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Abstract 15 

The amount of carbon uptake by vegetation is an important component to 16 

understand the functioning of ecosystem processes and their response/feedback 17 

to climate. Recently, a new diagnostic model called the Southampton Carbon Flux 18 

(SCARF) Model driven by remote sensing data was developed to predict terrestrial 19 

gross primary productivity (GPP) and successfully applied in temperate regions. 20 

The model is based on the concept of quantum yield of plants and improves on 21 

the previous diagnostic models by (i) using the fraction of photosynthetic active 22 

radiation absorbed by the photosynthetic pigment (FAPARps) and (ii) using direct 23 
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quantum yield by classifying the vegetation into C3 or C4 classes. In this paper, 24 

we calibrated and applied the model to evaluate GPP across various ecosystems 25 

in Africa. The performance of the model was evaluated using data from seven 26 

eddy covariance flux tower sites. Overall, the modelled GPP values showed good 27 

correlation (R > 0.59, p <0.0001) with estimated flux tower GPP at most sites 28 

(except at a tropical rainforest site, R= 0.38, p = 0.02) in terms of their 29 

seasonality and absolute values. Mean daily GPP across the investigated period 30 

varied significantly across sites depending on the vegetation types from a 31 

minimum of 0.44 gC m-2 day-1 at the semi-arid and sub-humid savanna grassland 32 

sites to a maximum of 9.86 gC m-2 day-1 at the woodland and tropical rain forest 33 

sites. Generally, strong correlation is observed in savanna woodlands and 34 

grasslands where vegetation follows a prescribed seasonal cycle as determined by 35 

changes in canopy chlorophyll content and leaf area index. Finally, the mean 36 

annual GPP value for Africa predicted by the model was 35.25 Pg C yr-1. The good 37 

performance of the SCARF model in water-limited ecosystems across Africa 38 

extends its potential for global application.   39 
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1. Introduction 48 

Gross primary productivity (GPP) plays a critical role in the functioning of 49 

terrestrial ecosystems particularly through the regulation of water, energy and 50 

nutrient cycles (Gitelson et al., 2012; Verma et al., 2005). While there has been 51 

significant improvements in reliability of the estimates of terrestrial GPP  in other 52 

regions of the world, particularly North America and Europe, estimates remain 53 

highly uncertain across the African continent (Ardo et al., 2008; Merbold et al., 54 

2009; Papale et al., 2006; Sjöström et al., 2011). This is despite wide 55 

acknowledgement about the critical contributions made by the continent’s 56 

ecosystems in global carbon dynamics (e.g. Ciais et al., 2011; Sjöström et al., 57 

2011). For example, estimates by Williams et al. (2007) indicated that ecosystems 58 

across Africa account for as much as one-fifth of global GPP which is mainly 59 

attributed to vastness of the tropical rainforests and the savanna ecosystems. 60 

Although recent estimates place Africa as carbon neutral (e.g. Williams et al., 61 

2007), rapid population growth and urbanization (Birch & Wachter, 2011) and 62 

general improvement in standards of living (Potts, 2012) are likely to worsen the 63 

continent’s heavy dependency on natural resources causing uncertainties to its 64 

future carbon balance. The uniqueness of African ecosystems is also marked by 65 

the heterogeneous nature of the savanna ecosystems which poses challenges in 66 

allocating light conversion efficiencies in global GPP models (Suyker & Verma, 67 

2010, 2012). 68 

The uncertain nature of current CO2 fluxes demands that efforts are directed 69 

towards improving data and knowledge availability if we are to improve on future 70 

predictions for this region. Several projects have been established as part of 71 

initiatives to improve data availability on greenhouse gas (GHG) fluxes for Africa, 72 
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for example the CARBOAFRICA Project which set up the first flux network for Africa 73 

in 2006 (Baldochi et al., 2012; Papale et al., 2006; Sjöström et al., 2011). 74 

Although the EC technique remains an efficient source of consistent estimation of 75 

ecosystem GPP at local scale (Falge et al., 2002; McCallum et al., 2013; Wu et al., 76 

2010, Ran et al., 2016), the reliability of the estimates are limited only to the 77 

extent of the tower footprint in operation. This renders it impractical for estimating 78 

carbon fluxes at regional scale especially given the limited spatial coverage of flux 79 

sites across the continent (Ardo et al., 2008). 80 

Many models with varying assumptions on how ecosystems respond to 81 

environmental factors have been developed for scaling up EC measurements and 82 

provide a detailed spatial temporal variation of GPP at a regional to global scale 83 

(Coops et al., 2009).  In particular, the production efficiency group of models (PEM) 84 

(e.g. Ruimy et al, 1999; Turner et al., 2003; Veroustraete et al, 2002) which are 85 

based on the light use efficiency concept (LUE) (Monteith, 1972) has been widely 86 

adopted. The LUE concept suggests that ecosystem GPP is a function of the 87 

amount of photosynthetically active radiation (PAR) intercepted by a canopy, 88 

fraction of PAR that is actually absorbed by the canopy (FAPAR) and interacting 89 

environmental stress factors that tend to limit potential maximum efficiency 90 

(Monteith, 1972). The growth in the use of this family of models is largely due to 91 

the ever-increasing available knowledge, data and techniques to derive its key 92 

driving variables from Earth Observation (EO) data (Verma et al., 2005, Hilker et 93 

al., 2008). 94 

Even though the inception of EO has significantly contributed to advancements in 95 

carbon flux modelling, results are still uncertain. An inter-comparison of global 96 

models (including both diagnostic and prognostic models) by Cramer et al. (1999) 97 



 

5 

 

indicate considerable uncertainty in estimated GPP (a range of 44.4 PgCyr-1 to 98 

66.3 PgCyr-1) across seventeen participating models. A recent review of GPP 99 

spatial-temporal patterns by Anav et al (2015) also found large variations in global 100 

mean GPP estimates from various models. In a separate study, Williams et al. 101 

(2007) documented that although the level of error from many global models is 102 

varied, most seem to concur that as much as 50% of the uncertainty is attributed 103 

to the African ecosystems. Such variations could arise since different models adopt 104 

different assumptions to simulate ecosystem structure and vegetation responses 105 

to complex interactions of environmental factors (Gitelson et al., 2012). For 106 

example, most PEMs (e.g. MOD17 Product) use a constant maximum LUE to 107 

represent a given biome. This results in reduced ability of the models to capture 108 

species-specific LUE variations between plant functional types (PFTs), across 109 

seasons, as well as across plant development stages. 110 

The ability to infer vegetation condition and structure from space-borne 111 

measurements makes it possible to derive FAPAR from satellite based indices like 112 

the normalised difference vegetation index (NDVI) (Asrar et al., 1992; Fensholt et 113 

al., 2004; Ogutu and Dash, 2013) and leaf area index (LAI) (Jarvis & Leverenz, 114 

1983, Li et al., 2015). The accurate estimation of FAPAR is important for reliable 115 

GPP estimates since FAPAR indicates the level of light absorption in the integrated 116 

canopy and consequently controls plant physiological processes represented in 117 

productivity models (Myneni & Williams, 1994; Ruimy et al., 1999). Recent studies 118 

have also indicated that the use of whole canopy FAPAR (FAPARca) to estimate 119 

GPP, as it is often the case with PEM models, tends to propagate uncertainty as 120 

FAPARca includes light absorbed by non-photosynthesizing components of the 121 

canopy e.g. stem, tree branches and dead foliage (Ogutu & Dash, 2013; Zhang et 122 
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al., 2014; Zhang et al., 2012; Zhang et al., 2009; Zhang et al., 2016). Ogutu & 123 

Dash (2013) gave a clear distinction between FAPAR for the whole canopy and the 124 

actual photosynthetic FAPAR (FAPARps) based on an inverted relationship between 125 

net ecosystem exchange (NEE) and incoming PAR. Their results concluded that 126 

the FAPAR for whole canopy is consistently higher than that actually used for 127 

photosynthesis suggesting that the use of the former may result in an 128 

overestimation of GPP and the amount of this overestimation may vary across the 129 

growing season. Additional errors in the PEMs may emanate from the use of coarse 130 

resolution land cover maps and meteorological data and thus lead to 131 

inconsistencies in the estimates of the LUE term (Harris & Dash, 2010; Sims et 132 

al., 2006; Wu et al., 2009, Ran et al., 2016). 133 

Recently, a new model called Southampton Carbon Flux Model (SCARF, Ogutu et 134 

al., 2013) was developed with the aim of mitigating some of the above 135 

shortcomings. For example, it uses the fraction of PAR absorbed only by the 136 

photosynthetic components of the canopy (FAPARps) derived from a spectral index 137 

that is sensitive to canopy chlorophyll content for a wide range of vegetation 138 

canopies (i.e. the MERIS terrestrial chlorophyll index - MTCI, Dash & Curran, 139 

2004). In addition, the model exploits the intrinsic quantum yield of the two main 140 

photosynthetic pathways of plants (C3 and C4 photosynthesis) and does not 141 

primarily depend on a detailed land cover map to determine the ability of different 142 

vegetation species to convert light energy into biomass. The initial evaluation of 143 

the model in ecosystems where vegetation development is mainly controlled by 144 

temperature (e.g. Northern higher latitudes) showed good agreement with in-situ 145 

measurements (Ogutu et al., 2013).  146 
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 In this study, we calibrated this model and used it to estimate GPP in ecosystems 147 

across Africa, where moisture is the main determinant of ecosystem GPP (Scholes 148 

et al., 2004; Svoray & Karnieli, 2011; Weber et al., 2009). Apart from evaluating 149 

the models performance in relation to in-situ GPP measurements and MOD17 GPP 150 

product, the study also investigated the sensitivity and uncertainty of the SCARF 151 

model to determine the relative importance of the main biophysical and 152 

meteorological input parameters to the model’s output. 153 

 154 

2. Data and methods 155 

2.1. The SCARF model 156 

The SCARF Model follows the general form of PEM models but it has extended 157 

capability by separating FAPARps from FAPARca. The LUE term is also replaced by 158 

an intrinsic quantum yield term that specifies the capacity of plants in the C3 and 159 

C4 photosynthetic pathways to convert incident light energy and other resources 160 

into biomass (Ogutu et al., 2013). The use of FAPARps accounts for APAR that is 161 

absorbed by photosynthesising parts of the vegetation canopy while a quantum 162 

yield term in this case reduces uncertainties due to land cover misclassification 163 

since plants are treated only based on their photosynthetic pathways. In its basic 164 

form,  the GPP from the model (GPPSCARF g C m-2 day-1 
) can be estimated following  165 

Ogutu et al. (2013):  166 

)( kaFAPARPARGPP psSCARF ∗∗∗=          (1) 167 

Where PAR (µmol m-2 s-1) is the incoming photosynthetically active radiation, 168 

FAPARps (µmol m-2 s-1) is time averaged absorbed active radiation (APAR) derived 169 

as a product of fraction of APAR absorbed only by photosynthesising tissue in the 170 
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canopy, a  (µmol µmol-1) is the maximum quantum yield for either C3 or C4 plants 171 

and k represents modifying conditions affecting maximum quantum yield. 172 

Parameters a  and k in above equation can be expanded to: 173 

𝑎𝑎 =  𝑃𝑃𝐶𝐶3 𝑎𝑎𝐶𝐶3 𝑓𝑓𝐶𝐶3
𝑣𝑣𝑣𝑣𝑣𝑣 Ψ𝑒𝑒            (2) 174 

𝑘𝑘 = (1 − 𝑃𝑃𝐶𝐶3)𝑎𝑎𝐶𝐶4 𝑓𝑓𝐶𝐶4
𝑣𝑣𝑣𝑣𝑣𝑣                  (3)  175 

Where PC3 represents the proportion (%) of C3 plants, (1-PC3) represents the 176 

proportion of C4 plants within a study site, 3Ca
 and 4Ca

 represent the maximum 177 

quantum yields for C3 and C4 plants, respectively, eψ
 (unitless) is the influence of 178 

temperature and leaf CO2 concentration on the maximum quantum yield of C3 179 

plants. 𝑓𝑓𝐶𝐶3
𝑣𝑣𝑣𝑣𝑣𝑣 and  𝑓𝑓𝐶𝐶4

𝑣𝑣𝑣𝑣𝑣𝑣 represent the influence of vapour pressure deficit (VPD) on 180 

C3 and C4 photosynthesis, respectively.  181 

C3 and C4 plants are essentially separated by their distinct photosynthetic 182 

responses to temperature and CO2 partial pressure at the leaf surface. CO2 partial 183 

pressure in the chloroplast is 5-10 times higher in C4 than in C3 photosynthesis 184 

and this efficiently prevents photorespiration due to suppression of oxygen 185 

competition and saturation of Rubisco carboxylase activity (Ehleringer & Björkman, 186 

1977). Since the process of photorespiration is both temperature and CO2 187 

dependent, photosynthesis is generally higher in C4 than C3 plants at high 188 

temperature and low CO2 partial pressure (Brooks & Farquhar, 1985). The values 189 

adopted in the SCARF Model to parameterise 3Ca
 and 4Ca

 (0.08 mol mol-1 and 190 

0.06 mol mol-1 respectively) concur with both laboratory and field based 191 

measurements (Collatz et al., 1991; Collatz et al., 1992; Ehleringer & Björkman, 192 

1977).  193 
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 194 

2.1.1. Sub-models 195 

A number of sub-models were incorporated in the SCARF Model and these included 196 

Vapour Pressure Deficit (VPD), FAPARps and eψ
 which estimate the influence of 197 

temperature and leaf CO2 concentration on the maximum quantum yield of C3 198 

plants. 199 

2.1.1.1. The Vapour pressure deficit sub model 200 

Vapour Pressure Deficit (VPD) is a key physiological variable used in ecosystem 201 

productivity models as it is directly related to environmental stress. It can be 202 

defined as the difference (deficit) between the amount of moisture in the air and 203 

how much moisture the air can hold when it is saturated. It brings together the 204 

effects caused by both relative humidity and temperature as a single indicator of 205 

plant health. High VPD causes plant leaves to reduce stomatal aperture to regulate 206 

excessive water losses through transpiration (T) which in turn reduce CO2 207 

assimilation for photosynthesis. To incorporate the effect of VPD on the quantum 208 

yield, a sigmoid function was adopted since high VPD causes moisture stress in 209 

the plant, and therefore inhibits photosynthesis, while low VPD will generally result 210 

in an increase in photosynthesis but tends to flatten out with continued decrease. 211 

In the original SCARF model the VPD function was parameterised using the 212 

equation below (Ogutu et al., 2013; Tu, 2000): 213 

    214 

           (4) 215 

Where VPD (Pa)is the instantaneous moisture condition 216 

[ ])3(3.1exp1
1)(

−+
=

VPD
Dkf D
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For site level evaluation of the model, in-situ VPD observations were used. 217 

However, for application at the regional scale, VPD values used were estimated 218 

following Unwin (1980) whereby VPD is expressed as the difference between 219 

saturation vapour pressure (SVP) and actual vapour pressure (AVP). SVP (Pa) is 220 

calculated as follows:  221 

T)))1/(273.15-(1./273*)exp((L./Rv*6.11 +=SVP    (5) 222 

    Where L is latent heat of vaporisation (2.5 *106 Jkg-1), Rv is a gas constant for 223 

water vapour (461 JK-1 kg-1) and T is air temperature (oC). AVP (Pa) is calculated 224 

as:  225 

SVP*(RH/100) = AVP      (6) 226 

  Where RH is relative humidity (%), calculated as follows:   227 

 T)))T)/(243.04*(17.625DPT))/exp(04DPT)/(243.*52(exp((17.6*100 RH ++=  (7) 228 

Where DPT is dew point temperature (oC) 229 

Evaluation of estimated VPD against those derived from the measurements at the 230 

flux tower was performed for seven sites and the agreement was considered as 231 

modest to very good (R2=0.61 to 0.96). 232 

2.1.1.2. FAPARps sub-model  233 

FAPARps for a canopy has a strong linear relationship with the total quantities of 234 

chlorophyll present in that canopy (Ogutu et al., 2013). The MTCI has been used 235 

as a surrogate for GPP and chlorophyll content (e.g. Dash et al., 2010; Harris & 236 

Dash, 2010, 2011) and FAPARps (e.g. Ogutu et al., 2013) yielding strong positive 237 

relationship. The current study assumes MTCI to be a proxy for FAPARps.  A full 238 

description of how FAPARps was derived through the inversion of EC NEE data and 239 



 

11 

 

related to MTCI can be found in Ogutu et al. (2013). The relationship between 240 

FAPARps and MTCI derived in Ogutu et al (2013) as shown below was used in the 241 

current study.  242 

07.0*76.0 += MTCIfAPARps
     (8) 243 

Influence of temperature on C3 photosynthesis 244 

To estimate the influence of temperature and CO2 partial pressure on the 245 

maximum quantum yield of C3 photosynthesis, the term eψ  was incorporated 246 

following (Hanan et al.,  1998) 247 

8973228.00002077.00043049.0 2 +−−= TTeψ     (9) 248 

Where T is the atmospheric air temperature. The model was implemented at the 249 

site level by using in-situ temperature measurements, while at continent scale by 250 

using European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysed 251 

air temperature measured at 2m above the ground surface. 252 

2.2. Eddy covariance flux data 253 

Seven EC flux sites (with data covering a total of 15 years) within the 254 

CARBOAFRICA flux network were used in the analyses (Table 1). These sites 255 

measure fluxes in some of the dominant and typical representative ecosystems 256 

across Africa. The study was primarily depended upon coincident data available 257 

for flux data and the MERIS MTCI data which is a dominant variable from which 258 

GPP is computed. The Tchizalamou (CG-Tch) in the Republic of Congo represents 259 

tropical grassland ecosystems in central-west Africa while the Bontioli site in 260 

Burkina Faso (BF-Bon) and Demokeya in Sudan (SD-Dem) take measurements in 261 

sub-humid and semi-arid Sahel climates, respectively. Mongu in Zambia (ZM-Mon), 262 
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Malopeni (ZA-Map) and Skukuza (ZA-Kru), both in South Africa, represent sub-263 

humid and semi-arid savannas of southern Africa while Ankasa site in Ghana (GH-264 

Ank) represents tropical rain forest ecosystems. Due to the scarcity of flux tower 265 

sites in Africa, no data was available for the tropical dryland forests in Africa. 266 

Therefore, the model was not calibrated and validated for this biome and due to 267 

this, the SCARF model results for this biome my contain uncertainties.  268 

The selected EC data are gap-filled CARBOAFRICA Level 4 datasets which are 269 

available at different temporal scales including 30 minutes, daily, weekly as well 270 

as monthly scales. GPP is calculated from NEE values computed either using the 271 

one-point or profile approach in the storage term computation (standardized and 272 

original NEE respectively) (Papale et al., 2006). Gap filling of the NEE 273 

measurements is then achieved through Marginal Distribution Sampling (MDS) 274 

and Artificial Neural Network (ANN). This study used GPP values estimated from 275 

standardized NEE and then gap-filled using the MDS method. A detailed 276 

description of the level 4 CARBOAFRICA dataset and its original processing is given 277 

in Papale et al. (2006). 278 

Daily estimates of flux GPP were chosen for this study and values were then 279 

aggregated by calculating the mean value to 10-day (dekadal) time steps to 280 

coincide with the MERIS MTCI data. Flux GPP values were also aggregated by 281 

calculating the mean to 8-day time steps to match MOD17 GPP product since it 282 

was also used to evaluate the performance of the SCARF model. However, for PAR 283 

values, level 2 dataset was used (i.e. the 30 minute averages of photosynthetic 284 

photon flux density (PPFD, µmol m-2 s-1)) after being aggregated to daily and 285 

decadal averages. Table 1 gives the main characteristics while Figure 1 shows the 286 

distribution and locations of the participating sites. 287 
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 288 

Table 1: Main characteristics of the seven evaluation flux tower sites 289 

  290 

Site Country Lat Lon Ecosystem C3/C4 
cover 

MAP 

(mm) 

MAT 

(oC) 

Years References 

Tchizalamou Dem 
Rep Of 
Congo 

-4.2892 11.6564 Tropical-
humid 
grassland 

0/100 1150 26 2006-
2010 

(Merbold et 
al., 2009) 

Bontioli Burkina 
Faso 

10.1822 -3.6727 Sub-humid 
Savanna 

70/30 926 26.1 2008 (Brummer 
et al., 2008; 
Papale et 
al., 2006) 

Demokeya Sudan 13.2829 30.4783 Semi-arid 
savanna 

30/70 320 26 2005-
2008 

(Ardö et al., 
2008) 

Skukuza South 
Africa 

-
25.0197 

31.4969 Sub-humid 
wooded 
savanna 

30/70 545 22 2006-
2008 

(Papale et 
al., 2006) 

Malopeni South 
Africa 

-
23.8325 

31.2145 Sub-humid 
savanna 

30/70 458 22.2 2009 (Papale et 
al., 2006) 

Mongu Zambia -
15.4377 

23.2527 Sub-humid 
woodland 

95/5 945 24.5 2006-
2008 

(Papale et 
al., 2006) 

Ankasa Ghana 5.2697  -2.6948 Tropical 
evergreen 
forest 

100/0 1900 26 2011 (Chiti et al., 
2010; 
Fattore et 
al., 2014) 
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 291 

Figure 1: A GlobCover map of Africa showing generalised land cover types and 292 

the locations of flux tower sites used in evaluation exercise 293 

 294 
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 295 

2.3. Meteorological data 296 

A number of meteorological measurements including daily mean of atmospheric 297 

temperature (Ta, oC), PAR (µmol m-2 s-1), VPD (hPa) and dew point temperature 298 

(DPT, oC) were used for this study. In-situ measurements of Ta, VPD and PAR 299 

recorded at the flux site were direct input variables in the SCARF model for site 300 

level evaluation. However, for modelling GPP across coterminous Africa, Ta and 301 

VPD were obtained from ECMWF website (http://data-302 

portal.ecmwf.int/data/d/interim_full_daily/) at full resolution (0.75o x 0.75o grids). 303 

DPT data was used in a sub-model to estimate VPD since there was no readily 304 

available product for VPD. A GLASS PAR product (Liang & Zhang, 2012), which is 305 

freely available at ftp://ftp.glcf.umd.edu/glcf/GLASS/PAR/, with a 5km spatial and 306 

3 hours temporal resolution was also used to control rate of photosynthetic 307 

conversion in the model at continent scale. Daily images acquired at 12 noon and 308 

aggregated to monthly averages were used. Pixels with zero/missing values were 309 

omitted in the statistics. Further details about the GLASS PAR product can be 310 

found in (Liang & Zhang, 2012; Liang et al., 2006).  311 

All raster grids were resampled to match the 1km x 1km ground resolution of the 312 

MTCI data.  313 

2.4. Land cover data and determination of C3/C4 proportions 314 

Land cover information was derived from a 2009 GlobCover map obtained from 315 

the European Space Agency (ESA) GlobCover Portal Website 316 

(http://due.esrin.esa.int/globcover/). The data has a ground pixel size of 300m 317 

and was used for two purposes. Firstly, to derive maps of C3 and C4 distribution 318 

http://data-portal.ecmwf.int/data/d/interim_full_daily/
http://data-portal.ecmwf.int/data/d/interim_full_daily/
http://due.esrin.esa.int/globcover/
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and their relative proportions in each 1km grid cell, and secondly to define pixel-319 

based maximum quantum yields for C3 and C4 photosynthesis. The C3/C4 320 

proportions used for site level implementation of the model (Table 1) were based 321 

on figures published in Merbold et al. (2009). To estimate the relative proportions 322 

of C3/C4 plants in each 1km2 pixel, first the land cover map was reclassified into 323 

C3, C4 and C3/C4 maps. The C3 map contained all pixels dominated by forests 324 

and woodlands, while the C4 map contained all pixels dominated by grasslands. 325 

The C3/C4 map contained all pixels with mixed savannas and all cropland. Since 326 

the land cover map does not specify vegetation composition in areas where 327 

mosaics of grasslands, shrublands and forests, a 50-50 ratio between C3/C4 was 328 

assumed in these pixels. The same assumption was also made for cropland 329 

because both C3 and C4 crops are widely grown across Africa but their distribution 330 

is not specified in the land cover map. 331 

2.5. Data Processing 332 

2.5.1. Processing of MTCI time series data 333 

The 1km dekadal original MTCI data were provided by the Natural Environmental 334 

Research Council Earth Observation Data Centre (NERC NEODC) - ftp://l3-335 

server.infoterra.co.uk/pub/) of the European Space agency (ESA) and processed 336 

by Astrium GEO-Information Service. The MTCI Level 2 product was calculated 337 

using three red/near infra-red bands of the ENVISAT MERIS data to produce an 338 

image indicating the amount of chlorophyll content per unit area (Curran & Dash, 339 

2005).  340 

A considerable amount of error is usually expected in any efforts of up-scaling 341 

point measurements obtained from a flux tower to the spatial scale of the satellite 342 

pixel e.g. the 1km x 1km extent of the MTCI images. Since it is difficult to identify 343 

ftp://l3-server.infoterra.co.uk/pub/
ftp://l3-server.infoterra.co.uk/pub/
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the exact pixel from which the flux tower measurements are made, a 3x3 km 344 

sample, whose centre is at the respective tower location, was extracted and 345 

averaged (zero values were excluded) to get a representative value to correspond 346 

with the tower GPP. Visual inspection of each flux site on Google Earth also 347 

confirmed that all the sites were homogeneous for at least 1km in any direction 348 

from each respective site. A separate assessment based on 2005 MODIS land 349 

cover product also confirmed that at least 88% of the pixels in the 3x3km grid 350 

had the same land cover value as the centre (flux tower) pixel. 351 

2.5.2. Processing MODIS GPP time series data 352 

The MOD17 GPP Version 6 Product was obtained from both the NASA Earthdata 353 

Search portal (https://search.earthdata.nasa.gov/search?q= MOD17A2H+V006) 354 

and Oak Ridge National Laboratory Distributed Active Archive Centre’s (ORNL 355 

DAAC, MODIS Land Subsets (https://modis.ornl.gov/cgi-356 

bin/MODIS/global/subset.pl). The Version 6 product is at 500m resolution, 357 

therefore a 1.5 x 1.5 km sample, centred at each respective flux site, was used to 358 

extract time series GPP values for these sites. The MOD17 GPP values were 359 

available in kg C m-2 in 8 days and were converted to g C m-2 day-1 to be consistent 360 

with the GPP measured by the EC technique.  361 

2.5.3. Sensitivity and uncertainty analyses 362 

The overall importance of an input parameter in a model can be assessed based 363 

on its impact on the model output. One way of achieving this is to test how much 364 

of the model output is explained by a parameter through regression analysis of 365 

the input parameter with the model output. The other method is to allow one 366 

parameter to vary at a time while others are held constant (e.g. Hamby, 1993). 367 

In this study, the regression method was employed. Modelled GPP values were 368 

https://search.earthdata.nasa.gov/search?q=%20MOD17A2H+V006
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regressed against Ta, PAR, VPD and MTCI and the statistics on goodness of fit were 369 

determined.  370 

The Monte Carlo technique was also used to assess the degree of sensitivity and 371 

uncertainty of GPP due to the quantum yield parameters for C3 and C4 plants ( 3a  372 

and 4a , respectively) at all seven study sites. The maximum quantum yields ( 3a373 

=0.08 and 4a =0.06µmol µmol-1) used in the initial evaluation of the SCARF model 374 

(Ogutu et al., 2013) are based on laboratory and field experiments carried out for 375 

different vegetation types from different ecosystems, mostly outside the African 376 

environments. The main concern for the current work is related to the stochasticity 377 

associated with these parameters since they are not fixed but may vary with time 378 

and space. Given the diversity and heterogeneity of the ecosystems considered in 379 

this study, an attempt was made to estimate the biases associated with the 380 

inaccuracies and unavoidable random variation in the use of the two maximum 381 

quantum yields.  382 

According to published literature, values of 3a  vary from a minimum of 0.0525 to 383 

a maximum of 0.08 while 4a  varies from 0.0535 to 0.065 (Ehleringer & Björkman, 384 

1977; Ehleringer & Pearcy, 1983;Singsaas et al., 2001). To determine the 385 

variability in output that result from the two parameters, 500 random samples 386 

were generated for each parameter based on ranges of the documented values 387 

and 500 model runs were performed based on the randomly generated samples. 388 

Mean, standard deviation, root mean square error (RMSE) and range were 389 

computed for the modelled GPP and compared to in-situ GPP for each site. The 390 

‘best guess’ for each random parameter and site was determined based on the 391 

model run with the smallest RMSE calculated between observed and modelled GPP 392 
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for each participating flux site. The implementation of the model at both site and 393 

regional scale was thus based on the ‘best guesses’ of 3a  and 4a  for different 394 

ecosystems.  395 

 396 

3. Results 397 

3.1. Model sensitivity and uncertainty analyses 398 

3.1.1. Importance of different parameters to model output 399 

The sensitivity of GPPSCARF to the main environmental drivers changes substantially 400 

through time and among ecosystems. A fundamental distinction can be noted 401 

between moisture stressed and water sufficient ecosystems particularly in relation 402 

to their response to VPD, PAR and Ta. VPD has weak to very strong negative 403 

relationships (-0.17>R2>-0.99) against GPPSCARF in sub-humid and semi-arid 404 

ecosystems (i.e. Mongu, Demokeya, Skukuza, Bontioli, and Malopeni) while it 405 

exhibits modest positive correlations in tropical humid grassland (Tchizalamou) 406 

and rain forest (Ankasa) ecosystems (R2=0.61 and 0.40, respectively) (Table 2). 407 

The difference between the responses of these ecosystems can be explained by 408 

how the vegetation attempts to optimise CO2 uptake and water loss in response 409 

to changing moisture conditions. In water sufficient areas, increasing VPD would 410 

increase stomatal conductance (gs) (and ET) but since plants do not initiate 411 

stomatal resistance owing to sufficient soil moisture, rate of CO2 assimilation 412 

increases. VPD is particularly important in the sub-humid and semi-arid savanna 413 

ecosystems of Bontioli and Demokeya (R2=-0.99 and -0.94, respectively) (Table 414 

2) where Ta and PAR are constantly high throughout the year. 415 
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The response of GPPSCARF to Ta almost always mirror that of PAR even though the 416 

correlation coefficients differ in absolute values. Both PAR and temperature have 417 

strongest positive correlation in tropical humid and rainforest ecosystems (i.e. 418 

Chizalamou and Ankasa - Table 2). These two sites have a relatively wet and 419 

cloudy climate compared to the other study sites. These conditions result in 420 

increased relative humidity, cloudiness and precipitation incidences which in turn 421 

reduce temperature and available PAR. Therefore, temperature and PAR are 422 

important in determining the levels of primary productivity in these sites. As 423 

expected, both Ta and PAR had a negative correlation with GPPSCARF in the sub-424 

humid and semi-arid ecosystems (i.e. Mongu, Demokeya, Skukuza, Bontioli, and 425 

Malopeni) as high PAR and Ta may cause photoinhibition and high ET/VPD, 426 

respectively in these water limited ecosystems.  427 

The model’s sensitivity to MTCI is highest in savanna woodland ecosystems, 428 

moderate in tropical grassland and weak in tropical rain forests. However, of 429 

importance is the fact that while response of GPP to MTCI is both strong and 430 

positive in all other ecosystems, it is negative in tropical rainforests (Table 2). As 431 

the vegetation in tropical evergreen forests has high chlorophyll concentration and 432 

multi-layered canopies, most of the incident light energy is absorbed by 433 

chloroplasts at the top of the canopy while deep layers are deprived of light energy. 434 

This may suggest that photosynthesis could be quite high at the top most layers 435 

of the canopy but overall productivity is reduced due to decreased photosynthetic 436 

rates within the deep and under storey owing to light deprivation.  437 

 438 

 439 

 440 
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 Table 2. Importance of the various input parameters as determined by the 441 

coefficient of determination (R2 values) between time series of GPPSCARF and main 442 

meteorological and vegetation biophysical parameters 443 

Flux Site n (10-day 

time 

step) 

Coefficient of determination (R2 values) between 

GPPSCARF and  

 PAR VPD MTCI Temperature 

Mongu 68 -0.18 -0.77 0.89 -0.22 

Tchizalamou 85 0.91 0.61 0.65 0.86 

Demokeya 78 -0.07 -0.94 0.75 -0.03 

Skukuza 59 -0.65 -0.22 0.92 -0.59 

Bontioli 22 -0.42 -0.99 0.94 -0.52 

Malopeni 31 -0.60 -0.17 0.57 -0.51 

Ankasa 33 0.86 0.40 - 0.25 0.61 

 444 

 445 

3.1.2. Uncertainties resulting from the quantum yield terms 446 

The model variability due to the uncertain quantum yield terms was achieved 447 

based on 500 random samples generated between acceptable ranges for 3a  and 448 

4a  from which 500 model runs were subsequently performed for each site (Figure 449 

2). The importance of the two parameters was both site and season dependent. 450 

For example, both parameters were more important at Mongu, Bontioli, 451 

Tchizalamou and Demokeya during the main growing season when the estimated 452 
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GPP was within one standard deviation of the modelled GPP (Figure 2). During the 453 

senescence stages, observed GPP was outside the model range indicating that, as 454 

expected, maximum quantum yields of both C3 and C4 were no longer main 455 

determinants of GPP. Other parameters closely linked to seasonality especially 456 

FAPARps (chlorophyll content) and VPD make it impossible to achieve maximum 457 

photosynthetic rates during the senescence stages of plant development. VPD was 458 

identified as the main cause of overestimation of GPP during the dry season in 459 

European and North American ecosystems during the initial evaluation of the 460 

SCARF model (Ogutu et al., 2013). The same trend is observed for ecosystems 461 

represented in the current study. The only difference, though, is that the model 462 

range is larger especially in ecosystems dominated by C3 species. This could be 463 

expected given the range of uncertainty for 3a  (0.053 to 0.08 mol mol-1) 464 

compared to 4a  (0.053 to 0.065 mol mol-1).  465 

‘Best guesses’ of maximum quantum yields for C3 and C4 photosynthesis, as 466 

represented by model runs with smallest RMSE, indicate a consistent 3a  of 0.0543 467 

and 4a  of 0.0532 across all mixed savanna sites while an 3a  of 0.08 and 4a
 of 468 

0.056 were observed for the woodland sites of Mongu and Bontioli. Tropical sites 469 

of Tchizalamou and Ankasa with 100% proportions of C3 and C4 plants, 470 

respectively, returned near-maximum values for both 3a  and 4a owing to little 471 

influence resulting from heterogeneity in vegetation composition and structure as 472 

in the savannas. 473 

 474 
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 475 

Figure 2. Simulated and observed GPP for flux tower sites. The grey area marks 476 

the range of GPP from two hundred model runs.  477 

 478 

 479 
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3.2. Seasonal and annual variability of model GPP across Africa 480 

SCARF model GPP was evaluated against in-situ flux measurements at seven flux 481 

sites. Overall, GPPSCARF values show good agreement with observed GPP at most 482 

sites (except tropical rainforest site) in terms of seasonality (Figure 3) and 483 

absolute values (Figure 4). There is good coincidence between predicted GPP 484 

peaks and growth season as well as troughs within low growth seasons (Figure 3). 485 

Mean daily GPP across the investigated period varied significantly across sites from 486 

a minimum of 0.44 gC m-2 day-1 at the semi-arid and sub-humid savanna 487 

grassland sites to a maximum of 9.86 gC m-2 day-1 at the woodland and tropical 488 

rain forest sites. The highest seasonal at-site variability was observed at 489 

Tchizalamou and least variability was observed at Malopeni (Figure 3). 490 

The SCARF model output have modest to very strong positive correlation with 491 

observed GPP at most sites (R 0.59 to 0.91, p <0.0001) apart from the tropical 492 

rainforest site (R = 0.38, p=0.02). The comparison between MOD17 product and 493 

in-situ flux tower GPP estimates resulted in slightly lower R2 and higher RMSE 494 

values in most of the sites (Figure 4). Overall, the MOD17 product tended to 495 

underestimate GPP in most of the evaluated sites (Figure 4). For the SCARF model, 496 

the coefficient of correlation between the model data and the flux tower estimates 497 

were strongest (R>0.83, p<0.0001) in savanna biomes dominated by woody 498 

species (i.e.  Mongu and Bontioli), moderate (R> 0.5, p<0.0001) in more 499 

heterogeneous grassland and savanna ecosystems (i.e.  Skukuza, Demokeya, and 500 

Tchizalamou) and low (R = 0.38, p = 0.02) in the evergreen rainforest site (i.e. 501 

Ankasa) (Figure 4). For the MOD17 product strong correlation (R> 0.76, p<0.0001) 502 

was observed in the savanna site of Demokaya and wooded savanna site of 503 

Bontioli, moderate correlation (R> 0.55, p<0.0001) at Tchizalamou, Mongu and 504 
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Skukuza and weak correlation (R = 0.08, p = 0.698) at the evergreen tropical 505 

forest site (i.e. Ankasa) (Figure 4). Overall, the correlation coefficients were 506 

strongest in ecosystems where vegetation follows a prescribed seasonal cycle as 507 

determined by canopy chlorophyll content and leaf area index.  508 

 509 

Figure 3: Seasonal and spatial trends of in-situ and SCARF model GPP for flux 510 

tower sites.  511 
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 512 

 513 

Figure 4: Relationship between SCARF model output (black dots), MOD17 (red 514 

asterisks) and in-situ flux tower GPP measurements at various sites. 515 

 516 
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 517 

3.3. Spatial distribution of GPP across Africa 518 

Figure 5 (a and b) show the distribution of GPP predicted by the SCARF model and 519 

MOD17 product, respectively. The distribution of GPPSCARF across the coterminous 520 

Africa concur with the findings from the site level analysis where highest GPP 521 

values are concentrated in the central tropical rain forests, moderate values within 522 

pixels dominated by woody species and lower productivity in grasslands and 523 

sparsely vegetated areas. SCARF model has higher absolute values in most of the 524 

sub-humid and semi-arid savanna ecosystems and parts of the tropical rain forests 525 

while MOD17 GPP depicts higher values in isolated regions for example on the 526 

island of Madagascar. Overall, GPPSCARF has a minimum GPP of 100 g Cm-2 yr-1 and 527 

maximum of 4,500 g Cm-2 yr-1 compared to 60 and 3,900 g C m-2 yr-1 from the 528 

MOD17 product. The total annual GPP predicted by the SCARF model for the year 529 

2010 was 35.25 Pg C yr-1 and that from MOD17 was 21.39 Pg C yr-1, showing that 530 

SCARF model prediction was higher than that from MOD17 product.  531 
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 532 

Figure 5: Spatial distribution of annual sum GPP (g C m-2 yr-1) from (a) SCARF 533 

model and (b) MOD17 product for period January to December 2010 534 

 535 

 536 

4. Discussion 537 

4.1. Model sensitivity and uncertainty 538 

Analyses of the importance of different biophysical and meteorological input 539 

parameters on GPPSCARF show that VPD has negative influence at most of the sub-540 

humid and semi-arid ecosystems (R2=-0.17 to -0.99) which is consistent with 541 

other studies, for example, Sjöström et al. (2013). The relationship was expected 542 

since moisture availability is the main controller of vegetation seasonality and 543 
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development in these ecosystems (e.g. Ibrahim et al., 2015; Merbold et al., 2009; 544 

Scholes et al., 2004). A negative relationship between GPP and Ta, was observed 545 

in the semi- arid and sub-humid ecosystems. Similar relationships were also 546 

observed between GPP and PAR at these sites. In these ecosystems, high 547 

temperature coupled with low moisture availability will act to reduce GPP. However, 548 

there was a positive relationship between Ta and GPP at two sites (i.e. Ankasa and 549 

Tchizalamou). In these sites, the wet and cloudy climate tends to reduce 550 

temperature and PAR, hence the observed positive relationship between GPP and 551 

the two variables.  552 

The model output had modest to very strong positive correlations with MTCI 553 

(R2=0.57 to 0.94, MTCI is used as a FAPARps surrogate in the model). A weak 554 

negative relationship (R2=-0.25) between MTCI and model GPP observed at a 555 

tropical rainforest site (Ankasa) suggests that chlorophyll content ceases to be the 556 

dominant determinant of GPP in this biome. The initial validation of the SCARF 557 

Model (Ogutu et al., 2013) also documented weaker correlations (R2=0.60)of 558 

model results with flux measurements for evergreen needle leaf forests. Given the 559 

minimal fluctuations of chlorophyll content in evergreen forests, the model may 560 

predict high GPP even during periods of low productivity resulting in poor 561 

correlations. This theory may explain the increase in model GPPSCARF around dekad 562 

25 to 33 at Ankasa (Figure 3) while observed GPP shows a gradual decline. 563 

A stronger correlation of PAR with GPPSCARF at the evergreen ecosystem (R2=0.86) 564 

may suggest that while MTCI may cease to be the most important parameter in 565 

tropical rainforest productivity, light availability plays a more important role. 566 

Tropical rainforest ecosystems show indications that light could be a major limiting 567 

factor to photosynthesis during the wet season. Reduced incident light energy at 568 



 

30 

 

the canopy may result due to both high incidences of cloudiness and/or high 569 

chlorophyll concentrations that will deprive light to understorey vegetation. Light 570 

available to individual leaves in a canopy decreases according to the Beer’s law of 571 

light extinction and given the high leaf area index reported in tropical rain forests 572 

(e.g. LAI>6; Clark et al., 2008), the under storey may be completely deprived of 573 

light energy. While high chlorophyll content may increase photosynthesis at the 574 

top most canopy layers, total productivity may decline as a result of very low 575 

photosynthetic activity in the deeply buried understorey ( DeLucia and Thomas, 576 

2000; Kim et al., 2016). The high GPP values occurring from decade 5 to 15 577 

coincide with the low rainfall season at Ankasa. This suggests that the vegetation 578 

canopy intercepts more radiation owing to reduced cloud condition resulting in 579 

increased vegetative growth. 580 

The initial evaluation of the SCARF model undertaken by Ogutu et al., (2013) 581 

assumed a uniform distribution of the maximum quantum yields for C3 and C4 582 

without accounting for regions/pixels with considerable heterogeneity for example 583 

mixed savannas or croplands. In the current study, efforts to differentiate 584 

quantum yields for different ecosystems were made for two main reasons; first 585 

the maximum quantum yields can vary based on random occurrences of 586 

environmental and climatological factors (Collatz et al., 1991, 1992; Ehleringer & 587 

Bjorkman, 1977) and, second, African ecosystems depict huge variations and 588 

heterogeneity through space. The results showed that the influence of quantum 589 

yield on modelled GPP was both site and season dependent. The heterogeneous 590 

sites (i.e. mixed savanna and woodland sites) did not achieve their maximum 591 

quantum yield value during the model simulations. The homogenous sites (i.e. the 592 

tropical humid grassland and the evergreen forest sites) returned near-maximum 593 
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values for both 3a  and 4a . Even though C4 photosynthesis is thought to reach 594 

maximum values in hotter environments like the ones investigated in this study, 595 

maximum 4a  was not achieved at any of the savanna sites. This can be explained 596 

by the fact that savanna ecosystems depict considerable heterogeneity occurring 597 

over short spatial scales, sometimes in the order of a few metres (Desanker et al., 598 

1997; Scholes et al., 2004; Walker, 1987). Under such conditions tree canopies 599 

often shade and control water and light availability for grasses and shrubs. Overall, 600 

the findings show the importance of varying the quantum yield value 601 

proportionally to the heterogeneity of the site when running the SCARF model.  602 

 603 

4.2. Seasonal and inter-annual variability of model GPP across Africa 604 

An analysis of seasonal and inter-annual variability of GPPSCARF shows that the 605 

model has capability to track seasonal changes in productivity across various 606 

biomes in Africa (Figure 3). Even though the dynamics of modelled GPP at each 607 

evaluated site depicted notable seasonal and ecosystem dependent trends, the 608 

model generally tended to overestimate dry season GPP across all seasonally dry 609 

ecosystems. This trend supports observations by Ogutu et al. (2013) over 610 

temperate regions. An explanation for this overestimation is that the use of VPD 611 

alone may not be adequate to control GPP in dry environments or during the dry 612 

season (Ogutu et al., 2013).  613 

The comparison of absolute values of GPP predicted by the SCARF model and GPP 614 

estimated at flux tower sites showed a strong positive relationship (R > 0.59, 615 

p<0.0001) in all but one study site(i.e. Ankasa tropical forest, R = 0.38, p= 0.02). 616 

The absolute GPP values predicted by the SCARF model ranged from 0.44 gCm-2 617 
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in low productivity sites (e.g. Malopeni svanna ecosystem) to 9.86 gCm-2 in high 618 

productivity sites (e.g. Ankasa rain forest). The correlation coefficients and error 619 

margins for the SCARF in the current study are also similar (or even better in other 620 

instances) as those reported in the initial evaluation of the model in North America 621 

and European ecosystems (Ogutu et al., 2013). However, the GPP absolute values 622 

predicted by the SCARF model for the northern latitudes (Ogutu et al., 2013) were 623 

considerably higher than those predicted by the SCARF model for African tropical 624 

regions in the present study. Similar trends have also been reported by Kicklighter 625 

et al.,(1999) and can be partially explained by the longer day length in the 626 

northern latitudes during summer. Evaluation of the SCARF model and the MOD17 627 

GPP product in their capability to represent GPP estimated at the studied flux tower 628 

sites showed that, in most cases, the output from the SCARF model was closer to 629 

the in-situ GPP (lower RMSE values) compared to the MOD 17 product (Figure 4). 630 

The MOD17 product tended to underestimate growing season GPP in most of the 631 

evaluated sites. Similar findings were reported in a comparison between SCARF 632 

model and MOD17 GPP model over Europe and USA (Ogutu et al., 2013). The 633 

main differences may be partly explained by the fact that the two models are 634 

premised on different assumptions regarding the interactions between input 635 

parameters as well as the sources of data used. For example, the MOD17 product 636 

uses fAPARca while GPPSCARF is based on fAPARps and also the different techniques 637 

used to define the conversion of intercepted light (i.e. the LUE term).  638 

Overall, the fact that the SCARF model shows a good capability to track the 639 

variability of GPP in the highly heterogeneous ecosystems in Africa, including the 640 

savannas which have been associated with high uncertainties in global estimates 641 

of carbon fluxes (Ciais et al., 2011; Merbold et al., 2009; Williams & Jackson, 642 
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2007), presents an opportunity to use the model improve GPP estimation across 643 

Africa. 644 

 645 

4.3. Global and regional application of the SCARF Model 646 

The spatial variability of GPP predicted by the SCARF model in Africa (Figure 5) 647 

agrees with other maps from global models (e.g. Cramer et al., 1999; Huston & 648 

Wolverton, 2009) and the general pattern from the MOD17 model. The total 649 

annual GPP predicted by the SCARF model for Africa in 2010 was 35.25 Pg C yr-1, 650 

which was higher than annual GPP from MOD17 (21.39 Pg C yr-1). However, this 651 

values fall within those reported in previous studies. For example, a study by 652 

Valentini et al (2014) using a number of models reported that the mean annual 653 

GPP for Africa ranged from 20.61 to 40.91 Pg C yr-1 with a mean of 28.16 Pg C yr-654 

1 for the year 1990-2009.  655 

Even though the flux tower sites used in the current study were few, solid 656 

conclusions can be reached on the applicability of the SCARF model in African 657 

environments based on these sites as they represent the typical ecosystems of 658 

the continent. The scarcity of in-situ data available on African carbon fluxes 659 

remains a stumbling block in the quest to fully understand and improve GPP 660 

estimates for the continent. Therefore using models such as the SCARF model can 661 

help bridge this gap. The good performance of SCARF model in Europe and USA 662 

(Ogutu et al., 2013) and in Africa (this study) demonstrates its potential as a 663 

reliable diagnostic model that can be used to generate GPP estimates globally. The 664 

SCARF model has three advantages compared to existing PEMs. Firstly, it 665 

prescribes only two quantum yield terms (i.e. maximum quantum yield for C3 and 666 

C4 plants) to represent the rate of conversion of absorbed PAR into dry matter, 667 
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thereby eliminating the need for species specific LUE term. Secondly, it explicitly 668 

uses only the fraction of absorbed photosynthetic radiation absorbed by 669 

photosynthetic elements in the canopy (which is the actual PAR used in 670 

photosynthesis) as opposed to that of the total canopy. The use of FAPAR by 671 

photosynthetic elements in the canopy improves the accuracy of the model. Finally, 672 

the SCARF model does not require a detailed land cover map thereby limiting error 673 

propagation from inaccuracies in land cover classification. The recently launched 674 

SENTINEL satellites (i.e. SENTINEL 2 and 3) by the European Space Agency have 675 

spectral bands that can be used to derive key components of the SCARF model 676 

globally. This provides a unique opportunity to operationally produce global and 677 

regional GPP using the SCARF model at relatively high spatial resolution. 678 

 679 

5. Conclusion 680 

The study calibrated and applied the SCARF model to predict seasonal and spatial 681 

variability of GPP across African ecosystems. The SCARF model showed strong and 682 

positive correlation with in situ GPP measurements across most of the sites except 683 

at tropical rainforest ecosystem where a weak correlation was found. The seasonal 684 

variability of GPP was strongly connected to variability of main input parameters 685 

namely temperature, PAR, VPD and MTCI. The GPP from the model was negatively 686 

related to Temperature and PAR in water limited ecosystems. The influence of VPD 687 

on the SCARF model was varied across the ecosystem. Positive influence on GPP 688 

was observed in moisture sufficient ecosystems while negative influence in 689 

ecosystems that experience moisture deficit during part or most of the season. 690 

Monte Carlo analysis of the uncertainty in the model due to the choice of quantum 691 

yield parameters showed that these parameters varied more in heterogeneous 692 
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ecosystems compared to homogenous ecosystems. The SCARF Model shows great 693 

potential to improve GPP predictions across a wide range of natural ecosystems 694 

occurring in Africa as shown by a strong positive coefficient of correlation (R > 695 

0.59, p<0.0001) in most ecosystems evaluated in this study. The annual GPP for 696 

Africa derived from the SCARF model (i.e. 35.25 C yr-1) was within the range of 697 

those reported in previous studies. This study has demonstrated the potential of 698 

an innovative approach to estimating carbon flux in understudied ecosystems of 699 

global importance. It comes at a timely moment, when relevant remotely sensed 700 

data (e.g. data from the Sentinel satellites by the European Space Agency) which 701 

can be used to parameterise such a model are becoming available and when the 702 

uncertainty associated with carbon flux measurement across the African continent 703 

is recognised as a major research challenge. 704 
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