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Abstract
In this study, we investigate the flow of money among bank accounts possessed by
firms in a region by employing an exhaustive list of all the bank transfers in a regional
bank in Japan, to clarify how the network of money flow is related to the economic
activities of the firms. The network statistics and structures are examined and shown
to be similar to those of a nationwide production network. Specifically, the bowtie
analysis indicates what we refer to as a “walnut” structure with core and
upstream/downstream components. To quantify the location of an individual
account in the network, we used the Hodge decomposition method and found that
the Hodge potential of the account has a significant correlation to its position in the
bowtie structure as well as to its net flow of incoming and outgoing money and links,
namely the net demand/supply of individual accounts. In addition, we used
non-negative matrix factorization to identify important factors underlying the entire
flow of money; it can be interpreted that these factors are associated with regional
economic activities. One factor has a feature whereby the remittance source is
localized to the largest city in the region, while the destination is scattered. The other
factors correspond to the economic activities specific to different local places. This
study serves as a basis for further investigation on the relationship between money
flow and economic activities of firms.

Keywords: Input-output table; Hodge decomposition; Non-negative matrix
factorization; Bowtie-walnut structure

1 Introduction
Determining how money flows among economic entities is an important aspect of un-
derstanding the underlying economic activities. For example, the so-called flow of funds
accounts record the financial transactions and the resulting credits and liabilities among
households, firms, banks, and the government (see, e.g., [1]). Another example is the
input-output table, which describes the purchase and sale relationships among produc-
ers and consumers within an economy and clarifies the flows of final and intermediate
goods and services with respect to industrial sectors and product outputs (e.g., [2]). These
data are used in macroscopic studies, such as those of industrial sectors and aggregated
economic entities.
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Recent years have witnessed the increasing emergence of microscopic data. For example,
one can study a nationwide production network, i.e., how individual firms transfer money
among one another as suppliers and customers for transactions of goods and services (see
[3] and the references therein). In contrast to the macroscopic studies mentioned above,
microscopic studies can uncover the heterogeneous structure of the network and its role
in economic activities, how the activities are subject to shocks due to natural disasters [4]
and pandemics [5], and so forth. However, microscopic data are not exhaustive; although
they may cover most active firms, not all the suppliers and customers are recorded. Such
records are based on a survey in which a firm nominates a selected number of important
customers and suppliers. In addition, the transaction amounts are often lacking; hence,
the network is directed but only binary. More importantly, microscopic and macroscopic
data are compiled and updated annually or quarterly at most (see [3, 6] and the references
therein).

To uncover how economic entities such as firms perform economic activities in a real
economy, we should ideally study how money flows among firms by using real-time data
of bank transfers with exhaustive lists of accounts and transfers. Also, investigating money
flows among accounts will help to tackle real-world problems including the prediction of
the economic impact of COVID-19, the defaults of firms, and the bank accounts that could
be involved in illegal activities. However, these problems have been addressed without uti-
lizing the information about the network of money flow [7]. The prediction accuracy will
be improved by taking into account the network as well as other features. To the best of
our knowledge, such a study has not been conducted thus far, simply because such data
are not available for academic purposes. The present study precisely performs such an
analysis of a Japanese bank’s dataset. The bank is a regional bank, which has a high market
share with respect to the loans and deposits in a prefecture, particularly supporting finan-
cial transactions among the manufacturing firms located there (according to a disclosure
issued by the bank).

The objective of this study is to investigate economic activities via bank transfers among
firms’ accounts by selecting all the transfers related to the firms to uncover how money
flows behind the economic activities. More specifically, we examine the network and flow
structures, especially the so-called bowtie structure, to locate the position of individual
accounts upstream and downstream of the entire flow. We quantify the location using the
method of Hodge decomposition of the flow. Furthermore, we examine geographical in-
formation of bank transfers in order to see how geographical relations between remittance
source and destination are represented by a small number of components of areas.

2 Data
Our dataset comprises all the bank transfers that are sent from or received by the bank
accounts in a regional bank. The regional bank is Shiga Bank, Ltd., the largest bank in a
prefecture in Japan, which is mid-sized in terms of its population (more than a million)
and economic activity. All the accounts are anonymous for obvious reasons, while several
attributes such as geographical locations are given to the accounts owned by firms under
the anonymity. Hereafter, we refer to it simply as Bank A for brevity. The period covered
in our study is from March 1, 2017, to July 31, 2019, i.e., a period of 29 months or 883 days.

During this period, there were 23 million transfers among 1.7 million bank accounts
involving a total of 17.4 trillion yen (roughly 160 billion USD or 140 billion Euros). Let
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Table 1 Bank accounts and transfers: summary

Number/Amount Entire data Within Bank A

All Firms

#Accounts 1.71 M 642,411 30,613
#Transfers 23.06 M 12,847,963 2,409,619
#Links 3.13 M 1,470,107 280,864
Transfer (Yen) 17.43 T 5.26 T 2.15 T

For a transfer i → j, the column “Entire data” includes the cases in which either i or j is not an account of Bank A. The column
“Within Bank A” corresponds to the case in which both i and j are accounts of Bank A. “firms” implies that both the source and
the target of a link are firm accounts. M and T denote million and trillion, respectively.

Figure 1 Construction of bank-transfer network by aggregation. How bank transfers are aggregated into
links. imade three transfers (1, 2, and 4) in an arbitrary unit of money to j, while jmade one transfer (1) to i
during a certain period. Flow fij is defined by the total flow of transfers along i → j. Frequency gij is the
frequency of these transfers

us denote a transfer from account i to account j by i → j. To focus only on the firms’
accounts in Bank A, we filtered the data such that (i) both i and j are the accounts of Bank
A, (ii) both i and j are owned by firms excluding households, and (iii) self-loops i → i are
deleted. Point (ii) is important for our purpose, because our concern here is how money
flows and circulates among firms’ accounts, which is considered to be closely related to the
firms’ economic activities. The resulting data are summarized in Table 1 (see the rightmost
column).

Note that multiple transfers i → j can exist for a given pair of i and j, because of frequent
transfers. One can quantify the strength of the directional relationship between a pair
of accounts either by the flow of transfers or by their frequency. To do so, we aggregate
multiple transfers, if present, into a single link i → j with two types of weights, namely
flow fij and frequency gij (see the illustration in Fig. 1). Hereafter, we use the term link for
aggregated transfers.

The number of accounts or nodes in the network is N = 30,613, while the number of
links is M = 280,864 after the aggregation (see Table 1).

The summary statistics of the links’ flows fij and frequencies gij for all the pairs of ac-
counts i and j are presented in Table 2. One can observe that the distributions for flow and
frequency have large skewness, implying that a considerable fraction of the money flow is
due to a large amount transferred by a small number of flows.

3 Results and discussion
3.1 Network of firms’ accounts and links of transfers
First, let us summarize the network structure comprising firms’ accounts as nodes and
aggregated transfers as links. We remark that transfers are aggregated into links as shown
in Fig. 1. The degree is the number of transfers received by or sent from an account. The
number of incoming and outgoing links of an account is called the in-degree and out-
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Table 2 Summary statistics for links’ flows and frequencies

Stats. Flow (Yen) Frequency

Min. 1 1
Max. 3.00× 1010 2,616
Median 0.20× 106 3
Avg. 7.65× 106 8.58
Std. 1.53× 108 19.92
Skewness 92.5 37.8
Kurtosis 1.25× 104 3.49×103

Summary statistics of the links’ flows and frequencies for all the pairs of accounts, where links are aggregated transfers as
defined in the main text and Fig. 1.

Figure 2 Degree distributions for the bank transfer network. Complementary cumulative distributions for
in-degree and out-degree, which refer to the number of incoming and outgoing links, respectively, of each
account

degree, respectively. Figure 2 shows the distributions of the in-degree and out-degree as
complementary cumulative distributions. By noting that the total number of accounts is
N = 30,613, we can see that a small fraction of accounts has a considerable degree, i.e., a
thousand or more links, while most accounts have a limited number of links. In fact, the
tail in Fig. 2 can be approximated by a Pareto distribution P(k) ∝ k–μ for degree k with an
exponent μ, which can be estimated as μ = 1.63(±0.05) for in-degree and μ = 1.99(±0.06)
for out-degree (standard errors in parentheses), both obtained by Hill’s estimator for the
top 1000 (corresponding to roughly k > 50). Such hubs are presumably entities associated
with the local government or the public sector in the region. We summarize the basic
properties of the network in Appendix A.

Because each node has an in-degree and out-degree, we can examine how they are corre-
lated. Figure 3 shows the scatter plot for the in-degree and out-degree of each account. We
can observe a tendency for a positive correlation between the degrees (Pearson’s r = 0.303
(p < 10–6); Kendall’s τ = 0.164 (p < 10–6)). We also observe the accounts that have many
more incoming links than the outgoing ones (and vice versa), which can be respectively
considered as “sinks” and “sources” with respect to money flow. If household accounts
were included, one would have a larger number of sinks corresponding to the situation
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Figure 3 Scatter plot for in-degree and out-degree of each account. Each account as a node, represented as
a point, has incoming links and outgoing links, the numbers of which are represented by the horizontal and
vertical axes, respectively. The diagonal line represents the locations where the in-degree and out-degree are
equal

Figure 4 Distribution for the flows of links. Complementary cumulative distributions for the amount of
money defined by fij between each pair of accounts i and j (see Fig. 1)

that income and saving are likely larger than expenditure and dissaving, but such sinks are
not present here.

We can observe each link’s weights, flow fij, and frequency gij (see Fig. 1). Figure 4 shows
the complementary cumulative distribution for the flow along each link. The distribution
is highly skewed; there exist a small number of links that have a large amount of flow
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Figure 5 Distribution for the frequencies of transfers. Complementary cumulative distributions for the
frequency defined by gij between each pair of accounts i and j (see Fig. 1). We can observe that there are
frequency steps around 30 and 60 (vertical dotted lines), which are presumed as periodic transfers performed
once or twice in each month (recall that the entire period includes 29 months)

Table 3 Numbers of communities, irreducible communities, and accounts at each level of
community analysis using Infomap

Level #comm. #irr. comm. #accounts Ration (%)

1 164 143 355 0.012
2 2327 2264 28,948 94.5
3 215 215 1310 0.043
Total – 2621 30,613 100.0

Each level corresponds to the hierarchical level in the Infomap community analysis [10]. A community at a level can be
decomposed at the next lower level (from top to bottom). If a community cannot be decomposed further, it is called an
irreducible community. The numbers of irreducible communities are listed in the third column. The fourth column lists the
numbers of accounts belonging to these irreducible communities at each level.

exceeding a billion yen — likely important channels with large flows of money. Quantita-
tively, 0.1% of the links have flows larger than a billion yen.

Figure 5 shows the complementary cumulative distribution for the frequency along each
link. The steps at 30 and 60 on the horizontal axis are considered to correspond to transfers
performed once or twice in each month (recall that the entire period includes 29 months).
We can see that 0.1% of the links have frequencies of 500 or more corresponding to daily
transfers on weekdays.

3.2 Community analysis
Communities or clusters in a network are tightly knit groups with high intra-group density
and low inter-group connectivity [8]. Community analysis is useful for understanding how
a network has such heterogeneous structures. We adopt the widely used Infomap method
[9, 10] to detect communities in our data.

The results are presented in Table 3. “Level” indicates the level of communities in a hier-
archical tree of communities that are detected recursively (see [10]). The number of com-
munities indicates how many communities are detected at the corresponding level. The
label “irr. comm.” denotes irreducible communities that cannot be decomposed further
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Figure 6 Distributions of the sizes of irreducible communities. Rank-size plot for the sizes of irreducible
communities detected using the Infomap method at all the levels, where the ranks are in descending order of
the size with the lowest rank equal to the total number of irreducible communities (see Table 3). The size of a
community is simply the number of nodes included in the community

to the next level of smaller communities in the hierarchical decomposition. For example,
143 of 164 communities at the first level are irreducible ones, whereas the rest of them are
decomposed into 2327 smaller communities at the next level, and so forth.

We find that most of the communities are at the second level because of the number of
accounts, and that most of the accounts (94.5%) belong to the second-level communities.
In our previous study [11] on the application of hierarchical community analysis using In-
fomap to a large-scale production network, we showed that a relatively shallow hierarchy
can be observed at the fifth level as the lowest level; in particular, most firms are included
at the second level, exactly as we find here. This is reasonable, because our data on bank
transfers among firms’ accounts should reflect a regional fraction of the entire production
network on a nationwide scale. The finding here is interesting, because this implies a self-
similar structure of the production network meaning that a partial system has a similar
network property to the global system.

Figure 6 shows the distribution of the sizes of irreducible communities at the lowest level
that includes all the accounts. The size of a community is simply the number of nodes in-
cluded in the community. The result indicates that the size of the communities is highly
skewed over a few orders of magnitude. We note that there exist more than 10 communi-
ties with sizes exceeding 100, which correspond to important clusters of economic activi-
ties that depend on geographical sub-regions and industrial sectors. We shall discuss this
issue in our analysis of non-negative matrix factorization later.

3.3 Bowtie-walnut structure
With respect to the flow of money, the accounts can be located in a classification of the
so-called bowtie structure, which was first adopted in the study of the Internet [12]. In the
context of economics and finance, the method has been applied to business relationship
networks [13] and credit default swap network [14], for example. Nodes in a directed net-
work can be classified into a giant strongly connected component (GSCC), its upstream
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side as the IN component, its downstream side as the OUT component, and the rest of the
nodes that do not belong to any of GSCC, IN, and OUT. In general, they can be defined
as follows.

GWCC Giant weakly connected component: the largest connected component when
viewed as an undirected graph. At least one undirected path exists for an ar-
bitrary pair of nodes in the component.

GSCC Giant strongly connected component: the largest connected component when
viewed as a directed graph. At least one directed path exists for an arbitrary pair
of nodes in the component.

IN Nodes from which the GSCC is reached via directed paths.
OUT Nodes that are reachable from the GSCC via directed paths.

TE “Tendrils”: the rest of GWCC.
Therefore, we have the following decomposition of GWCC:

GWCC = GSCC + IN + OUT + TE. (1)

For our data of the entire network with N = 30,613 nodes and M = 280,864 links, the
GWCC component comprises 30,225 (99.0%) nodes and 280,598 (99.9%) links. The break-
down of GWCC to GSCC, IN, OUT and TE is given in Table 4. As is seen here, nearly 40%
of the accounts are inside GSCC. Further, 15% of the accounts are in the upstream portion
or IN, whereas 37% are in the downstream portion or OUT (see Fig. 7). These figures are
similar to those observed in the production network in Japan in a previous study [11].

The similarity between the current money-flow network and the production network
requires careful elaboration. First, the flow in the current network is in the direction of
money transfer, while in the production network the flow is in the direction of goods and
services, i.e., from suppliers to customers. Therefore, the IN component in the production
network should be compared to the OUT component and vice versa. Upon making this
comparison, we notice that the OUT component in the current network occupies a much
larger portion of the network (37.3%) than the one in the production network (20.6%;
see [11]). This is understandable based on two facts: (i) nodes are bank accounts in the
current network, while in the production network, nodes are firms’ headquarters; (ii) the
prefecture where the current regional bank resides is void of major cities of Japan, such
as Tokyo, Osaka or Nagoya. This implies that many firm headquarters are outside of this
prefecture and the prefecture is dominated by agriculture and production facilities. Given
that the number of bank accounts of factories and associated offices is expected to be much
higher than that of accounts being closer to consumer market, the OUT component in the
current network occupies a larger portion than it does in the production network.

Table 4 Bowtie or “walnut” structure: size of each component

Component #accounts Ratio (%)

GSCC 11, 543 38.2%
IN 4508 14.9%
OUT 11, 270 37.3%
TE 2904 9.6%
Total 30, 225 100%

“Ratio” refers to the ratio of the number of firms to the total number of accounts in GWCC.
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Figure 7 Walnut structure: a schematic view. The so-called
bowtie structure reveals that GSCC includes nearly 40% of all the
nodes or accounts, while the IN and OUT components include
15% and 37%, respectively (see Table 4 for the details). The
prominent features are as follows. (i) The shortest distances to IN
and OUT from GSCC are quite small, typically 1 or 2, and 4 at most
(Table 5); hence, the ties are not elongated like a “bowtie” but
rather like a “walnut” skin. (ii) The nodes in the components of IN
and OUT are connected to the nodes scattered widely in GSCC.
See also the study of a supplier-customer network [11] with
similar features

Table 5 “Walnut” structure: shortest distance from GSCC to IN/OUT

IN to GSCC OUT from GSCC

Distance #accounts Ratio(%) Distance #accounts Ratio(%)

1 4346 96.41% 1 11,051 98.06%
2 144 3.19% 2 208 1.85%
3 8 0.18% 3 11 0.10%
4 10 0.22% 4 0 0.00%
Total 4508 100% Total 11,270 100%

The left half lists the number of accounts in the IN component connected to the GSCC accounts with the shortest distances
within 4 at most. The right half represents the OUT component similarly.

The global structure of the network, its connectivity, is an another important property.
The term “bowtie” refers to the connectivity structure observed in many social and tech-
nological networks, such as the Internet, where the maximum distances from GSCC to IN
or OUT are often very long (see the original paper [12]) and in fact look similar to a bowtie
in their visualization. However, in the case of production networks, it was found that the
connectivity between IN and GSCC and the one between GSCC and OUT is very high:
Over 90% of nodes in IN can reach a node in GSCC with only one link and similarly with
from OUT to GSCC. Here, network visualization showed a tightly bound shape, where
IN and OUT forms two thin half shells with GSCC at the core, reflecting the high con-
nectivity. The authors of [11] found that this structure, lacking two wings elongating from
the center, does not resemble a “bowtie” at all and coined the more fitting term “walnut”
to describe it. The shortest-path lengths between GSCC and IN or OUT in the current
money-flow network is given in Table 5, where we can observe that the accounts in the
IN and OUT components are only a few steps away from GSCC: the money-flow network
is “walnut” in structure, similar to the production network. This is most understandable
when we look at their relationship. Given that firm headquarters form a tight “walnut”
network, their factories and related offices cannot form an elongated link structure.

Finally, it should be noted that the decomposition of IN, OUT, and GSCC components
is based on the identification of the largest strongly connected component (GSCC) and
reachability to it from other part of the network. Individually, there is no significant dif-
ference in each network structure. Each component is merely a subgraph of the original
network; a part of bank transfers reflecting the supplier-customer relationship of firms.
The difference is the relative position of IN and OUT with respect to GSCC, which can be
quantified and interpreted as relative position in the upstream and downstream of money
flow (as discussed in the following section).



Fujiwara et al. EPJ Data Science           (2021) 10:19 Page 10 of 26

3.4 Hodge decomposition: upstream/downstream flow
Our analysis of the bowtie structure implies that the nodes in IN and OUT are located
in the upstream and downstream sides in the flow of money. The Hodge decomposi-
tion of the flow in a network is a mathematical method of ranking nodes according to
their locations upstream or downstream of the flow [15]. This method, also known as
the Helmholtz–Hodge–Kodaira decomposition, has been used to find such a structure in
complex networks (see, e.g., neural networks [16] and economic networks [17–19]).

First, we recapitulate the method in a manner suitable for our purpose here. Let Aij

denote adjacency matrix of our directed network of bank transfers, i.e.,

Aij =

⎧
⎨

⎩

1 if there is a link of transfer from account i to j,

0 otherwise.
(2)

Recall that the numbers of accounts and links are N and M, respectively. We excluded all
the self-loops, implying that Aii = 0. Each link has a flow, denoted by F̃ij, either of the total
amount of transfers, fij, or the frequency of transfers, gij (see Fig. 1), i.e.,

F̃ij =

⎧
⎨

⎩

fij or gij if Aij = 1,

0 otherwise.
(3)

Note that there may be a pair of accounts such that Aij = Aji = 1 and F̃ij, F̃ji > 0. Next, we
shall take the frequency of transfers, gij, by assuming that it represents the strength of the
link.

Let us define a “net flow” Fij by

Fij = F̃ij – F̃ji (4)

and a “net weight” wij by

wij = Aij + Aji. (5)

Note that wij is symmetric, i.e., wij = wji, and non-negative, i.e., wij ≥ 0 for any pair of i
and j. We remark that Eq. (5) is simply a convention to consider the effect of mutual links
between i and j. One could multiply Eq. (5) by 0.5 or an arbitrary positive number, which
does not change the result significantly for a large network.

Now, the Hodge decomposition is given by

Fij = F (c)
ij + F (g)

ij , (6)

where the circular flow F (c)
ij satisfies

∑

j

F (c)
ij = 0, (7)
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which implies that the circular flow is divergence-free. The gradient flow F (g)
ij can be ex-

pressed as

F (g)
ij = wij(φi – φj), (8)

i.e., the difference of “potentials”. In this manner, the weight wij serves to make the gradient
flow possible only where a link exists. We refer to the quantity φi as the Hodge potential.
If φi is relatively large, the account i is located in the upstream side of the entire network,
while a small φi implies that i is located in the downstream side of the entire network.

Equations (6)–(8) can be solved as follows. First, we combine them into the following
equation for the Hodge potentials (φ1, . . . ,φN )(≡ φ):

∑

j

Lijφj =
∑

j

Fij, (9)

for i = 1, . . . , N . Here, Lij is the so-called graph Laplacian and defined by

Lij = δij
∑

k

wik – wij, (10)

where δij is the Kronecker delta.
It is straightforward to show that the matrix L = (Lij) has only one zero mode (eigenvec-

tor with zero eigenvalue), i.e., φ = (1, 1, . . . , 1)/
√

N . The presence of this zero mode simply
corresponds to the arbitrariness in the origin of φ. We can show that all the other eigen-
values are positive (see, e.g., [20]). Therefore, Eq. (9) can be solved for the potentials by
fixing the potentials’ origin. We assume that the average value of φ is zero, i.e.,

∑
i φi = 0.

We note that the Hodge decomposition described above plays an essential role in deci-
phering structure of the entire network, as well as the position and the role of each nodes
in it. In studying the nodes, one may think of simply evaluating the cumulative out-flows
and use it in place of the Hodge potential. This, however, misses the whole point of study-
ing the network: Let us think of two nodes in the IN component, who have the same total
out-flow. If we use the total out-flow as a measure of their locations, they are at an equal
level, regardless of to whom they are connected: even if one is connected to a GSCC node
close to the IN side and the other is connected to a GSCC node close to the OUT side.
This also applies to those GSCC nodes in a reverse way: in evaluating the location of those
GSCC nodes it is important to whom in the IN/OUT component they are connected. The
Hodge decomposition solves this problem at once, as it is based on the network structure.
Those IN nodes will be given appropriate Hodge potential in relation with their connec-
tion to those GSCC nodes, who again are given appropriate Hodge potential with view of
all the other edges of the entire network. (See Appendix B for some intuitive explanation
and simple examples.)

The Hodge potentials obtained for the entire network of GWCC are shown in Fig. 8 as
the distribution for the potentials of all the accounts in GWCC. By noting that the average
is zero by definition, we can see that it is a bimodal distribution with two peaks at posi-
tive and negative values, while there are a number of potential values close to zero (peaks
around zero). The nodes in TE (tendrils) can be considered to have locations that are not
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Figure 8 Distribution of the Hodge potentials of individual accounts. Distributions as histograms of φi in
each component of the bowtie or walnut structure Fig. 7. The horizontal axis represents the value of φi of an
individual node or account, while the vertical axis represents the frequency in the histogram. The black line
corresponds to GSCC or the core. The blue and red lines, respectively, correspond to the IN and OUT
components or upstream and downstream with respect to the core. The green line corresponds to TE
(tendrils) or the rest of the nodes

particularly relevant to upstream or downstream; we can expect that these nodes mostly
have potentials close to zero, as shown by the green line, i.e., the result after deleting all
the nodes contained in TE’s. We can see that these TE do not contribute to large absolute
values of the Hodge potentials.

It can be expected that there is a correlation between the value of the Hodge potential
and the net amount of demand or supply of money for each node. We can measure the
net amount of demand/supply by examining the in-degree and out-degree of the node,
or alternatively, the in-flow and out-flow of money. Figure 9 and Fig. 10 show the results.
We find that if the potential is positive, the node is located in the upstream side, and its
net degree and flow are negative. If the potential is negative, the node is located in the
downstream side, and its net degree and flow are positive.

This finding can be interpreted as follows. Consider a supplier in the production net-
work, which supplies its products to a number of customers. The supplier has a bank ac-
count (or possibly multiple accounts) that receives money from the customers’ accounts
as the supplier’s sales. If the supplier is in the upstream side of the supplier-customer rela-
tionship, it is likely that the account is located in the downstream side of the money flows
in this study. As the supplier not only makes sales but also incurs costs, typically labor
costs, there must be an outgoing flow from its account to be linked with households and
other non-commercial entities, which are not included in the present study. Consequently,
the supplier’s account has a positive net degree and flow, while its Hodge potential is likely
negative. A similar argument would hold for customers in an opposite way. In other words,
our finding is a direct observation of how the flow of money reflects the economic activi-
ties among the firms’ accounts.
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Figure 9 Hodge potential and net degree for each node. Each point represents a node or an account. The
net degree is defined by the difference between the in-degree and the out-degree of the node. If the net
degree is positive, the node has more incoming links than outgoing ones and vice versa

Figure 10 Hodge potential and net flow for each node. This figure is similar to Fig. 9 except for the vertical
axis, which represents the net flow. The net flow is defined by the difference between the incoming amount
of money and the outgoing one

In response, a keen reader may wonder how the results might change if the consumption
of households is included in our study. In fact, in case of the economic activity of house-
holds in this particular region as well as other regions of Japan during the period of our
study, cash was the largest channel of payment. Hence, transfers from households to firms
are quite negligible in frequency and amount, even if the consumption of households is
included.
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3.5 Non-negative matrix factorization (NMF): decomposition of geographical
structures of bank transfers

In this section, we focus on the geographical information of bank transfers. Each bank
account has a registered address, when the account was created. We obtain the latitudes
and longitudes of the bank accounts by using geocoding. Consequently, a bank transfer
between two bank accounts has two coordinates of its remittance source and destination.
Can geographical relations between source and destination be represented by only a small
number of components of areas? We construct a non-negative matrix defined from the
frequencies between the geographical areas, and we adopt NMF to find such components
of geographical structures of the bank transfers.

NMF constructs an approximate factorization of a non-negative matrix [21]. Applica-
tions of NMF to real dataset give a small number of components whose linear sums can
approximate elements of the dataset. For example, NMF is useful for processing facial im-
ages because it produces parts-based representations of such images [22]. To obtain the
basic components whose linear sums can approximate bank transfers, we apply NMF to
a non-negative matrix V constructed as a geographical aggregation from the frequencies
of bank transfers gij in the following way.

Let the geographical location of account i be loc(i), that is, the pair of the longitude and
latitude of the registered address of i. We set a lattice grid in the entire region including
the Shiga prefecture using L by L sufficiently small squares, where L = 100. Let R� be such
squares (� = 1, 2, . . . , L2). Aggregate the frequencies of bank transfers from a source grid Rs

to a destination grid Rd by

g̃sd =
∑

{(i,j)|loc(i)∈Rs and loc(j)∈Rd}
gij, (11)

where the summation is taken over all pairs of accounts (i, j) such that the source i is lo-
cated in Rs and the destination j is located in Rd . Then let us convert the aggregated fre-
quency to its logarithm to reduce the influence of outstanding values by

Vsd = log
(
max{1, g̃sd}

)
. (12)

Note that every entry Vsd is non-negative. V = (Vsd) is a sparse matrix of size L2 × L2; that
is, only a small fraction of the entries are non-zero because bank transfers do not occur
between many pairs of source and destination, for which we have Vsd = 0.

NMF provides the approximate factorization:

V ≈ WH , (13)

where W and H are non-negative matrices of size L2 × K and K × L2 respectively and
K is an integer. Because of the sparsity of V , we expect that K 	 L2. We assume that the
approximation is based on the minimization of the following loss function given by the
Frobenius norm:

f (W , H) =
1
2

∑

s,d

(
Vsd – (WH)sd

)2, where W ≥ 0 and H ≥ 0, (14)
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where W ≥ 0 and H ≥ 0 implies non-negativity. Technically, we solve Eq. (14) numerically
with the initialization of W , H using non-negative double singular value decomposition
(see the review [23] and references therein). The minimization yields local minima in gen-
eral. However, our numerical solutions under different random seeds provided essentially
the same decomposition.

The decomposition by NMF can be interpreted as follows. Equation (13) is explicitly
written as

Vsd ≈
K∑

k=1

WskHkd. (15)

For an arbitrary source s, Eq. (15) can read as

Vs• ≈
K∑

k=1

Wskhk , (16)

where hk is the vector given by the kth row of H . This equation means that the transfers
from the source s can be expanded by such “basis vectors” hk (k = 1, 2, . . . , K ). The basis
vector’s components (hk)d = Hkd represent a spatial pattern of how destinations d are dis-
tributed geographically for the kth NMF component. Similar to an arbitrary destination
d, one has

V•d ≈
K∑

k=1

Hkdwk , (17)

where wk is the vector given by the kth column of W . This implies that the transfers to
the destination d can be expanded by the basis vectors wk (k = 1, 2, . . . , K ). The basis vec-
tor’s components (wk)s = Wsk represent a spatial pattern of how sources s are distributed
geographically for the kth NMF component. In fact, we can regard Eq. (13) as the approx-
imation of V by the sum of products of these basis vectors:

V ≈
K∑

k=1

wkhk . (18)

This expression can be understood in the way that bank transfers can be decomposed into
K “NMF components” comprising pairs of basis vectors, wk and hk (k = 1, 2, . . . , K ). We let
K = 10 from the prior knowledge that the number of local communities in the prefecture
is around 10. We later discuss how results depend on different choices of K .

Results of all the basis vectors for each NMF component k = 1, 2, . . . , K are depicted in
Fig. 11, Fig. 12, Fig. 13, and Fig. 14. In these figures, each box corresponds to an NMF
component comprising a pair of basis vectors wk and hk . Each basis vector’s components
are depicted on a geographical map covering the Shiga prefecture and its surroundings
including Kyoto. Larger values of vector components are indicated by darker pixels shown
on the map. We can observe that the source (left figure in each box) and the destination
(right) are concentrated in small geographical regions (shown by circles in each figure)
due to the result that the vector components have peaks in most cases. We found that
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Figure 11 Each box shows a pair of NMF basis vectors wk (left) and hk (right). From top to bottom: k = 1, 2, 3.
In each box, the left figure shows the vector components of wk mapped onto a geographical map (lake and
sea shown in blue), which represent how sources of the kth NMF component are distributed spatially, while
the right figure shows the components of hk , which represent how destinations of the kth NMF component
are distributed spatially. The grayscale colorbar in each figure indicates magnitudes of the corresponding
basis vector’s components after normalizing the vector by its Euclidean norm. Also shown in each figure is a
small circle which corresponds to the maximum vector component. City name in each box was identified
with the location of the circle

these peaks correspond to cities and highly populated urban areas. This finding holds for
all k except one case (k = 7). We quantified the concentration and identified the peaks. For
details of the quantification and identification, see Appendix C.
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Figure 12 Each box shows a pair of NMF basis vectors wk (left) and hk (right). From top to bottom: k = 4, 5, 6.
See the caption of Fig. 11 for explanation

The exceptional case is the basis vector hk for k = 7 in Fig. 13. In this case, while the
source is concentrated in the largest city of the Shiga prefecture, the destination spreads
over the entire prefecture and also its neighboring city of Kyoto. This implies that one of
the NMF components corresponds to bank transfers from firms in the largest city to other
firms in different local areas as well as in Kyoto.

In all the other cases, we can observe that the pair of source and destination is located in
mostly similar regions. To clarify this, Fig. 15 shows a matrix of cosine similarities between
a basis vector of the source and a basis vector of the destination, where the cosine similarity
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Figure 13 Each box shows a pair of NMF basis vectors wk (left) and hk (right). From top to bottom: k = 7, 8, 9.
See the caption of Fig. 11 for explanation. Note that for the box k = 7, the basis hk=7 (right figure) has its vector
components of destination widely distributed over the Shiga prefecture and its neighbor in Kyoto, which is
located to the left (west) of Shiga. So, in this exceptional case, the figure does not include a circle
corresponding to any peak of vector components

of hk and wk′ is calculated by

hk · wk′

‖hk‖‖wk′ ‖ , (19)
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Figure 14 The box shows the pair of NMF basis vectors wk (left) and hk (right) for k = 10. See the caption of
Fig. 11 for explanation

Figure 15 Cosine similarities between basis vectors.
The vertical axis represents the indices of hk , i.e., the
kth row vector of H, and the horizontal axis
represents the indices of wk′ , i.e., the k′th column
vector ofW . From top to bottom: k = 1, . . . ,K = 10;
from left to right k′ = 1, . . . ,K = 10. Scale bar displays
the magnitude of cosine similarities between hk and
wk′

where hk · wk′ is the inner product of hk and wk′ , and ‖ · ‖ is the Euclidean norm of a
vector. All the diagonal entries except for one are almost 1’s; that is, the kth basis vector
hk is similar to the kth basis vector wk except for k = 7. These basis vectors correspond
to basis vectors that have the previously mentioned geographically localized properties,
and the similarities of pairs of basis vectors imply that both incoming and outgoing bank
transfers for a local area have similar patterns.

Finally, we present the results of NMF with different values of K . To investigate the
changes in the basis vectors which may occur according to K , we applied NMF to V with
K = 5, . . . , 15. In all the cases, most of the basis vectors are geographically localized and
form source and destination pairs that are similar to each other and correspond to bank
transfers in local areas. All the basis vectors are localized for K less than 7, and a pair of
basis vectors exists that corresponds to bank transfers between the largest city and local
areas for d greater than or equal to 7. For all the examined values of K , the basis vectors
correspond to either bank transfers in local areas or bank transfers between the largest
city and other local areas.
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4 Conclusion
We studied an exhaustive list of bank accounts of firms and remittances from source to
destination within a regional bank with a high market share of loans and deposits in a
prefecture of Japan. By studying such a network of money flow, we could uncover how
firms conduct the underlying economic activities as suppliers and customers from the
upstream side to the downstream side of the money flow. We aggregated the remittances
that occurred for each pair of accounts as a link during the period from March 2017 to
July 2019 (i.e., approximately two and a half years), which comprises 30K nodes and 0.28M
links. We found that the statistical features of the network are actually similar to those of
a production network on a nationwide scale in Japan [3], but with greater emphasis on the
regional aspects.

The bowtie analysis revealed what we refer to as a “walnut” structure in which the core
and upstream/downstream components are tightly connected within the shortest dis-
tances, typically at a few steps. By quantifying the location of the individual account of
a firm using the method of Hodge decomposition, we found that the Hodge potential of
each node can describe the location in the entire flow of money from the upstream side to
the downstream side, well characterized by the values of the potential. In particular, there
is a significant correlation between the Hodge potentials and the net flows of incoming
and outgoing money and links as well as the potentials and the walnut structure. This im-
plies that we can characterize the net demand/supply of each node and decompose the
flows into those due to the difference in potentials as well as divergence-free flows.

In addition, the network structure uncovered in this study can be used in predicting
the default of firms. Particularly, because the financial information of small and medium-
sized enterprises is often difficult to access, the credit risk management of banks will be
improved by utilizing the information obtained from the network. Information on the net-
work structure will be also useful in promoting the regional economy because the hubs of
the GSCC can be firms playing a key role in the region. Studying the network of money
flow can enable the prediction of what arises following an economic shock, which is es-
sential in economic policymaking.

Furthermore, by using non-negative matrix factorization, we uncovered the fact that the
entire flow can be considered as a combination of several significant factors. One factor
has a feature whereby the remittance source is localized to the largest city in the region,
while the destination is scattered. The other factors correspond to the economic activ-
ities specific to different local places, which can be interpreted as local activities of the
economy.

We can consider several points that remain to be studied separately from the present
work. While we aggregated the entire period in this paper, it would be interesting to deter-
mine how the network changes with time by examining the time-stamps recorded in every
remittance. At time scales of days, weeks, and months, it is quite likely that there are intra-
day, weekly, and seasonal patterns of activities. More interestingly, under mild changes in
the booms and busts of the regional economy on a relatively long time scale, the economic
agents might change their behaviors possibly by changing peers in the transactions. Al-
ternatively, under sudden changes due to natural disasters or pandemics, the agents can
change their usual patterns abruptly. In other words, these are important aspects of a tem-
porally changing network. Capturing such dynamic patterns of remittances allows banks
to forecast the timing of transactions and manage their liquidity more effectively.
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In addition, further investigation of the aspect of money flow amounts is warranted in
the sense that the dominant driving force likely comes from “giant players” who demand
or supply a large amount of money. Moreover, it would be interesting to select them in a
subgraph by choosing only links with flow amounts that are larger than a certain threshold.
These topics will be studied in our future work.

Appendix A: Network analysis
It would be beneficial to provide a set of stylized facts on the flow of money in our dataset
of the bank accounts. In this appendix, we summarize the basic properties and statistics
of the network.

A summary of network properties is given in Table A.1.
Various centralities and properties for nodes are summarized in Table A.2. Definitions

of these centralities are standard and some of them are recapitulated for convenience.
• Clustering coefficient of a node i is defined as ei/(ki(ki – 1)) where ki is the number of

neighbors of i, and ei is the number of actually connected pairts between all neighbors
of i.

• Connectivity of a node i is the number of its neighbors (i.e., ki). Neighborhood
connectivity of a node i is defined as the average connectivity of all neighbors of i.

• Average shortest path of a node i is the average length of a shortest path from i and
any other node reachable from i. Let us denote it as Lavg(i).

Table A.1 Summary of network properties

Property Value Note

Number of nodes 30,613 notation: N
Number of edges 280,864 notation:M
Density 0.0003 definition:M/N(N – 1)
Diameter 14 maximum of all shortest paths
Characteristic path length 4.2 average of all shortest paths
Number of multiple edges 0 by construction
Number of self-loops 0 by construction
Number of pairs of mutual edges 12,258 see (a)
Number of connected components 145 see (a)
Number of triangles 422,911 see (b)
Assortativity –0.080 degree correlation; see (b)
Global clustering coefficient 0.035 see (b)

(a) A pair of mutual edges is such directed edges as i → j and j → i for a pair of nodes (i, j). (b) For the undirected version of the
network, in which a pair of mutual edges, if any, is regarded as a single undirected edge.

Table A.2 Centralities and properties of nodes

Property Min. 25%Q Median 75%Q Max. Avg. Note

Degree 1 1 4 17 2245 18.3 total
In-degree 0 1 2 6 1464 9.17
Out-degree 0 0 1 8 2245 9.17
Clustering coeff. 0.0 0.0 0.015 0.056 1.0 0.061 see def.
Neighborhood Connectivity 1.0 53.0 112.6 194.0 2245.0 182.8 see def.
Avg. shortest path length 0.0 0.0 3.50 4.17 8.80 2.28 see def.
Closeness 0.0 0.0 0.21 0.25 1.0 0.18 see def.
Eccentricity 0 0 9 10 14 5.40 see def.
Betweenness 0.0 0.0 0.0 4.71× 103 2.24× 107 3.88× 104 see def.

25%Q and 75%Q are respectively 1st and 3rd quantiles.
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• Closeness of a node i is defined as 1/Lavg(i) (i.e., the reciprocal of the average shortest
path of i).

• Eccentricity of a node i is the maximum non-infinite length of the shortest path
between i and another node reachable from i in the network.

• Betweenness of a node i, Cb(i), is defined by Cb(i) =
∑

s,t σs,t(i)/σs,t , where s and t are
the starting and terminating nodes different from i, σs,t is the number of shortest
paths from s to t, and σs,t(i) is the number of shortest paths from s to t such that i is
on the path.

Appendix B: Hodge decomposition
As explained in the main text, Hodge decomposition plays an essential role in studying the
network structure, by allowing the researchers to quantitatively order the nodes according
to their connectivity to other nodes.

One way to understand it to study some simple examples. One of the most simple but
nontrivial one is illustrated in Fig. B.1. The network illustrated on the most left-hand-side
(“Original Flow”) is made of the three nodes with the given flow. The flows are decom-
posed to “Circular flow” and “Gradient Flow” as are illustrated. Sum of the two flows are
equal to the original flow: For example, from the node no.1 to the node no.2, circular flow
is –1/3 (as it is +1/3 in the other direction) and the gradient flow is +4/3, which adds up
to 1, the value of the original flow. Also, the gradient flow satisfies the property (7). Fur-
thermore, the gradient flow satisfies Eq. (8) with all the weights equal to one (wij = 1) and
the Hodge potential (φi) = (+2/3, –2/3, 0). Figure B.2 shows the visualization of this net-
work with the use of the Hodge potential (φi) as vertical coordinate. In this illustration
it is straightforward to see that gradient flows are equal to the difference of the Hodge
potentials of the relevant nodes.

Figure B.3 and Fig. B.4 are simple and more illustrative examples, where all flows are
of strength 1 as in the first example. In both Figures, on the left panel is the visualization
of the whole network by using the spring-charge method, and on the right panel is the

Figure B.1 A simple example

Figure B.2 The illustration of the gradient flow network, given on the
most right-hand side of Fig. B.1
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Figure B.3 A sample network. On the left-hand side is visualization by the charge-spring visualization and on
the right-hand-side is the visualization of the same network with the horizontal coordinates determined by
the Hodge potential and the horizontal coordinate determined by the spring-charge method

Figure B.4 Another sample network, visualized in the same manner as in Fig. B.3

visualization of the same network with the vertical coordinate determined by the Hodge
potential and the horizontal coordinate determined by the spring-charge method.

In Fig. B.3, the nodes are placed in a left-right symmetric manner on the left panel,
although the links do not have the same symmetry. The nodes no.1 and no.3 are placed
in same vertical position. If one used the total out-flow as a measure of the rank, they
would be placed just like this, as both of them have the total out-flow equal to three. The
right panel, however, shows a different picture: Nodes no.1 and no.3 are placed at different
heights, due to the difference in their Hodge potential, which again is due to the difference
in the way they are connected to other nodes.

The example in Fig. B.3 shows the power of the Hodge decomposition in a different
manner: On the left-panel, we do not see any symmetry and the roles of the nodes are not
apparent. On the contrary, the right panels shows the left-right symmetry except for the
node no.6. Nodes no.1 and no.5 plays very similar role in this network, the only difference
being that no.1 is connected to no.6. Same is true for the nodes no.4 and no.3. Without
the use of the Hodge decomposition this fact is rather difficult to see.
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As seen in these examples, the Hodge potential plays an important role in clarifying the
whole structure of the network.

Appendix C: NMF basis vectors: spatial concentration
As we showed in the main text, the NMF basis vector’s components are concentrated in
small geographical regions, because of the fact that the vector components have peaks at
specific locations in most cases. In this appendix, we shall quantify the concentration and
the peaks, and show results.

Recall that the entire region was divided into L by L small squares R� (� = 1, 2, . . . , L2) in
a lattice grid, where we set L = 100. A basis vector v, which is either a column vector wk of
W or a row vector hk of H , has its components at the indices �, each of which corresponds
to a different location R�. Because all components of the basis vector v are non-negative by
construction of the NMF, the v’s vector components can be represented as a heatmap in
the geographical region. This representation was actually used in Fig. 11, Fig. 12, Fig. 13,
and Fig. 14.

Let r� be the center of the square R�, and C� be a circle centered at r� with a certain
radius. We choose the radius as 5 km in order to avoid overlapping of circles. The choice
of the radius is not essential because the circle is not related to the NMF and is used only
for quantification of geographically localized structure. For a vector v and a circle C�, let
us define

β(C�, v) =

∑
{�′|r�′ ∈C�} v�′
∑L2

�′′=1 v�′′
. (C.1)

This quantity represents how the components of v are concentrated in the circle C�. Then
by finding and calculating

Cmax(v) = arg max
{C�|�=1,...,L2}

β(C�, v), (C.2)

βmax(v) = max
{C�|�=1,...,L2}

β(C�, v), (C.3)

one can identify the circle Cmax(v) that maximizes the concentration β(C�, v), and can
quantify the level of concentration by βmax(v).

In all the cases (except hk for k = 7), the basis vectors wk and hk have such peaks mean-
ing that the corresponding sources and destinations are well localized in the geographical
region. The circles shown in the figures of Fig. 11, Fig. 12, Fig. 13, and Fig. 14 are given by
this procedure.

Figure C.1 shows the levels of concentration βmax(v) for all the pair of wk and hk depicted
together as 10 circles corresponding to k = 1, 2, . . . , K = 10 different NMF components.
The numbers in the circles are the levels of concentration. The levels of concentration
are more than 23% except for one basis vector in both figures of the source and destina-
tion; therefore, most basis vectors of bank transfers are localized geographically. Since the
positions of the circular areas are around the centers of cities, geographically localized
properties are thought to reflect the economic activity in those local areas. This is how
we identified city names in each boxes of Fig. 11, Fig. 12, Fig. 13, and Fig. 14. The single
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Figure C.1 Circular areas corresponding to the basis vectors and proportions of the vector entries included in
the circular areas. The left figure is for wk , i.e., the basis vectors for sources, and the numbers are the levels of
concentration, βmax(wk ), while the right figure is for hk , i.e., the basis vectors for destinations, and the numbers
are βmax(hk ), for k = 1, 2, . . . ,K = 10

exception is the basis vector hk for k = 7, for which the level is only 9%. This means that
the destinations are spread over the prefecture of Shiga and also Kyoto.
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