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Abstract: Fractional order derivative operators are global ones that the time fractional one 

possesses memory character while the space one reflects non-local character. In this paper, a new 

fractional constitutive model is suggested in the investigation of heat conduction with 

Cattaneo–Christov upper-convective derivative. Governing equation is formulated where the space 

fractional derivative is characterized by the weight coefficient of forward versus backward 

transition probability and solved by L1-approximation and shifted Grünwald formula. Results show 

that the fractional parameters, time and location parameters, relaxation parameter, weight 

coefficient and convection velocity have remarkable impacts on heat transfer characteristics. 

Temperature distribution profiles are monotonically decreasing in a concave form versus time 

fractional parameter under relaxation parameter exists, while in a convex form with space fractional 

parameter evolution under three special conditions, i.e., the right region, the larger weight 

coefficient (γ>=0.5) and smaller convection parameter u. 

Keywords: Heat conduction, Cattaneo-Christov flux, fractional derivative. 

1. Introduction 

A considerable attention has been devoted to heat conduction [1-3] due to its extensive 

application in widespread fields. The classical 1-D constitutive model to describe heat conduction is 

deduced by the Fourier’s law [4] which provides a way to study heat conduction and becomes the 
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basis to study the heat transfer process in the past few years. However, a paradox for the Fourier’s 

model [5-7] is that it is felt instantly throughout the whole of the medium even for small times. This 

behavior contradicts the principle of causality [8-9] which issued an infinite propagation velocity. 

In order to overcome this problem, a modified constitutive model is proposed by Cattaneo [10] 

which takes the relaxation parameter into account. 

The Cattaneo constitutive relation only involves partial time derivative, higher spatial 

gradients may be required [11] for a complete process. Revising the time derivative as the Oldroyds’ 

upper-convected derivative, Christov [12] proposed the frame-indifferent generalization of 

Cattaneo model: 

                g r a dk T
t


 

          

q
q V q q V V q ,             (1) 

where q , V , k ,  and T  refer to heat flux vector, velocity vector, thermal conductivity, 

relaxation parameter and temperature distribution function, respectively. The propagation velocity 

[13] is defined as  
1/2

/v D  , and it reduces to the classical Fourier’s law with an infinite 

propagation velocity for 0  . The new flux model satisfies the objectivity principle and attracts 

a large number of scholars’ attention. Straughan [14] considered the thermal convection in a 

horizontal layer of incompressible Newtonian fluid with gravity acting downward. Using 

Cattaneo–Christov heat flux model, Han et al. [15] studied coupled flow and heat transfer of an 

upper-convected Maxwell fluid above a stretching plate, analyzing the dynamic property with 

different parameters effect and presenting a comparison of Fourier’s Law and the 

Cattaneo–Christov heat flux model. Basing upon Cattaneo–Christov theory, Hayat et al. [16] 

considered temperature dependent thermal conductivity in stagnation point flow toward a nonlinear 

stretched surface with variable thickness, results showed that temperature profile decreases for 

higher thermal relaxation parameter. Sui et al. [17] introduced the Cattaneo–Christov model to 

study and analyze the boundary layer heat and mass transfer in upper-convected Maxwell nanofluid 

past a stretching sheet with slip velocity. More literatures related to Cattaneo–Christov model can 

be seen in Refs. [18-21]. 

Fractional-order partial differential equation is a generalization and development of integer 

order one. The fractional derivative indicates that the position we consider is not only depended on 
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its nearby positions but also on the whole positions, while the integer order operator is only a local 

one. For the time fractional derivative, Du et al. [22] indicated that its physical meaning is an index 

of memory. The space one reflects a non-local character and it can describe transfer process in a 

highly inhomogeneous medium more adequately by comparing with experiment data [23]. The 

study for the application of fractional derivative operator has attracted considerable attentions. 

Zaslavsky [24] reviewed the new concept of fractional kinetics for systems with Hamiltonian chaos, 

proving that fractional kinetics is valuable in different important physical phenomena. Henry et al. 

[25] introduced the temporal fractional cable equations to model electrotonic properties of spiny 

neuronal dendrites, predicting that postsynaptic potentials propagating can arrive at the soma faster 

along dendrites with larger spine densities and be sustained at higher levels over longer times. Chen 

et al. [26] proposed variable-order fractional derivative model which can agree significantly better 

with experimental data. For more references about the application of fractional operators, see in 

Refs. [27-29].  

Motivated by above mentioned discussions, we firstly extend the study of heat conduction 

with time and space fractional Cattaneo-Christov equation. By considering the velocity as a 

constant and the generalized derivative of time [13] and space fractional order [30], Eq. (1) can be 

rewritten into the following one dimensional form: 

             
 

 
 1 , ,q q

q 1
( )

T x t T x t
u k

t x x x

 


  
   

    
       

       
,       (2) 

where   is introduced to keep the dimension of constitutive equation balance and its dimension is 

“ s ”, u  is the convection velocity along the x  direction,   ( 0 1  ) is the weight 

coefficient of forward versus backward transition probability, the symbol 
t








 is the Caputo’s 

time fractional derivative [31] of order  ( 0 1  ), defined as: 

                   
 

   

 

0

, ,1 1

1

t
T x t T x

d
t t








 

 


   
 ,                 (3) 

where the symbol     represents the Euler gamma function. 

The symbols 
x








 and 

 x







 
 are the left and right Riemann-Liouville fractional 
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derivatives of order   ( 0 1  ), the corresponding definitions [32] on a finite domain 

 ,a b  are given by: 

 

 
   

, 1
,

1

x

a

T x t
x T t d

x x

 


  



 
 

    
,              (4) 

and 

 

   
   

, 1
,

1

b

x

T x t
x T t d

xx

 


  



  
 
   

 ,              (5) 

respectively. 

 

2. Mathematical formulation 

First, we give the mass conservation equation: 

                         d i v q 0
T T

c c u
t x

 
 

  
 

,                          (6) 

where c  and   are the specific heat capacity and mass density, respectively. 

By the combination of (2) and (6), one arrives at the time and space fractional 

Cattaneo-Christov heat conduction equation: 

 
 

1 1 2 2
1 1 2

1 2

1 0

T T T T T T
u u u u

t x t x t t x x

T T
D

x x x

 
 

 

 



    

 

 
 



     
    

       

   
    

     

,        (7) 

with the initial and boundary conditions: 

   
22

4

1
,0T x x L x

L
  , 

 ,0
0

T x

t





,                       (8) 

and 

                              0 , , 0T t T L t  ,                              (9) 

respectively. Here  /D k c  is the thermal diffusivity coefficient. For the sake of 

simplifying our study, the non-dimensional quantities are introduced: 

 
1 1

, , , , ,1 1
L L L

Lx u u r rt rt x r
D D

 

 
  

    





        .     (10) 

Submitting the non-dimensional quantities into (7)-(9), we can obtain the dimensionless 
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governing equation with initial and boundary conditions (the superscript * is omitted for 

simplicity): 

 
 

1 1 2 2
2

1 2

1 1

11
1 0

T T T T T T
u u u u

t x t x t t x x

T T

x x

 

 

 



   

 

 



 



     
    

       

  
    

    

,            (11) 

                           
22, 0 1T x x x  , 

 ,0
0

T x

t





,                   (12) 

                                  0 , 1 , 0T t T t  .                          (13) 

By setting 1   and 0u  , Eq. (11) reduces to the time fractional Cattaneo model [8] 

while Eq. (11) reduces to the classical heat conduction model [4] when 1  , 0   and 

0u  . 

 

3. Numerical discretization method 

Firstly, we define ix ih  ( 0,1,2,...,i m , 1mh  ) and jt j  ( 0 1 2j , , ,...,n ) 

where h  is the grid size in space and   is grid size in time. Prior to obtaining the numerical 

solution of Eq. (11), some useful definitions of difference scheme for the time and space fractional 

derivative are presented.                  

The Caputo fractional derivative of order 0 1   with respect to time at jt t  is 

approximated by L1-approximation [33], the discrete scheme is given as follows: 

 

 
       

1

1 1 0

1

,

1
, , ,

2

j

j

i j j k j k i k j i

k

T x t

t

T x t c c T x t c T x t





 



   







 
       


,              (14) 

where 0 1c  ,  
1 11kc k k
     , 1,2,...k  . 

On the basis of L1-approximation, the Caputo fractional derivative of order 1 1 2    

can be deduced by: 
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 

         

1

1

1

0 1 1 11
1

,
    

1
, , ( ) , ,

(2 )

j

j

i j i j j l j l i l i l

l

T x t

t

c T x t T x t c c T x t T x t





 







    






 
        



. (15) 

The shifted Grünwald formulae [34] to approximate the space fractional derivative of order 

1 1 2    are given by: 

 
 

+1

1

1

1

1
0

1

, 1
,

i
i j

l i l j

l

T x t
T x t

x h





 






   







 ,                     (16) 

 
 

 1

11

1

1 1

0

, 1
,

m i
i j

l i l j

l

T x t
T x t

hx





 


 










 




 
 ,                   (17) 

where the symbol 
1

l

 
 refer to the Grünwald weight coefficient and 

1

0 1   , 

1 1

11
2

l l
l

 
  



  
 
 


  . 

On the basis of the above discrete schemes, meanwhile, using the backward difference scheme 

for the first order space and time derivatives and the central difference scheme for the second order 

space derivative at the mesh point  ,i jx t , we can obtain the final discrete scheme of (11) in the 

form: 

2
1 1 1

1 0 2 11 2 1 1
2

2
1

1 2 12 1

2 2
1 1 1

2 2 0 1 12 1 1 1
0

1

1 1

1 1
2

1

m
j j

l i l i

l i

j

i

i
j j

i i l l

l

j

i

u
T T

h h h h

u u u
r r T

h h h h

u u u
r T T

h h h h h h

u
T

h

  

  





  

  

   
  

 


 

    
  







  

    
 






  

    




  
    

 

 
       
 

 
       
 

 





   

     

1
1 1 1 1

1 1 1

1

1
0 0

2 1 1 1 1

1

1
( )

j
j j j l l

i i i j l j l i i

l

j
k k

j k j k i i j i i

k

T T r T c c T T

r c c T T c T T




   

   





     



 
     

 

 
     

 





,        (18) 

where 1 1 (2 )
r





 


 
 and 

 2
2

u
r

h



 


 
. 

By defining new matrixes G  and A : 
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1

11

2
1 1

0 22 1 1

2
1

1 2 12 1

2
1 1

2 2 02 1 1

1

11

1
2,

1
1,

1 1
2 ,

1
1,

2,

l i

il

i l

l i
h

u
l i

h h h

u u u
G r r l i

h h h h

u u u
r l i

h h h h h

l i
h





 

 





 

 








  
 

 


 

   
 








 

 

 





 

 



 


  


    




       

 

      

  



            (19) 

and 

1

1 1

1 1

1 1

1 1
M M

A



 
 

 
 

  
 
 
 

 

,                     (20) 

Eq. (18) can be simplified as: 

 

 

1
1 1 1 1

1 1

1

1
0

2 1 1

1

1
( )

j
j j j j l l

j l j l

l

j
k

j k j k j

k

u
GT AT T r T c c T T

h

r c c AT c AT



 


   

  





   



 
      

 

 
   

 





.          (21) 

The initial condition and boundary condition are discretized as: 

 
20 2 1i i iT x x  , 

0 1

i iT T , 1,2,..., 1i m                     (22) 

and 

0 0jT  , 0j

mT  , 0,1,2, ,j ... n ,                        (23) 

respectively. 

 

4. Comparison between analytical and numerical solutions in the special case 

In order to verify the correctness of numerical discretization method, we construct the 

following governing equation by introducing a source item  ,f x t : 

 
 

 
1 1 2 2 1 1

2

11 2 1
1 ,

T T T T T T T T
u u u u f x t

t x t x t t x x x x

   

  
     

   

 

        
         

            
,(24) 
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subject to initial condition (12) and boundary conditions (13), where 

 

 
    

   
 

 
 

 

 

 

 

 

   
 

 
 

 

 
 

 

 
 

22 2 2 2

2
2

2 1 2 3

1 2 32

,

2 1 1 2 1 6 6 1
2

2
2 1 1 2 2 1

3

3 4 5
1 2

2 3 4

3 4 5
1 1 2

2 3 4

f x t

t x x t u x x t

t
ux x x t t

t x x x

t x x x





  

  
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,    (25) 

and the exact solution is    2 2 2, 1 (1 )T x t t x x   . 

The comparison results of exact solution and numerical solution are shown in Fig. 1. The 

comparison curves fit very well which can indicate the correctness of numerical results. 

 

5. Results and discussion 

Time fractional derivative provides an adequate description of memory properties of heat 

conduction while the space one reflects nonlocality in a complex medium. In this section, we 

mainly discuss the influences of different parameters on temperature distribution versus fractional 

parameters   and  . For the sake of simplicity, we discuss effects of   and   in a closed 

domain  0.1,1 . Two monotonically decreasing forms of temperature distribution are presented: 

one is for time fractional parameter evolution, the distributions are presented as a concave form 

with relaxation parameter, meaning that the distribution decreases less dynamically at smaller   

while more dynamically at larger one; the other is for space fractional parameters evolution, under 

the condition that 0.5x  , 0.5   and u  is smaller, the distributions are presented as a 

convex form, indicating that the distribution decreases from faster to slower with the increase of 

 . 

Figs. 2-3 present the temperature distribution versus   and   with different values of x . 

Fig. 2 shows that the larger the x  is, for smaller  , the smaller the magnitude of the distribution 

will be. With the increase of  , the distributions are monotonically decreasing in a concave form 
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and the distribution falls faster for a smaller x . For larger  , it is worth noting that the smallest 

distribution corresponds to 0.5x  , which is the middle and highest position in the region we 

consider. The influences of x  on temperature distribution versus   are presented in Fig. 3. It 

can be seen from the figure that the larger the x  is, the larger the magnitude of the distribution 

will be at smaller   and the faster the distribution will fall. It is noteworthy that there exists a 

upward tendency for =0.4x , that we can suppose there exists a upward tendency for the left 

region [0,0.5) . For x  in the right region  0.5,1 , the distributions are monotonically decreasing 

in a convex form with   increases. When 1  , the distributions change to flatten. 

The temperature distributions versus   and   with different values of t  are shown in 

Figs. 4-5. As Fig. 4 shows, the distributions versus   are monotonically decreasing in a concave 

form. The smaller the t  is, the larger the magnitude of the distribution at smaller   will be and 

the faster the distributions will fall. Then, at larger  , the magnitude becomes smaller. The 

distributions versus    in a convex form are shown in Fig. 5. For a smaller t , the magnitude of 

the distribution is larger at smaller   and the distribution decreases more dramatically. For 

1  , the larger the t  is, the larger the magnitude of the distribution will be. It can be seen from 

the figure that the distributions are monotonically decreasing for 0.4t   and 0.5t  , while 

there exists a upward tendency for 0.6t  . 

Figs. 6-7 present the time and space fractional parameters evolution of temperature 

distribution under the influences of different values of  . It can be seen from Eq. (11) that the 

diffusion term along the x  direction is combined by the left and right terms with forward and 

backward weight coefficients. For 1/ 2  , the left and right weight coefficients are equal. For 

1/ 2  , the left weight coefficient is larger than the right one while the right coefficient is larger 

for 1/ 2  . The larger left (right) coefficient means a larger weight for the non-local left (right) 

heat transfer. Fig. 6 shows that the distributions are monotonically decreasing versus   in a 

concave form. The smaller the   is, the larger the magnitude of the distribution will be, but the 

changes are not obvious. For 1/ 2   and 3 / 4  , as Fig. 7 shows, the distributions versus 
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  are monotonically decreasing in a convex form. It is noteworthy that there exists a upward 

tendency for 1/ 4   at smaller  . For a larger  , the magnitude of the distribution is larger at 

smaller   and the distribution decreases faster with the increase of  . For larger  , the 

distribution becomes smaller at a larger   and the distributions begin to flatten when 1  . 

The time and space fractional parameters evolution of temperature distribution with different 

values of u  are respectively presented in Fig. 8 and Fig. 9. For 0u  , (11) reduces to the time 

and space fractional Cattaneo heat conduction equation. Fig. 8 shows that the distributions versus 

  are monotonically decreasing in a concave form. For a larger u , the magnitude of the 

distribution is larger at smaller   and the larger the u  is, the faster the distribution will 

decrease. And the magnitude becomes smaller for larger   (near to 1  ). Fig. 9 shows that 

the distributions versus   with different values of u  are monotonically decreasing in a convex 

form for 0u   and 0.3u   while there exists a upward tendency for 0.6u  . We can 

conclude that the larger u  can change the concavity and convexity of the temperature distribution. 

For a smaller u , the magnitude of the distribution is larger at smaller   and falls faster with   

increases. When 1  , the distributions change to flatten. 

 

6. Conclusions 

Time and space fractional Cattaneo-Christov constitutive model is proposed to describe heat 

conduction. Solutions of formulated governing equation are obtained numerically and the 

comparison of numerical solution and exact solution is presented by introducing a source term. The 

influences of related parameters on time and space fractional parameters evolution of temperature 

distribution are analyzed in detail. Results show that the temperature profiles are monotonically 

decreasing in a concave form with time fractional parameter evolution with relaxation parameter, 

while in a convex form versus space fractional parameter when 0.5x  , 0.5   and u  is 

smaller. Further research is needed to verify the effectiveness of fractional Cattaneo-Christov heat 

conduction model with experimental data. 
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Figures list: 

 

Fig. 1. The comparison between exact solution and numerical solution when 1t  , 0.1  , 

0.1u  , 1  , 1   and 1/ 2  . 
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Fig. 2. The time fractional parameter evolution of temperature distribution with different values of 

x  when 0.1  , 1/ 2  , 0.95  , 0.5t   and 0.5u  . 

 

Fig. 3. The space fractional parameter evolution of temperature distribution with different values of 

x  when 0.1  , 1/ 2  , 0.95  , 0.5t   and 0.5u  . 
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Fig. 4. The time fractional parameter evolution of temperature distribution with different values of 

t  when 0.1  , 1/ 2  , 0.5x  , 0.95   and 0.5u  . 

 

Fig. 5. The space fractional parameter evolution of temperature distribution with different values of 

t  when 0.1  , 1/ 2  , 0.5x  , 0.95   and 0.5u  . 
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Fig. 6. The time fractional parameter evolution of temperature distribution with different values of 

  when 0.1  , 0.95  , 0.5x  , 0.5t   and 0.5u  . 

 

Fig. 7. The space fractional parameter evolution of temperature distribution with different values of 

  when 0.1  , 0.95  , 0.5x  , 0.5t   and 0.5u  . 
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Fig. 8. The time fractional parameter evolution of temperature distribution with different values of 

u  when 0.1  , 1/ 2  , 0.5x  , 0.5t   and 0.95  . 

 

Fig. 9. The space fractional parameter evolution of temperature distribution with different values of 

u  when 0.1  , 1/ 2  , 0.5x  , 0.5t   and 0.95  . 


