis that graph encoders, with ac-

cess to reentrancies, would result in a better generation of pronouns. The gen-

erated contrastive examples are available at https://github.com/mdtux89/

OpenNMT-py-AMR-to-text/tree/master/contrastive_examples. Our results

do not fully confirm our hypothesis and future work is needed to answer this

question conclusively. Other approaches to inspect phenomena of co-reference

and control verbs can also be explored, for instance by devising specific train-

ing objectives (Linzen et al., 2016).

7

Conclusions

In this thesis, we studied AMR as a way to find solutions to NLP problems

based on an abstract representation of language. To this end, we studied AMR

parsing, where sentences are represented as AMR graphs, and AMR-to-text

generation, where sentences are generated from AMR graphs. For both AMR

parsing and AMR-to-text generation, we demonstrated the importance of reen-

trancies, without which AMR could be represented as trees rather than graphs.

For AMR parsing, we proposed a transition system that accounts for reen-

trancies occurring between sibling nodes. We highlighted the positive impact

of predicting such reentrancies by developing a set of fine-grained evaluation

metrics, including one for reentrancies prediction. The reentrancy prediction

metric also showed that state-of-the-art parsers do not cope well with reen-

trancies, and motivated us to carry out a deeper analysis of the role of reen-

trancies. We found sources of reentrancies that have not been acknowledged

in the AMR literature such as adjunct control, verbalization, and pragmatics.

We quantified their prevalence in an AMR corpus and found that control and

coreference are the most frequent causes of reentrancies. We argued that reen-

trancies due to a pragmatic interpretation of the annotators are controversial

as AMR is not intended to represent such aspects of language. Oracle exper-

iments showed that if we could correct errors due to reentrancies, the overall

parsing performance would significantly improve, demonstrating their impor-

tance for AMR parsing.

For AMR-to-text generation, we showed that neural encoders that have ac-

cess to reentrancies outperform those who do not, demonstrating their rele-

vance also for this task.

105

106 7. Conclusions

We also explored the use of AMR for languages other than English. Build-

ing AMR datasets for other languages is expensive and requires language-

specific annotation guidelines. We therefore investigated the possibility of

reusing existing English AMR annotations for other languages. We provided

supporting evidence to this claim by training and analyzing AMR parsers for

Italian, Spanish, German, and Chinese.

7.1 Future Directions

We conclude this thesis with a brief discussion on future directions for research

on AMR.

AMR Parsing The fine-grained metrics we proposed have been used to com-

pare AMR parsers (van Noord and Bos, 2017b; Anchiêta and Pardo, 2018; Lyu

and Titov, 2018; Zhang et al., 2019, inter alia). However, they also indicate

the subtasks that are worth investigating further. While we focused on im-

proving reentrancy prediction, another subtask worth looking at is concept

identification. Concept identification involves predicting the correct nodes of

the AMR graph. Compared to syntactic parsing and other forms of semantic

parsing (e.g., UCCA, Abend and Rappoport 2013), alignments between surface

form and semantic representation are latent in AMR parsing, making concept

identification a challenging task. Zhang et al. (2019) reported that parsers can

achieve 90.9% Smatch, when using gold concepts. The state-of-the-art concept

identification score of 86% F1 is achieved by Lyu and Titov (2018), where AMR

alignments are treated as latent variables and learned jointly with parsing. Im-

proving concept identification may be challenging, but its impact on overall

parsing is worth the effort. Another task that can have a significant impact

on parsing performance is SRL. Its current state-of-the-art is 70% F1 (Lyu and

Titov, 2018), leaving large room for improvement.

AMR-to-text Generation Recent work proved the effectiveness of the graph-

to-sequence approach to the generation task (Song et al., 2018; Beck et al., 2018).

Our experiments showed that graph-to-sequence models are not only supe-

rior to sequence-to-sequence models but also to tree-to-sequence models. We

achieved state-of-the-art results with GCN by a combination of structural and

7.1. Future Directions 107

sequential encoding, while maintaining a shallower, faster to train, architec-

ture. In contrast, a deep GCN architecture was used by Guo et al. (2019), which

outperforms our models by allowing the GCN to learn more global node em-

beddings. It is worth carrying out a direct comparison of the two approaches

and analyzing advantages and disadvantages. Another promising approach

to the task consists in first predicting the syntactic structure, from which the

surface form is generated (Cao and Clark, 2019).

Reentrancies Our analysis revealed some unexpected causes of reentrancies.

For example, annotators sometimes add reentrancies based on their pragmatic

interpretation of a sentence. This inevitably adds noise to the data. The phe-

nomena that are intended to lead to reentrancies should be clarified, facilitat-

ing the work of annotators and parsing algorithms alike.

Our analysis fails to detect the causes of many reentrancies in the data.

For a more precise estimate of the most common causes of reentrancies, it is

necessary to perform a manual analysis.

While we demonstrated that correcting reentrancy errors with an oracle

considerably improves performance, the baselines we proposed were not able

to effectively learn how to correct such errors. We leave for future work to im-

prove upon our baselines. An alternative solution is to incorporate reentrancy

prediction in training so that the parsers make fewer reentrancy errors to start

with. The latter approach was recently followed by Zhang et al. (2019). Their

state-of-the-art score for reentrancy is however only 60%, leaving room for im-

provement. A third approach is that of pre-processing reentrancy information,

which has been shown to be a successful way to improve semantic parsing

results (van Noord and Bos, 2017a; van Noord et al., 2018).

AMR for other languages We projected English AMR corpora to other lan-

guages and argued that the noise in the projected AMR alignments is respon-

sible for poor performance. Hence, we expect that performance could improve

when replacing AMREAGER with parsers that do not rely on alignments (Lyu

and Titov, 2018; Zhang et al., 2019).

Differences between languages result in loss of information when sharing

AMR graphs across languages. Even though we showed that parsers can learn

how to cope with some of these differences, it is preferable to acquire language-

108 7. Conclusions

specific datasets, if possible. This also requires the definition of annotation

guidelines for each target language.

Applications There have been attempts to use AMR graphs for downstream

NLP problems (Liu et al., 2015; Issa et al., 2018; Song et al., 2019, inter alia). Our

solutions to parsing and generation, and subsequent work by other researchers

on these tasks, now offer tools to convert natural language text to AMR and

vice-versa with higher accuracy. These tools may be mature enough to allow us

to test AMR on downstream NLP applications such as MT and summarization.

7.2 Software and Data

We release the following resources used for the experiments in this thesis:

• AMREAGER parser for English and its adaption to Italian, Spanish, Ger-

man, and Chinese: https://github.com/mdtux89/amr-eager-multilingual.

It allows parsing sentences into AMR in linear time, incrementally. We

also released a demo: http://cohort.inf.ed.ac.uk/amreager.html;

• Fine-grained evaluation suite, now commonly used to compare AMR

parsers: https://github.com/mdtux89/amr-evaluation;

• Analysis of reentrancies: It includes scripts to quantify the causes of reen-

trancies in AMR and the oracle used to measure the impact of reentran-

cies on AMR parsing performance (the code is yet not accessible to facil-

itate double-blind reviewing);

• Professional translations of the test set of the LDC2015E86 AMR dataset

to Italian, Spanish, German, and Chinese (available upon request). These

can be used to evaluate AMR parsers for languages that do not have a

dedicated AMR dataset yet;

• AMR-to-text systems based on sequential, tree, and graph encoders: https:

//github.com/mdtux89/OpenNMT-py-AMR-to-text. We also released a

demo: http://cohort.inf.ed.ac.uk/amrgen.html;

• Constrastive examples: https://github.com/mdtux89/OpenNMT-py-AMR-to-text/

tree/master/contrastive_examples. We generated these examples to

7.2. Software and Data 109

compare how the different AMR-to-text models handle reentrancies caused

by pronouns.

Bibliography

Abend, O. and Rappoport, A. (2013). Universal conceptual cognitive annota-

tion (ucca). In Proceedings of ACL.

Abzianidze, L., Bjerva, J., Evang, K., Haagsma, H., van Noord, R., Ludmann,

P., Nguyen, D.-D., and Bos, J. (2017). The parallel meaning bank: Towards a

multilingual corpus of translations annotated with compositional meaning

representations. Proceedings of EACL.

Akbik, A., Chiticariu, L., Danilevsky, M., Li, Y., Vaithyanathan, S., and Zhu, H.

(2015). Generating high quality proposition banks for multilingual semantic

role labeling. In Proceedings of ACL.

Anchiêta, R. T. and Pardo, T. A. S. (2018). A rule-based amr parser for por-

tuguese. In Proceedings of IBERAMIA.

Anchiêta, R. T. and Pardo, T. A. S. (2018). Towards amr-br: A sembank for

brazilian portuguese language. In Proceedings of LREC.

Aprosio, A. P. and Moretti, G. (2016). Italy goes to stanford: a collection of

corenlp modules for italian. arXiv preprint arXiv:1609.06204.

Artzi, Y., Lee, K., and Zettlemoyer, L. (2015). Broad-coverage CCG semantic

parsing with AMR. Proceedings of EMNLP.

Attardi, G. (2006). Experiments with a multilanguage non-projective depen-

dency parser. In Proceedings of CoNLL.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by

jointly learning to align and translate. Proceedings of ICLR.

Ballesteros, M. and Al-Onaizan, Y. (2017). Amr parsing using stack-lstms. In

Proceedings of EMNLP.

111

112 Bibliography

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U.,

Knight, K., Koehn, P., Palmer, M., and Schneider, N. (2013). Abstract mean-

ing representation for sembanking. Linguistic Annotation Workshop.

Banerjee, S. and Lavie, A. (2005). Meteor: An automatic metric for mt eval-

uation with improved correlation with human judgments. In Workshop on

intrinsic and extrinsic evaluation measures for machine translation and/or summa-

rization.

Barone, A. V. M., Helcl, J., Sennrich, R., Haddow, B., and Birch, A. (2017). Deep

architectures for neural machine translation. In Proceedings of the Second Con-

ference on Machine Translation.

Barzdins, G. and Gosko, D. (2016). Riga: Impact of smatch extensions and

character-level neural translation on AMR parsing accuracy. International

Workshop on Semantic Evaluation.

Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., and Simaan, K. (2017). Graph

convolutional encoders for syntax-aware neural machine translation. In Pro-

ceedings of EMNLP.

Beck, D., Haffari, G., and Cohn, T. (2018). Graph-to-sequence learning using

gated graph neural networks. Proceedings of ACL.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-

cies with gradient descent is difficult. IEEE transactions on neural networks,

5(2):157–166.

Bohnet, B. and Nivre, J. (2012). A transition-based system for joint part-of-

speech tagging and labeled non-projective dependency parsing. In Proceed-

ings of the 2012 Joint Conference on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learning, pages 1455–1465. Asso-

ciation for Computational Linguistics.

Bojar, Z. U. J. H. O. (2014). Comparing czech and english amrs. In Workshop on

Lexical and Grammatical Resources for Language Processing.

Bos, J. (2004). Computational semantics in discourse: Underspecification, res-

olution, and inference. Journal of Logic, Language and Information, 13(2):139–

157.

Bibliography 113

Bos, J., Basile, V., Evang, K., Venhuizen, N. J., and Bjerva, J. (2017). The

groningen meaning bank. In Handbook of linguistic annotation, pages 463–496.

Springer.

Brill, E. (1993). Transformation-Based Learning. PhD thesis, PhD thesis, Univ. of

Pennsylvania.

Brill, E. (1995). Transformation-based error-driven learning and natural lan-

guage processing: A case study in part-of-speech tagging. Computational

linguistics, 21(4):543–565.

Cai, S. and Knight, K. (2013). Smatch: an evaluation metric for semantic feature

structures. Proceedings of ACL.

Cao, K. and Clark, S. (2019). Factorising amr generation through syntax. In

Proceedings of NAACL.

Carreras, X., Chao, I., PadrÃş, L., and PadrÃş, M. (2004). Freeling: An open-

source suite of language analyzers. In Proceedings of LREC.

Cetoli, A., Bragaglia, S., O’Harney, A., and Sloan, M. (2017). Graph convolu-

tional networks for named entity recognition. In International Workshop on

Treebanks and Linguistic Theories.

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser

using neural networks. In Proceedings of EMNLP.

Chen, H., Huang, S., Chiang, D., and Chen, J. (2017). Improved neural machine

translation with a syntax-aware encoder and decoder. In Proceedings of ACL.

Chen, W.-T. (2015). Learning to map dependency parses to abstract meaning

representations. ACL-IJCNLP 2015 Student Research Workshop.

Chen, W.-T. and Palmer, M. (2017). Unsupervised amr-dependency parse

alignment. In Proceedings of EACL.

Cheng, J., Reddy, S., Saraswat, V., and Lapata, M. (2017). Learning structured

natural language representations for semantic parsing. In Proceedings of ACL.

Chu, C. and Kurohashi, S. (2016). Supervised syntax-based alignment

between english sentences and abstract meaning representation graphs.

arXiv:1606.02126v1.

114 Bibliography

Chung, J., Cho, K., and Bengio, Y. (2016). A character-level decoder without

explicit segmentation for neural machine translation. In Proceedings of ACL.

Cinková, S., Toman, J., Hajic, J., Cermáková, K., Klimeš, V., Mladová, L.,

Šindlerová, J., Tomšu, K., and Zabokrtskỳ, Z. (2009). Tectogrammatical an-

notation of the wall street. The Prague Bulletin of Mathematical Linguistics.

Cohen, S. B., Das, D., and Smith, N. A. (2011a). Unsupervised structure pre-

diction with non-parallel multilingual guidance. In Proceedings of EMNLP.

Cohen, S. B., Gómez-Rodríguez, C., and Satta, G. (2011b). Exact inference for

generative probabilistic non-projective dependency parsing. In Proceedings

of EMNLP.

Cohen, S. B. and Smith, N. A. (2009). Shared logistic normal distributions for

soft parameter tying in unsupervised grammar induction. In Proceedings of

NAACL-HLT.

Copestake, A., Flickinger, D., Pollard, C., and Sag, I. A. (2005). Minimal re-

cursion semantics: An introduction. Research on language and computation,

3(2-3):281–332.

Covington, M. A. (2011). A fundamental algorithm for dependency parsing.

Proceedings of ACM southeast conference.

Damonte, M. and Cohen, S. B. (2018). Cross-lingual abstract meaning repre-

sentation parsing. In Proceedings of NAACL.

Damonte, M. and Cohen, S. B. (2019). Structural neural encoders for amr-to-

text generation. In Proceedings of NAACL.

Damonte, M., Cohen, S. B., and Satta, G. (2017). An incremental parser for

abstract meaning representation. In Proceedings of EACL.

Damonte, M., Szubert, I., Cohen, S., and Steedman, M. (2019). The role of

reentrancies in abstract meaning representation parsing. arXiv preprint.

Daumé III, H., Langford, J., and Marcu, D. (2009). Search-based structured

prediction. Machine learning, 75(3):297–325.

Bibliography 115

Davidson, D. (1969). The individuation of events. In Essays in honor of Carl G.

Hempel, pages 216–234. Springer.

Demner-Fushman, D., Chapman, W. W., and McDonald, C. J. (2009). What

can natural language processing do for clinical decision support? Journal of

biomedical informatics, 42(5):760–772.

Dixon, R. M. (2010). Basic linguistic theory volume 2: Grammatical topics, vol-

ume 2. Oxford University Press on Demand.

Dorr, B. J. (1994). Machine translation divergences: A formal description and

proposed solution. Computational Linguistics, 20(4):597–633.

Dorr, B. J., Pearl, L., Hwa, R., and Habash, N. (2002). Improved word-level

alignment: Injecting knowledge about mt divergences. Technical report,

DTIC Document.

Du, Y., Zhang, F., Sun, W., and Wan, X. (2014). Peking: Profiling syntactic tree

parsing techniques for semantic graph parsing. In International Workshop on

Semantic Evaluation.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T.,

Aspuru-Guzik, A., and Adams, R. P. (2015). Convolutional networks on

graphs for learning molecular fingerprints. In Proceedings of NIPS.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015).

Transition-based dependency parsing with stack long short-term memory.

In Proceedings of ACL.

Dyer, C., Chahuneau, V., and Smith, N. A. (2013). A simple, fast, and effective

reparameterization of ibm model 2. In Proceedings of NAACL-HLT.

Eriguchi, A., Hashimoto, K., and Tsuruoka, Y. (2016). Tree-to-sequence atten-

tional neural machine translation. In Proceedings of ACL.

Evang, K. and Bos, J. (2016). Cross-lingual learning of an open-domain seman-

tic parser. In Proceedings of COLING.

Ferreira, T. C., Calixto, I., Wubben, S., and Krahmer, E. (2017). Linguistic real-

isation as machine translation: Comparing different mt models for amr-to-

text generation. In Proceedings of INLG.

116 Bibliography

Flanigan, J., Dyer, C., Smith, N. A., and Carbonell, J. (2016a). CMU at SemEval-

2016 task 8: Graph-based AMR parsing with infinite ramp loss. International

Workshop on Semantic Evaluation.

Flanigan, J., Dyer, C., Smith, N. A., and Carbonell, J. (2016b). Generation

from abstract meaning representation using tree transducers. Proceedings

of NAACL.

Flanigan, J., Thomson, S., Carbonell, J. G., Dyer, C., and Smith, N. A. (2014). A

discriminative graph-based parser for the abstract meaning representation.

Proceedings of ACL.

Garg, S., Galstyan, A., Hermjakob, U., and Marcu, D. (2016). Extracting

biomolecular interactions using semantic parsing of biomedical text. Pro-

ceedings of AAAI.

Garg, S., Steeg, G. V., and Galstyan, A. (2018). Stochastic learning of

nonstationary kernels for natural language modeling. arXiv preprint

arXiv:1801.03911.

Gesmundo, A., Henderson, J., Merlo, P., and Titov, I. (2009). A latent variable

model of synchronous syntactic-semantic parsing for multiple languages. In

Proceedings of CoNLL.

Gilroy, S. (2019). Probabilistic graph formalisms for meaning representations.

The University of Edinburgh.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with

deep recurrent neural networks. In Proceedings of ICASSP.

Groschwitz, J., Fowlie, M., Johnson, M., and Koller, A. (2017). A constrained

graph algebra for semantic parsing with amrs. In IWCS 2017-12th Interna-

tional Conference on Computational Semantics-Long papers.

Gruzitis, N., Gosko, D., and Barzdins, G. (2017). Rigotrio at semeval-2017 task

9: Combining machine learning and grammar engineering for amr parsing

and generation. In International Workshop on Semantic Evaluation.

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., and Bengio, Y. (2016). Pointing

the unknown words. In Proceedings of ACL.

Bibliography 117

Guo, Z., Zhang, Y., Teng, Z., and Lu, W. (2019). Densely connected graph

convolutional networks for graph-to-sequence learning. In Proceedings of

TACL.

Habel, A. (1992). Hyperedge replacement: grammars and languages, volume 643.

Springer Science & Business Media.

Henderson, J., Merlo, P., Musillo, G., and Titov, I. (2008). A latent variable

model of synchronous parsing for syntactic and semantic dependencies. In

Proceedings of the Twelfth Conference on Computational Natural Language Learn-

ing, pages 178–182. Association for Computational Linguistics.

Hirschman, L., Robinson, P., Burger, J., and Vilain, M. (1997). Automating

coreference: The role of annotated training data. In Proceedings of the AAAI

Spring Symposium on Applying Machine Learning to Discourse Processing.

Hobbs, J. R. (1979). Coherence and coreference. Cognitive science, 3(1):67–90.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8):1735–1780.

Hodgson, T. and Coiera, E. (2015). Risks and benefits of speech recognition for

clinical documentation: a systematic review. Journal of the American Medical

Informatics Association, 23(e1):e169–e179.

Hoffman, B. (1992). A ccg approach to free word order languages. In Proceed-

ings of ACL.

Huddleston, R. and Pullum, G. K. (2002). Non-finite and verbless clauses, page

1171âĂŞ1272. Cambridge University Press.

Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., and Kolak, O. (2005). Bootstrap-

ping parsers via syntactic projection across parallel texts. Natural language

engineering, 11(03):311–325.

Issa, F., Damonte, M., Cohen, S. B., Yan, X., and Chang, Y. (2018). Abstract

meaning representation for paraphrase detection. In Proceedings of NAACL.

Johnson, M. (2002). A simple pattern-matching algorithm for recovering empty

nodes and their antecedents. In Proceedings of ACL, pages 136–143. Associa-

tion for Computational Linguistics.

118 Bibliography

Jurčíček, F., Gašić, M., Keizer, S., Mairesse, F., Thomson, B., Yu, K., and Young,

S. (2009). Transformation-based learning for semantic parsing. In Tenth An-

nual Conference of the International Speech Communication Association.

Kamp, H. and Reyle, U. (1993). From discourse to logic: an introduction to

modeltheoretic semantics, formal logic and discourse representation theory.

Hingham, MA: Kluwer.

Kendall, M. G. (1945). The treatment of ties in ranking problems. Biometrika,

33(3):239–251.

Kingsbury, P. and Palmer, M. (2002). From treebank to propbank. Proceedings

of LREC.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph

convolutional networks. Proceedings of ICLR.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). Opennmt:

Open-source toolkit for neural machine translation. In Proceedings of ACL.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation.

In MT summit, volume 5, pages 79–86.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,

Cowan, B., Shen, W., Moran, C., Zens, R., et al. (2007). Moses: Open source

toolkit for statistical machine translation. In Proceedings of ACL.

Konstas, I., Iyer, S., Yatskar, M., Choi, Y., and Zettlemoyer, L. (2017). Neural

amr: Sequence-to-sequence models for parsing and generation. Proceedings

of ACL.

Kubler, S., McDonald, R., Nivre, J., and Hirst, G. (2009). Dependency Parsing.

Morgan and Claypool Publishers.

Kuhlmann, M. and Jonsson, P. (2015). Parsing to noncrossing dependency

graphs. Transactions of the Association for Computational Linguistics, pages 559–

570.

Kuhlmann, M. and Oepen, S. (2016). Towards a catalogue of linguistic graph

banks. Computational Linguistics, 42(4):819–827.

Bibliography 119

Lampouras, G. and Vlachos, A. (2017). Sheffield at semeval-2017 task 9:

Transition-based language generation from amr. In International Workshop

on Semantic Evaluation.

Lee, J., Cho, K., and Hofmann, T. (2017). Fully character-level neural machine

translation without explicit segmentation. Transactions of the Association for

Computational Linguistics, 5:365–378.

Levi, F. W. (1942). Finite geometrical systems. University of Calcutta.

Li, B., Wen, Y., Weiguang, Q., Bu, L., and Xue, N. (2016). Annotating the little

prince with chinese amrs. In Linguistic Annotation Workshop.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2015). Gated graph se-

quence neural networks. arXiv preprint arXiv:1511.05493.

Liang, P. (2013). Lambda dependency-based compositional semantics. arXiv

preprint arXiv:1309.4408.

Linzen, T., Dupoux, E., and Goldberg, Y. (2016). Assessing the ability of lstms

to learn syntax-sensitive dependencies. Transactions of the Association for Com-

putational Linguistics, 4:521–535.

Liu, F., Flanigan, J., Thomson, S., Sadeh, N., and Smith, N. A. (2015). Toward

abstractive summarization using semantic representations. Proceedings of

NAACL.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to

attention-based neural machine translation. Proceedings of EMNLP.

Lyu, C. and Titov, I. (2018). Amr parsing as graph prediction with latent align-

ment. Proceedings of ACL.

Mann, W. C. (1983). An overview of the penman text generation system. In

Proceedings of AAAI, pages 261–265.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and McClosky,

D. (2014). The Stanford CoreNLP natural language processing toolkit. In

Proceedings of ACL.

120 Bibliography

Marcheggiani, D. and Perez-Beltrachini, L. (2018). Deep graph convolutional

encoders for structured data to text generation. Proceedings of INLG.

Marcheggiani, D. and Titov, I. (2017). Encoding sentences with graph convo-

lutional networks for semantic role labeling. Proceedings of EMNLP.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large

annotated corpus of english: The penn treebank. Computational linguistics,

19(2):313–330.

May, J. (2016). Semeval-2016 task 8: Meaning representation parsing. In Inter-

national Workshop on Semantic Evaluation.

May, J. and Priyadarshi, J. (2017). Semeval-2017 task 9: Abstract meaning rep-

resentation parsing and generation. In International Workshop on Semantic

Evaluation.

McDonald, R., Petrov, S., and Hall, K. (2011). Multi-source transfer of delexi-

calized dependency parsers. In Proceedings of EMNLP.

Morante, R. and Blanco, E. (2012). *SEM 2012 shared task: Resolving the scope

and focus of negation. In Proceedings of *SEM.

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and

classification. Lingvisticae Investigationes, 30(1):3–26.

Navigli, R. (2009). Word sense disambiguation: A survey. ACM computing

surveys (CSUR), 41(2):10.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial intelli-

gence, 56(1):71–113.

Nguyen, D. Q., Nguyen, D. Q., Pham, D. D., and Pham, S. B. (2016). A robust

transformation-based learning approach using ripple down rules for part-

of-speech tagging. AI Communications, 29(3):409–422.

Nivre, J. (2004). Incrementality in deterministic dependency parsing. Workshop

on Incremental Parsing: Bringing Engineering and Cognition Together.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing.

Computational Linguistics, 34(4):513–553.

Bibliography 121

Nivre, J. (2009). Non-projective dependency parsing in expected linear time.

In Proceedings of ACL.

Nivre, J. and Nilsson, J. (2005). Pseudo-projective dependency parsing. In Pro-

ceedings of the 43rd Annual Meeting on Association for Computational Linguistics,

pages 99–106. Association for Computational Linguistics.

Och, F. J. and Ney, H. (2000). Improved statistical alignment models. In Pro-

ceedings of ACL.

Opitz, J. and Frank, A. (2019). Automatic accuracy prediction for amr parsing.

In Proceedings of *SEM.

Padó, S. and Lapata, M. (2009). Cross-lingual annotation projection for seman-

tic roles. Journal of Artificial Intelligence Research, 36(1):307–340.

Palmer, M., Gildea, D., and Xue, N. (2010). Semantic role labeling. Synthesis

Lectures on Human Language Technologies, 3(1):1–103.

Pan, X., Cassidy, T., Hermjakob, U., Ji, H., and Knight, K. (2015). Unsupervised

entity linking with abstract meaning representation. Proceedings of NAACL.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for

automatic evaluation of machine translation. In Proceedings of ACL.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in

pytorch. In NIPS Workshop.

Peng, X., Gildea, D., and Satta, G. (2018). Amr parsing with cache transition

systems. In Proceedings of AAAI.

Peng, X., Song, L., and Gildea, D. (2015). A synchronous hyperedge replace-

ment grammar based approach for AMR parsing. Proceedings of CoNLL.

Pop, R., Dregan, A., Măcicăşan, F., Lemnaru, C., and Potolea, R. (2018). En-

hancements on a transition-based approach for amr parsing using lstm net-

works. In Proceedings of ICCP.

Popović, M. (2017). chrf++: words helping character n-grams. In Proceedings of

the second conference on machine translation, pages 612–618.

122 Bibliography

Pourdamghani, N., Gao, Y., Hermjakob, U., and Knight, K. (2014). Aligning

english strings with abstract meaning representation graphs. Proceedings of

EMNLP.

Pourdamghani, N. and Knight, K. (2016). Generating english from abstract

meaning representation. In Proceedings of INLG.

Pust, M., Hermjakob, U., Knight, K., Marcu, D., and May, J. (2015). Parsing

english into abstract meaning representation using syntax-based machine

translation. Proceedings of EMNLP.

Ramshaw, L. A. and Marcus, M. P. (1999). Text chunking using transformation-

based learning. In Natural language processing using very large corpora, pages

157–176. Springer.

Ranta, A. (2004). Grammatical framework. Journal of Functional Programming,

14(2):145–189.

Rao, S., Marcu, D., Knight, K., and Daumé III, H. (2017). Biomedical event

extraction using abstract meaning representation. BioNLP Workshop.

Rao, S., Vyas, Y., Daume III, H., and Resnik, P. (2016). Clip@umd at semeval-

2016 task 8: Parser for abstract meaning representation using learning to

search. International Workshop on Semantic Evaluation.

Ribeyre, C., de La Clergerie, É. V., and Seddah, D. (2015). Because syntax

does matter: Improving predicate-argument structures parsing using syn-

tactic features. In Proceedings of NAACL-HLT.

Sagae, K. and Tsujii, J. (2008). Shift-reduce dependency dag parsing. Proceed-

ings of COLING.

Sawai, Y., Shindo, H., and Matsumoto, Y. (2015). Semantic structure analysis

of noun phrases using abstract meaning representation. Proceedings of ACL.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization

with pointer-generator networks. In Proceedings of ACL.

Sennrich, R. (2017). How grammatical is character-level neural machine trans-

lation? assessing mt quality with contrastive translation pairs. In Proceedings

of EACL.

Bibliography 123

Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitschler, J., Junczys-

Dowmunt, M., Läubli, S., Miceli Barone, A. V., Mokry, J., and Nadejde, M.

(2017). Nematus: a toolkit for neural machine translation. In Proceedings of

EACL.

Søgaard, A. (2011). Data point selection for cross-language adaptation of de-

pendency parsers. In Proceedings of ACL-HLT.

Song, L. and Gildea, D. (2019). Sembleu: A robust metric for amr parsing

evaluation. arXiv preprint arXiv:1905.10726.

Song, L., Gildea, D., Zhang, Y., Wang, Z., and Su, J. (2019). Semantic neural ma-

chine translation using AMR. Transactions of the Association for Computational

Linguistics, 7:19–31.

Song, L., Zhang, Y., Peng, X., Wang, Z., and Gildea, D. (2016). Amr-to-text

generation as a traveling salesman problem. Proceedings of EMNLP.

Song, L., Zhang, Y., Wang, Z., and Gildea, D. (2018). A graph-to-sequence

model for amr-to-text generation. In Proceedings of ACL.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks.

arXiv preprint arXiv:1505.00387.

Steedman, M. (1996). Surface Structure and Interpretation. The MIT Press.

Steedman, M. (2000). The Syntactic Process. The MIT Press.

Sulem, E., Abend, O., and Rappoport, A. (2015). Conceptual annotations pre-

serve structure across translations: A french-english case study. In Workshop

on Semantics-Driven Statistical Machine Translation.

Szubert, I., Lopez, A., and Schneider, N. (2018). A structured syntax-semantics

interface for english-amr alignment. In Proceedings of NAACL.

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic represen-

tations from tree-structured long short-term memory networks. Proceedings

of ACL.

124 Bibliography

Takase, S., Suzuki, J., Okazaki, N., Hirao, T., and Nagata, M. (2016). Neural

headline generation on abstract meaning representation. In Proceedings of

EMNLP.

Titov, I. and Henderson, J. (2007). A latent variable model for generative de-

pendency parsing. In Proceedings of IWPT.

Titov, I., Henderson, J., Merlo, P., and Musillo, G. (2009). Online graph planari-

sation for synchronous parsing of semantic and syntactic dependencies. In

Proceedings of IJCAI.

Van Deemter, K. and Kibble, R. (1999). What is coreference, and what should

coreference annotation be? In Workshop on Coreference and its Applications.

Association for Computational Linguistics.

van der Plas, L., Samardžić, T., and Merlo, P. (2010). Cross-lingual validity

of propbank in the manual annotation of french. In Linguistic Annotation

Workshop.

van Noord, R., Abzianidze, L., Toral, A., and Bos, J. (2018). Exploring neural

methods for parsing discourse representation structures. Transactions of the

Association for Computational Linguistics, 6:619–633.

van Noord, R. and Bos, J. (2017a). Dealing with co-reference in neural semantic

parsing. In Workshop on Semantic Deep Learning.

van Noord, R. and Bos, J. (2017b). Neural semantic parsing by character-based

translation: Experiments with abstract meaning representations. Computa-

tional Linguistics in the Netherlands Journal, 7:93–108.

Vanderwende, L., Menezes, A., and Quirk, C. (2015). An amr parser for en-

glish, french, german, spanish and japanese and a new amr-annotated cor-

pus. In Proceedings of NAACL-HLT.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Proceedings

of NIPS.

Vinyals, O. and Le, Q. (2015). A neural conversational model. arXiv preprint

arXiv:1506.05869.

Bibliography 125

Wang, C., Pradhan, S., Xue, N., Pan, X., and Ji, H. (2016). CAMR at SemEval-

2016 task 8: An extended transition-based AMR parser. International Work-

shop on Semantic Evaluation.

Wang, C., Xue, N., and Pradhan, S. (2015a). Boosting transition-based AMR

parsing with refined actions and auxiliary analyzers. Proceedings of ACL.

Wang, C., Xue, N., and Pradhan, S. (2015b). A transition-based algorithm for

AMR parsing. Proceedings of NAACL.

Wang, Y., Liu, S., Rastegar-Mojarad, M., Wang, L., Shen, F., Liu, F., and Liu, H.

(2017). Dependency and amr embeddings for drug-drug interaction extrac-

tion from biomedical literature. In Proceedings of ACM-BCB.

Werling, K., Angeli, G., and Manning, C. D. (2015). Robust subgraph gener-

ation improves abstract meaning representation parsing. In Proceedings of

ACL.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,

M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine

translation system: Bridging the gap between human and machine transla-

tion. arXiv preprint arXiv:1609.08144.

Xu, K., Wu, L., Wang, Z., and Sheinin, V. (2018). Graph2seq: Graph to

sequence learning with attention-based neural networks. arXiv preprint

arXiv:1804.00823.

Xue, N., Bojar, O., Hajic, J., Palmer, M., Uresova, Z., and Zhang, X. (2014). Not

an interlingua, but close: Comparison of english amrs to chinese and czech.

In Proceedings of LREC.

Yarowsky, D., Ngai, G., and Wicentowski, R. (2001). Inducing multilingual text

analysis tools via robust projection across aligned corpora. In Proceedings of

HLT.

Zeman, D. and Resnik, P. (2008). Cross-language parser adaptation between

related languages. In Proceedings of IJCNLP.

Zhang, S., Ma, X., Duh, K., and Van Durme, B. (2019). Amr parsing as

sequence-to-graph transduction. In Proceedings of ACL.

126 Bibliography

Zhang, Y. and Clark, S. (2008). A tale of two parsers: investigating and com-

bining graph-based and transition-based dependency parsing using beam-

search. In Proceedings of EMNLP.

Zhang, Y. and Nivre, J. (2011). Transition-based dependency parsing with rich

non-local features. Proceedings of ACL.

Zhou, J., Xu, F., Uszkoreit, H., Weiguang, Q., Li, R., and Gu, Y. (2016). Amr

parsing with an incremental joint model. In Proceedings of EMNLP.

Ziemski, M., Junczys-Dowmunt, M., and Pouliquen, B. (2016). The united

nations parallel corpus v1. 0. In Proceedings of LREC.

Appendix A

Implementation mistake in parsing

evaluation metrics

At the time of writing the final version of this thesis, we noticed an implemen-

tation mistake in the evaluation metrics of Chapter 4 based on the F1 score.

We collapsed AMR concepts with the same lexical label, missing some of the

errors made by the parser. For instance, consider the parses of Table 4.1. The

Gold parse contains two person concepts, while the Parse 1 does not contain

any. Because the two person concepts are collapsed, the CONCEPTS metric only

finds one error, instead of two. The error also applies to the metrics NAMED

ENTITIES, WIKIFICATION, and NEGATIONS. Table A.1 shows the results before

and after fixing the implementation mistake. Correcting the mistake results in

generally lower scores, as more errors are found, but the comparison between

the parsers is not affected. We recommend AMR researchers to use the lat-

est version of the evaluation script available at https://github.com/mdtux89/

amr-evaluation, and if possible, directly evaluate outputs of previous systems

instead of indirectly comparing them as reported in a paper published prior to

the release of the new script.

127

128 Appendix A. Implementation mistake in parsing evaluation metrics

Metric J (2014) C (2015) J (2016) A (2017) L&T (2018)

CONCEPTS* 79 80 83 83 85

CONCEPTS 77 78 81 81 84

NAMED ENTITIES* 75 75 79 83 86

NAMED ENTITIES 73 72 76 81 86

WIKIFICATION* 0 0 75 64 76

WIKIFICATION 0 0 71 60 73

NEGATIONS* 16 18 45 50 55

NEGATIONS 17 17 45 50 56

Table A.1: Results on test split of LDC2015E86 for the F1 metrics of Chapter 4 before

(marked with the * symbol) and after correcting the implementation mistake.

	cover sheet
	main

