Gliese 514
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Virgo |
Right ascension | 13h 29m 59.7859s[1] |
Declination | 10° 22′ 37.7845″[1] |
Apparent magnitude (V) | 9.029 |
Characteristics | |
Evolutionary stage | main-sequence star |
Spectral type | M0Ve[2] |
Apparent magnitude (J) | 5.902±0.018[3] |
Apparent magnitude (H) | 5.300±0.033[3] |
Astrometry | |
Radial velocity (Rv) | 14.606[4] km/s |
Proper motion (μ) | RA: 1,127.34±0.03[5] mas/yr Dec.: −1,073.888±0.013[5] mas/yr |
Parallax (π) | 131.1013 ± 0.0270 mas[5] |
Distance | 24.878 ± 0.005 ly (7.628 ± 0.002 pc) |
Details | |
Mass | 0.526[6] M☉ |
Radius | 0.611±0.043[6] R☉ |
Luminosity (bolometric) | 0.043[6] L☉ |
Surface gravity (log g) | 4.59[6] cgs |
Temperature | 2,901[7] - 3,727[3] K |
Metallicity [Fe/H] | −0.07±0.07[3] dex |
Rotation | 28.0±2.9[8] |
Rotational velocity (v sin i) | 2.00[9] km/s |
Age | 8.25[10] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
Gliese 514, also known as BD+11 2576 or HIP 65859, is a M-type main-sequence star, in the constellation Virgo 24.85 light-years away from the Sun. The proximity of Gliese 514 to the Sun was known exactly since 1988.[11]
Gliese 514's metallicity Fe/H index is largely unknown, with median values from -0.4 to +0.18 reported in the literature. This discrepancy is due to peculiarities of the stellar spectrum of Gliese 514. The spectrum peculiarities also affect the accuracy of the star's temperature measurement,[9] with reported values as low as 2901 K.[7] The spectrum of Gliese 514 shows emission lines,[2] but the star itself has a low starspot activity.[12]
Multiplicity surveys did not detect any stellar companions as of 2020.[13]
The Sun is currently calculated to be passing through the tidal tail of Gliese 514's Oort cloud. Thus, future interstellar objects passing through Solar system may originate from Gliese 514.[14]
Planetary system
[edit]The existence of a planet on a 15-day orbit around Gliese 514 was suspected since 2019.[15] However, that planet was not confirmed. Instead, in 2022, one Super-Earth planet, named Gliese 514 b, was discovered on an eccentric 140-day orbit by the radial velocity method. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to 202±11 K.[8]
The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio.[16]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | >5.2±0.9 M🜨 | 0.422+0.014 −0.015 |
140.43±0.41 | 0.45+0.15 −0.14 |
— | — |
References
[edit]- ^ a b c "BD+11 2576". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2022-04-17.
- ^ a b Lindegren, Lennart; Dravins, Dainis (2021), "Astrometric radial velocities for nearby stars", Astronomy & Astrophysics, 652: A45, arXiv:2105.09014, Bibcode:2021A&A...652A..45L, doi:10.1051/0004-6361/202141344, S2CID 234778154
- ^ a b c d Lindgren, Sara; Heiter, Ulrike (2017), "Metallicity determination of M dwarfs", Astronomy & Astrophysics, 604: A97, arXiv:1705.08785, Bibcode:2017A&A...604A..97L, doi:10.1051/0004-6361/201730715, S2CID 119216828
- ^ Manara, C. F.; et al. (2021), "PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES)", Astronomy & Astrophysics, 650: A196, arXiv:2103.12446, doi:10.1051/0004-6361/202140639, S2CID 232320330
- ^ a b c Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
- ^ a b c d Berger, D. H.; Gies, D. R.; McAlister, H. A.; Brummelaar, T. A. ten; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Merand, A. (2006), "First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars", The Astrophysical Journal, 644 (1): 475–483, arXiv:astro-ph/0602105, Bibcode:2006ApJ...644..475B, doi:10.1086/503318, S2CID 14966363
- ^ a b Ghosh, Samrat; Ghosh, Supriyo; Das, Ramkrishna; Mondal, Soumen; Khata, Dhrimadri (2020), "Understanding the physical properties of young M dwarfs: NIR spectroscopic studies", Monthly Notices of the Royal Astronomical Society, 493 (3): 4533–4550, arXiv:2002.05762, Bibcode:2020MNRAS.493.4533K, doi:10.1093/mnras/staa427
- ^ a b c Damasso, M.; et al. (2022), "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514", Astronomy & Astrophysics, 666: A187, arXiv:2204.06376, doi:10.1051/0004-6361/202243522, S2CID 248157318
- ^ a b Olander, T.; Heiter, U.; Kochukhov, O. (2021), "Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects", Astronomy & Astrophysics, 649: A103, arXiv:2102.08836, Bibcode:2021A&A...649A.103O, doi:10.1051/0004-6361/202039747, S2CID 231942628
- ^ Maldonado, J.; Micela, G.; Baratella, M.; d'Orazi, V.; Affer, L.; Biazzo, K.; Lanza, A. F.; Maggio, A.; González Hernández, J. I.; Perger, M.; Pinamonti, M.; Scandariato, G.; Sozzetti, A.; Locci, D.; Di Maio, C.; Bignamini, A.; Claudi, R.; Molinari, E.; Rebolo, R.; Ribas, I.; Toledo-Padrón, B.; Covino, E.; Desidera, S.; Herrero, E.; Morales, J. C.; Suárez-Mascareño, A.; Pagano, I.; Petralia, A.; Piotto, G.; Poretti, E. (2020). "HADES RV programme with HARPS-N at TNG. XII. The abundance signature of M dwarf stars with planets". Astronomy and Astrophysics. 644: A68. arXiv:2010.14867. Bibcode:2020A&A...644A..68M. doi:10.1051/0004-6361/202039478. S2CID 225094682.
- ^ Wang, J. -J.; Jiang, P. -F.; Chen, J. (1988). "Determinations of the parallaxes of BD +11 2576 and BD +18 683". Acta Astronomica Sinica. 29: 127. Bibcode:1988AcASn..29..127W. Archived from the original on 2023-03-07. Retrieved 2022-04-17.
- ^ Reiners, A. (2007), "The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation", Astronomy and Astrophysics, 467 (1): 259, arXiv:astro-ph/0702634, Bibcode:2007A&A...467..259R, doi:10.1051/0004-6361:20066991, S2CID 8672566
- ^ Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Kulkarni, Shrinivas R.; Winters, Jennifer G.; Irwin, Jonathan M. (2020), "Robo-AO M-dwarf Multiplicity Survey: Catalog", The Astronomical Journal, 159 (4): 139, arXiv:2001.05988, Bibcode:2020AJ....159..139L, doi:10.3847/1538-3881/ab6ef1, S2CID 210718832
- ^ Portegies Zwart, S. (2021), "Oort cloud Ecology", Astronomy & Astrophysics, 647: A136, arXiv:2011.08257, doi:10.1051/0004-6361/202038888, S2CID 226976082
- ^ Barnes, J. R.; et al. (2019-06-11). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 [astro-ph.EP].
- ^ Tanner, Angelle; Plavchan, Peter; Bryden, Geoff; Kennedy, Grant; Matrá, Luca; Cronin-Coltsmann, Patrick; Lowrance, Patrick; Henry, Todd; Riaz, Basmah; Gizis, John E.; Riedel, Adric; Choquet, Elodie (2020), "Herschel Observations of Disks around Late-type Stars", Publications of the Astronomical Society of the Pacific, 132 (1014): 084401, arXiv:2004.12597, Bibcode:2020PASP..132h4401T, doi:10.1088/1538-3873/ab895f, S2CID 216553868