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Abstract

Decentralized ledger-based currencies such as Bitcoin provide a means to construct payment
systems without requiring a trusted bank. Removing this trust assumption comes at the
significant cost of transaction privacy. A number of academic works have sought to improve the
privacy offered by ledger-based currencies using anonymous electronic cash (e-cash) techniques.
Unfortunately, this strong degree of privacy creates new regulatory concerns, since the new
private transactions cannot be subject to the same controls used to prevent individuals from
conducting illegal transactions such as money laundering. We propose an initial approach to
addressing this issue by adding privacy preserving policy-enforcement mechanisms that guarantee
regulatory compliance, allow selective user tracing, and admit tracing of tainted coins (e.g.,
ransom payments). To accomplish this new functionality we also provide improved definitions for
Zerocash and, of independent interest, an efficient construction for simulation sound zk-SNARKs.
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1 Introduction

The success of decentralized currencies like Bitcoin has led to renewed interest in anonymous electronic
cash both in academia [3, 10, 23] and in practice (including Coinjoin, CryptoNote, and DarkWallet).
It has also highlighted new problems related to trust, privacy and regulatory compliance. In modern
electronic payment systems, users must trust that their bank is not tampering with the system
(e.g., by “forging” extra currency), that no party is abusing the privacy of users’ transactions, and
simultaneously, that other users are not using the system to engage in money laundering or extortion.
Unfortunately, these goals seem fundamentally at odds.

Decentralized payment systems such as Bitcoin address the first issue by replacing the central
bank with a distributed ledger and consensus system. Unfortunately, this benefit comes at a
significant cost to privacy [2,6,26], since any user can now view the transaction graph and potentially
trace payments made by another user. Proposals such as Zerocoin and Zerocash [3, 23] attempt
to resolve the privacy problem by employing sophisticated zero knowledge proofs of transaction
correctness. While such constructions address privacy concerns, they do not offer any additional
protections against money laundering and other activity. From an investigative standpoint, Zerocash
is no different than cash.

The problem of preventing money laundering in decentralized currencies is not theoretical. In
May 2015 the decentralized payment network Ripple was ordered to pay a $700,000 fine by the U.S.
Financial Crimes Enforcement Network (FINCEN) due to inadequate monitoring of transactions on
their network. This raises questions for the deployment of privacy-preserving payment networks,
where individual network operators and currency exchanges may be held criminally liable for
facilitating laundering. In general, the difficulty of preventing abuse may prove a barrier to the
deployment of private currency systems. In particular, it seems likely that the application of existing
reporting requirements will force exchanges/online wallets, even when dealing with anonymous
currencies, to hold vast amounts of information about their users, their transactions, and the
amounts. If, as in Bitcoin, most consumers use online wallets, then they gain little privacy.

In this paper we aim for a middle ground. Specifically, we design new Decentralized Anonymous
Payment (DAP) systems [3] that are capable of enforcing compliance with specific transaction
policies, while protecting the privacy of network participants. Our approach builds on the techniques
of Ben-Sasson et al.’s Zerocash system [3], using efficient zero knowledge Arguments of Knowledge
(zk-SNARKs) [4, 5, 7, 12, 16, 21, 22, 24] to both prove the validity of transactions and to enforce
transaction policies. These policies allow network participants to verifiably prove compliance with
global transaction policies, such as tax payments, deposit limits, and verifiable coin tracing, all
while protecting the privacy of each transaction. Interestingly, a side effect of our mechanisms is
that even centralized banks or exchanges participating in our scheme are prevented from evading
anti-money laundering controls, as these controls are enforced by cryptographically sound proofs.

Improving security definitions for DAP schemes. A necessary starting point for our exploration is
to find a formal security definition for DAP schemes that can be readily extended to incorporate
our policies. Previous security definitions for DAP schemes involve a series of distinct games, each
of which addresses one aspect of the security requirements for the DAP scheme. Not only are
these games complex, they fail to simultaneously ensure both correctness and privacy of the DAP
scheme. In particular, we note that the Zerocash scheme [3] admits a practical attack due to a
limitation of the correctness definition. In this paper we explore a more promising route: we define
an ideal-world functionality to describe the security properties of a DAP scheme, which captures
both the correctness and privacy of the scheme in a single intuitive definition. Moreover, as we show
in later sections, this simulation-based definition can easily be augmented to incorporate policies.
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Augmenting existing constructions with simulation-sound zkSNARKs. Given an improved simulation-
based definition for DAP schemes, we encounter a technical problem that prevents us from proving
security of the scheme: we require zero-knowledge proofs which are sound and extractable in the
presence of simulated proofs, i.e., we need simulation sound proofs. However, the zk-SNARK used in
Zerocash provides no such guarantees. To address this we build the first instantiation of simulation
sound zk-SNARKs.

While this seems like a small step and uses folklore techniques, it is necessary and must be done
carefully to ensure security and efficiency. Our approach preserves succinctness and through clever
choice of primitives, has almost no effect on Zerocash performance. See Section 4.

Anti-money laundering policies for DAP schemes. Given a stronger formal foundation, we can now
explore and reason about a wide range of anti-money laundering policies that still preserve user
privacy. In fact we are able to go substantially beyond this and provide policies that simultaneously
allow the authorities to both trace coins as they go from individual to individual and retrieve all of a
particular user’s transactions and provide an accountable record of when and why those powers were
used. We provide examples of several concrete compliance policies that leverage our new techniques.
These include policies to enforce regulatory closure, enforced tax payments, spending limits, coin
tracing, and user tracing. We also provide the first schemes in the decentralized e-cash setting that
allow for coin and user tracing while maintaining an accountable record to limit abuse of those
powers.

Paper outline. The remainder of this paper proceeds as follows. In Section 2 we provide definitions
for secure DAP schemes and propose our modified security definition. In Section 3 we introduce
the Zerocash construction and propose modifications to achieve our new definitions. In Section 5
we show how to modify a DAP scheme to enforce various policies. In Sections 6 and 7 we detail
specific policies for coin tracing and accountable user tracing.

2 Decentralized Anonymous Payments

Decentralized Anonymous Payment (DAP) systems were introduced by Ben-Sasson et al. [3]. A
complete formal definition can be found in [3]. A DAP system consists of an append-only ledger and
a tuple of polynomial time algorithms (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive)
with the following (informal) semantics:

Setup(1λ)→ params generates global parameters for the system.
CreateAddress(params)→ (addrpk, addrsk) outputs an individual address (key pair) for each user.
Mint(params, addrpk, v)→ (cm, π, trap) creates a new transaction embedding a coin of value v, a

proof π, and outputs a trapdoor trap for spending the coin.
Pour(params, cm1, cm2, trap1, trap2, addrpk,1, addrpk,2, v1, v2, vpub) → (cm1, cm2, π) takes as input

two coin commitments and the corresponding trapdoors, as well as a public value output and
two new coin values and destination addresses, and outputs a new transaction embedding the
new coins.

VerifyTransaction validates any of the above transactions.
Receive scans the transactions on the ledger, using the user’s corresponding secret key to identify

transactions addressed to the user.

Informally, a DAP scheme uses these transactions along with a trusted append-only ledger
to transact funds between different users. By issuing “coins” in exchange for work, or for non-
anonymous currencies, users can split, merge and combine coins of arbitrary value. Additionally,
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senders can transmit funds to another user without revealing the contents of the transfer to any
third party.

2.1 Existing definitions and limitations

The DAP security definitions provided by Ben-Sasson et al. [3] are game based. As a result, these
definitions are complex, spanning three games: one for anonymity, one for non-malleability (needed
to ensure correct integration into Bitcoin), and one for balance. While non-malleability is simple,
both the game for anonymity (“ledger indistinguishability”) and the one preventing coin forgery
(“balance”) are quite complex. More importantly, these definitions are also incomplete: they do not
fully enforce correctness. Unfortunately, malicious users can exploit these weaknesses to break other
properties in cryptographic systems.

Specifically, in Zerocash, each Pour transaction contains one or more serial numbers related to
the coins spent. These are designed to prevent double spending, and are formed as a combination of
the coin recipient’s private key and randomness chosen by the sender. As pointed out by Wilcox [27],
since the private key is fixed, if the sender uses the same randomness in two different transactions,
then the serial numbers will be identical. As a result, the recipient will be unable to spend both
transactions, since the duplicate serial numbers will appear to indicate a double spend. This would
allow an attacker to send two payments of e.g. $500 and $1,000, and then ask for a refund on the
“accidental” $1,000 dollar payment. While this attack costs the attacker $500, since both payments
go through and she only gets one back, it also costs the victim $500, since the “accidental” payment
can never be spent. This attack is easily fixed by having the recipient check for duplicate serial
number randomness over all previous transactions they received.

Nonetheless, this attack shows that the “balance” definition does not fully capture what we
assume about a currency system. Clearly, some part of the security definitions in a DAP scheme
should prevent this, yet the definitions for Zerocash do not.

2.2 Simulation-based definition for DAP schemes

An alternative to using game-based definitions like those of [3] is to use a simulation-based definition.
In this approach, we define our system in terms of an ideal functionality implemented by a trusted
party TP that plays the role that our cryptographic constructions play in the real system [14]. In the
ideal-world experiment, a collection of parties interact with the trusted party according to a specific
interface. In the real-world experiment, the parties interact with each other using cryptography. We
now define the experiments:

Ideal-world execution IDEALTP ,S,Σ. The ideal world attacker, S, selects some subset of the
P1, . . . , Pn parties to corrupt and informs the TP . The attacker controlled parties behave arbitrarily,
the honest ones follow a set of strategies Σ. All parties then interact via messages passed to and
from the TP implementing an ideal functionality outlined in Figure 1.

Real world functionality REALDAP,A,Σ. The real world attacker A controls a subset of the parties
P1, . . . , Pn interacting with the real DAP scheme. The honest parties execute the commands output
by the strategy Σ using the DAP scheme while the attacker controlled parties can behave arbitrarily.
We assume that all parties can interact with a trusted append only ledger.

For generality we present our ideal functionality definitions, as well as subsequent transaction
policies, as operations on n coins in and n coins out. As we do not wish to re-present all of Zerocash,
however, for brevity we deal concretely with the existing Zerocash construction which was defined
for the 2-in-2-out case.
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We initialize two tables, one for addresses, and one for coins.

• RegisterID(addrpk). When called by party U , registers a new address addrpk

– The input is an address addrpk.

– If addrpk is not already in the address table, the trusted party TP stores (U, addrpk) in
the address table. Else, reject.

• c← Mint(v, addrpk). Creates a coin for party U

– The input is a value v and a destination address addrpk.

– The trusted party TP checks to make sure that addrpk has been registered to user U . If
not, reject.

– Else, TP generates a unique random transaction id c, stores (c, v, addrpk) in the coin table,
and notifies all parties of Mint(v).

– TP returns c to the user.

• [cnew1 , . . . , cnewn ]← Pour([c1, . . . , cm], [(addrpk,1, v1), . . . , (addrpk,n, vn)], vpub). Generates n new
coins. Party U pours coins to new addresses

– The input is a list of previous transaction id’s ci, tuples of (destination address addrpk,i,
transaction value vi), and a public value vpub.

– For each input ci, TP retrieves each transaction, its associated value voldi , and address
from the coin table and checks the address belongs to U in the address table. If not,
reject.

– TP checks
∑m

i=1 v
old
i =

∑n
i=1 vi + vpub. If not, reject.

– The trusted party then creates n new random transaction id’s cnewi each with value vi
and for each stores (cnewi , vi, addrpk,i) in the coin table.

– TP deletes the input transaction(s) from the coin table.

– For each addrpk,i that is not in the address table, TP notifies the corrupted parties of
Pour(cnewi , vi, addrpk,i).

– For all addrpk,i in address table, TP notifies the party associated with addrpk,i of
Pour(cnewi , vi, addrpk,i).

– The trusted party TP notifies all parties of Pour(vpub).

– TP returns [cnew1 , . . . , cnewn ] to the user.

Figure 1: Ideal Functionality. Security of a basic DAP scheme.
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Definition 2.1 We say that DAP securely emulates the ideal functionality provided by TP if for all
probabilistic polynomial-time real-world adversaries A and all honest party strategies Σ, there exists
a simulator S such that for any ppt distinguishers d:

P [d(IDEALTP ,S,Σ(λ)) = 1]− P [d(REALDAP,A,Σ)(λ) = 1] ≤ negl(λ)

Theorem 2.2 The basic DAP scheme described in [3] and this paper satisfies Definition 2.1 given
the existence of simulation-sound zkSNARKs, collision resistant hash functions, PRFs, statistically
hiding and computationally binding commitments, one-time strongly-unforgeable digital signatures,
and key-private public key encryption.

See Appendix C for a proof of Theorem 2.2.

3 Modifying and extending Zerocash

We use the same notation for addresses, Merkle tree, ledger, and other components as Zerocash [3].
However, to meet the new definitions we must lightly modify the existing construction. In particular,
we need a mechanism to allow us to extract who a Mint transaction was authored by, and we need
to extend the definitions to allow for policies to be applied that validate transactions.

We modify the Zerocash construction in two ways. First, by adding a proof to the Mint algorithm
that cm := COMMs(v‖COMMr(apk‖ρ)) and a verification of this proof to VerifyTransaction. This is
to support our new definition. Second, we modify Receive to fix the attack described in Section 2
and check if the serial number randomness is distinct from any previously received coins, not just
the ones already spent on the ledger. We refer the curious reader to Appendix B and [3] for the
complete details.

4 Simulation sound Succinct non-interactive arguments of knowl-
edge

One technical detail of the proof for Theorem 2.2 is that the proof requires a simulation-sound
zk-SNARK. However, the SNARK constructions used by Zerocash [3] are based on a construction [25]
that does not provide this property. Thus to complete the proof, we require proof systems that are
sound and extractable even when there are simulated proofs. A formal treatment of this can be
found in Appendix A.

Informally, we accomplish this in two ways. First, we provide a mechanism for producing a
simulated proof without directly forging the zero-knowledge proof itself. To do this we apply a
standard technique due to Groth [15] in which the simulation sound proof of a statement is modified
to be “statement OR signature under key in the CRS,” applied to the zk-SNARK. For efficiency, we
do this without using a signature scheme in the proof statement, instead using symmetric primitives
and a statement of the form “statement OR MAC under key committed to in CRS”.

Second, we must ensure the proof is still a proof of knowledge, i.e., we can still extract a witness
even from a forged proof. This is a seemingly innocuous detail, but SNARKs are unlike most proof
systems in that they depend on the ability to inspect the state of the attacker. When the attacker
has access to a simulator, we must ensure that he can’t hide critical information from the extractor
by using the simulator.

Informally zk-SNARKs assume there exists a knowledge of exponent extractor which, given
white-box access to an attacker A who forges a proof and their random coins, there exists some
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extractor XA who can recover a series of exponents from which a witness is computed. For us, we
must ensure the knowledge of exponent extractor still functions even when A has oracle access to a
proof simulator. We ensure this through a hybrid argument where in the end the extractor XA is
given the CRS signature/MAC key needed to simulate proofs and emulates the simulator to A.

The resulting construction ΠSS uses an existing SNARK, a PRF, a MAC, and a strong one
time signature scheme to create an efficient simulation sound zk-SNARK consisting of a proof π
and a one time signature.

Theorem 4.1 If Π is a witness-indistinguishable SNARK, PRF is a secure pseudo-random permu-
tation, MAC is an EU-CMA message authentication code, and sig is a strongly-unforgeable one-time
signature scheme, then ΠSS is computationally simulation knowledge sound and zero-knowledge
proof system.

A proof of Theorem 4.1 can be found in Appendix A.

5 Policies

Given an extensible security model for Zerocash-like systems we can now consider more complex
policies governing the transfer of funds than those originally embedded in Zerocash. Zerocash only
enforced one restriction on funds transfer: the sum of the values in the list of output commitments
must not exceed the sum of the input ones. Although that is the most basic policy governing any
monetary system, far more complex ones govern our modern banking system. These include policies
limiting money laundering, enforcing tax payments, and facilitating international funds transfers,
among other examples. In this section, we explore several analogous policies for decentralized e-cash
that still mostly preserve user privacy.

Formally, we define a policy as an algorithm that is executed each time a coin is spent (“poured”).
The algorithm is parameterized by some constants (e.g., all transaction tax policies are the same
except for the tax rate parameter) and takes public inputs, private inputs, and returns true or false.
Policies are realized by a zero-knowledge proof, so we are essentially giving a procedural description
of the standard efficiently decidable binary relation used in zero-knowledge proofs. We note that no
fresh computation takes place in a policy, only validation of precomputed data.

5.1 Building blocks

To construct our policies, we use use a few basic techniques detailed here.

5.1.1 Adding information to coins

In order to accomplish various policies, we need to store more than a numeric value inside a coin
(indeed, as shown later, we will need to use coins for other things).

We do this by replacing the 192 bit zero padding in the commitment with a special tag used to
mark what kind of counter it is. To do this we can alter the creation of a coin from

cm := COMMs(v‖k) as H(k‖0192‖v)

to
cm := COMMs(v‖type‖data‖k) as H(k‖type‖data‖v).

Policies will use the type information to ensure that an adversary cannot cause them to operate
over the wrong data. Careful care must be taken so that one policy does not output data of a type
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used by a different policy for a different purpose. This also means that each new type requires a
special Mint.

5.1.2 Counters

A recurring problem we will encounter in these policies is the problem of how to count, e.g., how
do you count how much money a user has sent, how much they need to pay taxes on, etc? Many
policies depend on counting funds or transactions and as such, we treat it as a basic building block.

The approach we take is to replace the content of a coin with a counter. Upon each transaction
the policy governing it requires the user to input their current counter state and output the new
counter with the appropriate increment. Counters are a new type of “coin” and we define MintCTR
analogously to Mint but have it reveal the tag in addition to v which is now called ctr. In order to
maintain anonymity, these counters need to be input via the same mechanism that coin commitments
are (i.e., by proving they are in a Merkle tree). In the policies below, we denote them as special
inputs solely for clarity.

The particular mechanism for restricted mint depends on deployment. For certain scenarios,
it may be enough to ensure that there is only one counter per address. For most scenarios where
counters are tightly coupled with real world identity, we assume such mints must tied to some
trusted party, probably via signature. There is thus an implicit policy on which MintCTRs will be
accepted.

We also define a utility function for verifying a counter in Algorithm 1.

input : CTROld,CTRNew, delta, tag
output : True if counter is valid

if not tag = CTROld.tag = CTRNew.tag then
return False;

end
return CTRNew = CTROld.value+ delta;

Algorithm 1: VerifyCounter

5.1.3 Identity

An important aspect of any regulatory system is user identity. Legal concepts of identity are
decidedly centralized. Since most policies are a result of legal and regulatory requirements, most of
them require some notion of legal identity. In the case of counters bound to an identity, a trusted
third party can issue the counters. More practically, given any trusted party who issues identity
certificates, we can require a signature under its certificate chain.

Another possibility is to simply bind counters or other objects to Bitcoin/Zerocash addresses
and enforce real world identity enforcement at exchanges and online wallets. In this case then, a
user would be associated with a set of addresses and would later have to tie these addresses to a
real-world identity. This is analogous to the current approach used in Bitcoin, where exchanges and
online wallets track user identities. We believe this is the most promising avenue for real deployment.

5.1.4 Signatures and encryption

The final building block some of our policies use are public key encryption and signature schemes.
Because Zerocash uses zk-SNARKs which are proofs over arithmetic circuits, the naive approach to
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instantiating these schemes would be extremely costly: first build a circuit for modular exponentiation
operations in some group and then build the encryption scheme on top of that. However, it is
possible instead to directly calculate the signature verification operations in an extension field [10]
of the arithmetic circuit, vastly increasing efficiency.

5.2 Regulatory closure

This policy allows multiple regulatory environments to coexist in the same system but the units
of currency under each scheme do not mix. In practice, this policy ensures that transactions do
not bridge between regulatory schemes, except through an outside mechanism such as an exchange
(where legal requirements can be enforced). To implement this policy, coins, instead of just including
a numeric value v, now include a regulatory type. These are created on Mint. The policy ensures
that either:

1. the regulatory type of all input coins and all output coins is the same

2. or the type of all output coins is marked as ⊥.

The point of this policy is to ensure continuity of some other regulatory scheme which may or
may not be enforced by zero-knowledge. For example, such a policy could ensure that coins only
came from exchanges or hosted wallets in a particular jurisdiction. In the algorithm described in
Algorithm 2, we allow coins to have an arbitrary regulator marking if the output coins are signed
by a valid authority. This could be a bank, an exchange, or the government itself. This allows the
transfer of coins from one scheme to the other.

PrivateInput : CoinsIn,CoinsOut, CA, sig
Constants : inRegType,CA
output : True if transaction is valid

if sig 6= ⊥ then // if tx signed by authorized party, skip policy

return VerifySig(CA,CoinsOut, sig);
end
outRegType← inRegType;
for e ∈ CoinsIn do

if e.regType 6= inRegType then
outRegType← ⊥; // if any regType is wrong, outRegType is ⊥

end

end
for e ∈ CoinsOut do // check each new coin has the correct regtype

if e.regType 6= outRegType then
return False;

end

end
return True;

Algorithm 2: Regulatory closure
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5.3 Spending limits

In the US one common form of anti-money laundering control is a Suspicious Activity Report. This
report is generated by a bank when any single transaction over $10,000 USD is reported. This can
be easily implemented.

PrivateInput : CoinsIn,CoinsOut
PublicInput : sig
Constants : limit
output : True if transaction is valid

sent← 0;
if sig 6= ⊥ then // if tx signed by authorized party, skip policy

return VerifySig(CA,CoinsOut, sig);
end
for e ∈ CoinsOut do

// if we are paying to an input address, it is ‘‘change’’ back to the

user and not counted against the limit

if e.addr /∈ {c.addr|c ∈ CoinsIn} then
sent← sent + e.value;

end

end
return sent ≤ limit;

Algorithm 3: Transaction limit

The mechanism is simple: no transaction over the limit is valid unless signed by an authority.
This allows the authority to force reporting for transactions over the limit. Note, we explicitly
require the signature to be public. The reason is to prevent fraud on the part of the authority. Were
the signature private, a bank enforcing this could undetectably allow anyone to circumvent the
reporting mechanism by issuing more signatures. On the other hand, when signatures are public,
we can require that the authority log (privately) all transaction details along with the transaction
itself (and perhaps a proof the details are valid). See Algorithm 3. Since the signature is used once
and only known to the authority, revealing it does not impact privacy.

A more sophisticated policy would place spending limit over all transactions instead of a limit
on a single transaction. For this we require counters. See Algorithm 4.
Modified ideal functionality and proof sketch. We now detail, informally, the modifications
to the ideal functionality necessary to capture counter based spending limits and the changes necessary
to the proof. The ideal functionality changes are small: we add a per user counter maintained by
the ideal functionality and modify pour to increment the counter as appropriate and reject the
transaction if the counter is over a given limit. The resulting proof change is similarly tiny: the
simulator aborts if the attacker submits a real world transaction violating their counting limit or
if they try and issue a new counter. The probability of the former event is negligible if the proof
system is simulation sound and the second event is not allowed in either the real or ideal protocol
since the attacker cannot make new counters.

5.4 Tax

Our policies also allow us to enforce taxes, such as income taxes, sales taxes, and Value Added Tax
(VAT). We accomplish this by requiring a percentage payment to a tax account with each Zerocash
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PrivateInput : CoinsIn,CoinsOut,CTRcmold,CTRcmnew

PublicInput : epoch,sig
Constants : limit
output : True if transaction is valid

spent← 0;
if sig 6= ⊥ then // if tx signed by authorized party, skip policy

return VerifySig(CA,CoinsOut, sig);
end
if CTRcmnew.value ≥ limit then // if counter over limit, reject

return False;
end
for e ∈ CoinsOut do

// if we are paying to an input address, it is ‘‘change’’ back to the

user and not counted against the limit

if e.addr /∈ {c.addr|c ∈ CoinsIn} then
spent← spent + e.value;

end

end

return VerifyCounter(CTRcmold,CTRcmnew,
spent,“limit” );

Algorithm 4: Spending limit

PrivateInput : CoinsIn,CoinsOut,CTRcmold,CTRcmnew

Constants : taxrate, tag
output : True if transaction is valid

spent← 0;
for e ∈ CoinsOut do

if e.addr /∈ CoinsIn then
spent← spent + e.value;

end

end

return VerifyCounter(CTRcmold,CTRcmnew,
bspent · taxratec,tag);

Algorithm 5: Tax
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transaction. Because Zerocash is payment based, in practice we charge taxes on the sending side of
the transaction. Obviously, this cost can be passed on to the recipient.

The tax algorithm is straight forward. All outputs being sent to other parties are summed and
a percentage of that amount is added to a user’s tax counter. We reveal the tag to support multiple
tax authorities.1

Actually forcing users pay taxes is a problem left to the authority. Since they know who they
issued tax counters to, they can force those people to report their income. An alternate policy
would be to directly pay taxes off each transaction. This would, however, leak transaction amounts
to the authority, rather than just total income.

5.5 Identity escrow

PrivateInput : CoinsIn.CoinsOut, r
PublicInput : escrowct
Constants : CA
output : True if transaction is valid

return escrowct = Pkenc(CA,CoinsIn‖CoinsOut; r);
Algorithm 6: Identity escrow

The identity escrow policy allows governments to selectively revoke the anonymity of individual
transactions, using a master key held securely by some tracing authority. The implementation of
this function is simple: a copy of the transaction details is encrypted under the public key of some
authority. The policy validates that the encryption is correct. We note it may be possible to forgo
public key encryption if every user has a pre-shared key with the tracing authority (since it is likely
this would be a bank or government which users already had to register with, this is possible) and
we can authenticate the key with a signature scheme if this proves more efficient.

6 Coin tracing

We now detail how to trace individual coins.

6.1 Construction

In a coin tracing scheme, individual coins can be marked for tracing. All subsequent coins resulting
from transactions on those initial coins will themselves be traceable. To implement this in Algorithm
7, each coin commitment contains a fresh key for a public key encryption scheme. The idea is that
all of the information needed to trace the output coins (including the new private keys) is encrypted
under the existing key for the input coin commitments. Thus, if the inputs are traced, then the
outputs are traceable. If we did only this, however, the sender would be able to trace the coins
because he generated the fresh keys for the outputs. Thus, we encrypt all of this output under the
authority’s public key. For space efficiency, instead of encrypting everything under each input key,
we encrypt the same symmetric key under each public key and encrypt everything under that key.

1We note that this tax policy is ill defined if users collude to generate a transaction using MPC where the input
identities are different. This can be fixed by ensuring that there is only one identity used for all input coins. However,
the same MPC mechanism could be used to share one identity and never pay taxes.
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PrivateInput : CoinsIn,CoinsOut, r, pkCTs, rEnc, k, ct, rKeyGen, pk, sk
PublicInput : escrowct
Constants : G
Constants : CA
output : True if transaction is valid

if sig 6= ⊥ then // tx is from e.g a bank, skip tracing
return VerifySig(CA,CoinsOut, sig)

end
i, j ← 0;
for e ∈ CoinsOut do // check new coins’ tracing keys are correct

if (pk[i], sk[i]) 6= PKgen(G; rKeyGen[i]) or e.key 6= pk[i] then
return False; // key was not generated honestly

end
i← i+ 1;

end
for e ∈ CoinsIn do // ensure k is encrypted under each tracing key

if pkCTs[j] 6= PKEnc(e.key, k; rEnc[j]) then
return False ; // symmetric key k is not encrypted under input coin j’s

tracing key

end
j ← j + 1;

end
if ct 6= enc(k,CoinsIn‖CoinsOut‖sk; rEnc) then

return False; // new tracing private keys not encrypted under k
end
// ensure ct is encrypted under authority key

return escrowct = PkEnc(CA, ct‖pkCTs );

Algorithm 7: Coin tracing

Our tracing scheme has two major limitations: first unless someone removes the tracing key for
a coin and replaces it with a dummy key, eventually all coins in the network will be traced. This
is an inherent limitation of a tracing mechanism that marks all coins involved in a transaction as
tainted. Of course, we could have more limited versions where we map the taint bits from input
coins to output coins directly (e.g., the largest input’s taint bit maps to the largest output) but
these lead to circumvention issues.

The second issue is that the user and the authority can collude to trace coins even if the input
coins were not marked as traced. This is not an inherent limitation but rather arises from the fact
that the authority always knows the decryption keys for the outer layer of encryption and the user
always knows the inner layer keys.

Because of these limitations we anticipate that in a real system, coins will frequently return to
exchanges and online wallets and at these locations tracing can be removed or added. To facilitate
this we allow exchanges who have an authorized signing key to either add or remove tracing by
changing the key associated with a coin. We note that when an exchange removes tracing this can
be done in a verifiable manner by using a known dummy key as the coin key. Looking forward, we
can use similar techniques to accountable user tracing in the next section to allow the exchange
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to accountably add or remove tracing by providing a randomized tracing key that is either the
authority’s key or a dummy key.

Given the above policy, the algorithm to actually do tracing is detailed in Algorithm 8.

input : The list of trace ciphertexts TraceCTs, the authority’s decryption key sk, the initial
coin tracing private key ck for the coin we want to trace

output : The trace for a particular coin Trace

for e ∈ TraceCTs do // decrypt the outer layer of all transactions

TraceRecords.append(PKDec(sk,TraceCTs));
end
KeysToTrace.append(ck);
for ck ∈ KeysToTrace do

// For every public key ciphertext in every pour, we attempt to decrypt

with the target key. On success, we get back the symmetric ciphertext

associated with the pour, and the decrypted symmetric key.

encrec, k← FindTxByTrialDecryption(TraceRecords, ck);
if encrec 6= ⊥ then

rec← SymDec(k, encrec); // now decrypt the record

Trace.append(rec); // add the decrypted record to the trace

for i ∈ {0, 1, . . . , rec.CoinsIn.Size()− 1} do
KeysToTrace.append(rec.sk[i]); // enqueue the new tracing keys

end

end

end
return Trace;

Algorithm 8: TraceCoin

The algorithm to trace coins takes an initial target coin commitment, the initial public key for
that coin commitment, and the key to decrypt all tracing records. It simply searches for all coin
commitments output by that transaction, maps the new keys to those coin, decrypts the record
with the existing keys, and adds those coin commitments to the list of ones to search for.

6.2 Security

6.2.1 Modified ideal functionality

To allow tracing, we need to modify the Ideal Functionality to (1) have a special party designated
the tracing authority, (2) allow coins to be marked as traced by that authority, (3) mark all output
coins as traced if any of the inputs are traced and (4) allow a report on all traced coins to be made
to that authority. Of course, since we allow static corruption, the tracing authority may be the
adversary. We detail the modifications in Figure 2.

6.2.2 Proof sketch

If the tracing authority is not corrupted, then the simulator can always use random values for the
escrow ciphertext and the probability of abort is bounded by the security of the outer encryption
scheme.
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• [cnew1 , . . . , cnewn ]← Pour([c1, . . . , cm], [(addrpk,1, v1), . . . , (addrpk,n, vn)], vpub, aux).

– Perform steps one through eight of Pour in Figure 1, adding an additional stored field
(initially set to false) to denote whether a coin is being traced or not.

– If any coin ci is marked as traced, mark all output coins as traced.

– TP returns [cnew1 , . . . , cnewn ] to the user.

• Trace(c, U)

– The input is a coin c and a requesting party U .

– If the requesting party U is the tracing authority, update the stored value for c and mark
it as traced. Else, reject.

• [c0, . . . , cm]← Report(U)

– The TP returns all entries [c0, . . . , cm] for coins marked as traced if the requesting party
U is the tracing authority, otherwise return ⊥.

Figure 2: Modified ideal functionality for coin tracing.

We now deal with the more complex case: a corrupted tracing authority who the simulator must
generate notifications for. There are two subcases: traced coins and non-traced coins. For traced
coins, the probability that the simulator fails in decrypting both layers of the tracing ciphertext (and
hence cannot mark the coins appropriately in the ideal functionality) is bounded by the soundness
of the proof system. For non-traced coins in the ideal model, the simulator can use a random
ciphertext for the inner symmetric ciphertext ct and the associated encryptions of its key. For
untraced coins, since the real world tracing authority does not have the keys for non-traced coins,
the probability of abort is bounded by the security of the public key encryption scheme.

7 Accountable user tracing

PrivateInput : CoinsIn,CoinsOut, pk, sig, r
PublicInput : usertracect
Constants : CA
output : True if transaction is valid

if VerifySig(CA, pk, sig) then
return usertracect = Pkenc(pk,CoinsIn‖CoinsOut; r);

else
return False;

end

Algorithm 9: Accountable user tracing

The problem with the original escrow above is that it provides no privacy from the tracing
authority: all users’ data is encrypted under a single key the authority holds. The only privacy
guarantees users have are based on trust. And even those are limited: in order to find the coins used
by a specified user, the authority needs to decrypt all coins. Ideally, we would have a system that
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not only allows the authority to only open coins of traced users, it creates an accountable record
that they did so.

To do so, we borrow an idea from Accountable Tracing Signatures [17]: each user encrypts their
data under a unique key they are given by the authority. If they are being traced, this key is a
randomized version of the authority’s public key. If, as is the common case, users are not being
traced, the key is a randomized version of a null key (e.g. a random group element). Crucially,
without knowledge of the randomness, users cannot distinguish which key they are getting at the
time, but if the authority later reveals the randomness they can provably tell they were or were not
traced. Thus we term this system accountable user tracing.

This requires one small change to the standard identity escrow policy: we have to allow an
arbitrary key and ensure that it is signed by the authority and for the current epoch.

The larger question is key management. If we simply require the authority to reveal who they
were monitoring at some later point, this policy becomes simple to implement: each user receives a
key at each time period (e.g. daily) and by the disclosure deadline for searches, the authority reveals
the random coins used to make the key. Unfortunately, this approach is unlikely to be compatible
with real-world requirements. Given the existence of National Security Letters and similar warrants
containing “gag orders”, it is likely there are cases where the authority will prefer not to reveal
which users were monitored. The standard solution in practice is to produce a transparency report
that details which fraction of users were searched, and/or offers a loose bound on the number of
searches.

However, building a cryptographically binding transparency report over millions of users efficiently
is challenging given that this would involve processing millions of records. There are various ways
this might be accomplished (e.g. techniques for batched proofs). In this work we propose a simple
one: use a separate instance of Zerocash to create tokens that allow search. Each user gets their key
along with a proof that their key is either randomized from the null key or randomized from the
authority’s key and a zerocoin is spent. At the end of each time period, the authority can spend all
unused coins, thus revealing what fraction of people they searched.

8 Related work

8.1 Anti-money laundering for centralized e-cash

Many, if not all of the policies in this paper have been implemented in centralized e-cash schemes,
be it spending limits [8] or user and coin tracing. Somewhat surprisingly accountable user and
coin tracing exists for centralized schemes [19, 20]. However none of these have been done in the
decentralized setting. Moreover, the known techniques for coin and user tracing [19, 20] require
coins to be withdrawn from the authority and then deposited back and have only one transfer,
whereas our techniques allow continual transactions with the need to interact with the authority
only dictated by the allowable delay in starting a trace.

8.2 Hawk

In concurrent work Kosba et al. [18] present Hawk, a system for privacy preserving smart contracts
with an ideal functionality based definition. Hawk’s security is set in the UC model [9], which is
a stronger setting than we explore here. Achieving UC security requires all proofs to include an
encrypted copy of their witness and a proof of its validity. This entails two costs: first, the increase
in proving cost due to circuits handling encryption and second, the loss of succinctness. In the case
of Zerocash, this results in a dramatic increase in the size of the proof due to the need to encrypt
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all witnesses.2 This trade off between security and performance does not appear to affect our actual
constructions here: if built using a UC security proof scheme, they can achieve UC security.
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A Simulation sound Succinct non-interactive arguments of knowl-
edge

A.1 Notation

Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) when |f(λ) − g(λ)| = λ−ω(1). We say
that f is negligible when f(λ) ≈ 0 and that f is overwhelming when f(λ) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y. We write
y ← A(x) for the process of picking randomness r at random and setting y = A(x; r). We also write
y ← S for sampling y uniformly at random from the set S. We will assume it is possible to sample
uniformly at random from sets such as Zp.

Following Abe and Fehr [1] we write (y; z)← (A ‖ XA)(x) when A on input x outputs y and
XA on the same input (including random coins) outputs z. I.e., as a shorthand for r ← {0, 1}∗; y ←
A(x; r); z ← XA(x, r).

When dealing with adversaries that have access to oracles O, e.g. a simulator, it is necessary to
augment the notation both so A gets access to the simulator O, and that the extractor XA has the
ability to emulate the oracles, including access to their random coins.

We write (y; z)← (AO(x2,·) ‖ X (x2)
A )(x1) as a shorthand for r1, r2 ← {0, 1}∗; y ← AO(x2;r2)(x1; r1);

z ← XA(x1, x2, r1, r2).

A.2 Definitions

Let {Rλ}λ∈N be a sequence of families of efficiently decidable binary relations R. For pairs (u,w) ∈ R
we call u the statement and w the witness. A non-interactive argument for {Rλ}λ∈N is a quadruple
of efficient algorithms (Setup,Prove,VfyProof,Sim).

(σ, τ)← Setup(1λ, R): The setup takes as input a security parameter λ and a relation R ∈ Rλ and
returns a common reference string σ and a simulation trapdoor τ for the relation R.

π ← Prove(σ, u, w): The prover algorithm takes as input a common reference string σ for a relation
R and (u,w) ∈ R and returns an argument π.

0/1← VfyProof(σ, u, π): The verification algorithm takes as input a common reference string, a
statement u and an argument π and returns 0 (reject) or 1 (accept).

π ← Sim(τ, u): The simulator takes as input a simulation trapdoor and statement u and returns an
argument π.

Definition A.1 We say (Setup,Prove,VfyProof,Sim) is a perfect non-interactive zero-knowledge
argument of knowledge for {Rλ}λ∈N if it has perfect completeness, perfect zero-knowledge and
computation simulation extractable as defined below.

Perfect completeness. Completeness says that, given any true statement, an honest prover
should be able to convince an honest verifier. For all λ ∈ N, R ∈ Rλ, (u,w) ∈ R

Pr
[
(σ, τ)← Setup(1λ, R);π ← Prove(σ, u, w) :

VfyProof(σ, u, π) = 1
]

= 1
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Perfect zero-knowledge. An argument is zero-knowledge if it does not leak any information
besides the truth of the statement. We say (Setup,Prove,VfyProof,Sim) is perfect zero-knowledge
if for all λ ∈ N, R ∈ Rλ, (u,w) ∈ R and all adversaries A, we have

Pr
[
(σ, τ)← Setup(1λ, R);π ← Prove(σ, u, w) : A(σ, τ, π) = 1

]
= Pr

[
(σ, τ)← Setup(1λ, R);π ← Sim(τ, u) : A(σ, τ, π) = 1

]
.

Perfect witness-indistinguishability. An argument is witness indistinguishable if it does not
leak any information about which witness was used to prove a statement. We say (Setup,Prove,
VfyProof,Sim) is perfect witness-indistinguishable if for all λ ∈ N, R ∈ Rλ, (u,w0) ∈ R, (u,w1) ∈ R
and all adversaries A, we have

Pr
[
(σ, τ)← Setup(1λ, R);π ← Prove(σ, u, w0) : A(σ, τ, π) = 1

]
= Pr

[
(σ, τ)← Setup(1λ, R);π ← Prove(σ, u, w1) : A(σ, τ, π) = 1

]
.

Computation knowledge soundness. We call (Setup,Prove,VfyProof, Sim) an argument of
knowledge if there is an extractor that can compute a witness whenever the adversary produces a
valid argument. The extractor gets full access to the adversary’s state, including any random coins.

Formally, we require that, for all sequences (Rλ)λ∈N of polynomially bounded relations in
{Rλ}λ∈N and non-uniform polynomial time adversaries A, there exists a non-uniform polynomial
time extractor XA such that

Pr
[
(σ, τ)← Setup(1λ, Rλ); ((u, π);w)← (A ‖ XA)(σ) :

(u,w) /∈ Rλ and VfyProof(σ, u, π) = 1
]
≈ 0

For composition we need a slight variant of this definition with auxiliary input generators:
Knowledge soundness for the class Z of auxiliary input generators requires that, for all sequences
(Rλ)λ∈N of polynomially bounded relations in {Rλ}λ∈N, all non-uniform polynomial time auxilliary
input generator Z ∈ Z, and all non-uniform polynomial time adversaries A, there exists a non-
uniform polynomial time extractor XA such that

Pr
[
z ← Z(1λ); (σ, τ)← Setup(1λ, Rλ);

((u, π);w)← (A ‖ XA)(σ, z) :

(u,w) /∈ Rλ and VfyProof(σ, u, π) = 1
]
≈ 0.

More complex composition in which the extractor is used in a reduction in which he does not
have access to the randomness used to generate public input requires interactive input generators:

Pr
[
(σ, τ)← Setup(1λ, Rλ); ((u, π);w)← (A ‖ XA)Z(.)(σ) :

(u,w) /∈ Rλ and VfyProof(σ, u, π) = 1
]
≈ 0.
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Discussion. If all Z ∈ Z only ever accept 1λ the two assumptions are equivalent. But Z may for
instance take a message as input and provide a ciphertext under some fixed chosen plain-text secure
scheme as output. If on the other hand the encryption scheme is simulatable as defined by [11]
(which also implies that it is necessarily chosen-ciphertext secure), then Z can be simulated using
the random tape that is already accessible to A and XA in the assumption without auxiliary input.

This formalizes the intuition that it is the absence of interactive auxiliary input that causes
the impossibility result of [11]. Stronger knowledge assumptions could be used to circumvent it.
If of course the proof system is malleable it may not be of much use for constructing CCA secure
schemes from CPA secure schemes. This is what we consider next.

Computational simulation knowledge soundness.
Computational simulation knowledge soundness is defined analogously, however, the attacker

has access to a simulator, the extractor has access to the simulation trapdoor, and the attacker is
not allowed to return a proof in the set Q of proofs output by the simulator.

Pr
[
(σ, τ)← Setup(1λ, Rλ);

((u, π);w)← (ASim(τ,·) ‖ X (τ)
A )Z(.)(σ) :

(u,w) /∈ Rλ ∧VfyProof(σ, u, π) = 1 ∧ (u, π) /∈ Q
]
≈ 0.

A.3 Construction of simulation-sound SNARKs

A.3.1 Simulation-sound SNARKs from symmetric primitives

Since some SNARKS are circuit based, constructions involving bitwise manipulation as opposed to
field arithmetic can be desirable. As such, we construct a OR-simulator signature style construction
but with a PRF and a MAC instead of a signature.

We construct a simulation-sound SNARK Πsimwith input generators Z for Rλ from a witness--
indistinguishable SNARK (Setup,Prove,VfyProof,Sim) with input generators ZOR for RORλ , a PRF,
an EU-CMA secure message authentication code, and a strongly-unforgeable one-time signature
scheme (KgOT,SignOT,VerifyOT).

In the CRS, we have a element pk = PRF(sk). The key sk is the simulator’s trapdoor. The
relation class RMAC

λ is defined such that for every Rλ ∈ Rλ there is an (efficiently computable)
relation

RMAC
λ ∈ RMAC

λ with

((u, t, pk, opk), w) ∈ RMAC
λ iff

(u,w) ∈ Rλ ∨ (pk = PRF(sk) ∧ t = MAC(opk||sk))

ZOR is Z with prf “keypair” generation (pk, sk)← Kg(1λ) added to the output of all Z.
For efficiency reasons, we reveal the MAC tag t. This is not necessary for correctness. However,

as t is indistinguishable from random, it leaks nothing.
ΠSS is defined as follows:

(σ, τ)← SS.Setup(1λ, R): On input λ and relation Rλ ∈ Rλ compute the “prf” key pair (pk, sk)←
Kg(1λ) by sampling a random r and outputting (r,PRF(r)), and the proof setup (σ′, τ ′) =
Setup(1λ, ROR). ROR is the relation that corresponds to Rλ in RORλ . The simulation trapdoor
τ ′ is not needed and deleted. Return the reference string σ = (σ′, pk) and the simulation
trapdoor τ = sk. We assume that sk = τ contains pk or that pk can be computed from sk.
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π ← SS.Prove(σ, u, w): Parse σ as (σ′, pk) and compute (opk, osk) ← KgOT(1λ). Compute the
OR proof with a witness for the left side: π′ ← Prove(σ′, (u, pk, opk), (w,⊥)). Compute
the signature sOT ← Sign(osk, (π′, u)) over the proof and the instance; return the proof
π = (opk, π′, sOT).

0/1← SS.VfyProof(σ, u, π): Parse σ as (σ′, pk) and π as (opk, π′, sOT). Return 1 (accept) if both
VfyProof(σ′, (u, pk, opk), π) = 1 and VerifyOT(opk, (π′, u), sOT) = 1, and 0 (reject) otherwise.

π ← SS.Sim(τ, u): The simulator uses τ as sk to compute a righ-side witness and proof for the OR:
opk, osk ← KgOT(1λ), t ← MAC(sk, opk), π′ ← Prove(σ′, (u, pk, opk), (⊥, t)). Compute the
signature s← SignOT(osk, (π′, u)) and return the argument π = (opk, π′, s).

For simplicity we give a proof sketch for non-interactive input generators.

• Game 1. The original computational simulation knowledge soundness game.

• Game 2. The same as Game 1, except that we run an extractor (w, s)← XA′ described below
in parallel and abort if ((u, t, pk, opk), w) /∈ RMAC .

Let A′ be an adversary for the knowledge soundness with auxiliary input game with auxiliary
input generator (z, pk, sk)← Z(1λ) for relation class RORλ . We define A′ as ((u, pk, opk), π′)←
A′(σ, (z, sk = τ, pk)) as run (u, (opk, π′, sOT)) ← ASim(τ,·)(σ, z); return ((u, pk, opk), π′). Let
XA′ be the extractor for A′ whose existence is stipulated by the knowledge soundness assump-
tion with auxiliary input.

By the computational knowledge assumption, the probability of XA′ aborting is negligible.
We are simply invoking the standard extractor and there is no simulator (yet).

• Game 3. The same as Game 2, but abort if an existing opk was reused by A to sign another
pair (π′, u). Because opk is a key for a strongly-unforgeable one time signature scheme, this
probability is negligible.

• Game 4. Abort, if A returned a verifying MAC on a fresh opk. There are three ways this can
happen. First, A extracted sk from pk, if PRF is a secure PRF, the probability of this is
negligible. Second, A provided some different sk such that pk = PRF(sk). Since PRF is a
permutation, the probability of this event is also negligible. Finally, A could have forged the
MAC. Since the MAC is EU-CMA secure, this is also negligible.

• Game 5. It remains to construct X τA, the extractor operating on A with access to the simulator
out of XA′ , the extractor operating on an attacker A′ who emulates the simulator and runs
A. This is a simple matter of having the extractor directly emulate the simulator. Thus we
construct X τA out of XA′ .

Since Game 5 behaves the same as Game 4, and X τA always extracts valid witnesses, our scheme is
is computationally simulation knowledge sound.

A.3.2 Concrete efficiency for Zerocash

Naturally, this construction adds some overhead to a standard proof scheme for any relation Rλ
because of the necessary overhead for the MAC and PRF in the cirucit and the small overhead of the
one time signature. However, the existing Zerocash construction already uses a similar technique to
bind the Bitcoin transaction to the Zerocash proof: a hash function H is used to compute two MACs
on a one time signature key, using the private key for each of the two input coins. If we instantiate
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the PRF with a hash function (as is done elsewhere in Zerocash), then simulation soundness has the
exact same cost as the original Zerocash construction (modulo the cost of one additional OR gate)
but offers far better theoretical properties. We effectively get simulation sound Zerocash for free.
Indeed, if we extend Zerocash to take more than two coins in and two coins out (as is necessary for
some of our policies), we actually get improved performance, since we only invoke the MAC once
instead of once per coin.
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B Zerocash Modifications

Mint
• inputs:

– public parameters params
– coin value v ∈ {0, 1, . . . , vmax}
– destination address public key addrpk
• outputs: coin c and mint transaction txMint

1. Parse addrpk as (apk, pkenc).
2. Randomly sample a PRFsn seed ρ.
3. Randomly sample two COMM trapdoors r, s.
4. Compute k := COMMr(apk‖ρ).
5. Compute cm := COMMs(v‖k).
6. Compute πMINT := Prove(pkMINT, (k, apk), (v, cm)).
7. Set c := (addrpk, v, ρ, r, s, cm).
8. Set txMint := (cm, v, πMINT),
9. Output c and txMint.

VerifyTransaction
• inputs:

– public parameters params
– a (mint or pour) transaction tx
– the current ledger L
• outputs: bit b, equals 1 iff the transaction is valid

1. If given a mint transaction tx = txMint:
(a) Parse txMint as (cm, v, πMINT).
(b) Output b := Verify(vkMINT, πMINT)

2. If given a pour transaction tx = txPour:

(a) Proceed as in [3]

Receive
• inputs:

– public parameters params
– recipient address key pair (addrpk, addrsk)
– the current ledger L
• outputs: set of received coins

1. Parse addrpk as (apk, pkenc).
2. Parse addrsk as (ask, skenc).
3. For each Pour transaction txPour on the ledger:

(a) Parse txPour as (rt, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗), and ∗ as
(pksig, h1, h2, πPOUR,C1,C2, σ).

(b) For i ∈ {1, 2}:
i. Compute (vi, ρi, ri, si) := Denc(skenc,Ci).
ii. If Denc’s output is not ⊥, verify that:

• cmnew
i equals COMMsi(vi‖COMMri(apk‖ρi));

• Check that ρi is distinct from any previously received coins.

iii. If both checks succeed, output ci := (addrpk, vi, ρi, ri, si, cm
new
i ).

Figure 3: Modified Mint, VerifyTransaction, and Receive algorithms.
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C Proof Sketch for Theorem 2.2

We now present a sketch of the proof of Theorem 2.2.

Proof. We now show that under the assumption of computationally simulation-knowledge-sound
zkSNARKs, collision-resistant and statistically hiding commitments, and the existence of a trusted,
global append-only log, then for every real-world adversary A against our modified scheme there
exists an ideal-world adversary A′ such that the output of the real-world and ideal-world adversaries
are computationally indistinguishable. We will now describe the operation of the ideal-world
adversary A′, which runs A internally and interacts with the ideal functionality. Recall that we
assume a static corruption model where A (resp. A′) emulates a set of statically-corrupted parties,
and can read and post transactions to the ledger via a standard interface. Our proof assumes the
existence of a global, trusted transaction ledger, which we use as a black box. We leave a complete
proof that considers this construction and models it to future work.

We begin by sketching the operation of the ideal-world adversary A′.

Minting a coin When A emits a Mint transaction to the ledger, the ideal adversary A′ first
parses the transaction to obtain (c, πMINT) and verifies that πMINT is valid. If the proof is valid, it
runs the knowledge extractor on πMINT to obtain (v, addrpk). A′ checks to make sure that the address
addrpk has been registered on its list of users. If it has not, A′ calls RegisterID(addrpk) and stores
(U ′, addrpk) where U ′ is an arbitrary corrupted user. Once A′ has completed these steps, it calls the
ideal functionality on Mint(v, addrpk) to obtain c. A′ maintains a list of coins minted by corrupted
users; it records (addrpk, U, c, πMINT) to this list.

When TP notifies A′ that some honest user has minted a coin, A′ creates a coin c and uses the
simulator for the proof πMINT to simulate the associated proof. It then records the resulting coin
information (c, πMINT) on the ledger.

Pouring coins When A emits πPOUR to the ledger, A′ first verifies the proof as in the real protocol
(rejecting if it is invalid). If the proof verifies, it runs the knowledge extractor on πPOUR to obtain
v0, v1, addrpk,0, addrpk,1, c

old
0 , cold1 , cnew0 , cnew1 . If either addrpk,0 and addrpk,1 have not previously been

registered, A′ also runs RegisterID(addrpk,0) and/or RegisterID(addrpk,1) and stores (addrpk,0) and
(addrpk,1).A′ then parses cold0 and cold1 to obtain addroldpk,0 and addroldpk,1. The simulator checks to make

sure that the addresses addroldpk,0 and addroldpk,1 have been registered on its list of users. If they have not,

S calls RegisterID(addroldpk,0) and RegisterID(addroldpk,1) and stores (U, addroldpk,0) and (U, addroldpk,1). Once

A′ has registered the users’ addresses or verified they are already registered, it looks up cold0 , cold1

to obtain cIFOld0 , cIFOld1 , and it runs Pour([(cIFOld0 , addrpk,0, v0), (cIFOld1 , addrpk,1, v1)], vpub) to get
cIFNew0 , cIFNew1 . The simulator then transmits the coin information (cold0 , cIFOld0 , cnew0 , cIFNew0 ) and
(cold1 , cIFOld1 , cnew1 , cIFNew1 ) to the trusted store and acknowledges the coins’ issuances. A′ stores
(addrpk,0, c

new
0 , πPOUR) and (addrpk,1, c

new
1 , πPOUR) in its list of coins.

When TP notifies A′ that some honest user has poured coins to another honest user, A′ generates
two random coins and associated data (snold0 , snold1 , cmnew

0 , cmnew
1 ) and runs the zero-knowledge

simulator for πPOUR to simulate a proof. It then generates a random signing key pksig for use
with Sig to create σ, h0, and h1 and creates random ciphertexts C0 and C1. It then writes
(c0, sn

old
0 , cmnew

0 , pksig, h0,C0, πPOUR, σ) to U0 and (c1, sn
old
1 , cmnew

1 , pksig, h1,C1, πPOUR, σ) to the ledger.

When TP notifies A′ that some honest user has poured coins to a user controlled by A, A′ generates
coins as it would in the normal protocol (along with associated data snold0 , snold1 , cmnew

0 , cmnew
1 ) and
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runs the zero-knowledge simulator for πPOUR to simulate a proof. The simulator must also generate
correct encryptions of the coin data. To do this, S looks up the addresses addrpk,0 and addrpk,1 for the
specified adversarially-controlled users and uses the associated encryption keys to create the cipher-
texts C0 and C1. It must also generate the correct signatures, so it picks a random signing key pksig
to use with Sig and generates σ, h0, and h1. It then transmits (c0, sn

old
0 , cmnew

0 , pksig, h0,C0, πPOUR, σ)

to addrpk,0 and (c1, sn
old
1 , cmnew

1 , pksig, h1,C1, πPOUR, σ) to addrpk,1.

We now show that the output of the ideal world experiment is computationally indistinguishable
from the output of the real world experiment via a series of hybrids.

1. H0: This is the real DAP experiment.

2. H1: In this hybrid, we replace all proofs by honest parties with simulated proofs. By Lemma

C.1 we show that if the proof system is computationally simulation sound, then H1
c
≈ H0,

that is H1 is computationally indistinguishable from H0.

3. H2: In this hybrid, we run the knowledge extractor when encountering the transactions of
any corrupted parties, and abort if the knowledge extractor fails. By Lemma C.2 we show

that if the proof extractor fails with negligible probability, then H2
c
≈ H1.

4. H3: In this hybrid we replace the serial number in Pour Line 1c [3] and in Receive Line 3b [3]
(i.e. the output of PRFsn

ask
) with a randomly chosen string. When an honest party creates a

Pour transaction, the simulator generates random serial numbers for the coins. By Lemma

C.3 we show that if PRFsn
ask

is a PRF and collision resistant, then H3
c
≈ H2.

5. H4: In this hybrid we replace the MAC PRFs in Pour Line 4 [3] (PRFpk
ask

) with randomly
chosen values. When an honest party creates a Pour transaction, the simulator generates

random values for the MACs. By Lemma C.4 we show that if PRFpk
ask

is a PRF, then H4
c
≈ H3.

6. H5: In this hybrid we replace the commitments (COMMr and COMMs) with commitments to
random values. By Lemma C.5 we show that if COMMr and COMMs are secure commitment

schemes, then H5
c
≈ H4.

7. H6: In this hybrid we replace each ciphertext sent to an honest user Enc with the encryption
of a random message under a random public key. By Lemma C.6 we show that if Enc is a

key-private encryption scheme, then H6
c
≈ H5.

Note that Hybrid 6 is identical to the simulation. By summation over the previous hybrids

we show that Hybrid 6
c
≈ Hybrid 0. We conclude our proof sketch by presenting the supporting

lemmas.

Lemma C.1 For all PPT adversaries A, if simulation sound zkSNARKs exist, then advantage
AH1 −AH0 ≤ ε where ε is the simulation failure rate.

Proof. The simulator operates in the same manner, but we now simulate proofs for honest parties.
By definition, πMINT and πPOUR are both zkSNARKs. From Section 4, we recall that the simulator

will fail with at most negligible probability because it deals solely with zkSNARKs, which have
efficient simulators. Therefore ε is negligible. �

27



Lemma C.2 For all PPT adversaries A, if extractable zkSNARKs exist, then advantage AH2 −
AH1 ≤ 2 · negl(λ) where negl(λ) is the extraction failure rate.

Proof. The simulator operates in the same manner, but we now extract when given the transactions
of corrupted parties.

By definition, πMINT and πPOUR are both zkSNARKs. Intuitively, we can see that the extractor will
fail with at most negligible probability because it deals solely with zkSNARKs, which have efficient
extractors [13]. Therefore, our proofs πMINT and πPOUR have knowledge extractors that succeed with
probability 1− negl(λ) for some negligible function negl(·). �

Lemma C.3 Advantage AH3 −AH2 ≤ negl(λ).

Proof. The simulator operates in the same manner, but we replace the serial numbers (i.e. the
output of PRFsn) with a randomly chosen values.

By definition, PRFsn is a collision resistant pseudorandom function [3]. Therefore an adversary
can only distinguish the output from random with negligible probability. �

Lemma C.4 Advantage AH4 −AH3 ≤ 2 · negl(λ).

Proof. The simulator operates in the same manner, but now we replace the MACs in Pour Line
4 [3] (PRFpk) with randomly chosen values.

By definition, PRFpk is a pseudorandom function [3]. Therefore an adversary can only distinguish
the output from random with negligible probability. �

Lemma C.5 Advantage AH5 −AH4 ≤ negl(λ).

Proof. The simulator continues to operate in the same manner as originally described, but we now
replace the commitments (COMMr and COMMs) with commitments to randomly chosen values.

By construction COMM is a statistically hiding commitment scheme (see [3] for its construction
and a proof thereof) and therefore the probability that an adversary can detect this substitution is
negligible. �

Lemma C.6 Advantage AH6 −AH5 ≤ negl(λ).

Proof. We now replace the ciphertexts in Pour with ciphertexts created by random keys.
By definition, the encryption scheme Enc satisfies two security properties: (1) ciphertext indis-

tinguishability under chosen-ciphertext attack (IND-CCA security); and (2) key indistinguishability
under chosen-ciphertext attack (IK-CCA security).

Because Enc is key-private, an adversary can only distinguish between a random ciphertext and
one created by an unknown key with negligible probability. �

�
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