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[1] Carbon flux models that are largely driven by remotely sensed data can be used to
estimate gross primary productivity (GPP) over large areas, but despite the importance of
peatland ecosystems in the global carbon cycle, relatively little attention has been given
to determining their success in these ecosystems. This paper is the first to explore the
potential of chlorophyll-based vegetation index models for estimating peatland GPP from
satellite data. Using several years of carbon flux data from contrasting peatlands,

we explored the relationships between the MERIS terrestrial chlorophyll index (MTCI)
and GPP, and determined whether the inclusion of environmental variables such as
PAR and temperature, thought to be important determinants of peatland carbon flux,
improved upon direct relationships. To place our results in context, we compared

the newly developed GPP models with the MODIS (Moderate Resolution Imaging
Spectrometer) GPP product. Our results show that simple MTCI-based models can

be used for estimates of interannual and intra-annual variability in peatland GPP.

The MTCI is a good indicator of GPP and compares favorably with more complex
products derived from the MODIS sensor on a site-specific basis. The incorporation of
MTCI into a light use efficiency type model, by means of partitioning the fraction

of photosynthetic material within a plant canopy, shows most promise for peatland

GPP estimation, outperforming all other models. Our results demonstrate that satellite
data specifically related to vegetation chlorophyll content may ultimately facilitate
improved quantification of peatland carbon flux dynamics.

Citation: Harris, A., and J. Dash (2011), A new approach for estimating northern peatland gross primary productivity using a
satellite-sensor-derived chlorophyll index, J. Geophys. Res., 116, G04002, doi:10.1029/2011JG001662.

1. Introduction

[2] Despite their limited coverage of the Earth’s surface,
peatland ecosystems play an important role in the global
carbon cycle through the sequestration of atmospheric car-
bon as peat and the release of carbon gases (carbon dioxide
(CO,) and methane (CH4)) through respiration and plant
decay. Today most northern peatlands are a significant sink
of atmospheric carbon, containing 20%—30% of the global
soil carbon pool [Post et al., 1982; Smith et al., 2004]. How-
ever, the balance between carbon sequestration and release
(as CO, and CHy,) is largely dependent on hydrology and
temperature [Bubier et al., 2005; Bubier, 1995; Dise et al.,
1993; Moore et al., 2006]. Changes in climate may affect
the rate of CO, uptake and the overall carbon dynamics of
peatland ecosystems [Moore, 1998]; estimates of gross pri-
mary productivity (GPP) are thus critical for understanding
how these ecosystems respond to climatic changes.
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[3] Eddy covariance (EC) methods can measure peatland
seasonal and interannual carbon fluxes over long periods
of time. While EC techniques have proven to be of great
importance in peatland carbon balance modeling efforts
[e.g., Lafleur et al., 2003; Laine et al., 2006], these mea-
surements account only for carbon fluxes within the desig-
nated flux tower footprint, and the number and geographical
distribution of towers across the globe is limited. Consequently,
scaling carbon fluxes from flux towers to produce regional
and global estimates is challenging. Other attempts to esti-
mate peatland carbon fluxes have concentrated on the devel-
opment of process-based models, although the difficulties
in modeling peatland hydrology mean that there have been
relatively few attempts to model carbon exchange in peat-
lands as compared with other terrestrial ecosystems [e.g.,
Frolking et al.,2002; Soegaard et al., 2003; Wang et al., 2002,
Yurova et al., 2007]. Peatland process-based models, such as
the Peatland Carbon Simulator (PCARS) [Frolking et al.,
2002; Lafleur et al., 2003], and ecosystem models that have
been adapted to northern peatlands, such as the Boreal Eco-
system Productivity Simulator (BEPS) [Liu et al, 1997;
Sonnentag et al., 2008] and GUESS-ROMUL [Yurova et al.,
2007; Yurova and Lankreijer, 2007], have shown promise.
However, the applicability of these models at the regional and
global scales is particularly challenging because of their
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complexity and requirements for data that are often scarce or
unavailable at the appropriate spatial and temporal scales.
Carbon flux models that are largely driven by remotely sensed
data can be used to estimate gross primary productivity (GPP)
over large areas, but despite the importance of peatland eco-
systems in the global carbon cycle, relatively little attention has
been given to determining their success in these ecosystems.
[4] Many current remote-sensing-based carbon flux mod-
els utilize the light use efficiency (LUE) concept of Monteith
[1972], which suggests that GPP is linearly related to the
amount of absorbed photosynthetically active radiation:

GPP = ¢ * (fPAR * PAR). (1)

Where PAR is the incident photosynthetically active radia-
tion, fPAR is the fraction of PAR absorbed by the vege-
tation canopy and ¢ is the efficiency with which a plant is
able to export or utilize the product of photosynthesis.

[5] The primary advantage of the Monteith model for
regional and global carbon flux estimations is that many of
the model parameters can be estimated remotely from sat-
ellite data. In remote sensing analysis fPAR is estimated
either as a function of the normalized difference vegetation
index (NDVI) [Prince and Goward, 1995; Ruimy et al.,
1994] or by utilizing physically based models to describe
the propagation of light in plant canopies [Myneni et al.,
2003]. However, the estimation of the LUE component is
often more difficult, since LUE varies spatially across biomes,
species and plant functional types [Gower et al., 1999] and
temporally across seasons and in response to environmental
variations [Nouvellon et al., 2000; Schwalm et al., 2006; Sims
etal.,2006b]. Many remote-sensing-based GPP models utilize
“look up” tables based on vegetation type to estimate the
maximum LUE of a given biome and then adjust this value
according to meteorological indicators of environmental
stress [Running et al., 2004]. However, there can be sub-
stantial errors in the estimation of LUE due to the coarseness of
the metrological inputs commonly used to scale LUE and the
quality and resolution of the land cover classification on
which biome specific maximum LUE values are initially
based. A number of studies have suggested that the use of
coarse resolution data and look-up table LUE inputs may
result in significant errors in the estimation of carbon fluxes
[Heinsch et al., 2006; Zhao et al., 2006]. For heterogeneous
environments, such as peatlands, the coarseness of such
inputs may be particularly problematic, especially given that
the land cover classification schemes on which such algo-
rithms are based, often fail to include a peatland land cover
category [Harris and Bryant, 2009; Krankina et al., 2008].

[6] To try and overcome some of these limitations, several
studies advocate a simpler and more direct approach by
devising carbon exchange models that are entirely based on
remote sensing data (e.g., vegetation indices (VIs)). Such
models have the benefit of a continuous output at the spatial
resolution of the sensor and are not always reliant on inde-
pendent meteorological data sets or estimations of LUE
[Rahman et al., 2005]. Although the use of VIs in isolation
may not be able to track daily fluctuations in carbon exchange,
because rapid changes in environmental variables such as
PAR, temperature and soil moisture are unlikely to have an
immediate impact upon canopy physiology, studies have
shown that VIs are able to characterize carbon fluxes inte-

HARRIS AND DASH: PEATLAND GPP ESTIMATION USING MERIS MTCI

G04002

grated over a period of several days. Spectral indices that are
related to vegetation greenness such as the normalized difference
vegetation index (NDVTI) or the enhanced vegetation index (EVI)
have been correlated with GPP with varying degrees of success
[e.g., La Puma et al., 2007; Rahman et al., 2005; Sims et al.,
2006a; Sims et al., 2006b; Wylie et al., 2003]. Sims et al.
[2006b] reported correlations between EVI and GPP that were
as good as or better than more complex algorithms, such as the
MODIS GPP product (MOD17), during active photosynthe-
sis. However, the model functions less well for sites domi-
nated by evergreen species and those susceptible to summer
drought, primarily because of the lack of a correlation
between LUE and vegetation greenness. Recent develop-
ments to the Sims et al. [2006a] EVI model, through the
incorporation of an additional land surface temperature
component, have improved predictions of GPP from EVI [Sims
et al., 2008].

[7] Despite the recent proliferation of VI-based carbon
models, there have been very few attempts to utilize these
approaches to model GPP in peatland ecosystems and, like the
vast majority of satellite-based GPP models, those that have,
rely heavily upon spectral indices derived from the Moderate
Imaging Spectrometer (MODIS) [e.g., Schubert et al., 2010].
The use of common MODIS-derived vegetation indices, such
as the NDVI and EVI, may be problematic for satellite-based
GPP estimation over peatlands because of the narrow red
absorption feature and narrow near-infrared reflectance peak,
which is commonly observed in dominant peat forming species
such as Sphagnum mosses [Bubier et al., 1997]. A more general
concern about the reliance solely upon MODIS data for satel-
lite-based GPP model development, is the current uncertainty
relating to the continuity of the MODIS program, thus there is
clearly a motivation to extend knowledge acquired from mod-
eling efforts with the MODIS data sets to other sensor’s data.

[8] In this study, we focus on exploring new ways of
estimating peatland GPP from alternative sources of satellite
data. Our approach is also based upon the logic of Monteith
[1972] but focuses specifically on the estimation of vege-
tation chlorophyll content to inform GPP estimations, as
opposed to more integrated measures of greenness and struc-
ture (e.g., the NDVI and EVI). Previous studies have shown
good relationships between chlorophyll content and vege-
tation stresses, phenology and photosynthetic capacity [e.g.,
Gitelson et al., 2006; Jago et al., 1999; Sun et al., 2008].
Because chlorophyll is essential for photosynthesis, esti-
mations of chlorophyll content may constitute as a surrogate
for the amount of energy that can be transferred for photo-
synthesis. A number of studies by Gitelson et al. [2008,
2006] have demonstrated that remote sensing techniques,
developed for chlorophyll retrieval, can be used to estimate
GPP in rainfed and irrigated Maize and Soybean crops.
Using VIs derived from field spectroradiometry; the product
of chlorophyll and photosynthetically active radiation (PAR)
was shown to account for 98% of GPP variation in the crop
canopies [Gitelson et al., 2005]. Furthermore the relation-
ship was non-species-specific. More recently Harris and
Dash [2010] were the first to demonstrate strong correla-
tions between EC estimated GPP and a chlorophyll index
derived from the Medium Resolution Imaging Spectrometer
(MERIS) on board the ENVISAT satellite. The MERIS ter-
restrial chlorophyll index (MTCI) product effectively com-
bines information on leaf area index and the chlorophyll
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concentration of leaves to produce an image of chlorophyll
content [Dash and Curran, 2004]. The correlations between
the MTCI and EC measures of GPP across a range of North
American ecosystems was as good as, if not better than,
those observed between EC GPP and the MODIS EVI and
the more complex MODIS GPP (MOD17) product [Harris
and Dash, 2010].

[9] In this study, we focus on exploring the relationships
between the MTCI and EC measures of GPP in peatland
ecosystems. We also develop and test a series of LUE-type
regression models based on the MTCI to determine whether
the inclusion of environmental variables such as PAR and
temperature, improve the direct relationship between MTCI
and GPP. To put the results in context, we compare the
MTCI model results to those of obtained from the MODIS
GPP product (MOD17), which is a satellite-based LUE
model commonly use to estimate GPP [Heinsch et al., 2003].

2. Methods

2.1. Peatland Study Sites

[10] We used carbon flux data from two contrasting
Fluxnet Canada Research Network sites: the Mer Bleue
peatland (Eastern Peatland) and the Western Peatland. Mer
Bleue is a large, open, low-shrub raised bog covering
approximately 25 km~ [Moore et al., 2002], located east of
Ottawa, Ontario, Canada (45.40°N, 75.52°W). The region
has a cool continental climate, with a mean annual tem-
perature of 6°C and an annual rainfall of 732 mm
[Environment Canada, 2006]. Due to the acidic nutrient-
poor nature of the site, the vegetation mainly consists of
evergreen species. Overstorey vegetation is dominated by a
shrub canopy 20-30 cm high, and the bog surface is dom-
inated by a hummock-hollow microtopography. Hummocks
are occupied by the evergreen shrubs Ledum groenlandi-
cum, Kalmia angustifolium, Chamaedaphne calyculata and
the deciduous shrub Vaccinium myrtilloides. Hollows are
approximately 20 cm lower, compose about 25% of the bog
surface and have a sparser coverage of L. groenlandicum,
K. angustifolium, and C. calyculata. The bog ground cover is
dominated by Sphagnum mosses [Moore et al., 2002]. The
growing season is from May to September [Lafleur et al.,
2003] with an average temperature during this period of
17°C [Environment Canada, 2006]. The Western Peatland
is a moderately rich treed fen located in the La Biche River
area in Alberta, Canada (54.95°N, 112.46°W). The climate
of the region is classified as continental with a mean annual
temperature of 2.1°C and an annual rainfall of 382 mm
[Environment Canada, 2006]. In contrast to Mer Bleue, the
vegetation is largely composed of deciduous species. Stun-
ted trees of Picea maiana and Larix laricina dominate the
vegetation, with high abundance of the shrub Betula pumila,
and a wide range of moss species including Sphagnum,
brown and feather mosses [Syed et al., 2006]. The growing
season at the Western Peatland is from May to October
[Syed et al., 2006]. The avaerage tempertaure during this
period is 12°C [Environment Canada, 2006]. Both sites are
representative of peatlands in the boreal region.

2.2. Satellite Data

[11] Table 1 displays the sensor specifications for the
MODIS and MERIS instruments. The spatial location of
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both the MERIS and MODIS data were carefully chosen to
maximize the area of peatland covered by each 1 km pixel.
At Mer Bleue, the EC tower is located approximately 300 m
from the margin of the bog and has an ~1 km footprint.
Approximately 80% of the flux emanates from within 200 m
of the tower [Connolly et al., 2009], which is largely
dominated by hummocks [Moore et al., 2006]. Inspection of
the MERIS pixel footprint using Landsat data together with
high resolution data obtained from Google Earth™, indi-
cated that approximately 80% of the MERIS pixel was
dominated by peatland land cover, deemed representative of
the flux tower footprint, with the remainder covering a
narrow band of mixed forest and cattail marsh to the south
of the pixel (Figure 1). The EC tower footprint at the
Western Peatland site ranges from 1.5 to 2 km in all
directions except north where the fetch is ~1 km. The flux
tower footprint is dominated by relatively homogeneous
vegetation [Syed et al., 2006] and is located toward the
western edge of both the MERIS and MODIS pixels.
2.2.1. Medium Resolution Imaging Spectrometer
(MERIS) Data

[12] The 1 km spatial resolution 8-day composites of
MERIS MTCI were downloaded from the UK Natural
Environment Research Council Earth Observation Data
Centre (NERC NEODC; http://www.neodc.rl.ac.uk). The
MTCI is a ratio of the difference in reflectance between
band 10 and band 9 and the difference in reflectance
between band 9 and band 8 of the MERIS standard band
setting using the following equation [Dash and Curran,
2004]:

MTCI = pgandio — PBand9/ PBand9 — PBands
= P753.75 — p708.75/p70&75 — P681.25, (2)

where p7s375. pr08.75, Pes12s are reflectance in the center
wavelengths of the MERIS standard band setting. The
MTCI data were composited from standard Level 2 reduced
resolution (geophysical) products using an arithmetic mean
and a flux conversion resampling [Curran et al., 2007].

[13] To determine how representative the 1 km MERIS
MTCI data were of the tower footprints at each site, we
obtained MTCI data from two years of full resolution
(300m) MERIS data. We identified the 300 m pixels that
were most representative of the 1 km pixel extents and
extracted the standard level 2 MTCI values (Figure 1). For
each site, we compared the amplitude and seasonal patterns
of the 300 m and 1 km MTCI data.
2.2.2. Moderate Resolution Imaging Spectrometer
(MODIS) Data

[14] The 1 km 8-day composites of MODIS Land Surface
Temperature (LST; collection 5.0 data sets), fPAR and
MOD17 GPP data (collection 5.1 data sets) were acquired
from the Oak Ridge National Laboratory’s Distributed
Active Archive Centre (DAAC) (http://www.modis.ornl.
gov/modis/index.cfm). We used the MODIS quality control
flags to select data with low cloud cover and listed as “Good
Quality.” All LST data were derived from the Terra satellite,
which has a morning overpass time between 1000 and 1100 h.
The MOD17 GPP product is calculated using a LUE type
model:

GPP = emax * m(Toin) * m(VPD) * fPAR * SWrad * 0.45, (3)
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Table 1. Specifications of MERIS (Medium Resolution Imaging Spectrometer) and MODIS (Moderate Resolution Imaging

Spectroradiometer) Sensors

Specifications MERIS MODIS
Name Medium Resolution Imaging Spectrometer Moderate Resolution Imaging Spectroradiometer
Satellite ENVISAT Terra/Aqua
Swath Width 1150 km 2330 km
Revisit Period ~3 days daily

Spatial Resolution at Nadir

1200 m x 1004 m (reduced resolution)
290 m x 260 m (full resolution)

250 m (bands 1-2)
500 m (bands 3-7)
1000 m (bands 8-36)

Total of 15 bands spanning the VIS and NIR

Total of 36 bands spanning the VIS, NIR, SWIR
(shortwave infrared) and LWIR (long wave infrared)

Spectral Resolution No. Band Centre® Band Width (nm) No. Band Centre® Band Width (nm)
1 412.5 10 1 645 50
2 442.5 10 2 858.5 35
3 490 10 3 469 20
4 510 10 4 555 20
5 560 10 5 1240 20
6 620 10 6 1640 24
7 665 10 7 2130 50
8 681.25 7.5 8 412.5 15
9 708.75 10 9 443 10

10 753.75 7.5 10 488 10
11 760.63 3.75 11 531 10
12 778.75 15 12 551 10
13 865 20 13 667 10
14 865 10 14 678 10
15 900 10 15 748 10
16 869.5 15
17 905 30
18 936 10
19 940 50
20 3.750 180
21 3.959 60
22 3.959 60
23 4.050 60
24 4.465 65
25 4515 67
26 1.375 30
27 6.715 360
28 7.325 300
29 8.550 300
30 9.730 300
31 11.180 500
32 12.020 500
33 13.335 300
34 13.635 300
35 13.935 300
36 14.235 300

“Data for MERIS and MODIS bands 1 to 19 are in nm; data for MODIS bands 20 to 36 are in um. Greyed areas indicate bands spanning the VIS and

NIR wavelength range common to both sensors.

where €., is the maximum LUE and the scalers m(T,;,) and
m(VPD) reduce e,,,,, under conditions of low temperature and
high vapor pressure deficit (VPD). fPAR is the fraction of
PAR absorbed by the vegetation canopy and SWrad is
shortwave radiation. VPD and SWrad are obtained from
coarse scale meteorological data sets from the NASA Data
Assimilation Office (DAO; http:gmao.gsfc.nasa.gov/), and
€max 1S obtained from LUE look-up tables on the basis of
biome type [Heinsch et al., 2003].

2.3. Tower-Based Carbon Flux Data
and Environmental Variables

[15] Flux tower data were obtained from the FLUXNET
Canada website (http://www.fluxnet-canada.ca/). Based on
the concurrent availability of MTCI and tower data, we

obtained gap-filled 30 min values of GPP (taken as equiv-
alent to ecosystem productivity; GEP; Moore et al., 2006),
incoming photosynthetically active radiation (PAR), air
temperature (AT), and water table depth (WTD) from
January 2003 to December 2006 for Mer Bleue and from
January 2004 to December 2005 for the Western Peatland.
All variables were averaged both monthly and over §-day
periods to be consistent with both long-term climatic data
sets and the satellite data products used. Only data from the
period when active photosynthesis was occurring were used
for analysis. We defined this period by selecting data only
from periods when PAR was greater than 10 umol m 2 s~
and GPP greater than zero. In addition, because of the lack
of quality control flags to accompany the MTCI data, when
developing and comparing satellite-based models, we only
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Figure 1. A schematic diagram indicating the location of the 1 km (solid lines) and 300 m (dashed lines)
MTCI pixels used in the study, shown in relation to the flux tower sites (white circles) for (a) Mer Bleue
and (b) the Western Peatland. A Landsat scene is displayed beneath the pixel locations for context (red =
band 3, green = band 2, blue = band 1). Note that the MTCI 1 km pixels actually measure 700 m x 1 km at
these sites due to the geographic lat/lon projection of the data. The product is available at 1 x 1 km spatial

resolution at the equator.

used data when the 8-day average daytime AT was greater
than 5°C [Arora and Boer, 2005] to ensure avoidance of
snow covered pixels. Positive values of GPP represent a net
flux into the ecosystem. Full details of the EC system,
quality assurance and gap-filling procedures can be found in
Lafleur et al. [2001, 2005, 2003] for Mer Bleue and in Syed
et al. [2006] for the Western Peatland.

2.4. Calculation of Tower-Based Light Use Efficiency
(LUE)

[16] Calculation of LUE requires an estimation of the
absorbed photosynthetically active radiation (APAR). APAR
was calculated as a function of the total daily incident
PAR recorded at the EC tower (where PAR is greater than
10 umol m 2 s™') and fPAR is the corresponding MODIS
8-day fPAR value using the following equation:

APAR = fPAR * PAR. (4)
Using Beer’s Law, Connolly et al. [2009] showed that
MODIS fPAR data for both Mer Bleue and the Western
Peatland are representative of fPAR values derived from
field measures of leaf area index (LAI), despite the lack of a
distinctive peatland land cover category in the MODIS
algorithm. We only used fPAR values flagged as excellent
quality in the calculation of APAR. LUE was then calcu-
lated using the following formula:

LUE = GPP/APAR. (5)

2.5. Model Development

[17] A series of MTCI-based linear regression models
were developed to explore a new approach of estimating
peatland GPP from satellite data. Chlorophyll content is

intrinsically related to the process of photosynthesis; we
therefore first investigated the possibility of estimating GPP
directly from the MTCI:

GPP = a(MTCI) + b. (6)
[18] The use of environmental variables or proxy envi-
ronmental variables, that are known to have an important
influence of plant carbon exchange processes, alongside
satellite-based measurements of canopy vitality (e.g., chlo-
rophyll content, greenness and f PAR), have previously been
shown to improve correlations with in situ estimations of
GPP [e.g., Gitelson et al., 2006; Schubert et al., 2010; Sims
et al., 2008]. Based on these findings, and the LUE concept
of Monteith [1972], we investigated linear relationships
between peatland GPP and the product of MTCI and PAR,
the product of MTCI and fPAR and the product of MTCI,
fPAR and PAR i.e., the product of MTCI and APAR:

GPP = a(MTCI x PAR) + b, 7)

GPP = a(MTCI x fPAR) + b, (8)

GPP = a(MTCI x fPAR x PAR) + b, 9)
where a and b are the slope and intercept in a linear model
(y = ax + b). Finally, based on previously reported strong
correlations between GPP and the product of greenness VIs
and land surface temperature (LST) [Sims et al., 2008], we
examined the correlation between peatland GPP and the
product of MTCI and MODIS LST:

GPP = a(MTCI x LST) + b. (10)
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Figure 2. Secasonal monthly pattern of precipitation, temperature, gross primary productivity and water
table depth below a hummock surface, during the growing season for Mer Bleue (a and c¢) and the Western
Peatland (b and d). Thirty-year (1971-2000) normals of temperature and rainfall are also presented for com-

parison purposes.

[19] For each model, the root mean square error (RMSE)
of GPP estimation was obtained for each site and across
sites using the leave-one-out cross validation method
[Lachenbruch and Mickey, 1968] because of the relatively
small sample size. This approach involved (1) removing one
data point from the data set, (2) calculating the relationship
for the remaining points, (3) predicting GPP for the left-out
data point and (4) repeating for all points. The root mean
square error was used to compare predicted with EC tower-
measured GPP:

2
(GPP, — GPP,)
n

RMSE = 7 (11)

where GPP; is the GPP measured at the tower, GPP,, is the
predicted GPP using leave-one-out method and n is the
number of samples.

3. Results
3.1. Interannual and Seasonal Dynamics of Peatland
Ecosystem Components

[20] Long-term data suggest a seasonal trend in rainfall at
Mer Bleue with the summer months (June—August) often

being the wettest (Figure 2a). However, the rainfall pattern
during 2003 to 2005 was far less pronounced than either the
long-term average for the site or the rainfall pattern
observed at the Western Peatland (Figure 2b). The growing
season in 2003 (May—September) was characterized by very
low rainfall, with three months out of the five month period
recording only half of the long-term rainfall average. In
contrast the fall was unseasonably wet with over seven times
more rain falling than normal from October to December
2003. A similar pattern of above average rainfall was also
observed during the fall of 2006. Differences in rainfall were
mirrored in the water-table position and in the interannual
pattern in GPP, where photosynthetic rates were substan-
tially lower during the 2003 growing season (Figure 2c).
GPP reached its peak in July although the photosynthetic
rates were on average lower than those observed at the
Western Peatland.

[21] During 2004 and 2005 the Western Peatland was
characterized by clear seasonal patterns in both rainfall and
temperature (Figure 2b). Monthly average rainfall was
greatest during the summer months with most rainfall falling
in July and June (2004 and 2005, respectively). Total annual
recorded rainfall was higher in 2004 than in 2005, with
several months receiving above average rainfall. Rainfall
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Figure 3. Eight-day temporal profiles of the fraction of photosyntehtically active radiation (fPAR),
incoming photosynthetically active radiation (PAR), gross primary productivity (GPP) and light use
efficiency (LUE) for Mer Bleue (a, c, e and g, respectively) and the Western Peatland (b, d, f and h,
respectively). All available data are included in the plots; gaps are indicative of missing data.

and temperature fluctuations were both reflected in the water
table levels and in tower GPP (Figure 2d). In both years
daily photosynthetic rates were greatest in June and July,
coincident with both the highest seasonal temperatures and
the greatest amount of rainfall.

3.2. Peatland Light Use Efficiency (LUE)

[22] We analyzed the relationship between GPP and
APAR to determine the extent of variation in LUE within
and between the peatland sites, and thus the importance of
LUE in the estimation of peatland GPP. As incoming PAR,
fPAR and GPP are the main constituents of derived measures
of LUE, we plotted 8-day averages of these variables and
LUE against the day of year (DOY) for each site (Figure 3).

[23] The plots of MODIS fPAR and in situ incoming
PAR show the presence of a strong seasonal pattern across
all years and for both sites (Figures 3a—3d). Maximum
values of MODIS fPAR were similar between years and
between the two peatland sites. Large increases in the f PAR
values at the beginning of the year, for both sites, are
indicative of snowmelt. Mid-summer fPAR values for Mer
Bleue are similar to those reported by Connolly et al. [2009]

who found good correspondence between fPAR derived
from field measurements and MODIS fPAR for the Mer
Bleue peatland, despite the lack of a peatland class in the
IGBP classification scheme, which underlies the MODIS
fPAR algorithm. Values of incoming PAR were also similar
at Mer Bleue and the Western Peatland, with daily average
maximum values between 10 and 12 MJ m > day ! for all
years studied.

[24] As expected the LUE parameter for both sites fol-
lowed a similar seasonal pattern to that of fPAR, PAR and
GPP, but there were clear differences in LUE between the
sites and years studied (Figures 3g—3h). Maximum values of
LUE were on average higher at the Western Peatland than
that at Mer Bleue during peak growing season. At the
Western Peatland LUE was similar between the two years
studied, but at Mer Bleue LUE was significantly reduced
during the summer of 2003 (DOY 185-257) compared to
the same time period in 2004, 2005 and 2006 (Figure 3g).
A difference in the timing of maximum LUE occurrence is
also present in 2005 where LUE continued to increase until
late October (DOY 297) before sharply decreasing. This
change in pattern may be a consequence of the higher than
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Figure 4. Time series of 300 m and 1 km MTCI data for (a and b) Mer Bleue and (c and d) the Western
Peatland. The 300 m data points represent the mean of the 300 m pixels corresponding to the 1 km pixel
footprint and the pixel closest to the flux tower. Error bars represent +/— 1 s.d. of the mean. For the 1 km
data the composite day of the year is used, and for the 300 m data the day of data acquisition is used.

average temperatures experienced at Mer Bleue during the
summer of 2005 (Figure 2a).

3.3. Seasonal Dynamics of the MTCI and Peatland
GPP

[25] Despite the paucity of data, due to the availability of
cloud free full resolution MERIS imagery, a comparison of
the 300 m resolution and 1 km MTCI data for the years
2004 and 2005 illustrated similar seasonal patterns and
amplitudes of MTCI at both sites (Figure 4). The full res-
olution data indicated that spatial variation in MTCI values
within the 1 km pixels varied between sites, with the Mer
Bleue peatland exhibiting the greatest spatial heterogenity,
at the 300 m scale (Figure 4). Nevertheless, the seasonality
and amplitude of the 1 km MTCI values showed a close
resemblance to the 300 m data pixels closest to each of the
flux towers (Figure 4), thus confirming that the 1 km data
were representative of the peatland vegetation within the
fetch of the flux towers.

[26] For both peatland sites there was generally good
agreement between seasonal tower GPP dynamics and the
MTCI (Figure 5). Mid-summer MTCI values were often
higher at Mer Bleue than at the Western Peatland. Although
the MTCI was able to track the seasonal patterns in eco-

system productivity, the lower GPP values observed at Mer
Bleue in 2003, as compared to the remaining years, were not
reflected by lower values of MTCI (Figure 5a).

3.4. Environmental Controls on Peatland GPP
and Correlations With Model Variables

[27] Table 2 shows the relationships between individual
variables used in model development (i.e., PAR, LST,
fPAR and MTCI) and environmental variables thought to
exert a controlling influence over peatland GPP (i.e., AT
and WTD). Of the three additional variables used to develop
the basic MTCI model, LST and fPAR showed most
promise as proxy variables of the two major controls on
GPP. Both LST and fPAR were significantly correlated
with air temperature (AT) for all years and at both sites,
although the strength of the correlation varied between
years. Results show that fPAR was also significantly cor-
related with the depth to the water table (WTD) for all years
and at both sites, whereas the strength of correlation
between WTD and LST was weaker and often not signifi-
cant (Table 2). PAR showed the least promise for enhancing
the basic MTCI model due to weak and often non significant
relationships with both of the major controls of GPP (i.e.,
AT and WTD) and with GPP itself.
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Figure 5. Interannual and seasonal variations in the MERIS terrestrial chlorophyll index (MTCI) and
gross primary productivity (GPP) at (a) Mer Bleue, 2003-2006; and (b) Western Peatland, 2004—2005.
Only data from the growing season, defined as the period when GPP is >0 gC m 2 day ' and temperature

is >5°C, are used.

[28] We also determined the degree of independence
between the MTCI and the additional variables used in the
MTCI models by examining the correlations between the
MTCI and PAR, LST and fPAR. For both sites and all years
the MTCI was only weakly correlated with LST and showed
no significant correlation with PAR (Table 2). As expected,
there were significant correlations between the MTCI and
fPAR, although the strength of these correlations varied
between sites, and importantly between different years at the
same site, suggesting that the two variables are indicative of
different, but sometimes related, vegetation physiological
attributes (Table 2). The lack of strong consistent correla-
tions between the MTCI and PAR, LST and fPAR, coupled
with the significant correlations observed between a number
of these variables and the major controls on GPP, suggest
that these variables may be able to provide some additional
independent information.

3.5. Model Results

[20] Strong linear relationships were observed between
GPP and a number of the models tested (Table 3 and
Figure 6). The MTCI was strongly correlated with GPP for
both peatland sites, for individual years and across all years
(Figure 6a). The exception to this was at the Mer Bleue
peatland in 2003, where the coefficient of determination was

notably lower (Table 3). The addition of LST to the basic
MTCI model generally did not significantly improve model
performance for individual years or when all years were
combined at either of the sites, because GPP was often more
strongly correlated with the MTCI than with LST during
the growing season (Table 3 and Figure 6b). Again, the
exception to this was the year 2003 at Mer Bleue, where the
addition of LST to the MTCI model significantly improved
model performance for that year (> = 0.46 and r* = 0.74,
respectively) primarily due to the presence of a stronger
correlation between GPP and LST during that time period
(Table 2). The product of MTCI and PAR was also able to
explain more variation in GPP than the simple MTCI model
for 2003 at Mer Bleue. However, the coefficients of deter-
mination for the other years tested at each of the peatlands,
and when all years were combined, were reduced relative to
the basic MTCI model because of the lack of significant
relationships between GPP and PAR at either site (Table 2,
Table 3 and Figure 6¢). The addition of fPAR to the basic
MTCI model resulted in small increases in the level of
explained variance in GPP at both sites, relative to both the
MTCI model and the use of fPAR alone (Table 2, Table 3
and Figure 6d), although the greatest improvements were
observed when both fPAR and PAR were incorporated into
the initial MTCI model (Table 3 and Figure 6¢). However,
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Figure 6. Gross primary productivity (GPP) measured at flux tower as a function of (a) the MERIS
terrestrial chlorophyll index (MTCI), (b) the product of MTCI and land surface temperature (MODIS
LST); (c) the product of MTCI and photosynthetically active radiation (PAR); (d) the product of MTCI
and fraction of absorbed photosynthetically active radiation (MODIS fPAR); (e) the product of MTCI,
MODIS fPAR and PAR; and (f) the MODIS GPP product (MOD17). All values are taken from the grow-
ing season, defined as the period when GPP is >0 gC m * day ' and air temperature is >5°C.

the difference in the slope between sites was not as pro-
nounced (Table 3 and Figure 6).

4. Discussion

[31] This study is the first to investigate the potential of a
satellite-derived, chlorophyll-based VI model for peatland
CO, flux estimation. We expected that chlorophyll-based
models, developed using the LUE concept of Monteith
[1972], would provide good estimations of peatland GPP
given that both APAR and LUE are thought to be closely
related to the amount of chlorophyll in a plant canopy
[Gitelson et al., 2006; Sellers et al., 1992].

[32] There were clear differences in annual maximum
GPP both between sites and sometimes between years at the
same site. The similarities in the values of the fPAR and
PAR components of the LUE model between the two sites
and between years, suggested that differences in peak GPP
were largely a function of the differences in LUE between
the two peatlands. This finding is consistent with the dif-
ferences in nutrient conditions and in the dominant plant
functional types between the two peatlands [Glenn et al.,

2006]. In a study of species variation in LUE, Gower ef al.
[1999] reported lower LUE for boreal evergreen vegeta-
tion, such as that found at Mer Bleue, than for boreal
deciduous species, which are more commonly found at the
more nutrient-rich Western Peatland site. GPP and LUE
were greatly reduced at the Mer Bleue peatland during the
summer of 2003, in comparison to the other years studied,
thought to be a consequence of low rainfall and thus a lower
water table. These patterns concur with a number of studies,
which have reported a decrease in the physiological function
rates of CO, uptake in peatland vegetation in response to a
lowering of the water table [e.g., Strack and Waddington,
2007; Waddington et al., 1998].

[33] The MTCI was able to track the seasonal patterns of
plant photosynthetic activity, expressed as GPP, at both
peatland sites. Although both peatlands contain evergreen
vegetation, the leaves undergo a color change from brown to
green during the spring as a consequence of increases in
foliar chlorophyll [Moore et al., 2006]. Since most of the
new vegetation growth (i.e., new deciduous tissues and
leaves on shrubs) occurs from late May onwards, Moore
et al. [2006] suggest that most of the increases in peat-
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land spring photosynthesis at Mer Bleue can be attributed to
existing plant tissue that were present at the beginning of the
year. Consequently our results suggest that, at least at the
Mer Bleue peatland, the MTCI may be responding to both
changes in foliar chlorophyll and new vegetation growth,
with the former likely to be dominating the change in MTCI
earlier in the year.

[34] The MTCI was found to correlate strongly with GPP
at both sites and for the majority of the years studied, with
the exception of 2003 at Mer Bleue. Harris and Dash [2010]
also reported significant linear relationships between the
MTCI and EC tower estimated GPP across a number of
North American ecosystems.

[35] Despite the LST actually being a measure of surface
temperature, the LST was significantly correlated with air
temperature and sometimes with water table depth. How-
ever, the addition of LST to the MTCI model did not lead to
marked improvements in overall model performance for
either peatland. One of the primary reasons for this was that
the strength of relationship between LST and GPP, for a
number of individual years and when all years were com-
bined by site, was significant but relatively weak (r* = 0.35
at Mer Bleue and r* = 0.38 at the Western Peatland).
Although both air temperature and LST are correlated with
peatland GPP, the main driver of peatland photosynthetic
activity is the soil temperature and of particular importance
for shrubs and vascular vegetation in general, is the tem-
perature at the depth of the rooting zone (~10 cm) [Moore
et al., 2006]. Temperatures at the bog surface are often
higher than those deeper in the peat, especially during the
early period of spring growth when the surface temperature
is close to or warmer than the air temperature, whereas soil
temperatures at the rooting zone are much cooler and deeper
soil may remain frozen. Peatland air and surface tempera-
tures, and thus LST, can also fluctuate widely throughout
the growing season, whereas soil temperatures at depth often
change in a more controlled manner [Moore et al., 2006]. As
a consequence LST may not always be representative of the
actual temperature controls exerted on peatland photosyn-
thetic processes. However, the interpretation of our LST
results is further complicated as changes in air and surface
temperature can also be indicative of changes in the vapor
pressure deficit (VPD). LST has been shown to be closely
related to VPD for a range of different ecosystems [Granger,
2000; Hashimoto et al., 2008; Sims et al., 2008] and thus
measures of LST can been used as an indicator of vegetation
drought stress. Such a relationship between VPD and LST
may be the primary reason why the strongest correlations
between LST and GPP were observed at Mer Bleue during
2003, when precipitation was below average (Figure 2a) and
VPD higher than for any of the other time periods studied
(results not shown). As a consequence, under conditions of
vegetation “stress” LST may have the potential to improve
model performance. The lack of an overall improvement in
model performance, with the addition of LST, is in contrast
to those of others, such as Sims et al. [2008], who found that
the addition of LST to their greenness GPP model (based on
the use of MODIS EVI data), considerably improved model
results. These differences can be explained by the different
nature in which photosynthesis responds to changes in
environmental variables within different ecosystems, but
also by the way in which the growing season was defined in
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the present study. The 5°C limit on the use of data in all
regression models in the current study, evoked to avoid the
presence of “artificial” seasonal patterns caused by the onset
of snowmelt and snow fall, meant that a number of data
points at the start and end of the growing season may have
been omitted. In the absence of other environmental stres-
sors (e.g., low precipitation or nutrient deficiency), tem-
perature has a weaker control over GPP during the summer
months but a much stronger influence at the beginning and
end of the growing season. Consequently, when a greater
range of values are used, the correlation between GPP and
LST becomes stronger (results not shown). While the
addition of LST to the MTCI model may not necessarily
improve model performance during the active growing
season, as shown in this study, LST may improve the ability
of the model to estimate the timing of the inactive photo-
synthetic period, pre and prior to the growing season,
especially for evergreen vegetation [Sims et al, 2008].
However, the differences in the surface temperature and soil
temperatures at rooting depth still remain a potential barrier
to accurately predicting the onset of peatland photosynthesis
using LST.

[36] The lack of a strong significant correlation between
GPP and PAR is thought to be a primary reason why the
addition of PAR to the MTCI model often resulted in a
weaker correlation with GPP than when using the MTCI
model alone (Table 2). Low light compensation and satu-
ration points of Sphagnum mosses (55-500 pumol m 2 s ')
[Titus and Wagner, 1984] and shrub leaves at Mer Bleue
(600-900 pimol m 2 s~ ') [Small, 1972] may be partially
responsible for this weak correlation as linear relationships
between photosynthesis and PAR are only observable early
and late in the growing season (data not shown). Further-
more, the relationship between PAR and GPP is not only
controlled by the amount of PAR that reaches the canopy
but also the fraction of this radiation that is diffuse, as dif-
fuse radiation allows radiation to be spread more evenly
throughout the plant canopy, thereby reducing light satura-
tion and increasing overall photosynthetic capacity. Moore
et al. [2006] reported similarly weak but significant corre-
lations between daily rates of GPP and PAR (* = 0.19, p <
0.001) at Mer Bleue using 5 years of data. Sims et al. [2008]
also noted that the addition of PAR to a GPP model based
solely on the EVI, did not improve correlations with GPP
across a variety of ecosystems and in some cases the model
performance was reduced, although in contrast, a recent
study by Schubert et al. [2010] reported stronger correlations
between GPP and the product of EVI and PPFD (photosyn-
thetic photon flux density) than between GPP and the
product of EVI and temperature, at two Swedish peatlands.

[37] In general, the addition of fPAR to the basic MTCI
model only slightly improved the correlation with GPP at
both sites, although the product of MTCI and fPAR was
able to explain 13% more of the variation in GPP than the
simple MTCI model at Mer Bleue during 2003. This is
thought to be a consequence of GPP being more strongly
correlated with fPAR than MTCI during this time period
(Table 2). Although fPAR and MTCI are correlated, because
canopy growth is inherently linked to photosynthesis, which
is in turn related to the presence of chlorophyll, there are
also clear differences between these variables. The results
suggest that when plant water availability is reduced, as it
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was at Mer Bleue during the summer of 2003, the seasonal
pattern of carbon uptake is not necessarily altered, even
though the actual rate of uptake is reduced. As a conse-
quence fPAR remains strongly correlated with GPP, but
chlorophyll content, inferred from the MTCI, appears to
have less influence over photosynthetic processes under
such conditions.

[38] Of all the models tested, the product of MTCIL, fPAR
and PAR was able to explain the most variation in peatland
GPP, for both sites and all years tested (Table 3). The
MTCI, fPAR, PAR model represents a “green” canopy
LUE model in so much as the inclusion of MTCI, as an
indicator of canopy chlorophyll, within a LUE type model,
ensures that the APAR component of the LUE model (i.e.,
fPAR x PAR) relates specifically to the photosynthetic
components of the plant canopy i.e., the parts of the canopy
that are actually photosynthesising. Only the PAR that is
absorbed by chlorophyll is responsible for photosynthesis.
Several recent studies have attempted to partition the plant
canopy into photosynthetic and non-photosynthetic com-
ponents either empirically [e.g., Xiao et al., 2004a; 2004b] or
via the use of radiative transfer models to improve satellite-
based estimates of GPP [e.g., Zhang et al., 2005; 2009]. It is
interesting to note that in our study, the greatest improve-
ment in GPP estimation, using the product of MTCI, fPAR
and PAR, was seen at the Western Peatland site. The model
was able to explain almost 15% more of the variation in GPP
than the MODIS GPP LUE model, which does not partition
the canopy into photosynthetic and non-photosynthetic
components (Table 3). The explanation for this may lie in
the fact that the Western Peatland is a treed peatland, con-
taining both evergreen and deciduous species. At the
Western Peatland, the difference between fPAR and the
fPAR actually able to photosynthesise will be substantially
more than at the Mer Bleue site, where trees are small and
coverage is sparse, thus the impact of partitioning the fPAR
by using the MTCI is likely to be far more pronounced. For
a deciduous forest, Zhang et al. [2005] reported large dif-
ferences between the fPAR of the canopy and the fPAR of
only the photosynthetic components, the extent of which
varied significantly over time.

[39] Our results also show site-specific slopes in the
relation of GPP for all models tested, including the MODIS
GPP product, albeit to a lesser extent than the models
developed from the MTCI. The slopes of the relationships
were in all cases higher at the Western Peatland site than at
Mer Bleue (Figure 6). It is not clear from our results what
the main cause of the difference in slope is. One explanation
could be the influence of canopy structure on the retrieval of
the MTCI. However, the relationship between chlorophyll
content and indices developed from the red edge region of
the electromagnetic spectrum, have often been shown to be
insensitive to differences in canopy structure [e.g., Gifelson
et al., 1996]. Furthermore, this explanation would not
explain why the slope of the MODIS GPP regression line
was also higher at the Western Peatland site. An alternative
explanation could be associated with the impact of sha-
dowing in environments where conical-shaped trees are
located in close proximity to one another, as at the Western
Peatland, thereby reducing overall reflectance from the plant
canopy. Shadowing is likely to result in a proportionally
greater reduction in reflectance in the NIR than in the Red
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regions of the electromagnetic spectrum. This would mean
that for a given value of GPP the MTCI value would be
lower in a shadowed canopy than in a non-shadowed canopy
thus effectively increasing the slope of the linear relation-
ship between MTCI and GPP. The slope of the relationships
with GPP may also be affected by differences in the LUE of
the peatland vegetation, i.e., for the same amount of chlo-
rophyll, as indicated by the MTCI, the GPP is higher at the
Western Peatland than at Mer Bleue. This explanation is
consistent with the higher LUE values recorded at the
Western Peatland and may also explain why the slope of the
relationship with GPP at Mer Bleue is much lower during
the drier year of 2003 than any of the other years. Both the
MTCI and fPAR are able to track patterns in GPP, but such
products often provide a measure of potential rather than
actual photosynthesis [Garbulsky et al., 2011]. Consequently
they are unable to mirror reductions in carbon uptake, which
may not be immediately reflected in changes in vegetation
physiology. At the Mer Bleue site, seasonal values of fPAR
and MTCI were similar for all years studied. Consequently
during 2003, MTCI values did not reflect the reduction that
was observed in GPP, which resulted in the observed lower
slope of the GPP relationship (Figure 6a). A similarly low
slope of the GPP relationship for Mer Bleue in 2003 was
observed for the MODIS GPP model, which includes a LUE
component. This may suggest that the impact of low
moisture availability on LUE may not be fully accounted for
by the vapor pressure deficit (VPD) scalar in the MODIS
GPP model. A number of previous studies using spectral
indices-based models have suggested that parameters such
as mean annual nighttime temperature [Sims et al., 2008] or
peak LAI [Lindroth et al., 2008] may be used to account for
site-specific relationships and thus enable scaling of GPP
using satellite data. However, the current paucity of peatland
EC data and the relatively short archive of MERIS data (i.e.,
from 2003 onwards) preclude such investigations in this
study. To facilitate a fuller explanation of the current find-
ings, future research efforts should be directed toward
detailed studies investigating both the influence of peatland
canopy structure and vegetation physiology on spectral
reflectance and photosynthetic processes under varying
temperature and moisture regimes.

[40] While the results of the study have shown great
promise, there are a number of issues that must be consid-
ered when utilizing EC tower data and coarse resolution
remotely sensed data (e.g., 1 km) to estimate GPP for
peatland landscapes. The primary issue is related to how
representative a 1 km pixel is, of peatland vegetation within
the footprint of the flux tower. In this study, every effort has
been made to select pixels that are thought to be represen-
tative of the peatland vegetation within the flux tower
footprint. Values of the MTCI extracted from the full res-
olution 300 m MERIS pixel located nearest to each of the
flux towers, were consistent with those obtained from the
corresponding 1 km data. As ~80% of the flux measured by
EC towers often comes from within 200 m of the tower site
[e.g., Connolly et al., 2009; Lund et al., 2007], we assume
that the 1 km tower pixels provide a reasonable represen-
tation of the site conditions. However, there are a number of
potential errors associated with such an assumption. First,
the flux tower footprint is not a static entity. The actual size
and shape of the footprint largely depends upon wind speed,
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direction and surface roughness [Schmid, 2002], all of which
may vary spatially and temporarily. Second, the geolocation
accuracy of the satellite data is not perfect. The error in the
absolute location accuracy of the MERIS data varies
between 160 m and 230 m, dependent on year of data
acquisition [Goryl and Saunier, 2004]. Consequently there
is the potential for a scale mismatch between the flux tower
footprint and the MERIS pixels used. The implications of
such a scenario would be greatest for the Mer Bleue peat-
land, where heterogeneity in MTCI values within the 1 km
MTCI pixel, appears to be greatest. A somewhat related
issue is the development of MTCI-based models using data
from multiple sensors. Where it was necessary to develop
models using data from both the MERIS and MODIS sen-
sors, the artifacts of, and differences in, viewing geometry,
geolocation accuracy of pixels, and the resampling and/or
compositing techniques of the two sensors, are such that
pixels may not always be perfectly co-registered. The
implications of such a mismatch are again greatest when
monitoring heterogeneous landscapes. One way to avoid
such problems would be to utilize remote sensing data from
the same satellite sensor. The MERIS global vegetation
index (MGVI) is a standard level 2 (L2) product that esti-
mates fPAR from MERIS data [Gobron et al., 1999],
although at the time of this study MGVI composites at
appropriate spatial and temporal resolution were unavail-
able.

[41] One possible future solution to overcome both the
problems of peatland spatial heterogenity and the unwanted
artifacts associated with combining data from different
sensor platforms, is to utilize data obtained from the forth-
coming Sentinel suite of satellites, due to be launched by the
European Space Agency in 2013. The Ocean and Land
Color Instrument (OLCI) on board Sentinel-3, will enable
the routine generation and compositing of both MTCI and
MGVI data products at the full 300 m spatial resolution,
thus both products will be routinely available from the same
sensor at a higher spatial resolution than is currently pos-
sible. Furthermore, Sentinel-2, with its large swath width
(290 km) and frequent revisit period (~5 days at midlati-
tudes), will facilitate the generation of MTCI data with an
unprecedented 20 m spatial resolution. Such information is
essential for spatially explicit monitoring of peatland carbon
dynamics.

5. Conclusion

[42] Our results have shown that simple MTCI-based
models can be used for estimates of inter- and intra-annual
variability in peatland GPP. The MTCI is itself a good
indicator of peatland GPP and compared favorably with the
more complex MODIS GPP product on a site specific basis.
The incorporation of MTCI into a light use efficiency type
model, by means of partitioning the fraction of photosyn-
thetic material within a plant canopy, showed most promise
for treed peatlands, outperforming all other models, including
the MODIS GPP product. Although a number of the MTCI-
based models work well for individual sites, research is
ongoing in order to predict the variations in the slope of the
relationship between MTCI-based models and GPP and to
fully account for the down regulation in carbon uptake,
which may occur under moisture limiting conditions. More
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work is also needed to fully explore the efficacy of this
technique across other peatlands and, where possible, to
utilize longer time series of data for full model development
and validation. Our results show great promise, although
future research should also concentrate on understanding the
potential of the forthcoming ESA Sentinel missions for
improved spatial characterization of peatland fluxes. We
suggest that the MTCI may ultimately facilitate improved
quantification of the temporal and spatial dynamics of
peatland carbon fluxes.
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