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A novel reliability ratio based weighted bit-flipping decoding scheme

is proposed for low-density parity-check codes. A coding gain of 1 dB

is achieved in comparison to the weighted bit-flipping scheme, when

communicating over an AWGN channel, while maintaining the same

decoding complexity.

Introduction: The family of low-density parity-check (LDPC) codes

proposed by Gallager [1] has attracted substantial research interest

in the information theory community. LDPC codes can be decoded

using various decoding schemes [1–4] such as hard-decisions, soft-

decisions and hybrid decoding schemes. The high-complexity

sum-product algorithm (SPA) was shown to achieve a near-capacity

performance [4]. However, the weighted bit-flipping (WBF) algorithm [2]

strikes a good trade-off between the associated decoding complexity and

the achievable performance. The attractive property of the WBF

algorithm is that during each iteration the weighted sum of the

same values is computed, resulting in a significantly lower decoding

in comparison to the SPA. An improved WBF (I-WBF) algorithm was

proposed by Zhang and Fossorier [3]. In this Letter, the following

problems of the WBF and the I-WBF algorithm are addressed.

1. Both the WBF and I-WBF algorithms attribute the violation of a

particular parity check to only the least reliable bit. 2. If the weighting

factor a utilised in the I-WBF algorithm [3] is not optimum, the BER

performance may be significantly degraded. Thus in this contribution,

the BER performance of the I-WBF algorithm is further improved by

using more sophisticated bit-flipping, while avoiding any pre-

processing such as finding the optimal weighting factor a of the

I-WBF algorithm.

An (N, K, j) LDPC code can be uniquely represented by an M�N

parity-check matrix (PCM), where M¼N�K and each column of the

PCM has an average weight of j. By representing the PCM using

the Tanner graph [5], each column of the PCM corresponds to a

message node in the Tanner graph and each row of the PCM is

associated with a check node. We will use the notation H for

representing the PCM of the LDPC code, and Hmn denotes the binary

entry in the mth row and the nth column. We denote the set of bits

participating in the mth check by N (m)¼ {n: Hmn¼ 1}. The term

{n: Hmn¼ 1} indicates the specific set of values for the column index

n, where the value of the PCM entry Hmn at the mth row and nth column

is one. Similarly, the set of checks in which the nth bit participates is

denoted asM(n)¼ {m: Hmn¼ 1}. When an information block of size K

is encoded by an LDPC encoder, a codeword c of length N will be

produced, and the coded bits will be mapped using BPSK modulation

onto the corresponding constellation point x. When the Gaussian noise

is added to the transmitted signal, a noise-contaminated received

sequence y will be obtained. Based on the sequence y, an initial hard

decision can be made and we arrive at a binary sequence z of length N.

Weighted bit-flipping algorithm: The standard WBF algorithm [2]

initially finds the most unreliable message node participating in each

individual check. Since the magnitude of the received soft value yi
determines the reliability of the hard decision zi, the least reliable

message node’s magnitude for each individual check during the

algorithm’s initialisation step is given by:

ymin
m ¼ min

n:n2N ðmÞ
jynj ð1Þ

where jynj denotes the absolute value, i.e. the magnitude, of the nth

message node’s soft value, while ym
min is the lowest magnitude of all

message nodes participating in the mth check. The iterative WBF

process is then implemented as follows. (1) The bit sequence z obtained

by hard decision is multiplied with the transpose HT of the PCM, and

the resultant syndrome vector s¼ (s1, s2, . . . , si, . . . , sM) is derived.

(2) For each message node at position n, the WBF algorithm computes

En ¼
P

m2MðnÞ

ð2sm � 1Þymin
m ð2Þ

The error-term En is used to quantify the probability that the bit at

position n would be flipped. When the mth parity check in which the

nth message node participates is violated, i.e. when we have sm¼ 1,

then the term (2sm� 1) in (2) will contribute þ1 otherwise �1 to the

error term En being calculated. Thus in the next step of the WBF

algorithm, the bit having the highest error term En will be deemed the

least reliable bit and hence flipped. (3) Flip the specific bit in z, which

has the highest error-term En. The foregoing three steps are repeated,

until an all-zero syndrome vector s is obtained, or the maximum

affordable number of iterations has been reached.

Improved weighted bit-flipping algorithm: As seen in (2), the WBF

algorithm proposed by Kou et al. [2] only considers the check-node

based information during the evaluation of the error-term En. By

contrast, the I-WBF algorithm proposed by Zhang and Fossorier [3]

enhanced the performance of the WBF algorithm, since it considered

both the check-node based and the message-node based information

during the evaluation of En. As seen from (2), when the error-term En

is high, the corresponding bit is likely to be an erroneous bit and

hence ought to be flipped. However, when the soft-value jynj of a

certain bit is high, the message node itself is demonstrating some

confidence that the corresponding bit should not be flipped. Hence (2)

was modified in [3] as follows:

En ¼
P

m2MðnÞ

ð2sm � 1Þymin
m � a � jynj ð3Þ

Equation 3 considers the extra information provided by the message

node itself, thus a message node having a higher soft-value magnitude

has a lower chance of being flipped, despite having a high error term En

owing to encountering unreliable parity checks. We note however that

for LDPC codes having different column weights, or operating at

different SNRs, we should weight the effect of the soft-value jynj

differently [3]. Thus, when (3) is used for decoding a particular LDPC

code, an optimum a value should be found experimentally. This

requirement is eliminated by the algorithm proposed below.

Reliability-ratio based weighted bit-flipping algorithm: A drawback

of the I-WBF algorithm is that the optimum a value has to be found

specifically for each particular column weight and its value should be

optimised for each individual SNR [3]. Furthermore, both the WBF

and the I-WBF algorithms consider only the specific check-node

based information, which relies on the message node having the

lowest soft-value jynj. However, all message nodes participating in

the mth parity check are contributing, i.e. all message nodes might be

liable to change, if the check they participate in is violated. However,

for two different message nodes participating in the same violated

parity check, the probability that the check is violated owing to

the message node having a high soft magnitude is lower than that

associated with the message node having a low soft magnitude.

Hence, hereby we would like to introduce a new quantity termed as

the Reliability Ratio (RR) defined as follows:

Rmn ¼ b
jynj

j ymax
m j

ð4Þ

where the notation jym
max

j is used to denote the highest soft magnitude of

all the message nodes participating in the mth check. The variable b is a

normalisation factor introduced for ensuring that we have
P

n:n2N (m)

Rmn¼ 1. Hence, instead of calculating the error-term En as in (2) using

ym
min, we propose the employment of the following formula:

En ¼
P

m2MðnÞ

2sm � 1

Rmn

ð5Þ

The rest of the RR-WBF algorithm is the same as the standard WBF

algorithm and the iterations will be terminated when the resultant

syndrome vector becomes an all-zero vector or when the maximum

affordable complexity has been exhausted.

Simulation results: Below we characterise the achievable perform-

ance of the proposed RR-WBF algorithm. The scheme will be bench-

marked against both the standard WBF algorithm [2] and the I-WBF

algorithm using the optimal weighting factor of a¼ 0.4 [3]. The

three schemes will be invoked for decoding a (200,100,3) and a
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(1000,500,3) regular LDPC code using a BPSK modulation scheme

communicating over an AWGN channel. Since two LDPC codes

having different blocklengths are utilised in this experiment and

because the bit-flipping algorithm only changes a single bit during

each iteration, for the sake of fair comparison we allow a maximum

number of 20 and 100 iterations for the (200,100,3) and (1000,500,3)

LDPC codes, respectively. Hence for both codes having different

length, 20% of the coded bits have the chance of being corrected. It

can be observed in Fig. 1 that the RR-WBF algorithm outperforms

both benchmark schemes. At the BER of 10�4, a coding gain of 0.75

and 0.25 dB is achieved for the short blocklength of 200 bits in

comparison to the standard WBF and I-WBF algorithm, respectively,

while invoking 20 iterations. For the longer blocklength of 1000 bits,

a coding gain of 1 and 0.75 dB is achieved in comparison to the two

benchmark schemes.

Fig. 1 BER performance of (200,100,3) and (1000,500,3) regular LDPC
codes decoded by WBF, I-WBF and RR-WBF algorithms, respectively

BPSK modulation is used when communicating over an AWGN channel.
Maximum number of iterations are 20 and 100 for (200,100,3) and (1000,500,3)
codes, respectively. Optimum a for I-WBF decoder is 0.4

Conclusion: A novel reliability ratio based weighted bit-flipping

algorithm is proposed. This scheme uses a similar error-term evalua-

tion method to that of (2), hence imposing no complexity increase

during the iterative decoding process. Furthermore, the RR-WBF

algorithm utilises all the message-node-based information to produce

the check-node-based information, thus an improved BER perform-

ance is observed in Fig. 1. In contrast to the I-WBF scheme, the

RR-WBF does not have to have any a priori knowledge concerning

the weighting factor a, which is a further advantage.
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