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Abstract

Secure multiparty computation allows mutually distrusting parties to compute a function on
their private inputs such that nothing but the function output is revealed. Achieving fairness
— that all parties learn the output or no one does – is a long studied problem with known
impossibility results in the standard model if a majority of parties are dishonest.

We present a new model for achieving fairness in MPC against dishonest majority by us-
ing public bulletin boards implemented via existing infrastructure such as Google’s certificate
transparency logs or blockchains. We present both theoretical and practical constructions using
either (extractable) witness encryption or trusted hardware (such as Intel SGX).

Unlike previous works that either penalize an aborting party or achieve weaker notions such
as ∆-fairness, we achieve complete fairness using existing infrastructure.

1 Introduction

Secure multiparty computation (MPC) allows a collection of mutually distrusting parties to jointly
compute a function on their private inputs while revealing nothing beyond the function output.
Since its conception three decades ago [Yao82, GMW87], MPC has found wide applicability to
important tasks such as electronic auctions, voting, valuation of assets, and privacy-preserving
data mining.

Fairness. Over the years, several security definitions for MPC have been studied. One natural
and desirable definition for MPC stipulates that either all parties receive the protocol output or no
party does. This is referred to as fair MPC.

The notion of fairness is very important (and necessary) in applications such as auctions and
contract signing. For example, if Alice is the first to learn she did not win an auction, she may
abort, claim a network failure, and try again with a new bid that just exceeds the previous winning
bid. More generally when the “value” of the function output may be enhanced by an information
asymmetry, e.g., if Alice is better off exclusively knowing the true value of a financial asset than
all parties knowing it, fairness is an issue.

In a seminal work, Cleve [Cle86] proved that fair MPC is impossible to realize for general
functions when a majority of the parties are dishonest. This result even holds when the parties
have access to a trusted setup such as a common reference string.
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The pursuit of fairness. In light of Cleve’s impossibility result, a vast amount of research effort
has been dedicated towards the study of mitigations to the fairness problem. In particular, two
prominent lines of research have emerged over the years. The first research direction considers the
problem of achieving fairness in the standard model for a restricted classes of functions [GHKL08,
GK09, ALR13, Ash14, ABMO15].

The second research direction studies fairness for general functions by augmenting the com-
putation model and/or by relaxing the definition of fairness. The prominent examples in this
direction range from using a trusted party to restore fairness [CC00], to weaker models where the
honest parties can recover the output at computational cost or time at most ∆-times that of the
adversary [EGL85, BG89, GL90, Pin03, GMPY06, PST17] (where ∆ is a constant), to penalizing
aborting parties monetarily [ADMM14, BK14, KMB15, KB16]. See Section 2 for a more elaborate
discussion.

While these mitigations are helpful, they fall short of solving the problem in many circumstances.
In particular, they either require appointing trusted parties for very specific tasks (related to the
protocol) that can be hard to find, or require that the parties’ possess precise estimates of the
adversary’s resources and incentives. If the adversary values exclusive knowledge of the output
very highly, it may not be practical to have a large enough computational differential or penalty to
deter aborts.

Our Model: Public Bulletin Boards. In this work, we take a new approach to achieving
complete fairness in MPC for general functions. We consider a setting where the parties have
access to a public ledger, or a bulletin board that allows anyone to publish arbitrary strings. Upon
publishing its data D on the bulletin board, a party receives a proof (or a signature) to establish
that D was published. The bulletin board is public, in that anyone can see all of its contents. The
main security requirements from the bulletin board are that its contents cannot be erased, nor can
proofs of publish be forged.

Our choice of the bulletin board model as a viable model for fair MPC is motivated by the fact
that implementations of public bulletin boards already exist in practice. We can realize a bulletin
board from an existing centralized system: Google’s certificate transparency project which logs
issued certificates.1

A decentralized implementation of a bulletin board can be realized from blockchain-based
ledgers such as Etherium with proofs of stake [BGM16]. Proof of stake systems assume that
some quorum of users are honest. For each block, proof of stake systems select the quorum users,
typically at random but proportional to the amount of currency or stake they have in the system,
and that quorum must sign the next block and (randomly) select the next quorum. The signature
on a block by the quorum constitutes an unforgeable proof that data is on the bulletin board. In
contrast to e.g. byzantine agreement protocols, however, the user group is ad-hoc and tolerant
to churn. Proof of Stake and hybrid Proof of Stake/Proof of Work systems are an area of active
research.

1.1 Our Results

In this work, we construct theoretical and practical fair MPC protocols for general functions in
the bulletin board model. We, in fact, provide general transformations from any (possibly unfair)

1Looking forward, our protocol only needs to post a constant sized token to the blockchain and this can readily
be embedded in a URL or certificate.
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n-party MPC protocol that supports t < n corruptions to a fair MPC protocol secure against
the same number of corruptions. Crucially, the assumptions used in our transformations affect
fairness only: the correctness and privacy properties of the underlying MPC scheme are completely
preserved even if the assumptions were not to hold.

I. Fair MPC from (Extractable) Witness Encryption. Our first contribution is a fair MPC
protocol in the bulletin board model assuming the existence of witness encryption (WE) [GGSW13]
and injective one-way functions. In order to rely on the standard security of WE, we require the
bulletin board’s proof of publish to be implemented via unique signatures [GO92, Lys02]. If the
bulletin board is implemented via standard signatures (e.g., in Google Transparency Certificates) or
proofs of stake (e.g., in Etherium), then we require the stronger assumption of extractable witness
encryption [BCP14].

Candidate constructions of WE for NP [GGSW13, GLW14] are known from multilinear maps
[GGH13]. Since present constructions [GGH13, CLT13, GGH15, CLT15] of multilinear maps are
quite inefficient, we view our first construction as a feasibility result. We note, however, that
our construction requires WE for a specific NP language for which constructing efficient schemes
from simpler assumptions might be easier. Indeed, a fascinating open question for future work is
whether WE for the specific language used in our constructions can be implemented from existing
constructions for the related notion of hash proof systems [CS98].

II. Fair MPC from Secure Processors. Our second contribution is a fair MPC protocol in the
bulletin board where all the parties have access to secure processors. In fact, Cleve’s impossibility
result holds even in the presence of secure processors, and was proved recently in [PST16]. For
concreteness, we work with Intel SGX as a secure processor, following the formalization of [PST17].
For this result, we only need standard cryptographic assumptions such as secret-key authenticated
encryption and signatures. We provide an implementation of this protocol in Section 8.

Comparison with recent works. Recently, [ADMM14, BK14] showed how block-chain based
decentralized cryptocurrencies such as Bitcoin can be used to achieve a notion of fairness with
penalties where aborting parties are forced to pay a pre-agreed financial penalty. We note that
while we also use blockchain based bulletin boards in our work, our end result is quite different in
that we achieve the standard notion of fairness – either all parties get the output or none do.

Very recently, [PST17] studied fairness in the model where each party has access to a secure
hardware equipped with secure clock. They achieve a notion of ∆-fairness which guarantees that
if an aborting adversary can learn the output in time T , then the honest party can also learn
the output in time ∆ · T for ∆ = 2. A disadvantage of this model is that T is controlled by the
adversary, who can set it arbitrarily to create large delay (e.g., in the order of several minutes or
hours) between the times when it gets the output and when the honest party does.

We note that while we also use secure hardware for our second result, we do not require them
to implement secure clocks.2 More importantly, we achieve the standard notion of fairness.

Realizing the Bulletin Board. Our constructions assume a public bulletin board that is capable
of producing an unforgeable proof that a string has been published to the bulletin board. Such
bulletin boards can easily be constructed practice if one is willing to instantiate the board using
a single trusted party. While this seems a strong assumption, the advantage of this approach is

2In the specific case where the bulletin board is implemented using a proof of work blockchain, we can use secure
clocks to achieve stronger security guarantees. This is unnecessary when the bulletin board uses signatures. We
discuss this further in Section 8.
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that such systems already exist and have been widely deployed in practice for applications such
as Certificate Transparency [cer17]. Re-using them to achieve fairness in arbitrary MPC protocols
requires no specific to the existing systems.

Alternatively, a bulletin board can be realized using a decentralized systems such as proof of
stake blockchains (e.g., [KRDO17]). These systems allow a quorum of honest users – who together
possess a majority ownership “stake” in a cryptocurrency – to securely authenticate an append-only
log using signatures. While a single block is not guaranteed to be “unforgeable,” such a property
can be established for a sufficiently long sequence of blocks. Finally, a weaker notion of security
can be achieved using a proof of work blockchain. In the latter case, the “proof” of publication
is not a cryptographically unforgeable signature, but rather the solution to a sequence of one or
more computational puzzles which may be, in practice, prohibitively expensive for an attacker to
forge.3 We explore this approach in our experimental implementation, although we stress that this
is merely an implementation detail. Our bulletin board could easily be replaced with one of the
alternatives above.

1.2 Technical Overview

We now describe the main ideas used in our constructions. For simplicity of exposition, we restrict
this discussion to the two-party case. It is easy to generalize the ideas presented below to the
multiparty case.

Starting Ideas. Our starting idea is to run an unfair MPC protocol to compute an encryption of
the function output as opposed to computing it in the clear. We then design a special decryption
procedure such that either no party is able to perform the decryption or both parties can. In other
words, we reduce the fairness problem in MPC to the problem of fair decryption.

At first, it may seem that we haven’t made any progress because it is unclear why fair decryption
would be any easier than achieving fairness for general functions. Indeed, fair decryption was shown
to be a complete functionality for fair MPC in [GIM+10].

Our key insight is that a public bulletin board can be used to implement a fair decryption protocol
for a witness encryption scheme. We elaborate on this idea below.

Fairness from Witness Encryption. A witness encryption scheme for a language L can be used
to encrypt a message m with a statement x in such a manner that the resulting ciphertext can only
be decrypted using a witness w for x . We now explain how we use witness encryption to implement
our fair MPC protocol.

In order to securely compute a function f with complete fairness, the parties first run a standard
(possibly unfair) MPC protocol to compute a randomized function that takes the private inputs say
(y1, y2) of the parties and returns a witness encryption ciphertext CT of the desired output F(y1, y2).
The statement x associated with CT is set to be such that a valid witness for x corresponds to the
proof of posting a “release token” α (to be determined later) on the bulletin board.

The only way for any party to obtain such a witness is to post α on the bulletin board and
obtain the corresponding proof of posting σ. However, in doing so, the pair (α, σ) is made public,
and therefore, anyone can obtain it. Thus, if a malicious adversary learns the witness for decrypting

3In practice, such proof of work blockchains provide a slightly weaker security that is related to ∆-fairness. An
attacker, given enough time, may be able to forge the proof of work necessary to prove publication. However, in the
trusted hardware setting we are able to mitigate this concern to some extent by requiring the attacker to provide a
proof in a limited period of time, as judged by the hardware.
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CT, then so can the honest party since it can simply read the public bulletin board. This mechanism
puts the honest party and the adversary on equal footing and resolves the fairness problem.

While the above constitutes the core idea behind our work, we run into several technical issues
in implementing this idea. We discuss these next, together with the solutions.

Issue #1: Setting the release token. An immediate issue with implementing the above idea is that
we cannot set the release token α to be an a priori fixed value that is known to the adversary.
Indeed, if this is the case, then the adversary can simply abort during the execution of the unfair
MPC protocol so that it learns the ciphertext CT, but the honest party does not. Now, even if the
honest party can obtain (α, σ) once the adversary has posted it on the bulletin board, it cannot
learn the output F(y1, y2) since it does not have CT to decrypt.

To address this issue, we set α to be a pair of random values (α1, α2) where αi is chosen by
the i-th party. During the initial MPC phase, each party uses αi as an additional input such that
the output of the MPC is (β,CT) where βi = f(αi) for some one-way function f and β = (β1, β2).
Now, even given (β,CT), the value α is not completely known to the adversary. Therefore, if it
aborts prematurely, then the honest party aborts as well, knowing that the adversary would not
be able to recover the output.

On the other hand, if the first phase is successfully completed, then the parties execute a second
phase where each party i simply sends over αi to the other party. Of course, the adversary may
abort in this phase after learning α. However, in order to decrypt CT, it will have to post α on
the bulletin board which means the honest party would learn it as well. This restores the balance
between the honest party and the adversary.

Issue #2: Security of WE. The standard definition of witness encryption only guarantees semantic
security for a ciphertext CT if the statement x associated with it is false. In our case, the statement
is always true. The only way to argue security in this case is to use a stronger notion of extractable
witness encryption [BCP14] which guarantees that for any statement x , if an adversary can dis-
tinguish between witness encryption of m from an encryption of m′ 6= m, then one can efficiently
recover from that adversary a witness w for x . Now, if the witness w is computationally hard to
find, then we can get a contradiction.

It was shown in [BCP14] that for languages with statements that have only polynomially many
witnesses, the standard definition of WE implies the stronger definition of extractable WE. We
note that if we set f to be an injective one-way function and implement the proof of posting on
the bulletin board via unique signatures [GO92, Lys02], then we can bound the number of valid
witnesses. In this case, we can rely on the standard definition of WE.

Issue #3: Rewinding. We run into yet another issue while arguing security of the above construc-
tion. Recall that in order to prove security of a fair MPC protocol, we must construct a simulator
who can “force” the correct output on the real adversary, provided that the adversary did not abort
prematurely. In our protocol, the only opportunity for the simulator to “program” the output is
inside the ciphertext CT computed during the initial MPC phase. However, this point in our over-
all protocol is “too early” for the simulator to determine with enough confidence whether the real
adversary is going to later abort or not. If the simulator’s decision to program the output turns
out to be wrong, then it would immediately lead to a distinguisher between the outputs of the real
and ideal experiments.

To deal with this issue, we use a rewinding strategy previously used in [GK96, GIM+10, Gor10]
to determine the aborting probability of the adversary with enough accuracy, while still ensuring
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(expected) polynomial running time for the simulator. In order to ensure indistinguishability of the
adversary’s view in the real and ideal experiments, we allow the simulator to also rewind the bulletin
board to a previous state, as and when necessary. Indeed, without this capability, the simulator
cannot prevent an adversary from “detecting rewinding” by continuously posting on the bulletin
board. A consequence of this is that we must model the bulletin board as a “local” functionality as
opposed to a “global” functionality [CDPW07, CJS14]. Furthermore, since our simulator performs
rewinding, we only achieve stand-alone security.

Fairness from Secure Hardware. Roughly, the main idea in our second protocol is to replace
the witness encryption in the plain model with a secure hardware that implements (essentially)
the same functionality as witness encryption. We require that each party is equipped with such
a secure hardware (e.g., Intel SGX). While much of the details in this protocol are similar to the
previous one, there are some key differences. We explain them below.

Once the parties have “installed” an appropriate program P (discussed below) in their own local
secure hardware and attestation of the same is successfully performed by everyone, they run (as in
the previous protocol) an execution of a standard MPC protocol to compute an encryption CT of
the desired output. Unlike the previous scheme where CT was computed using witness encryption,
here we use a regular secret-key encryption scheme. The secret key K used for encryption is
secret-shared amongst the parties who use their respective shares as additional inputs to the MPC.
The key K is also loaded in each party’s secure hardware, and is in fact computed by the secure
hardware devices during an initial key-exchange phase.

As in the previous protocol, we require that the ciphertext CT can only be decrypted if the
release token α has been posted on the bulletin board. The program P loaded in each party’s
secure hardware implements such a conditional decryption mechanism. Specifically, upon receiving
a ciphertext CT, a release token α and a corresponding proof of posting σ, the program P verifies
the validity of α and σ. If the verification succeeds, then it decrypts CT and returns the output;
otherwise it returns ⊥.

We remark upon two security issues: first, in order to prevent malleability attacks, we require
that an authenticated encryption scheme is used in order to compute CT. Further, to prevent an
adversary from performing a related key attack (by changing its input key share in the MPC),
we require that the secure hardware also provide commitments Ci of each key share Ki to all the
parties upon generation of K. A party i is required to input the decommitment to Ci in the MPC
protocol, and the MPC functionality checks that all the input key shares are valid by verifying the
decommitment information.

Second, for this protocol, we can completely dispense with rewinding and instead construct a
black-box, non-rewinding simulator. This is because the use of secure hardware allows the simulator
to “program” the output at the very end, when the adversary makes a decryption query to its secure
hardware.4 Indeed, in the secure hardware model, the simulator has the ability to observe (and
modify) the queries made by the adversary to its secure hardware. This means that when the
adversary makes a final decryption query, the simulator can check if it is valid. If this is the case,
then it queries the trusted party to obtain the function output. At this point, the simulator sends
a “fake” decryption query to the secure hardware that already contains the desired output. Upon
receiving this query, the secure hardware returns the programmed output to the adversary. We
note that this programming technique for secure hardware was recently used in [PST17].

4We also use an MPC in the common random string (CRS) model (e.g., [CLOS02]) to implement the first phase
of the protocol. By using the CRS trapdoor, the simulator for this phase can avoid any rewinding of the adversary.
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Because of the above modifications, in this protocol, we can model the bulletin board as a global
functionality. In this manuscript, however, we do not prove UC security of our protocol and leave
it for future work.

Optimizations. We mention a few optimizations to the above protocols to improve efficiency.
First, we can add an optimistic decryption phase in the above protocols that allows the parties to
learn the output using a simple decryption process, without using the bulletin board, provided that
all the parties are honest. Roughly, the MPC protocol executed in the first phase now additionally
computes another encryption CT′ of the function output, where CT′ is implemented using a regular
encryption scheme. The decryption key K ′ corresponding to CT′ is secret-shared between the
parties. Now, if the release-token exchange performed in the second phase is successful, then the
parties execute a third phase (that we refer to as the optimistic decryption phase) where they
exchange the key shares corresponding to K ′. If all the parties are honest, then they all learn K ′

and use it to decrypt CT′, without using the bulletin board. However, if one or more parties are
adversarial and abort in this phase, then the honest parties can still post the release token α (that
they learned in the second phase) on the bulletin board and then use the proof of posting to decrypt
CT as before.

We remark that in order to avoid related key attacks by an adversary, we would need a slight
modification to the above protocol where the MPC in the first phase outputs commitments to each
key share K ′i to both the parties. During the optimistic decryption phase, each party must reveal
the decommitment value together with K ′i. A party only accepts the key share as valid if the
associated decommitment information is correct.

Finally, we note that the size of the release token α = (α1, α2) used in the above described
protocols grows with the number of parties N . However, it is easy to make it independent of N
by setting α = ⊕iαi and using β = f(α) to verify the correctness of release token. An advantage
of this modification is that the witness length for the witness encryption used in our construction,
as well as the length of the string that is posted on the bulletin board becomes independent of the
number of parties.

2 Related work

A large body of research work has addressed the problem of fairness in secure protocols over the
years. Below, we provide a non-exhaustive summary of prior works. A more elaborate summary
can be found, e.g., in [BK14].

Fairness in Standard Model. Assuming an honest majority of parties, fair MPC can be achieved
in both computational [GMW87] and information-theoretic setting [RB89]. Cleve [Cle86] proved
the impossibility of MPC for general functions n the dishonest majority setting. Subsequently, an
exciting sequence of works [GHKL08, GK09, ALR13, Ash14, ABMO15] have shown that complete
fairness can still be achieved for a restricted class of functions. The works of [GK10, BLOO11, AO16]
study the problem of partial fairness.

Optimistic Models. Starting from the early work of [BGMR85], optimistic models for fair ex-
change have been studied in a long sequence of works [ASW97, ASW98, GJM99, Mic03, DLY07,
KL10]. An optimistic model for fair two-party computation using a semi-trusted third party was
studied in [CC00, KK16].
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Gradual Release Mechanisms. A different approach to fairness that avoids trusted third parties
was considered in a long sequence of works [BN00, GJ02, GP03, Pin03], following the early works
of [EGL85, BG89, GL90]. The protocols in these works employ a “gradual release” mechanism
where the parties take turns to release their secrets in a bit-by-bit fashion. The intuitive security
guarantee (formalized in [GMPY06]) is that even if an adversary aborts prematurely, the honest
party can recover the output in time comparable to that of the adversary by investing equal (or
more) computational effort.

∆-Fairness. Very recently, [PST17] considered a notion of ∆-fairness with the guarantee that if
an adversary aborts, then the honest party can learn the output in time ∆ · T , where T is the
time in which the adversary would learn the output. They propose a fair two-party computation
protocol with (∆ = 2)-fairness assuming that all the parties have secure hardware equipped with
secure clocks.

Fairness with Penalties. Recently, with the popularity of decentralized cryptocurrencies such
as Bitcoin, a sequence of works [ADMM14, BK14, KMB15, KB16] have shown how to implement a
fairness-with-penalties model for MPC where adversarial parties who prematurely abort are forced
to pay financial fines. Prior works in similar spirit considered fairness with reputation systems
[ALZ13] and legally enforced fairness [CKP04, Lin09].

3 Definitions

3.1 Fair Multi Party Computation

A secure fair multi-party computation protocol is a protocol executed by n number of parties
P1, · · · , Pn for a n-party functionality F . We allow for parties to exchange messages simultaneously.
In every round, every party is allowed to broadcast messages to all parties. We require that at
the end of the protocol, all the parties receive the output F (x1, . . . , xn), where xi is the ith party’s
input.5 We formalize the security notion below.

Ideal World. We start by describing the ideal world experiment where n parties P1, · · · , Pn

interact with an ideal functionality for computing a function F . An adversary may corrupt any
subset PA ⊂ P of the parties. We denote the honest parties by H.

Inputs: Each party Pi obtains an initial input xi. The adversary Sim is given auxiliary input z.
Sim selects a subset of the parties PA ⊂ P to corrupt, and is given the inputs xk of each
party Pk ∈ PA.

Sending inputs to trusted party: Each honest party Pi sends its input xi to the trusted party.
For each corrupted party Pi ∈ PA, the adversary may select any value x∗i and send it to the
ideal functionality.

Trusted party computes output: Let x∗1, . . . , x
∗
n be the inputs that were sent to the trusted

party. If any of the received inputs were ⊥, then the trusted party sends ⊥ to all the parties.
Else, the trusted party sends F (x∗1, . . . , x

∗
n) to all the parties.

5One can also consider asymmetric functionalities where every party receives a different output. Since there are
generic transformations from the symmetric case to the asymmetric case, we only consider symmetric functionalities
for simplicity of exposition.
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Outputs: Honest parties output the function output they obtained from the ideal functionality.
Malicious parties may output an arbitrary PPT function of the adversary’s view.

The overall output of the ideal-world experiment consists of the outputs of all parties. For any
ideal-world adversary Sim with auxiliary input z ∈ {0, 1}∗, input vector ~x, and security parameter
λ, we denote the output of the corresponding ideal-world experiment by IDEALSim,F

(
1λ, ~x, z

)
.

Real World. The real world execution begins by an adversary A selecting any arbitrary subset
of parties PA ⊂ P to corrupt. The parties then engage in an execution of a real n-party protocol
Π. Throughout the execution of Π, the adversary A sends all messages on behalf of the corrupted
parties, and may follow an arbitrary polynomial-time strategy. In contrast, the honest parties
follow the instructions of Π.

At the conclusion of all the update phases, each honest party Pi outputs whatever output it
received from the computation. Malicious parties may output an arbitrary PPT function of the
view of A.

For any adversary A with auxiliary input z ∈ {0, 1}∗, input vector ~x, and security parameter
λ, we denote the output of the MPC protocol Π by REALA,Π

(
1λ, ~x, z

)
.

MPC with Complete Fairness. We say that a protocol Π is a secure protocol if any adversary,
who corrupts a subset of parties and runs the protocol with honest parties, gains no information
about the inputs of the honest parties beyond the protocol output.

Definition 1. A protocol Π is a secure n-party protocol computing F with complete fairness if for
every PPT adversary A in the real world, there exists a PPT adversary Sim corrupting the same
parties in the ideal world such that for every initial input vector ~x, every auxiliary input z, it holds
that

IDEALSim,F

(
1λ, ~x, z

)
≈c REALA,Π

(
1λ, ~x, z

)
.

Security with Abort. For our constructions, we shall require a weaker security notion of MPC
referred to as security with abort. This definition differs from the above only in the ideal world,
where the adversary receives the output prior to the honest parties and then decides if the trusted
party should give the output to the honest parties or not.

3.2 Authentication Scheme with Public Verification

An authentication scheme with public verification consists of three polynomial algorithms (Gen,
Tag, Verify).

– Gen is PPT algorithm that takes as input λ and generates a key for signing. sk← Gen(λ).

– Tag is a deterministic algorithm that computes a tag on a message x. σ = Tagsk(x).

– Verify is a deterministic algorithm that allows for public verification of the tag. Verify(x, σ)
returns 1 if the tag σ verifies.

Definition 2. A scheme Σ = (Gen,Tag,Verify) is an authentication scheme with public verification
if for any sequence of messages m1, . . . ,mq and any PPT adversary A, the following is negligible
in the security parameter:

Pr

 sk← Gen(λ);
∀i σi = Tagsk(mi);
(m′, σ′)← A ({mi, σi}qi=1)

:
Verify(m′, σ′) = 1∧
m′ /∈ {m1, . . . ,mq}


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3.3 Witness Encryption

In this section, we define witness encryption [GLW14] and state its relation with extractable witness
encryption [BCP14] for polynomial witness languages.

Definition 3 (Extractable Witness Encryption). An extractable witness encryption ExtWE =
(Enc,Dec) for a NP language L associated with relation R consists of the following algorithms:

– Encryption, Enc(1λ, x,m): On input instance x and message m ∈ {0, 1}, it outputs a
ciphertext CT.

– Decryption, Dec(CT, w): On input ciphertext CT and witness w, it outputs m′.

We require that the above primitive satisfies the following properties:

– Correctness: For every x ∈ L, let w be such that (x,w) ∈ R, for every m ∈ {0, 1},

Pr[m = Dec(Enc(x,m), w)] = 1

– Security: Let A be a PPT adversary such that the following holds: for every x, m0,m1,
every auxiliary information z ∈ {0, 1}poly(λ):∣∣∣Pr[1← A(1λ,Enc(x,m0))]− Pr[1← A(1λ,Enc(x,m1))]

∣∣∣ ≤ ε
Then there exists a PPT extractor Ext such that:

Pr[w ← ExtA(1λ, x, z) : (x,w) ∈ R] ≥ ε− negl

We now define the notion of polynomial witness languages.

Definition 4 (Witness Languages). Consider an NP language L and let R be its associated relation.
We say that L is a polynomial witness language if there exists a fixed polynomial p such that for
every x ∈ L it holds that there exists a size p(|x|) set of witnesses w such that w ∈ {0, 1}poly(|x|)

and (x,w) ∈ R.

Definition 5 (Witness Encryption). A witness encryption WE = (Enc,Dec) for a NP language L
consists of the following algorithms:

– Encryption, Enc(1λ, x,m): On input instance x, message m and it outputs a ciphertext CT.

– Decryption, Dec(CT, w): On input ciphertext CT and witness w, it outputs m′.

We require that the following properties hold:

– Correctness: For every x ∈ L, let w be such that (x,w) ∈ R, for every m ∈ {0, 1},

Pr[m← Dec(Enc(x,m), w)] = 1

– Message Indistinguishability: For every PPT adversary A, there is a negligible function
ε, such that for every x /∈ L the following holds:∣∣∣Pr[1← A(1λ,Enc(x,m0))]− Pr[1← A(1λ,Enc(x,m1))]

∣∣∣ ≤ ε.
The following theorem was shown in [BCP14].

Theorem 1. Suppose L is a polynomial witness language. Then, witness encryption for L implies
extractable witness encryption for L.
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4 Modeling the Bulletin Board

We describe briefly our modeling of the bulletin board. The bulletin board models a public ledger
that lets parties publish arbitrary strings. On publishing the string on the bulletin board, the party
receives a proof to establish the string was indeed published. In our setting, we model these proofs
via authentication tags that can be publicly verified and the string subsequently publicly accessible.
For security, we require that the authentication tags follow the standard notion of unforgeability
described earlier (see definition 2).

In addition, the bulletin board implements a counter. Each time a string is published on the
bulletin board, the counter is incremented and the authentication tag is produced on the string and
counter pair. While the counter value of the bulletin board is assumed to be publicly accessible,
we shall model it as an explicit query. The counter also serves as an index to the string on the
bulletin board.

Hence, we model the bulletin board BB through the following queries:

– getCurrentCounter: the bulletin board returns the current value of the counter.

t← BB(getCurrentCounter).

– post: on receiving value x, the bulletin board increments the counter value by 1 to t, computes
the authentication tag on (t||x) and responds with the tag and t to the posting party. The
value and the corresponding tag can be retrieved by querying the bulletin board on t.

(σ, t)← BB(post, x)

such that VerifyBB(σ, (t||x)) = 1.

– getContent: on receiving input t, it returns the value and the corresponding tag stored at
counter value t. If t is greater than the current counter value, it returns ⊥. Else,

(σ, x)← BB(getContent, t)

We note that bulletin boards have previously been considered in works such as [KL11], but
their model differs significantly from ours.

5 Fair MPC from Witness Encryption

Overview. We start by giving an overview of our protocol. Our protocol builds on an MPC
protocol that achieves the weaker notion of security with abort, where the fairness condition is not
required to hold. The initial phase constitutes of the parties using this unfair MPC protocol to
compute a witness encryption ciphertext of the function value they wish to compute. To decrypt, a
party must post messages of a specific form (referred to as “release tokens”) on to the bulletin board
which the bulletin board validates with an authentication tag. The idea then is that any party can
use this posted information and authentication tag to decrypt the witness encryption ciphertext.
The release token must include shares of all parties that are secret prior to the completion of this
initial phase. These shares must also be easily verifiable. Our construction uses injective one-way
functions, where the images of these shares are sent out during the initial phase.
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The next phase, on completion of the initial phase, constitutes of parties sending these secrets
to every other party. Once a party releases its share, it must not abort until it is sure that the other
parties cannot post to the bulletin board, and hence decrypt the message thereafter. Otherwise,
the adversary on receiving the secret shares will wait for the honest parties to abort before posting
to the bulletin board. This is resolved by parameterizing the protocol by a cut-off period which
once elapsed, effectively ends the protocol. If there isn’t a valid post to the bulletin board at this
time, no party gets the output.

To argue security, we require each statement in the language corresponding to the witness
encryption to have only a polynomial size witness set. To do so, we use an injective one-way
function and a unique signature scheme. The witness for the statement are the pre-images of the
values sent during the initial phase, and the corresponding tag from the bulletin board. This pair
is unique for a given statement. But we need to incorporate the cut-off period into the witness.
This is enforced by the counter in the bulletin board as described in section 4. In the protocol,
this translates to a window (set) of counter values which qualify as the additional variable in the
witness. To ensure that the number of witnesses are still polynomial, the window size has to be
polynomial. We parameterize the protocol with the size of this window, and the parties choose the
start point of the window.

As discussed in the introduction, for the proof in this model, it is essential that the simulator
is able to reset the bulletin board to a prior point (in essence, rewinding).

– rewind: This functionality is reserved for the simulator in the ideal world. On receiving
additional input t, the bulletin board internally resets its counter to t and clears all data
stored beyond the counter value t. The simulator gets no output on this query.

⊥← BB(rewind, t)

We want to stress that this additional capability is only limited to the construction in this
section and the construction in the next section (using trusted hardware) we will not require this.

We additionally discuss an extension to an optimistic phase where the parties can share some
additional secrets (different from before) that enable them to decrypt a (different) ciphertext con-
taining the output, without having to post to the bulletin board. Of course, the adversary can
prematurely abort in this phase and obtain the output for itself. To protect against this, the opti-
mistic phase is reached only once it has been established that the parties have enough information
that would enable them to use the bulletin board, to decrypt to the output, in case the adversary
aborts in this phase.

Construction. We now proceed to describe our protocol Πfair. It uses the cryptographic primitives
and a bulletin board as described below. The formal protocol description is given in Figure 1.

1. A injective one-way functions f .

2. An authentication scheme with public verification (Gen,Tag,VerifyBB) such that the authen-
tication tags are unique for a given message.

3. A witness encryption WE for the language

LWE,∆t =
{(
{yi}i∈[n], T

) ∣∣∣ ∃ (t, σ, {ρi}i∈[n]

)
s.t. (∀i ∈ [n], yi = f(ρi)) AND

t ∈ {T, T + 1, · · · , T + ∆t} AND VerifyBB((t||ρ1|| · · · ||ρn), σ) = 1
}

12



For a given x ∈ LWE,∆t, if f is an injective one-way function and (Gen,Tag,VerifyBB) is a
scheme that generates unique authentication tags, it is easy to see that there are only ∆t+ 1
witnesses for x. If ∆t is set to be polynomial in the size of x, there are only polynomially
many witnesses for any given statement, and thus LWE,∆t is a polynomial witness language
(see Definition 4). From Theorem 1, given LWE,∆t is a polynomial witness language, we know
that a witness encryption for LWE,∆t is also an extractable witness encryption for LWE,∆t.

4. An MPC protocol that computes:

F ′∆t((x1, ρ1, t1), · · · , (xn, ρn, tn)) =
(
c, {f(ρi)}i∈[n] , T

)
where T = max(t1, · · · , tn) and c = WE.Enc(xWE,∆t,F(x1, · · · , xn)) for xWE,∆t = ({f(ρi)}i∈[n] , T ).
We do not require this protocol to be fair. Importantly, we use the MPC protocol in the com-
mon random string (CRS) model. This allows for black-box simulation of the adversary
without the necessity of rewinding. For this section, we shall drop the CRS notation, but it
will be implicit.

Remark 1. In the construction described above, the size of the witness encryption circuit is de-
pendent on the number of parties in the protocol. This can be remedied by using the XOR of the
ρi values as the release token, and applying the injective one-way function on this. The rest of the
protocol remains the same.

5.1 Proof of Security

We prove the security of our construction in the F ′∆t-hybrid model.

Simulator S. We start by constructing a simulator S. Our simulator uses rewinding strategy
similar to the one described in [Gor10] (which in turn builds on [GK96]). The simulator has access
to an ideal functionality for computing F , and simulates F ′∆t for the real world adversary. In
addition, for the proof in this model, the simulator reserves the right to reset the bulletin board to
a prior point (in essence, rewinding). Further, S forwards any queries the adversary makes to the
bulletin board, and returns the corresponding response from the bulletin board.

1. S receives inputs {(xa, ρa, ta)}a∈A sent by the adversary that are intended for F ′∆t.

2. Mark the current value of the counter so that S can rewind the bulletin board to this point.

tmark ← BB(getCurrentCounter)

3. S simulates the output of ideal functionality computing F ′∆t as follows:

(a) Set T = max{{ta}a∈A, tmark}.
(b) Randomly pick {ρh}h∈H for the honest parties.

(c) ∀i ∈ [n], yi := f(ρi).

(d) Compute ôut← F(x̂1, · · · , x̂n) where x̂h = 0 for all h ∈ H.

(e) Set xWE :=
(
{yi}i∈[n], T

)
and compute

c←WE.Enc
(
xWE, ôut

)
.

13



Protocol Πfair in the F ′∆t-Hybrid model

Inputs: Each party Pi has an input xi.
Common input: The verification key for the bulletin board vkBB.
The protocol:

1. Computation of F ′∆t.

– Pi samples token ρi
$← {0, 1}poly(λ).

– Pi queries the bulletin board to get the current counter value, i.e. ti ←
BB(getCurrentCounter).

– Pi sends (xi, ρi, ti) to the ideal functionality F ′∆t and receives
(
c, {yi}i∈[n], T

)
. It

aborts if it receives ⊥ from the ideal functionality.

2. Exchange of tokens. Pi broadcasts ρi to all other parties, and receives {ρ̂l}l∈[n]\{i}.

3. Obtaining the output. We split this into three cases, where either (i) Pi can post on
the bulletin board to receive a valid witness; or (ii) Pi waits for another party to post to
the bulletin board; or (iii) no party posts to the bulletin board.

(i) Pi received ρj from all the other parties, such that ∀j ∈ [n]\{i} : f(ρj) = yj . In this
case, Pi waits for the counter to get to T before posting to the bulletin board. Prior
to posting, it check to see if another party has already posted the same. This could
be done either by observing the broadcasts sent (to the bulletin board), or querying
the bulletin board at most ∆t times. On obtaining the appropriate authentication
tag, the witness encryption can be decrypted to get the output.

(ii) Pi received a ρj such that f(ρj) 6= yj , or ρj =⊥ (i.e. a party didn’t send its
token). In this case, Pi checks if the right message is posted to the bulletin board
for counter values between T and T + ∆T . If it finds the right value, it obtains the
authentication tag and decrypts the witness encryption to get the output.

(iii) If there are no posts on the bulletin board satisfying the given requirements, and
the counter has progressed beyond T + ∆t, Pi aborts.

Figure 1: Πfair in the F ′∆t-Hybrid model. The protocol relies on the security of witness encryption
for a polynomial witness language, injective one-way functions and authentication scheme with
public verification and unique tags.

(f) Send (c, {yi}i∈[n], T ) to the adversarial parties.

(g) If the adversary responds with an abort, S sends abort to the ideal functionality com-
puting F , and exits. For our analysis, we denote this by abort1.

4. S sends values {ρh}h∈H to the adversary. If the adversary sends values {ρa}a∈A such that
∀a, ya = f(ρa); or sends a post query to the bulletin board with value (ρ1|| · · · ||ρn) when
counter value is between T and T + ∆t such that ∀i, yi = f(ρi), the adversary has not
aborted.
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5. If the adversary aborted in the previous step, S sends abort to the ideal functionality com-
puting F , and exits. For our analysis, we denote this by abort2.

6. If the adversary didn’t abort prior to this, we need to estimate the probability of the adversary
not aborting. Let q represents the true of probability of this event, where the randomness is
over random coins used in step 3(b) and 3(e). The estimated probability will be denoted by
q̃.

(a) S fixes some number t = poly(λ).

(b) S rewinds the adversary to step 3, rewinds the bulletin board BB(rewind, tmark) and
repeats steps 3 and 4 (other than 3(g)) with fresh randomness each time. Repeat till
the adversary has not aborted t times.

(c) S estimates q as q̃ = t
# of repetitions . The polynomial defining t is chosen to be large

enough that

Pr

[
1

2
≤ q

q̃
≤ 2

]
> 1− 2λ.

7. The simulator sends {xa}a∈A to the ideal functionality for F and receives out. S repeats the
following at most t

q̃ times.

(a) With fresh randomness each time, S rewinds the adversary to step 3, rewinds the bulletin
board BB(rewind, tmark) and repeats steps 3 and 4 (other than 3(g)) replacing ôut with
out.

(b) If the adversary does not abort, we output its view and the simulator terminates.

8. If S has not terminated yet, output fail and terminate the simulation.

Claim 1. If simulator S does not outputs fail, the hybrid world and the ideal world are indistin-
guishable.

Proof. We split the analysis into two cases:

– Case 1: The adversary does not abort. Since the simulator does not output fail, it has
successfully got the adversary to accept the transcript for the right output. In this case,
the main thread of the adversary is statistically indistinguishable from the real execution.
Additionally, since the simulator is able to rewind the bulletin board, the adversary’s view of
the bulletin board is that of a straight line execution. Thus the joint distribution consisting
of the view of the adversary and the honest party outputs is indistinguishable.

– Case 2: The adversary aborts. As noted in the simulator, the adversary can abort in two
phases of the protocol. We deal with the two case separately:

abort1: The adversary aborts immediately after running the MPC for F ′∆t. In both the
real and ideal world, honest parties do not get any output. Thus, we need to argue that
the adversary’s view is indistinguishable when he receives a witness encryption of the actual
output as opposed to when he received the witness encryption of a random string. To the
contrary, assume that the adversary can distinguish between these two cases. Since there
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only polynomially many witnesses, we use the extractor for the adversary to recover the
witness. Since the honest parties aborts without revealing its share of the token, we can
use the extractor to construct an adversary that breaks the security of the injective one-way
function.

abort2: The adversary aborts on receiving the honest party’s tokens without posting to the
bulletin board. We use the same technique as above, leveraging the extractor for witness
encryption, to construct an adversary that breaks the unforgability of the authentication tags
issued by the bulletin board.

Claim 2. The simulator S outputs fail with only negligible probability.

The proof can be found in Appendix A.
We assume that the value of T chosen in the protocol is such that the real execution of the pro-

tocol ends in time bounded above by a polynomial g(λ). Otherwise F ′∆t implements an additional
check to ensure this.

Claim 3. The simulator S runs in expected polynomial time.

Proof. With probability 1−q, the simulator aborts prior to step 6. With probability q, the simulator
goes through the estimation phase and then attempts to force an accepting transcript onto the
adversary. The expected number of iterations for the estimation phase is t

q and the cut-off point

for forcing the transcript is t
q̂ <

t
2q . Hence the total expected running time is bounded by

g(λ) · q ·
(
t

q
+

2t

q

)
= g′(λ)

Thus S runs in expected polynomial time.

Given the above claims, the following theorem follows.

Theorem 2. Assuming the security of injective one-way functions, witness encryption for poly-
nomial witness language and the unforgeability of the authentication scheme, the above protocol
satisfies Definition 1 in the F ′∆t-hybrid model.

As mentioned in the introduction, in order to rely on the standard security of WE, we require
the bulletin board’s proof of publish to be implemented via unique signatures [GO92, Lys02]. If the
bulletin board is implemented via standard signatures (e.g., in Google Transparency Certificates) or
proofs of stake (e.g., in Etherium), then we require the stronger assumption of extractable witness
encryption [BCP14].

6 Fairness from Secure Hardware

A key limitation of our previous constructions is the need to use Witness Encryption (WE) to
protect the output of the MPC protocol. Unfortunately, current proposed WE construction are
inefficient, due to the high overhead of current constructions of multilinear maps. Moreover, the
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Witness Encryption paradigm requires the parties to compute a new WE ciphertext for each invo-
cation of the MPC protocol.

In this section we investigate an alternative paradigm that uses secure hardware. Our work
is motivated by the recent deployment of commodity virtualization technologies such as Intel’s
Software Guard Extensions (SGX). These technologies allow for the deployment of secure “enclave”
functionalities that can store secrets and perform correct computation even when executed in an
adversarial environment. Moreover, these systems allow an enclave to remotely attest to their
correct functioning, which allows for the establishment of trustworthy communications between
enclaves running on different machines.

Model Following the approach of Pass et al. [PST17] we model all available trusted hardware
processors from a given manufacturer as a single, globally shared functionality denoted Gatt (see
Figure 5). We describe the functionalities required for our construction, and refer the reader to
[PST17] for details. install loads the program prog onto the attested hardware. It returns an
enclave identifier eid. (For simplicity, we skip the session identifier used in [PST17].) The enclave
identifier is used to identify the enclave upon resume. resume allows for a stateful resume using
the unique enclave identifier generated. On running over a given input, the output produced is
signed to attest that the enclave with identifier eid was installed with a program prog, which was
then executed to produce the output. The program’s input is not included in the attestation.

Description. We describe here the main ideas in this construction that differ from the previous
construction. Upon loading the program onto the attested hardware (enclaves), there is an initial
key exchange to establish a secure authenticated channel between the enclaves. Any information
passed over this channel is hidden from the parties. It is important that enclaves attest to the fact
that they are running the correct programs prior to the key exchange.

Next, the shares of the release token and the key are input to the enclave. The enclaves use
the established secure authenticated channel to exchange this information and set up consistent
parameters (over all enclaves) for the decryption circuit. The parties then run an MPC protocol
external to the enclaves to compute an encrypted version of the output. As in our previous con-
struction, the players exchange shares of the release token that they are required to post onto the
bulletin board in order to decrypt.

For technical reasons, we need to ensure that the key share that a party sends to the enclave
is the one used in the MPC. This is ensured by using a commitment scheme which the MPC
computation verifier before returning the output.

Our protocol makes requires the following primitives:

1. A one-way function f .6

2. A signature schemes (Gen, Sign,Verify).

3. An authentication scheme with public verification (Gen,Tag,VerifyBB).

4. A multi-party computation in the CRS model for computing F ′ defined as

6In practice we suggest using a hash function.
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F ′
({
xi, ki, {comij}j∈[n], ri

}
i∈[n]

)
=


⊥ if ∃i, i′ s.t.

(
{comij}j∈[n]

)
6=
(
{comi′j}j∈[n]

)
⊥ if ∃i s.t. comii 6= Com(ki; ri)

y otherwise

where y = AE.Enc⊕n
i=1 ki

(F(x1, · · · , xn)). Essentially the MPC takes in a the input, key
share, a commitment tuple and a decommitment from each party. It checks if the tuple pairs
received are the same throughout and the commitment linked to each party decommits to
the key share. If this check fails it just returns ⊥, or it returns the output y.

5. Two instances of AE scheme (Enc,Dec) with INT-CTXT security for authentication and
semantic security.

6. A commitment scheme (Com) with computational hiding and statistically binding.

We describe and prove the protocol in the two party setting. Both extended naturally to the
multi-party setting. The protocol is described in Figure 2.

We note that there are two trapdoors installed into functionalities of progfair. These are used
for the security reduction of the one-way function, and to program the output correspondingly.
Specifically, the trapdoor is used to get the enclave to attest to a value of choice. These trapdoors
can be used by an adversarial party, but this makes no difference to the security since these values
are not sent across to the other party.

Theorem 3. Assume that F is one-way, the signature scheme is existentially unforgeable under
chosen message attacks, the authentication scheme satisfies standard notion of unforgeability, the
encryption scheme is perfectly correct, authenticated encryption scheme that is perfectly correct and
satisfies standard notions of INT-CTXT and semantic security, decisional Diffie-Hellman assump-
tion holds in the algebraic group adopted. Then, the above protocol satisfies Definition 1 in the
(Gatt,F ′)-hybrid model.

The proof can be found in Appendix A.2.

7 Instantiating the Bulletin Board

Our proposed paradigm relies on a verifiable public bulletin board that makes three guarantees
about entries posted to it:

– The entry’s presence can be cryptographically verified using a public operation.

– Once posted, the entry is available to all parties.

– Entries are assigned a unique monotonically increasing sequence number.

We now consider several existing techniques that we can leverage to obtain such a bulletin board.

Certificate Transparency Logs. Certificate Transparency (CT) [cer17] is a public audit log op-
erated by a coalition of browser vendors and certificate authorities. CT allows individual certificate
authorities to post newly-issued certificates to a public log. These entries are then (1) signed by
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progfair[∆t, P0, P1, vkBB, i] where i ∈ {0, 1} //for party Pi

On input (“keyex”):

Let a
$← Zp, and return ga

On input (“init”, k, t, ρ, r):
let ki := k, ti := t, ρi := ρi
comi := Com(ki; r), return comi

On input (“send”, gb):
let sk =

(
gb
)a

, cti ←
AE.Encsk(ki, ti, ρi, comi)

return cti
On input (“receive”, ct′1−i):

assert “init” and “send” have been
called.

(k1−i, t1−i, ρ1−i, com1−i) :=
AE.Decsk

(
ct′1−i

)
return com1−i

On input (“getParams”, v):
assert “init”, “send” and “receive” have

been called
T := max{t0, t1}, y := f (ρ0 ⊕ ρ1), K :=

k0 ⊕ k1

if v 6=⊥, return v, else return (T, y)
On input (“output”, ctMPC, t, ρ, σ, v):

if v 6=⊥, return v
assert “getParams” has been called
assert t ∈ {T, T + 1, · · · , T + ∆t}
assert f(ρ) = y
assert VerBB(t, ρ, σ)
return AE.DecK(ctMPC)

Protfair[F ,∆t, P0, P1, vkBB, i] where i ∈ {0, 1} //for party Pi, Pj = P1−i

Input: xi
Protocol:

1. let eidi ← Gatt.install(progfair[∆t, P0, P1, vkBB, i]).

2. Initiate the key exchange procedure. Let (ga, σi) ← Gatt.resume(eidi, “keyex”).
Send (eidi, g

a, σi) to Pj , await
(
eidj , g

b, σj
)

from Pj . Check if
Vermpk((eidj , progfair[∆t, P0, P1, vkBB, j], g

b), σj) = 1, else abort.

3. ki
$← {0, 1}λ, ρi

$← {0, 1}λ, ri
$← {0, 1}λ, ti ← BB(getCurrentCounter).

4. Initialize the enclave with the values obtained in the previous step. (comi, ) :=
Gatt.resume(eidi, “init”, ρi, ki, ti, ri).

5. Set up the exchange of information between enclaves. Let (cti, )← Gatt.resume(eidi, “send”).
Send cti to Pj and wait for ctj in response. On receiving ctj , send it to the enclave
(com1−i, ) ← Gatt.resume(eidi, “receive”, ctj). At this point, both commitments are avail-
able to the party.

6. Get parameters for the MPC computation, (T, y)← Gatt.resume(eidi, “getParams”,⊥)

7. Send (xi, ki, com0, com1, ri) to F ′ and receive ctMPC. Abort if ⊥ is received. // ctMPC of the
form AE.EncK(F(x0, x1))

8. Send token share ρi to Pj and wait for token share ρj .

– If ρj not received, or f(ρ0 ⊕ ρ1) 6= y, then wait to see if Pj posts the right value on the
bulletin board, when the counter is between T and T + ∆t. If the counter goes beyond
T + ∆t, and no such value posted, abort. If the right value is posted at counter tBB,
(σBB, ρ)← BB(getContent, tBB).

– ρj received and f(ρ0 ⊕ ρ1) = y. Wait for the counter value to get to T , and then
post ρ0 ⊕ ρ1 on the bulletin board to get the corresponding authentication tag, i.e.
(σBB, tBB)← BB(post, ρ0 ⊕ ρ1).

– Output Gatt.resume(eidi, “output”, tBB, ρ0 ⊕ ρ1, σBB,⊥).

Figure 2: Two party fair protocol Protfair in the (Gatt,F ′)-hybrid model.
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Initialization Decrypt

mean 1.180± 0.112 0.039± 0.001
mean 0.002± 0.000 0.037± 0.001

Table 1: Performance of SGX enclave setup and decryption (not MPC). Average and standard
deviation of 500 runs.

the log maintainer, and (2) added to a Merkle hash tree. The root of the hash tree is also signed
by (one or more) log maintainers and published to the world.

A collection of users known as monitors can access the CT log to view the contents of certificates.
While the CT log is itself not fundamentally tamper resistant – since the servers operating it can
remove portions and/or be disabled by remote network attacks – any tampering is detectable due
to the structure of the Merkle hash tree. The location of the entry within the Merkle hash tree
also serves to act as a proxy for a monotonically increasing sequence number.

Under the assumption that the existing CT logs are reliable and trustworthy, we can use CT
to build fairness systems by entombing the required public data into a component of an X.509
certificate signing request and requesting the certificate from a free certificate authority such as
LetsEncrypt [let17]. Because LetsEncrypt submits all certificates to a public log7 it is possible for
any party to recover these certificates and verify a cryptographic proof that the entries have been
published.

Public blockchains. Crypto-currencies such as Bitcoin or Etherium rely on a publicly available
data structure called a blockchain. Block-chains are an append-only ledger that is maintained
by an ad-hoc group of network peers. Blockchains come in two basic types. The first type use
computational proofs of work to determine which peer should be allowed to add a new block
of transactions to the blockchain. Clients accept the longest chain that contains well formed
transactions; as a result the system is secure as long as a supermajority of the computational
power in the network is controlled by honest peers. This approach is tolerant of churn, and thus
we need not pick a set of honest parties in advance.

An alternative approach uses proof of stake [BGM16]. In these systems a quorum of peers
is sampled from the network with probability proportional to the fraction of monetary holdings
controlled by each peer. This quorum is responsible for producing the next block and selecting
the next quorum by the same mechanism. The peers authenticate the resulting block by signing
it using a secure digital signature scheme. The security assumption here assumes that the parties
with the largest share of the cryptocurrency have a vested interest in keeping it running. Proof of
stake systems are in their infancy both in terms of deployment and theory. However, they provide
an interesting middle ground between the costs of a pure proof of work approach and the challenges
with selecting a set of trusted parties a priori to maintain the bulletin board.

8 Implementation

In this section we present an implementation of the protocol given in Section 6, and show that
the protocol is efficient. Our implementation consists of three major pieces: the bulletin board
instantiated using Bitcoin, the MPC protocol instantiated using the SPDZ framework [DKL+12,

7See https://crt.sh/?id=15707024
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SPD17], and a “witness decryptor” instantiated using an Intel SGX secure enclave. We describe
each component in more detail below.

Bitcoin as a bulletin board. For our prototype implementation we use the Bitcoin network,
which supports a limited scripting system called Bitcoin Script. In Bitcoin each transaction contains
a script that is evaluated to ensure the transaction is authorized. This scripting system supports
an instruction named OP RETURN, which allows the sender of a transaction to embed up to 40 bytes
of arbitrary data into a transaction that is transmitted for inclusion in the Bitcoin blockchain.
Each block of transactions in the blockchain contains a computational proof of work (PoW) that is
computed by the network. This proof is bound cryptographically to all of the transactions within
a block, as well as to the hash of the previous block. At current network difficulty, computing a
proof of work for a single block requires an expected 264 invocations of the SHA2 hash function
on the standard Bitcoin network. To verify publication on the bulletin board, our implementation
requires a fragment consisting of six consecutive blocks (where the transaction is located in the first
block of the fragment). The cost of forging such a fragment scales linearly in the number of blocks
required.

We note that the use of a computational proof of work bulletin board provides somewhat dif-
ferent fairness properties than a signature-based bulletin board, e.g., Certificate Transparency or a
proof-of-stake blockchain. Specifically, in this setting an attacker with sufficient time or computa-
tional power can always “forge” a satisfying chain of blocks, and use this private result as a witness
to enable decryption. Such an attack would be economically costly, since the corresponding effort
– if applied to crypto-currency mining – would be worth a substantial sum of money.8 However, we
can further restrict this attacker by employing a trusted clock within the witness decryptor (e.g.,
Intel SGX) 9. This optimization requires the attacker to complete the forgery within a pre-defined
time limit that approximates the expected time for the full Bitcoin network. Thus a successful
attacker must possess most of the available hashpower of the Bitcoin network (which currently
approximates the electrical consumption of Turkmenistan).

For our experiments, we use the public Bitcoin testnet. The Bitcoin testnet functions similarly
to the main Bitcoin network, but uses a zero-value currency and a low difficulty setting for the
proof of work. We selected testnet for our experiments mainly because blocks are mined extremely
rapidly and transactions require no monetary expenditure for “transaction fees”. However our code
can use the production Bitcoin blockchain without any code changes.

MPC Protocol. Our protocol can be used to extend any MPC scheme that supports efficient
symmetric encryption. We note that one could employ Intel SGX directly to perform a naive form
of MPC. However, our goal in this work is to demonstrate that our approach works efficiently even
when instantiated with a “cryptographic” MPC protocol.10

Thus for our implementation we use the SPDZ-2 framework developed by the University of
Bristol [SPD17]. SPDZ-2 is designed to tolerate dishonest majorities during computation. In SPDZ
circuits are designed in python and then compiled down into a circuit structure. The computation

8At present rates as of July 2017, this opportunity cost is approximately $28,000 per block forged.
9Correctly accessing trusted time from within an enclave is part of the Intel SGX specification, but it is not yet

supported as it relies on platform services which are not active. In our implementation, we include code to properly
access trusted time, but do not include it in our measurements because of the lack of support.

10Additionally, we remark that if SGX is used to implement the MPC protocol itself, a security breach of the SGX
system will result in the loss of all security properties provided by the MPC. On the other hand, if we employ a
cryptographic MPC protocol, then a failure of Intel’s SGX risks only the fairness property. We view this as a benefit
of our approach.
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is done in two phases: an offline phase that does not require the computation inputs and an online
phase that performs the actual computation. In order to optimize the running time of the online
phase, the pre-computation and compilation phases are relatively more time consuming.

The maintainers of SPDZ-2 have implemented the AES-128 cipher in order to benchmark its
efficiency. We repurpose this code to build a simple authenticated encryption system for that uses 3
rounds of AES to encrypt and authenticate one 128-bit block of data output from the computation.
The encryption scheme takes as input each party’s private computation input xi and keyshare ki.
It computes as output a ciphertext C encrypted under msk. We also use this AES-128 cipher to
implement a commitment scheme. The randomness of the commitment scheme is used as the key
to the cipher, with the commitment message as the plaintext.

We construct an MPC circuit for SPDZ-2 that takes in a private input xi, a keyshare ki, a
randomness share ri, and commitment to the master key com(msk; r). The first circuit computes
the output of the desired MPC functionality f(x1, . . . , xN ). Next it computes r = ⊕1≤i≤Nri and
opens the commitment. It compares ⊕1≤i≤Nki with the msk from the commitment. If they do not
match, sets f(x1, . . . , xN ) = 0. Finally, the circuit computes the encryption of f(x1, . . . , xN ) using
msk and outputs the final ciphertext.

SGX as Witness Decryptor. Intel’s SGX is a set of extensions to the x86 instruction set
that allows for code to be executed in a protected enclave. SGX programs are segmented into
two pieces: an untrusted application and a trusted enclave. The application consists of standard
software running on a standard operating system and we assume that it may behave maliciously
if the ith player is corrupted. Code within an enclave is verified upon startup and isolated from
inspection and tampering, even from an adversary that controls the system’s operating system. The
root of trust of an SGX enclave is the Intel processor, which enforces the enclave’s isolation. It is
worth noting that the code run within an enclave is not private; however secrets may be generated
or retrieved after the enclave is initialized. Note that the enclave has no direct access to network
communications, and must rely on the untrusted part of the application.11

We adapt an existing SGX-bitcoin client called Obscuro [Obs17] to perform the role of the
Witness Decryptor. This enclave is instantiated by each of the N parties participating in the
protocol. A single master instance of the enclave uses the sgx read rand function, supplied by the
SGX environment, to generate an AES master key msk that will eventually encrypt the output of
the MPC circuit. Additionally, the master enclave generates a random 320-bit release token t that
must be verifiably posted to a bulletin board before the ciphertext can be decrypted. Next, the
master applies a secret sharing scheme to derive secret shares (k1, . . . , kN ) of msk and (t1, . . . , tN )
of t. Finally, the master computes a commitment com(msk; r) and secret shares the randomness
into r1 . . . rN . Now for i = 1 to N it distributes the tuple (ki, ti,msk, t, com(msk; r), ri) to the ith

enclave via a secure channel.12

Once all secrets have been distributed by the master enclave, the channels are closed and each
enclave outputs its key share ki to the application. The users now invokes SPDZ to conduct the
MPC protocol, using as its private inputs xi, ki, ri, and com(msk; r). If the MPC protocol does
not complete successfully, the application aborts and a full restart is required. Otherwise, the
application obtains a ciphertext C output by the MPC protocol and provides this as input to the
enclave. The enclave attempts to decrypt the ciphertext under msk and if and only if this decryption
check completes successfully (and the result is the proper format and length), it releases ti, which

11This enables the application to censor or tamper with communications between the application and the network.
12SGX supports the creation of authenticated, secure channels using attestation and DHKE.

22



the application then transmits to all of the remaining parties.
To access the encrypted output of the MPC, at least one party must re-compute the release

token as t = (t1 ⊕ · · · ⊕ tN ) and post this value to the Bitcoin network inside of a transaction.
Each user’s application monitors the Bitcoin network using RPC calls to a local Bitcoin client
bitcoincli which is running on the user’s machine. This userland code then feeds the resulting
blockchain fragment (which consists of six consecutive blocks) back to the enclave, which confirms
that the release token matches its stored value t, and also verifies the proofs of work on each block.
While an adversarial user can block this response, they are unable to falsify or tamper with it
due to the fact that such tampering would require an impractical amount of computation. The
application also supplies the enclave with the output of the MPC C.

If all verifications succeed, the enclave decrypts the ciphertext C using an authenticated en-
cryption scheme under msk, and outputs the resulting plaintext.

Optimizations. In a bid to optimize the implementation, there are a few differences from the
described protocol in section 6. They do not make a difference to the security of the protocol, and
are briefly described here:

– Instead of each party generating its key and token shares, a designated master enclave chooses
them and distributes them to the other enclaves.

– Instead of a commitment for each share of the key, there is only a single “master commitment”
of the key.

Sample computation and performance. For proof of concept, we implemented a search pro-
gram that takes as input a search value x from one party and a list (y1, . . . , yn), from the other
party. These circuits each calculate an integer output M and encrypt the result as Enc(

⊕n
1 ki;M).

Since these are two-party functions we tested with N = 2 and n = (100, 500, 1000).

Figure 3: Mean runtimes for a linear search on n items using SPDZ taken over 50 iterations. Only
the online portion of the MPC is shown. In blue, we show the cost of running the search without
any provision for fairness. In red, the overhead from AES encryption needed for fairness.
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Figure 4: Mean runtimes for our AES circuit varied over the number of players participating. Only
the online portion of the MPC is shown. This circuit is dominated by 3 AES operations.

Cost of fairness in the MPC. Our implementation demonstrates that our approach can be used
add fairness to MPC schemes efficiently using current technology. We recall that fairness in MPC
is particularly important when the output of the MPC is extremely valuable. While adding three
rounds of AES to a simple MPC scheme represents a high cost, it adds a only a negligible cost
when considering more time consuming computations. In Figure 3 we show the average runtime
over 50 trials of a number of different circuits in SPDZ-2. The cost of encryption is clearly dwarfed
by large search problems and set intersection.

While we ran the MPC experiments with N=2 players, SPDZ-2 allows computations with more
players. In Figure 4 we consider only the cost of running the encryption component of the MPC
protocol with higher numbers of players. Because each player contributes a key share, the cost of
running the protocol increases with each player. While the runtime of the encryption operation
does increase, we note that it is still adds only a fraction of one second of online computation time
up to N = 6.

SGX Runtime. Intel SGX offers an extremely efficient method of trusted program execution. We
benchmark our SGX Enclave over 500 trials of the two party protocol for some fixed parameters.
We run our test on an Intel i5-6600K 3.5GHz processor with 16 GB of RAM running Ubuntu 14.04
and SGXSDK-1.7, running both the master and minion on the same hardware. For the purpose
of benchmarking, we hardcode into the master enclave the master AES key and fix the release
token to be the results of an OP RETURN instruction in a known block of the Bitcoin Testnet.
Additionally, we run the MPC protocol once to generate a valid ciphertext. With the pre-fixed
values, we can effectively check the running time of the various parts of the enclave’s execution. All
key exchange and interaction with the bitcoincli is still run as in the real protocol. In Table 1 we
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show the average running times of the various segments of the enclave, both for the master instance
and minion instance. For the minion’s execution time, we pause the timer while it is waiting for
the minion to open a network connection. It is clear that the slowest piece of the program is the
enclave initialization. This is because the enclave must provision all memory that it may require
from the SGX driver during initialization. Our implementation allocates more memory than it will
use to be conservative.
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A Proofs

A.1 Proof of Claim 2

The analysis for the proof below is taken from [Gor10, GK96].

Proof. The simulator S outputs fail only if it has reached step 7 and then fails in producing an
accepting transcript. S fails to reach step 7 with probability q.

We denote by p, the probability that the adversary does not aborts when given the witness
encryption of the correct functionality, i.e., p is the probability when the adversary is given the wit-
ness encryption of F(x1, · · · , xn). Recollect that q is the probability of the adversary not aborting
when given the witness encryption of F(x̂1, · · · , x̂n) where ∀a, x̂a = xa and ∀h, x̂h = 0. From the
security of witness encryption, we require |q − p| is negligible in the security. (probability is taken
over the random coins used to generate the output of F ′∆t.)

Pr[S outputs fail] = q
∑
i

(
Pr

[
1

q̃
= i

])
(1− p)t·i

≤ qPr
[
q

q̃
≥ 1

2

]
(1− p)

t
q̃ + qPr

[
q

q̃
<

1

2

]
≤ q(1− p)

t
2q + negl(λ) (1)

To show that the above equation is negligible in λ, we split the analysis into two cases:
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– Case 1: p ≥ q
2 . Substituting, we get

(1− p)
t
2q ≤

(
1− q

2

) t
2q
< e−

t
4

which is negligible is λ since t is polynomial in λ.

– Case 1: p < q
2 . To the contrary, let us assume Equation 1 is non-negligible. Then, there is

a polynomial poly and infinitely many values λ such that

q ≥ q(1− p)
t
2q + negl(λ) >

1

poly(λ)
.

Thus q > 1
poly′(λ)

for some polynomial poly′. This gives us

|q − p| >
∣∣∣q
2

∣∣∣ > 1

2poly′(λ)
.

This breaks the security of the witness encryption scheme.

Thus S outputs fail with only negligible probability.

A.2 Proof of Theorem 3

We consider the two party setting where P1 is corrupted. The other case is symmetric. The
simulator S works as follows:

1. Unless otherwise mentioned, S passes through messages between adversary A(P1) and Gatt.

2. S loads the program to get the corresponding eid0, i.e. eid0 ← Gatt.install(progfair[∆t,P0,
P1, vkBB, 0]).

3. Next, S initiates the key exchange phase (ga, σ0) ← Gatt.resume(eid0, “keyex”) and sends
(eid0, g

a, σ0) message to A.

4. S waits to receive
(
eid1, g

b, σ1

)
from A.

The simulator sees messages between A and Gatt, and can see if
(
eid1, g

b, σ1

)
sent by A is

different from the corresponding tuple it received from Gatt. If the tuples differ and the
signature verifies, output ⊥Gatt and exit.

5. Pick k0
$← {0, 1}λ, ρ0

$← {0, 1}λ, r0
$← {0, 1}λ, t0 ← BB(getCurrentCounter) and initialize Gatt

with these values, (com0, )Gatt.resume(eid0, “init”, ρ0, k0, t0, r0). Simulator sees the values
(ρ1, k1, t1, r1) that A sends to Gatt.

6. S calls (ct1, )← Gatt.resume(eid0, “send”), sends ct1 to A and waits for ct0.

As before, the simulator observes if ct0 sent by A is different from the value it received from
Gatt. If so, and Gatt doesn’t throw an exception, output ⊥AE1 and exit.

7. Make a call to Gatt to get the parameters, (T, y, )← Gatt.resume(eid0, “getParams”,⊥).
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8. Wait for A to send (x1, k
′
1, com

′
0, com

′
1, r
′
1) intended for F ′. If the commitment values are

not the same as the ones received earlier, send abort to the ideal functionality and send
⊥ to the adversary. If k′1 6= k1, i.e. the key shares sent at different points differ, and if
com′1 = Com(k′1; r′1) output ⊥com and exit. Else, pick K ′ randomly and compute ctMPC ←
AE.EncK′(F(0, x1)) to send to A.

9. S obtains its token share from Gatt, (ρ0, )← Gatt.resume(eid0, “getTokenShare”,⊥).

10. If A aborts immediately after receiving the output from F ′ without the honest party getting
it, send abort to the ideal functionality. But continue running S. If the adversary sends to
the bulletin board or enclave the correct pre-image of y, S outputs ⊥f and exits.

11. If A has not aborted, send ρ0 to A. If the adversary does not send ρ1, or post a valid pre-image
during the interval T to T + ∆T , but queries Gatt for the output on a valid authentication
tag, then we output ⊥BB and exit.

12. Alternatively, we split the behavior of the simulator three cases:

– If A responds with a valid ρ1 (i.e. f(ρ0 ⊕ ρ1) = y), then post to the bulletin board.
Recollect that S has reached this point only if the key shares sent by A were consistent.
Send x1 to the ideal functionality to receive out. If A makes the correct query to the
enclave, i.e. the ciphertext sent is the same as the one from the MPC, S programs
the output by returning Gatt.resume(eid1, “output”, tBB, σBB, out). If the ciphertext is
different and authenticates under key K ′, then output ⊥AE2 and exit.

– If the adversary does not send ρ1 but posts a pre-image of y during the interval T to
T + ∆T , S follows the same approach as the previous step.

– If A attempts to use the backdoor, forward the message to Gatt without modification.

We prove indistinguishability of the real and ideal worlds through a sequence of hybrids.

Hyb0: Identical to the real execution.

Hyb1: Identical to Hyb0 except that we introduce the following check. Observe the messages
between A and Gatt, and can see if

(
eid1, g

b, σ1

)
sent by A is different from the corresponding tuple

it received from Gatt. If the tuples differ and the signature verifies, output ⊥Gatt and exit.

Claim 4. Assuming that the underlying signature scheme is secure, Hyb1 is computationally indis-
tinguishable from Hyb0.

Proof. Hyb1 exits with output ⊥Gatt with only negligible probability. If not, we can use A to
construct an adversary that breaks the signature scheme.

Hyb2: Identical to Hyb1 except that we replace all occurrences of sk = gab with a random key.

Claim 5. Assuming that DDH holds, Hyb2 is computationally indistinguishable from Hyb1.

Proof. Follows directly from DDH security.
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Hyb3: Identical to Hyb2 except that we add the following additional checks:

– observe if ct0 sent by A is different from the value it received from Gatt. If so, and Gatt doesn’t
throw an exception, output ⊥AE1 and exit.

– if A sends a different key share k′1 intended for F ′∆t and com′1 = Com(k′1; r′1), output ⊥com

and exit.

– if A aborts immediately after receiving the output from F ′ (without the honest party getting
it), send abort to the ideal functionality. Additionally, wait to see if the adversary sends to
the bulletin board or enclave the correct pre-image of y. If so, outputs ⊥f and exit.

– if the adversary does not send ρ1 and does not post a valid pre-image during the interval T
to T + ∆T but queries Gatt on a valid authentication tag, output ⊥BB and exit.

Claim 6. Assuming the security of one-way permutation, statistical binding of the commitment
scheme INT-CTXT security of AE and unforgeability of the authentication scheme Hyb3 is compu-
tationally indistinguishable from Hyb2.

Proof. The only changes are in the checks performed. We argue that Hyb3 will output a special
abort with only negligible probability:

– ⊥AE1 is output with only negligible probability. Else, we can leverage the adversary to break
the INT-CTXT security of the AE scheme.

– ⊥com is output with only negligible probability. Else, we can leverage the adversary to break
the statistical binding property of the commitment scheme.

– ⊥f is output with only negligible probability. Else we can break the security of the one way
function. This follows from the fact that the simulator is see the queries that the adversary
makes to the enclave and the bulletin board. Since we want to force the challenge value
y∗ onto the adversary, we use a backdoor in the function. This backdoor does not give the
adversary any undue advantage as the value is not sent across to the other party.

– ⊥BB is output with negligible probability. Else, we can leverage the adversary to break
the unforgeability of the authentication scheme for the bulletin board. This is because the
adversary was able to produce a signature that has not been queried for before.

Hyb4: Identical to Hyb3 except that we intercept the ciphertext query for the output, and program
the output using the trapdoor to be AE.DecK(ct) if the other conditions are satisfied. Here K is
the key in the enclave.

Claim 7. Hyb4 is statistically indistinguishable from Hyb3.

Proof. This follows from the fact that it was only a statistical change. This is because we moved
the exact check to the outside of the enclave.
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Hyb5: Identical to Hyb4 except that replace com2 to be a commitment of a random value.

Claim 8. If the commitment scheme is computationally hiding, Hyb5 is computationally indistin-
guishable from Hyb4.

Proof. If the two hybrids are distinguishable, we can leverage the adversary to break the compu-
tational hiding of the commitment scheme.

Hyb5: Identical to Hyb4 except that we pick K ′ randomly and use K ′ to encrypt the output. Now,
the output is programmed in the last round with respect to the key K ′.

Claim 9. If the semantic security of the AE scheme holds, Hyb5 is computationally indistinguish-
able from Hyb4.

Proof. If the two hybrids are distinguishable, then we can build an adversary that breaks the
semantic security of the AE scheme.

Hyb6: Identical to Hyb5 except that we add the following additional checks. If the ciphertext
differs from the MPC output and it authenticates under key K ′, then output ⊥AE2 and exit.

Claim 10. If INT-CTXT security of the AE scheme holds, Hyb6 is computationally indistinguish-
able from Hyb5.

Proof. Since the only changes are additional checks, it is enough to show that S outputs ⊥AE2 with
only negligible probability. This follows directly from the INT-CTXT security of the AE scheme.
Specifically, we can receive the challenge ciphertext to the be the encryption of the function value
(either under the challenge key, or a random key). If the adversary is able to produce a verifying
ciphertext different from the one it receives it constitutes a forgery, thus breaking the INT-CTXT
security of the AE scheme.

Hyb7: Identical to Hyb6 except that if check did not result in a failure, send x1 to the trusted
party to obtain out. If the witness checks succeeds, program the output of the enclave to be out.
Else program output to be ⊥.

Claim 11. Hyb7 is statistically indistinguishable from Hyb6.

Proof. The change is only statistical since the execution thread reaches the point only if all prior
checks pass.

Hyb8: Identical to Hyb7 except that we replace the value inside the ciphertext to be F(0, x1).

Claim 12. If the semantic security of the encryption scheme holds, Hyb8 is computationally indis-
tinguishable from Hyb7.

Proof. If the two hybrids are distinguishable, then we can build an adversary that breaks the
semantic security of the encryption scheme.
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Hyb9: Identical to Hyb8 except that we replace all occurrences of sk with gab again.

Claim 13. Assume DDH is hard, Hyb9 is computationally indistinguishable from Hyb8.

Proof. Follows directly from DDH security.

Hyb9 is the same as our simulator, and hence we’re done.

B SGX Functionality

The SGX functionality is presented in Figure 5. Additional notation from [PST17] used is described
below:

– P is the identifier of party.

– reg refers to the registry of machines with the trusted hardware.

– prog is the program.

– inp, outp refers to the input and output.

– mem is the program’s memory tape.

– Σ is a signature scheme.
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Gatt[Σ, reg]

//initialization
On initialize : (mpk,msk)← Σ.Gen(1λ), T = φ

//public query interface
On receive∗ getpk() from some P : send mpk to P

Enclave operations

//local interface — install an enclave
On receive∗ install(idx, prog) from some P : ∈ reg

if P is honest, assert idx=sid
generate nonce eid ∈ {0, 1}λ, store T [eid,P] := (idx, prog,0)

//local interface — resume an enclave
On receive∗ resume(eid, inp) from some P : ∈ reg

let (idx, prog,mem) := T [eid,P], abort if not found.
let (outp,mem) := prog(inp,mem), update T [eid,P] :=

(idx, prog,mem)
let σ ← Σ.Signmsk(idx, eid, prog, outp) and send (outp, σ) to

P.

Figure 5: A global functionality modeling an SGX-like secure processor. Blue (and starred*)
activation points denote reentrant activation points. Green activation points are executed at most
once. The enclave program prog may be probabilistic and this is important for privacy-preserving
applications. Enclave program outputs are included in an anonymous attestation σ. For honest
parties, the functionality verifies that installed enclaves are parameterized by the session id sid of
the current protocol instance.
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