Jump to content

Portal:Electronics

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Certes (talk | contribs) at 20:44, 16 May 2023 (revert unconstructive additions). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

The Electronics Portal

Modern surface-mount electronic components on a printed circuit board, with a large integrated circuit at the top

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. It is a subfield of physics and electrical engineering which uses active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog signals to digital signals.

Electronic devices have hugely influenced the development of many aspects of modern society, such as telecommunications, entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry, which in response to global demand continually produces ever-more sophisticated electronic devices and circuits. The semiconductor industry is one of the largest and most profitable sectors in the global economy, with annual revenues exceeding $481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $29 trillion in online sales in 2017. (Full article...)

These are Good articles, which meet a core set of high editorial standards.

Selected image


Credit: de:Benutzer:Peter nussbaumer
A magnet is suspended over a liquid nitrogen cooled high-temperature superconductor (-200°C).

Selected biography

Shannon c. 1950s

Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, computer scientist and cryptographer known as the "father of information theory" and as the "father of the Information Age". Shannon was the first to describe the Boolean gates (electronic circuits) that are essential to all digital electronic circuits, and was one of the founding fathers of artificial intelligence. He is credited alongside George Boole for laying the foundations of the Information Age.

At the University of Michigan, Shannon dual degreed, graduating with a Bachelor of Science in both electrical engineering and mathematics in 1936. A 21-year-old master's degree student at the Massachusetts Institute of Technology (MIT) in electrical engineering, his thesis concerned switching circuit theory, demonstrating that electrical applications of Boolean algebra could construct any logical numerical relationship, thereby establishing the theory behind digital computing and digital circuits. The thesis has been claimed to be the most important master's thesis of all time, as in 1985, Howard Gardner described it as "possibly the most important, and also the most famous, master's thesis of the century", while Herman Goldstine described it as "surely ... one of the most important master's theses ever written ... It helped to change digital circuit design from an art to a science." It has also been called the "birth certificate of the digital revolution", and it won the 1939 Alfred Noble Prize. Shannon then graduated with a PhD in mathematics from MIT in 1940, with his thesis focused on genetics, with it deriving important results, but it went unpublished. (Full article...)

Selected article

An antenna or aerial is an arrangement of aerial electrical conductors designed to transmit or receive radio waves which is a class of electromagnetic waves. In other words, antennas basically convert radio frequency electrical currents into electromagnetic waves and vice versa. Antennas are used in systems such as radio and television broadcasting, point-to-point radio communication, radar, and space exploration. Antennas usually work in air or outer space, but can also be operated under water or even through soil and rock at certain frequencies for short distances.

Physically, an antenna is an arrangement of conductors that generate a radiating electromagnetic field in response to an applied alternating voltage and the associated alternating electric current, or can be placed in an electromagnetic field so that the field will induce an alternating current in the antenna and a voltage between its terminals. Some antenna devices (parabola, horn antenna) just adapt the free space to another type of antenna.

Did you know (auto-generated) - load new batch

Consumer showcase

A laser pointer is a type of portable pen-shaped laser normally designed to be held by hand. Laser pointers are most commonly used to project a point of light that can highlight items of interest, for example during a presentation. Most laser pointers have low enough output beam power that they do not project a beam visible from the side in normal clear air, but their light is only visible as a point of light where the beam intersects a diffusely reflective surface.

Selected design


Credit: commons:User:Inductiveload
Diagram of the transistor driving of a unipolar stepper motor.

WikiProjects

Main topics


Subcategories

Category puzzle
Category puzzle
Select [►] to view subcategories

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals

Purge server cache