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Abstract 

To gain a deeper understanding of the carbon emission mechanism from transporta-
tion facilities, all system elements affecting carbon emissions from regional transpor-
tation facilities are identified and analyzed according to panel data from 30 regions 
in China. A spatial econometric model for carbon emissions from transportation facili-
ties is constructed using the Spatial Dolbin model from 2004 to 2022 as the research 
period. From the results, the carbon dioxide emissions from transportation facilities 
added from 318 million tons in 2004 to 752 million tons in 2022, with an average 
annual growth rate of 4.9%. The global spatial auto-correlation coefficient was signifi-
cant at the 5%, with an obvious spatial correlation between carbon dioxide emissions 
within a geographical range. In addition, through stability testing, the model showed 
high stability in both spatial lag testing and spatial error testing, demonstrating strong 
ability to interpret data. The research shows that the carbon emission is affected 
by independent variables, including population, economy, technology, and transpor-
tation, and exhibit significant spatial distribution characteristics in different regions 
and years, providing a basis for policy formulation and carbon emission management.
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emissions, Relativity

Introduction
With the acceleration of global economic development and urbanization, urban trans-
portation problems are becoming increasingly prominent. One important influencing 
factor is the Carbon Emissions (CE) from transportation facilities. CE causes pollution 
to the environment, posing negative impacts on climate change (Jing et al. 2023). There-
fore, measuring and analyzing the CE from transportation facilities is of great signifi-
cance. At present, the commonly used methods for measuring CE from transportation 
facilities mainly include energy metering and emission inventory methods (Jiang et al. 
2020; Huang et al. 2021). The energy metering method calculates CE by measuring the 
energy consumption of transportation facilities, but this method requires high technical 
and economic cost. The emission inventory method lists possible CE based on the type 
and scale of transportation facilities, but the accuracy is restricted by the completeness 
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and accuracy of transportation facility data and inventory (Li et  al. 2020a; Chen et  al. 
2022).

The study uses 30 provinces, cities, and autonomous regions in China as research sam-
ples to conduct auto-correlation tests on spatial data using the Moran index. The Spatial 
Dolbin Model (SDM) and Stochastic Impacts by Regression on Population, Affluence 
and Technology (STIRPAT) are combined to construct the SDM-STIRPAT spatial meas-
urement model. The impact of transportation facilities on regional CE is analyzed using 
the SDM-STIRPAT model. The innovation of the research methodology lies in the spa-
tial econometric model and the dynamic SDM-STIRPAT model, which more accurately 
consider spatial and temporal effects and provide useful references for future transpor-
tation infrastructure construction and carbon emission control.

The paper is mainly divided into four parts. The first part summarizes relevant 
research. The second part designs the carbon emission analysis method for transporta-
tion facilities. The third part analyzes CE from transportation facilities. The fourth part 
concludes the entire study.

Related works
With the progress of the economy, the increase in transportation volume and frequency 
has increased CE and exacerbated climate change. To reduce the CE caused by trans-
portation, it is necessary to promote sustainable transportation development, adopt 
low-carbon transportation methods, and strengthen the clean energy utilization. Many 
researchers have conducted extensive research on economic growth, transportation, 
and CE. Sun et  al. investigated the pathways to achieve sustainable development in 
Malaysia using quantile auto-regressive distribution lag method and Granger causal-
ity. The impact of tourism and transportation services on economic growth and CE was 
observed. The results indicated that the error correction parameters were obvious in the 
main quantiles, confirming long-term steady-state balance. Meanwhile, the tourism and 
transportation services industries primarily reduced CE through higher emission quan-
tiles, demonstrating the sustainability of Malaysia’s transportation and tourism indus-
tries (Sun et al. 2021). Ji et al. used time series data from 1990 to 2016 and applied the 
visibility graph strategy to evaluate countries. The results showed that the transporta-
tion development was an important indicator of a country’s modernization, while low-
income had relatively low CE (Ji et al. 2022). Liu et al. used 10 sampled cities to examine 
the urban sustainability level from 1990 to 2018. Shanghai and other places were in a 
leading position, followed by Wuxi and Nantong. Shanghai and other places had the 
highest cumulative CE, but per capita CE reached the lowest in 2018. Wuxi and Nan-
tong had relatively low levels. It pointed out that CE in this area mainly came from fossil 
fuels, while the CE contributed by transportation electricity continued to increase, indi-
cating that electricity may become an important component of energy consumption in 
this area. Therefore, the study emphasized the urgency of socio-economic adjustment in 
the Yangtze River Delta from carbonized structure to decarbonized structure (Liu et al. 
2020).

The SDM is a sustainable development model used to evaluate and plan the sus-
tainability of projects, policies, or industries, taking into account economic, envi-
ronmental, and social factors. Zhang and Huang used a hybrid SDM to evaluate 
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the intelligent transportation in 30 provinces from 2001 to 2017. The development 
of intelligent transportation was gradually improving, and regional differences were 
narrowing, which had a reducing effect on CE. In addition, economic and techno-
logical elements had moderating effects on the impact of intelligent transportation, 
enhancing its emission reduction effect and providing policy suggestions for intelli-
gent transportation (Zhang and Huang 2022). Lv and Zeng used an ecological foot-
print strategy to evaluate the sustainable development of the urban agglomeration 
in the Yangtze River. Meanwhile, complex network models and gravity models were 
used to characterize the scale, connectivity, and spatial interactions of transportation 
networks. The ecological footprint slightly decreased from 2010 to 2017, and the spa-
tial impact of transportation networks promoted sustainable development between 
regions (Lv and Zeng 2022). Atikah et al. used SDM to determine the optimal estima-
tion method to obtain an advertising tax model. The maximum likelihood estimation 
method was an appropriate method for estimating SDM parameters. All variables had 
a significant impact on advertising taxation (Atikah et al. 2021). Myovella et al. ana-
lyzed the digital gap in sub Saharan Africa based on the inequality in Internet use and 
broadband subscriptions. 41 geographically closely connected countries were consid-
ered, as well as spatial interdependence. Meanwhile, spatial panel analysis was con-
ducted on 451 observations from 2006 to 2016 using SDM specifications. There was 
a powerful spatial interdependence between sub Saharan Africa, which meant that 
Internet access and broadband subscriptions in one country were affected another 
country, probably due to spillover effects (Myovella et al. 2021). Hou et al. used Tapio 
decoupling elasticity model and environmental Kuznets curve model to analyze the 
relationship between economic growth and CE in the transportation industry of 30 
provinces in China from 2005 to 2020. The long-term energy substitution plan model 
was used to predict the development of China’s transportation industry. The results 
showed that the CE from the transportation industry in most provinces presented 
an inverted U-shaped decoupled from economic growth. This decoupling was usually 
more unstable in provinces with higher levels of economic development (Hou et al. 
2023). Aziz and Chowdhury used the STIRPAT model and ridge regression analysis 
to explore the influencing factors of greenhouse gas emissions in the agricultural sec-
tor of Bangladesh, including population trends, energy use, and land use practices. 
The factors such as total population and rural population, wealth level, urbanization, 
fertilizer intensity and quantity, carbon and energy intensity, irrigation, rice cultiva-
tion, farmland and crop yield all had impacts on greenhouse gas emissions (Aziz and 
Chowdhury 2023).

In summary, these studies have achieved certain results in the analysis of the relation-
ship between transportation and CE, sustainable development assessment, etc., but 
there are still limitations. These studies lack in-depth research on CE from transpor-
tation facilities. Existing research mostly focuses on single regions or countries, lack-
ing cross regional comparisons. In addition, existing research often uses static models, 
which lack sufficient characterization for the dynamic process of sustainable develop-
ment. Therefore, the study adopts the SDM-STIRPAT spatial econometric model to 
measure CE from transportation facilities, providing scientific basis for carbon emission 
management of transportation facilities.
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Design of carbon emission analysis methods for transportation facilities
The impact mechanism of carbon emissions from transportation facilities

This study uses bibliometric methods to determine all systemic factors that affect 
regional CE from transportation facilities. The construction and expansion of transpor-
tation infrastructure have increased transportation activities, directly increasing energy 
consumption and CE. Simultaneously, it has generated social and economic agglom-
eration effects, indirectly causing spillover effects on the overall CE of the region. The 
primary factors affecting regional CE include population, economic, and technological 
factors. The transportation infrastructure is used as an expansion factor to analyze its 
impact on regional CE. Environmental, economic, technological, and transportation fac-
tors are the four key factors that affect regional sustainable development. Population fac-
tor refers to the impact of regional population size and population growth on regional 
economic development. Economic factors refer to the driving force of the scale, speed, 
and level of regional economic development on the development of all socio-economic 
factors, as well as the impact of energy and environmental systems. Technological ele-
ments refer to the main objects that the STIRPAT theoretical model expands on, includ-
ing indicators such as energy intensity, energy structure, and industrialization level. 
Transportation elements refer to quantifiable indicators during its construction and 
operation, including investment, network, and transportation service indicators.

The direct impact of transportation infrastructure on regional CE is mainly presented 
in the construction and operation process, involving energy consumption and green-
house gas emissions. Based on the construction, operation, and management, energy 
consumption and CE are the main concerns. The amount and efficiency of energy con-
sumption vary among different transportation modes. The energy consumption rate of 
land and water transportation is lower, while the air transportation is higher (Patel et al. 
2020). The construction and improvement of transportation infrastructure and land use 
are mutually causal, which improves regional accessibility, drives land prices along the 
route, and changes the structure, density, and layout of land use. The changes in land use 
structure also affect transportation demand and transportation system capacity, which is 
one of the driving forces for improving transportation infrastructure systems. The direct 
impact of transportation infrastructure on regional CE is shown in Fig.  1. The direct 
impact on environmental systems is manifested as a one-way negative feedback rela-
tionship. This means that transportation activities have a one-way negative impact on 
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Fig. 1  The direct impact on regional carbon emissions
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regional CE. This one-way negative impact is an important manifestation of the exter-
nality of transportation infrastructure environment.

Transportation infrastructure, as the foundation and link of regional socio-economic 
system development, plays a crucial function in population, economy, and technologi-
cal factors. The impact of regional economic development on the transportation infra-
structure is mainly reflected in two aspects: material guarantee and driving force. The 
role of population, economy, and technology factors in transportation infrastructure is 
mainly reflected in three aspects: material support, technological support, and driving 
force. Transportation infrastructure indirectly affects the uneven development of trans-
portation infrastructure systems in different regions by promoting social and economic 
activities. There is an obvious spatial distribution effect on the development of socio-
economic factors in different regions, which affects the overall balanced development of 
the socio-economic system (Li et al. 2022). The indirect impact on regional CE is mainly 
exhibited in promoting socio-economic activities, affecting regional carbon emission 
levels, and influencing regional carbon emission levels through material support, tech-
nological support, and dynamic effects.

Spatial measurement method for carbon emissions from transportation facilities

Data sources and variable descriptions

The study uses 30 regions as research samples, with a sample time span from 2004 to 
2022. The sample data is sourced from publicly available official statistical data, including 
the China Statistical Yearbook, China Energy Statistical Yearbook, relevant provincial 
statistical yearbooks, and the Statistical Bulletin on the Development of the Transpor-
tation Industry. The data is mainly obtained by collecting and organizing various offi-
cial statistical yearbooks, which have undergone preliminary screening and cleaning to 
ensure the accuracy and consistency of the data. However, potential biases in the data 
still exist, including data quality and statistical caliber. Four factors, including envi-
ronmental, economic, demographic, and technological factors, are selected to explain 
China’s CE. The chosen dependent variable for the study is carbon dioxide emissions. 
The four explanatory variables include regional population size, per capita GDP, energy 
intensity, and transportation capacity. The two control variables include urbanization 
and industrialization. Regional population size and per capita GDP are key indicators 
reflecting regional economic activity and population density. These two variables can 
reflect regional economic development and population agglomeration, thereby affecting 
the construction and use of transportation facilities. Energy intensity and transportation 
capacity are key indicators reflecting the operational efficiency and energy consumption 
of transportation facilities. These two variables can reflect the energy consumption and 
CE levels of transportation facilities during construction and operation. The urbaniza-
tion and industrialization are important indicators reflecting the stage of regional socio-
economic development and industrial structure. These two variables can affect the 
demand and use of transportation facilities, thereby further affecting the CE of trans-
portation facilities. All variables can be directly obtained through statistical data, but 
variables such as carbon dioxide emissions and transportation capacity need to be meas-
ured under certain standards (Li et al. 2020b). The carbon dioxide emissions is shown in 
Fig. 2.
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In Fig. 2, the departmental rule is to develop emission standards suitable for different 
industries based on their production characteristics and energy consumption. The refer-
ence rule refers to the emission standards of other similar industries. The CE calculation 
of the department’s production process is shown in Eq. (1).

In Eq. (1), within time t , the CE of the department’s production process is CEt , meas-
ured in tons. The department’s production data is ADt , measured in tons/year. The pro-
duction emission factor is EFt . The CE from energy sources in the department is shown 
in Eq. (2).

In Eq. (2), the CE of department j from the i-th energy source is CEij , in tons. The con-
sumption of fossil fuels is ADij , in tons. The unit calorific of the i-th fossil fuel is NCVi , 
in GJ. The corresponding to the CE is CCi , in tons. The oxidation rate of fuel combustion 
is Qij . The energy CE is shown in Eq. (3).

In Eq. (3), the CE of energy i is CEref−j , in tons. The emission factor corresponding to 
energy is ADref−j . The total consumption is EFi , in tons. The study uses the conversion 
turnover method to convert passenger turnover (person/kilometer) into freight turno-
ver (ton/kilometer) through passenger and freight conversion coefficients to reflect the 
comprehensive capacity of the transportation department’s passenger and freight trans-
portation. The conversion turnover calculation is shown in Eq. (4).

In Eq. (4), the conversion turnover is TCT  , in tkm. The freight turnover is TFT  , in tkm. 
The passenger turnover is β , in pkm. The conversion coefficient between passenger and 
freight is TPT  . The category of transportation modes is represented by k . Based on the 
above variable selection and calculation methods, descriptive statistics of variables are 
obtained, as shown in Table 1.

(1)CEt = ADt × EFt

(2)CEij = ADij × NCVi × CCi × Qij

(3)CEref−j = ADref−j × EFi

(4)TCT =

n

k=1

(TFTk + βkTPTk)

Process related emissions Departmental production

Energy related emissions Departmental calculation 
method

Departmental energy 
consumption Carbon dioxide emission

Reference calculation 
method Energy supply data Carbon dioxide emission

Fig. 2  Estimation of carbon dioxide emissions
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In the spatial distribution of environmental factors, spatial relationships have char-
acteristics such as scale, cognition, hierarchy, uncertainty, and formalization. The study 
uses Moran’s index to perform auto-correlation tests on spatial data. It can reflect the 
similarity of geographic spatial unit attribute values and explore the impact of transpor-
tation infrastructure on regional CE. The global spatial auto-correlation coefficient is 
shown in Eq. (5).

In Eq. (5), the global spatial auto-correlation coefficient is Moran′sI . The sample mean 
is Y  . The observation value for the a-th region is Ya . The sample variance is S2 . The spa-
tial unit is n . The spatial weight matrix is wab . The local spatial auto-correlation is shown 
in (6).

In Eq. (6), the local spatial auto-correlation coefficient is Moran′sIp.

SDM‑STIRPAT construction

The scalable environmental impact factor theory model STIRPAT includes population 
factors, economic factors, and technological factors. The composition of the model Ic is 
shown in Eq. (7).

In Eq. (7), the constant term is α . The data unit is c . The variable coefficient of popu-
lation factor Pc is β1 . The variable coefficient of economic factor Ac is β2 . The variable 
coefficient of technical element Tc is β3 . The error term is εc . In empirical econometric 
analysis, variables are usually taken as natural logarithms to eliminate dimensionality, 
and reduce collinearity and heteroscedasticity, as shown in Eq. (8).

(5)Moran′sI =

∑n
a=1

∑n
b=1 wab(Ya − Y )(Yb − Y )

S2
∑n

a=1

∑n
b=1 wij

(6)Moran′sIp =
(Ya − Y )

S2

n
∑

b=1,b �=a

wab(Ya − Y )

(7)Ic = αPβ1
c × Aβ2

c × Tβ3
c εc

Table 1  Descriptive statistics of variables

Variable Explanatory 
variable

Measure 
content

Measure 
unit

Minimum 
value

Maximum 
value

Mean value Variance

I Carbon 
dioxide

Emissions Million tons 0.76 1673.2 231.7 211.2

P Population Total popula-
tion

Ten thousand 
people

513 10,987 4357.6 2541.3

A Economic Per capita 
GDP

yuan 2369 108,647 25,130.7 22,145.7

T Technology Energy 
intensity

Tons/10000 
yuan

0.22 15.36 1.72 1.61

U Urbanization Urbanization 
rate

% 15.09 90.36 46.35 17.45

IN Industrializa-
tion

Industrializa-
tion rate

% 13.01 54.12 39.45 9.02

TCT​ Transporta-
tion capacity

Conversion 
turnover

Billion ton 
kilometers

82.13 20,567.8 3315.7 3861.4
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The STIRPAT theoretical model is extended to an explanatory variable, with traffic vari-
ables as the core explanatory variable and other variables as control variables. The variables 
of urbanization level and industrialization level are also important influencing factors. The 
extended model is shown in Eq. (9).

In Eq. (9), the year is represented by y . The variable parameter is β . The carbon emission 
variable is Icy . The population size variable is Pcy . The per capita GDP variable is Acy . The 
energy intensity variable is Tcy . The urbanization rate variable is Ucy . The industrialization 
rate variable is IN  . The transportation capacity variable of transportation facilities is TCTcy . 
The spatial measurement model SDM-STIRPAT is used to measure the impact of transpor-
tation infrastructure on regional CE. SDM is a hybrid model that includes spatial terms for 
the dependent and explanatory variables (Zhang et al. 2022). The SDM extended model is 
shown in Eq. (10).

In Eq.  (10), the dependent variable is yit . The time is t . The geographic space is i . The 
explanatory variable is xit . The explanatory variable with spatial effects is xit . The spatial 
weight matrix is w . The spatial lag coefficient of the dependent variable is ρ . The independ-
ent variable parameter is β . The random perturbation term is εit . The fixed spatial effect 
parameter is µ . The fixed time effect parameter is � . The independent variable parameter of 
the spatial term is θ . The SDM-STIRPAT is further constructed, as shown in Eq. (11).

The dynamic SDM adds first-order lagged variables of the dependent variable and first-
order lagged variables with spatial terms on the basis of the static SDM. It is used to test the 
model estimation results (Finch et al. 2022; Mariscotti 2021). The dynamic SDM is shown 
in Eq. (12).

In Eq.  (12), the dependent variable for time lag is yi,t−1 . The corresponding variable 
coefficient is τ . The dependent variable for the time and spatial lag terms is wyi,t−1 . The 
corresponding model coefficient is η . The dynamic SDM-STIRPAT is shown in Eq. (13).

(8)ln Ii = ln α + β1 ln Pc + β2 lnAc + β3 lnTc + ln εc

(9)
ln Icy = ln α + β1 ln Pcy + β2 lnAcy + β3 lnTcy + β4 lnUcy

+ β5 ln INcy + β6 lnTCTcy + ln εcy

(10)yit = ρwyit + xitβ + wxitθ + µit + �it + εit

(11)

ln Iit = ρ

n
∑

i �=j,j=1

wij ln Ijt + β1 ln Pit + β2 lnAit + β3 lnTit + β4 lnUit + β5 ln INit

+ β6 lnTCTit + θ1

n
∑

i �=j,j=1

wij ln Pjt + θ2

n
∑

i �=j,j=1

wij lnAjt + θ3

n
∑

i �=j,j=1

wij lnTjt

+ θ4

n
∑

i �=j,j=1

wij lnUjt + θ5

n
∑

i �=j,j=1

wij ln INjt + θ6

n
∑

i �=j,j=1

wij lnTCTjt + lnµi

+ ln �t + ln εit

(12)yit = τyi,t−1 + ηwyi,t−1 + ρwyit + xitβ + wxitθ + ui + �t + εit
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The study compares the parameter estimation results of non-spatial models and spa-
tial models. Lagrange multiplier test, Wald test, and likelihood ratio test are used to 
verify the spatial lag and error terms of the spatial model. When considering spatial fac-
tors, the maximum likelihood estimation method is applied to estimate parameter. The 
fixed effects spatial lag model is analyzed and estimated (Wu et al. 2023; Oh 2023). The 
unit root test is used to test whether time series data has a unit root, that is, whether 
there is a stable linear trend. Cointegration testing is used to test whether there is a long-
term equilibrium relationship between multiple time series. The spatial auto-correlation 
test is used to analyze whether there is correlation between data at spatial positions. 
The principles behind these tests are all based on statistical methods, which determine 
whether the data conforms to a specific pattern or relationship by performing specific 
processing and calculations on the data. The logarithmic likelihood function of the spa-
tial lag model is shown in Eq. (14).

In Eq.  (14), the spatial lag model is LogL . The total number of time dimension indi-
cators is N  . The first-order lagged variable is δ . The spatial correlation coefficient in 
variables is W  . The random disturbance is σ . The main reasons for choosing the SDM-
STIRPAT model are as follows. Firstly, the SDM-STIRPAT model is a hybrid model that 
includes spatial terms for dependent variables and explanatory variables, allowing the 
model to effectively consider the influence of spatial factors. Secondly, the SDM-STIR-
PAT model can perform dynamic analysis by incorporating first-order lagged variables 
of the dependent variable and first-order lagged variables with spatial terms, which helps 
to test the stability of the model. Finally, the SDM-STIRPAT model can perform param-
eter estimation through maximum likelihood estimation, estimating fixed effects spatial 
lag models, which makes the parameter estimation of the model more accurate.

Analysis results of carbon emissions from transportation facilities
Carbon emission measurement and correlation analysis

From 2004 to 2022, transportation energy consumption and CE are displayed in Fig. 3. 
Figure 3a displays the energy consumption from transportation facilities. From 2004 

(13)

ln Iit = τ ln Ii,t−1 + η

n
∑

i �=j,j=1

wij ln Ij,t−1 + ρ

n
∑

i �=j,j=1

wij ln Ijt + β1 ln Pit + β2 lnAit

+ β3 lnTit + β4 lnUit + β5 ln INit + β6 lnTCTit + θ1

n
∑

i �=j,j=1

wij ln Pjt

+ θ2

n
∑

i �=j,j=1

wij lnAjt + θ3

n
∑

i �=j,j=1

wij lnTjt + θ4

n
∑

i �=j,j=1

wij lnUjt

+ θ5

n
∑

i �=j,j=1

wij ln INjt + θ6

n
∑

i �=j,j=1

wij lnTCTjt + lnµi + ln �t + ln εit

(14)

LogL = −
NT

2
log(2πσ 2)+T log |IN − δW |−

1

2σ 2

N
�

i=1

T
�

t=1



yit − δ

N
�

j=1

wijyjt − xitβ − µi





2
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to 2022, the energy consumption form transportation facilities have shown an upward 
trend. From 173 million tons in 2004 to 636 million tons in 2022, the mean annual 
growth rate is 7.5%. Figure 3b displays the statistical results of CE from transporta-
tion facilities. Similarly, from 2004 to 2023, carbon dioxide emissions from transpor-
tation facilities have shown an increasing. The annual growth rate is 4.9%, increasing 
from 318 million tons in 2004 to 752 million tons in 2022. The data shows that trans-
portation facilities have been continuously increasing in energy consumption and CE 
over the past decade. This growth may be due to economic and population growth, 
leading to an increase in transportation demand, thus requiring more transportation 
facilities and energy to support transportation operations.

The global spatial auto-correlation coefficient of CE from 2004 to 2022 is shown in 
Fig. 4. The global spatial auto-correlation coefficient fluctuated positively within 0.05 
to 0.3, with a significant index at 5% for all years. This indicates a significant spatial 
correlation of carbon dioxide emissions within a geographical range. Further analy-
sis shows that the global spatial auto-correlation coefficient shows a fluctuating trend 
during the research time period, with strong spatial correlation years including 2001, 
2005, and 2007. The spatial correlation of regional CE is particularly significant in 
these years. However, after 2010, the spatial correlation showed a significant weaken-
ing trend, indicating that the carbon dioxide emissions in a certain region gradually 
reduced under the influence of neighboring region carbon dioxide emissions.

The local spatial auto-correlation coefficient of CE is displayed in Fig. 5. Figure 5a 
displays the local spatial auto-correlation coefficient in 2010, with 6 regional obser-
vation points located in the first quadrant, corresponding to higher observed CE in 
the region. 10 regional observation points were located in the third quadrant, cor-
responding to lower carbon dioxide emissions. Figure 5b shows the local spatial auto-
correlation coefficient in 2020, with 8 regional observation points located in the first 
quadrant, corresponding to higher observed CE in the region. 10 regional observa-
tion points were located in the third quadrant, corresponding to lower carbon dioxide 
emissions in the region. This indicates that the variation of local spatial auto-corre-
lation coefficients is affected by various factors, including the position and year of 
observation points.

Fig. 3  Transportation energy consumption and carbon dioxide emissions
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Analysis of SDM‑STIRPAT

In order to determine whether there is a unit root between variables, that is, whether 
there is a long-term trend, it is necessary to conduct a unit root test. The panel data unit 
root test results in horizontal order are displayed in Table 2. In Table 2, tests 1–3 repre-
sent three testing modes, namely no intercept term, intercept term, and both intercept 
term and trend term. From the data in Table 2, considering the horizontal order, the unit 
root test results for each variable were not significant.

The test results under the first-order difference order are shown in Table 3. In a differ-
ential order, the test results for all variables with intercept terms were significant, indi-
cating that the variables were the same order and had a monotonic relationship between 
them. That is, when the value of one variable increased (decreased), the other variable 
also increased (decreased), and their changes were linear.

The cointegration relationship test results for panel data is displayed in Table 4. It is 
used to determine whether there is a cointegration relationship between variables, that 

Fig. 4  Global spatial auto-correlation coefficient of carbon dioxide emissions

Fig. 5  Local spatial auto-correlation coefficient of CE
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is, whether their changes are linear. The test results were significant at 1% or 5% confi-
dence, indicating that the null hypothesis that there was no cointegration relationship 
between variables should be refused. From this, form 2004 to 2022, there was a long-
term cointegration relationship in CE under the influence of independent variables such 
as technology, population, transportation, and economy.

The model results without considering spatial interaction effects are shown in Table 5. 
Refusing the null hypothesis at 1% or 5% level requires considering both spatial and 
temporal fixed effects. This indicates that fixed spatial and temporal effects are neces-
sary when constructing models. The likelihood ratio test results indicated that the null 
hypothesis of joint non significance for two fixed effects should be rejected. It means 
that a two-way fixed effects model should be constructed. This model can consider both 
spatial and temporal effects simultaneously, thereby more accurately predicting and 
interpreting data.

The parameter estimation results of the spatial measurement model are displayed in 
Table  6. The difference between unbiased and biased spatial econometric models was 
small, with statistical significance at 1% or 5%. The significance of all variables was 

Table 2  Results of horizontal order lower panel

*, **, and *** represent significance levels of 10%, 5%, and 1%, respectively

Variable Test 1 Test 2 Test 3

lnI 10.1 − 3.1*** 3.6

lnP 13.2 − 11.3*** − 4.1***

lnA 24.1 − 10.3*** 4.3

lnT − 1.3** 6.7 − 0.08

lnU 14.7 − 7.3*** − 39.8***

lnIN 2.4 − 1.7* 0.7

lnTCT​ 13.5 − 4.9*** − 6.32***

Table 3  Results of unit root test of lower panel data in first-order difference order

*** represents significance levels of 1%

Variable Test 1 Test 2 Test 3

lnI − 9.5*** − 4.1*** − 5.3***

lnP − 6.4*** − 12.6*** − 12.7***

lnA − 5.4*** − 4.87*** 0.79

lnT − 12.5*** − 19.2*** − 19.2***

lnU − 12.3*** − 14.2*** − 16.1***

lnIN − 14.6*** − 9.7*** − 11.2***

lnTCT​ − 12.5*** − 11.7*** − 20.1***

Table 4  Panel data cointegration relationship test results

** and *** represent significance levels of 5%, and 1%, respectively

Statistics Test 1 Test 2 Test 3

BN 3.7 4.9** 5.8**

HMM − 3.8*** − 6.7*** − 7.8***

ADF − 5.7*** − 5.3*** − 6.7***
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consistent. This indicated that the selected model had high accuracy in parameter esti-
mation. In addition, the significance of each variable showed a similar trend in the two 
modified models, which further strengthened the reliability.

The stability test results of the SDM-STIRPAT are shown in Table 7. The SDM exhib-
ited high stability in both spatial lag and spatial error tests, indicating its strong ability 
to interpret data. In addition, the dynamic SDM-STIRPAT also had good stability. All 
explanatory variables significantly affected the dependent variable, with positive or neg-
ative coefficients consistent with the estimated results of the original model. The accu-
racy of SDM selection was further verified through spatial error testing.

Discussion
From 2004 to 2022, the energy consumption and carbon dioxide emissions of China’s 
transportation facilities showed a significant upward trend. This is mainly due to the 
rapid development of China’s economy and population growth, which has led to a con-
tinuous increase in demand for transportation. It requires more transportation facilities 
and energy to support transportation operations. However, this also reminds relevant 
personnel to strengthen energy conservation and emission reduction work in the trans-
portation sector while promoting economic development, in order to reduce the impact 
of transportation facilities on the environment. Secondly, through spatial auto-correla-
tion analysis, the study found that carbon dioxide emissions exhibited significant spatial 

Table 5  Results of model estimates regardless of spatial interaction effects

*, **, and *** represent significance levels of 10%, 5%, and 1%, respectively

Parameter Spatial fixed effect Time fixed effect Two-way 
fixation 
effect

lnP 0.423* 0.864*** 0.597**

lnA 0.567*** 0.367*** 0.735***

lnT − 0.088** 0.435*** 0.0897***

lnTCT​ 0.015* 0.088** 0.0512**

lnU 0.079 0.167 0.354***

lnIN 0.634*** 0.967*** 0.312**

LogL − 213.69 − 402.16 − 183.46

Table 6  Results of the spatial measurement model parameter estimation

** and *** represent significance levels of 5%, and 1%, respectively

Parameter No deviation correction With 
deviation 
correction

lnP 0.621*** 0.619***

lnA 0.712*** 0.711***

lnT − 0.021** − 0.019***

lnTCT​ 0.153** 0.152**

lnU 0.281** 0.282**

lnIN 0.325*** 0.324***

LogL − 163.69 − 163.71
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correlation within a geographical range. This indicates that carbon dioxide emissions in 
different regions are greatly influenced by emissions from neighboring regions. There-
fore, the spatial correlations between regions need to be considered in policy formula-
tion and implementation. The results of the SDM-STIRPAT spatial econometric model 
showed that there was a long-term stable synergistic relationship between factors such 
as technology, population, transportation, and economy and CE. However, the research 
results also exposed some issues. Firstly, the growth rate of CE from transportation facil-
ities has significantly slowed down since 2010. This may be related to the vigorous pro-
motion of low-carbon environmental protection technologies and the implementation 
of national policies for energy conservation and emission reduction. By optimizing these 
factors, it is expected to achieve low-carbon, green, and sustainable development in the 
transportation sector.

Due to the increasing energy consumption and CE of transportation facilities, 
improving energy efficiency is an important means to reduce CE. Policy makers 
should promote the research and application of energy-saving technologies, improve 
the energy efficiency of transportation facilities, and reduce CE. Developing low-
carbon transportation modes such as public transportation, new energy vehicles, 
bicycles, and walking can reduce dependence on high carbon emission vehicles. The 
government can encourage citizens to use low-carbon transportation methods and 
reduce CE from transportation facilities through policies such as subsidies and tax 
incentives. By optimizing the spatial layout of transportation facilities and reducing 
unnecessary traffic flow, CE can be reduced. The government should strengthen guid-
ance on transportation facility planning, promote the three-dimensional and diversi-
fied development of urban transportation, and improve the operational efficiency of 
transportation facilities. Due to the global of CE, strengthening international coop-
eration is crucial. Countries should actively participate in global climate governance, 
promote the international community to jointly address climate change, and reduce 
CE. The government should strengthen the supervision of CE from transportation 

Table 7  Results of the SDM-STIRPAT stability test

** and *** represent significance levels of 5%, and 1%, respectively

Parameter SDM-STIRPAT Dynamic 
SDM-
STIRPAT

lnP 0.867*** 0.812**

lnA 0.798*** 0.257***

lnT − 0.083*** − 0.054**

lnTCT​ 0.0931*** 0.0712**

lnU 0.165*** 0.186**

lnIN 0.312*** 0.0642

lnI 0.675*** − 0.127**

LogL 295.541 − 56.542

σ 2 0.018 0.051

R2 0.957 0.945

Corrected R2 0.301 0.614

Spatial error 25.678*** 73.159***
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facilities, establish carbon emission monitoring and statistical systems, and strictly 
control the CE of transportation enterprises. Meanwhile, it is also possible to improve 
the CE trading system and encourage enterprises to actively reduce CE through mar-
ket means. Through education and publicity, it is possible to increase public aware-
ness of CE from transportation facilities, guide citizens to establish low-carbon and 
environmentally friendly travel concepts, and promote social participation in low-
carbon transportation construction.

Conclusion
To address the CE from transportation facilities, the bibliometric method was used to 
identify all system elements that affect regional CE from transportation facilities. The 
scalable environmental impact factor theory model STIRPAT was constructed, includ-
ing population factors, economic factors, and technological factors. The spatial econo-
metric model SDM-STIRPAT for transportation facility CE was constructed using 
panel data from 30 regions from 2004 to 2022, combined with SDM and other meth-
ods. The carbon dioxide emissions from transportation facilities added from 318 mil-
lion tons in 2004 to 752 million tons in 2022, with a mean annual growth rate of 4.9%. 
The global spatial auto-correlation coefficient fluctuated positively within the range of 
0.05 to 0.3. The index for all years was significant at 5%, and there was a significant spa-
tial correlation between CE in the geographical spatial range. Through the stability test 
of the SDM-STIRPAT, the model showed high stability in both spatial lag test and spa-
tial error test, indicating strong ability to interpret data. The results indicate that the CE 
from transportation facilities are affected by independent variables such as population, 
economy, technology, and transportation, with significant spatial distribution character-
istics in different regions and years. The proposed model helps to better understand the 
carbon emission mechanism from transportation facilities and provides a basis for rel-
evant policy formulation and carbon emission management. The limitation is as follows. 
It only considers a few key variables, including technology, population, transportation, 
and economy. Therefore, future research can first consider other variables that affect CE 
from transportation facilities, such as urban planning, energy policies, etc., on the basis 
of existing research to improve the predictive accuracy of the model. Secondly, further 
research can be conducted on CE in different regions and countries, in order to provide 
more targeted strategies for global carbon emission management. In addition, the model 
can be further validated and revised by combining field investigations and experimental 
data to enhance its application value.
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