60,000
Appearance
| ||||
---|---|---|---|---|
Cardinal | sixty thousand | |||
Ordinal | 60000th (sixty thousandth) | |||
Factorization | 25 × 3 × 54 | |||
Greek numeral | ||||
Roman numeral | LX | |||
Binary | 11101010011000002 | |||
Ternary | 100010220203 | |||
Senary | 11414406 | |||
Octal | 1651408 | |||
Duodecimal | 2A88012 | |||
Hexadecimal | EA6016 |
60,000 (sixty thousand) is the natural number that comes after 59,999 and before 60,001. It is a round number. It is the value of (75025).[1]
Selected numbers in the range 60,000–69,999
60,001 to 60,999
- 60,049 = Leyland number[2]
- 60,101 = smallest prime with period of reciprocal 100[3]
61,000 to 61,999
- 61,776 = 24 x 33 x 11 x 13 = 15 + 25 + 35 + 45 + 55 + 65 + 75 + 85.[4] It is an untouchable number,[5] a triangular number,[6] hexagonal number,[7] 100-gonal number,[8] and is polygonal in 6 other ways.
62,000 to 62,999
- 62,208 = 3-smooth number
- 62,210 = Markov number[9]
- 62,745 = Carmichael number[10]
63,000 to 63,999
- 63,020 = amicable number with 76084
- 63,261 = number of partitions of 43[11]
- 63,360 = inches in a mile
- 63,600 = number of free 12-ominoes
- 63,750 = pentagonal pyramidal number
- 63,973 = Carmichael number[10]
64,000 to 64,999
- 64,000 = 403
- 64,009 = sum of the cubes of the first 22 positive integers
- 64,079 = Lucas number
- 64,442 = Number of integer degree intersections on Earth: 360 longitudes * 179 latitudes + 2 poles = 64442.
- 64,620 : It is an untouchable number,[5] a triangular number,[6] hexagonal number,[7] and a number such that pi(64620) = 64620/10.[12]
65,000 to 65,999
- 65,025 = 2552, palindromic in base 11 (4494411)
- 65,535 = largest value for an unsigned 16-bit integer on a computer.
- 65,536 = 216 = 48 = 164 = 2562 also 2↑↑4=2↑↑↑3 using Knuth's up-arrow notation, smallest integer with exactly 17 divisors, palindromic in base 15 (1464115), number of directed graphs on 4 labeled nodes[13]
- 65,537 = largest known Fermat prime
- 65,539 = the 6544th prime number, and both 6544 and 65539 have digital root of 1; a regular prime; a larger member of a twin prime pair; a smaller member of a cousin prime pair; a happy prime; a weak prime; a middle member of a prime triplet, (65537, 65539, 65543); a middle member of a three-term primes in arithmetic progression, (65521, 65539, 65557).
- 65,792 = Leyland number[2]
66,000 to 66,999
- 66,012 = tribonacci number[14]
- 66,049 = 2572, palindromic in hexadecimal (1020116)
- 66,198 = Giuga number[15]
- 66,666 = repdigit
67,000 to 67,999
- 67,081 = 2592, palindromic in base 6 (12343216)
- 67,171 = 16 + 26 + 36 + 46 + 56 + 66[16]
- 67,607 = largest of five remaining Seventeen or Bust numbers in the Sierpiński problem
- 67,626 = pentagonal pyramidal number
68,000 to 68,999
- 68,906 = number of prime numbers having six digits.[17]
- 68,921 = 413
69,000 to 69,999
- 69,632 = Leyland number[2]
- 69,696 = square of 264; only known palindromic square that can be expressed as the sum of a pair of twin primes: 69,696 = 34847 + 34849.
- 69,984 = 3-smooth number
Primes
There are 878 prime numbers between 60000 and 70000.
References
- ^ Sloane, N. J. A. (ed.). "Sequence A065449 (a(n) = phi(Fibonacci(n)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007138 (Smallest primitive factor of 10^n - 1. Also smallest prime p such that 1/p has repeating decimal expansion of period n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000539 (Sum of 5th powers: 0^5 + 1^5 + 2^5 + ... + n^5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers: a(n) = n*(2*n-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A261276 (100-gonal numbers: a(n) = 98*n*(n-1)/2 + n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A002997 (Carmichael numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) is the number of partitions of n (the partition numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A165689 (Numbers n such that pi(n) = (1/10)*n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002416 (a(n) = 2^(n^2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000073 (Tribonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007850 (Giuga numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A031971 (a(n) = Sum_{k=1..n} k^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006879 (Number of primes with n digits.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.