INCREASING THE PERFORMANCE OF THE JACOBI-DAVIDSON
METHOD BY BLOCKING *

MELVEN ROHRIG-ZOLLNER', JONAS THIEST, MORITZ KREUTZER}, ANDREAS
ALVERMANNS, ANDREAS PIEPERS, ACHIM BASERMANNT, GEORG HAGER?,
GERHARD WELLEIN*, AND HOLGER FEHSKES?

Abstract. Block variants of the Jacobi-Davidson method for computing a few eigenpairs of a
large sparse matrix are known to improve the robustness of the standard algorithm when it comes to
computing multiple or clustered eigenvalues. In practice, however, they are typically avoided because
the total number of matrix-vector operations increases. In this paper we present the implementation
of a block Jacobi-Davidson solver. By detailed performance engineering and numerical experiments
we demonstrate that the increase in operations is typically more than compensated by performance
gains through better cache usage on modern CPUs, resulting in a method that is both more efficient
and robust than its single vector counterpart. The steps to be taken to achieve a block speed-up
involve both kernel optimizations for sparse matrix and block vector operations, and algorithmic
choices to allow using blocked operations in most parts of the computation. We discuss the aspect
of avoiding synchronization in the algorithm and show by numerical experiments with our hybrid
parallel implementation that a significant speed-up through blocking can be achieved for a variety
of matrices on up to 5120 CPU cores as long as at least about 20 eigenpairs are sought.

Key words. sparse eigenvalue problems, Jacobi-Davidson, block methods, performance engi-
neering, high performance computing, multi-core processors, hybrid parallel implementation

* This work was supported by the German Research Foundation (DFG) through the Priority
Programme 1648 “Software for Exascale Computing” (SPPEXA) under project ESSEX.

fGerman Aerospace Center (DLR), Simulation and Software Technology

tErlangen Regional Computing Center, Friedrich-Alexander-University of Erlangen-Nuremberg

8Institute of Physics, Ernst Moritz Arndt University of Greifswald, Germany

1

1. Introduction. We consider the problem of finding a small number of exterior
eigenvalues and corresponding eigenvectors of a large, sparse matrix A € R®*",

(11) Avi:)\ivi, 7::1,.‘.,1, l<<71

We will also comment from time to time on the closely related generalized eigenprob-
lem

(1.2) A’Ui :>\Z‘B1}i7 1= 17...,17

with B = BT € R™*" symmetric positive definite, to which our method can be
generalized straightforwardly. Although we present test cases and performance results
for real-valued matrices, all results carry over to the complex case (in which the
performance models have to be adjusted slightly to account for the additional data
transfers and floating-point operations).

Eigenproblems of the form (1.1) or (1.2) arise in many scientific and engineering
applications such as structural mechanics and material science, to name just two. The
main application here is quantum mechanics, where A is a sparse matrix representa-
tion of the Hamiltonian in the Schrédinger equation. We choose a number of examples
from solid state physics (see Section 5), supplemented by some matrices from different
application fields to show the generality of the results.

The methods presented can obviously be used in any application that requires
finding a few exterior eigenvalues of a large sparse operator and are suitable for both
Hermitian and general (non-Hermitian) operators A. The novelty of this work is that
block operations are typically not investigated in the context of a particular algorithm.
We show that the Jacobi-Davidson method must be reviewed and implemented with
optimal block usage in mind in order to exploit the performance gains of low-level
optimizations and parallel synchronization avoidance. A topic which is not addressed
in detail in this paper (but briefly touched on in Section 4.1) is preconditioning of
the inner iteration. While this is obviously an important issue for the effectiveness of
Jacobi-Davidson methods, it is too broad and problem specific to be covered in the
scope of this work.

Related work. In this paper we investigate a block Jacobi-Davidson method
that performs matrix-vector products and vector-vector operations with several vec-
tors at once. Jacobi-Davidson (JD) methods for the calculation of several eigenvalues
were originally proposed in [17]. Since then, many authors have worked on the al-
gorithm, its theoretical properties and efficient implementation. For a review article,
see [21]. Stathopoulos and McCombs investigated Jacobi-Davidson and Generalized
Davidson methods for symmetric (respectively Hermitian) eigenvalue problems in [37]
and also addressed block methods briefly. The general consensus in the literature
seems to be that block methods do not “pay off” in the sense that the performance
gains do not justify the overall increase in the number of operations. In this paper we
seek to demonstrate the opposite by extending the performance model for the sparse
matrix-vector product given in [27] to the case of multiple vectors and a careful group-
ing of operations to optimally exploit performance gains. We also want to provide a
thorough derivation and discussion of a block variant, as we found this to be missing
in the literature to date.

Performance aspects of the sparse matrix-multiple-vector multiplication (spM-
MVM), which plays a central role in this paper, were also discussed, though not in
the context of a particular algorithm, in [24,29]. Recently, the sparse matrix-vector

2

multiplication with row-major vector blocks has been used in [2,30]. While the idea
is not new [18], it is typically not employed for more complex algorithms such as
Jacobi-Davidson.

The performance analysis and algorithmic principles presented here are also useful
for other algorithms like block Krylov methods or eigenvalue solvers that require
the solution of linear systems with multiple right-hand sides such as FEAST [40] or
TraceMin [26].

Challenges posed by modern computer hardware. In this section we dis-
cuss some aspects of present high performance computing (HPC) systems that are
crucial for the development of efficient sparse linear algebra algorithms. For an exten-
sive introduction to the topic, see [19]. A simplified model for a present supercomputer
is a cluster of compute nodes connected by some network (distributed memory archi-
tecture), where each compute node consists of several cores, i.e., sequential computing
units, that share memory and other resources (shared memory architecture). Addi-
tionally each node may contain special accelerator devices, but for simplicity we only
consider clusters of multi-core nodes here.

Communication between nodes requires sending messages over the network, which
is usually slow (in terms of bandwidth and latency) compared to memory accesses. On
the node level, the main memory bandwidth is insufficient to keep the cores working
with code that has a low ratio of floating-point operations to data transfers (which
is frequently the case in sparse linear algebra). In some cases, the adverse effects of
slow memory can be ameliorated by the cache hierarchy: The usual setup consists of
one small and fast cache per core and one or several slower caches that are possibly
shared by all or several cores in a node. Data is fetched into the cache from the main
memory in fixed-length cache lines of consecutive elements. A typical cache line size
on modern CPUs is 64 bytes.

From this machine model we can see that the overall performance of a computer
program is determined by two main aspects: parallelism—the ability to distribute
work among the nodes and the cores within a node—and data locality—the ability to
reduce data traffic by reusing data in the cache (temporal locality) or using as many
elements from each cache line as possible (spatial locality). In our experience, many
authors emphasize parallel scalability and neglect the discussion of the node-level per-
formance. This paper clearly focuses on the node-level optimization, though aspects
of multi-node performance, such as avoiding global synchronization, are addressed as
well.

Document structure. In Section 2 we derive a block formulation of the Jacobi-
Davidson method and discuss its properties and relation with other methods. In
Section 3 we perform a series of benchmark experiments for the computational kernels
required. This is intended to motivate the use of block methods without considering
the numerical effects that may obscure the pure performance characteristics in the
context of a complete eigenvalue solver. Section 4 describes some aspects of the
efficient implementation of the proposed algorithm, and the paper is concluded with
an experimental investigation of the numerical behavior and computational efficiency
in Section 5, where we also compare our results with an existing software package
with a similar algorithm (PRIMME, [39]).

2. The block Jacobi-Davidson QR (BJDQR) method. For solving the
large sparse eigenvalue problems (1.1) or (1.2), the subspace iteration algorithm is
one of the simplest methods. The original version was introduced by Bauer under the

3

name of Treppeniteration (staircase iteration) in [6]. Practical implementations apply
projection and deflation techniques. Krylov subspace methods are based on projec-
tion methods, both orthogonal and oblique, onto Krylov subspaces, i.e. subspaces
spanned by the iterates of the simple power method. Well-known representatives
are the (non-)Hermitian Lanczos algorithm and Arnoldi’s method and its variations.
Davidson’s method, widely used among chemists and physicists, is a generalization
of the Lanczos algorithm and can be seen as a preconditioned Lanczos method. A
significantly faster method for the determination of several exterior eigenvalues and
eigenvectors is the Jacobi-Davidson QR (JDQR) method with efficient precondition-
ing. It combines an outer iteration of the Davidson type with inner iterations to solve
auxiliary linear systems. These inner systems can be solved iteratively using Krylov
subspace methods.

In the following, we focus on a block formulation of JD. While this is not a new
algorithm (a similar scheme is implemented, e.g. in the PRIMME software [39]), a
thorough derivation is not found in the literature. On the other hand, the exact
formulation of the method determines the extent to which the hardware performance
of the implementation can benefit from the blocking. The formulation presented here
allows using block operations as much as possible, which is crucial to avoid strided
memory access if vector blocks are stored in row-major ordering (cf. Section 3), and
we also show clearly where terms are dropped in the non-symmetric case in order to
allow blocked (rather than sequential) solution of the correction equations for different
shifts. In the Appendix, an algorithm template summarizes the method described
here.

The starting point for the derivation is the invariant subspace V = span{vy,..., v}
spanned by the eigenvectors v; of (1.1), but for general, non-Hermitian matrices the
conditioning of the eigenvector basis of V may be arbitrarily bad.

If we consider an orthonormal basis of the invariant subspace, we obtain the following
formulation of the problem (1.1):
2 2 :

Here AQ = QR denotes a partial Schur decomposition of A with an orthogonal matrix
Q € C™*! and an upper triangular matrix R € C*! with 7;; = ;. There are also
other suitable formulations, see [43] for a discussion of the single vector case.

We can apply a Newton scheme to the nonlinear system of equations (2.1), which
yields a block Jacobi-Davidson style QR algorithm (see [17]). First, we write (2.1) as
corrections AQ and AR for existing approximations Q and R,

(2.2) {A(@ +AQ) - (Q+AQ)(R+AR) =0,

~HQ+AQT@R+AQ I =0

Ignoring quadratic terms and assuming an orthogonal approximation Q, we obtain

23) {AAQ — AQR ~ —(AQ — QR) + QAR,

1Q*AQ +1AQ*Q =~0.

The second equation indicates that the term Q*AQ must be skew-Hermitian. In a
subspace iteration we are only interested in the part of AQ perpendicular to @ as

4

only these directions extend the search space. We split the correction into two parts,
its projections onto @ and onto the orthogonal complement Q=+ of @, respectively:

(24) AQ =QQ*AQ+ (I - QQM)AQ .
AQ! AQ"

In order to improve the conditioning of the linear problem, we use the projection of
A onto Q+:
(2.5) At = (I - QQMA(I - QQY)

& A=A+ QQ A+ AQQ" — QQ*AQQ".
With these expressions for A and AQ and noting that A-Q = 0, we get

ATAQT — AQTR~ —(AQ ~ QR) — (I - QQ")AAQ!

(2.6) + QQ*(AAQ — AQR + QAR).
The first term on the right-hand side is the current residual. If the current approx-
imation satisfies a Galerkin condition, (AQ — QR) L @, all terms in the first line of

the equation are orthogonal to @ and the second line vanishes. In this case we can
also express the second term on the right-hand side using the residual:

(I-QQ"AAQ! = (I - QR")AQQ AQ
= (1-QQ") ((AQ - QR) + QR) G"AQ

)
(2.7) = (4Q — QR)(Q"AQ).

Near the solution both the residual and the correction are small (and Qis orthogonal),
so this presents a second order term that we neglect in the following. We obtain a JD
style correction equation for an approximate Schur form:

(2.8) (I = QQMA(I - QQ"AQ ~ (I - QQMAQR = —~(AQ — QR).

This is a Sylvester equation for AQ+. As R is upper triangular, we can also write (2.8)
as a set of correction equations with a modified right-hand side for general matrices:

1—1
(2.9) (I - QQ)A - NI - QQ")Aq = —(Ag — QF) = Y FilAgy, i=1...1
=1

With this formulation we need to solve the correction equations successively for i =
1...1. This prevents us from exploiting the performance benefits of block methods.
So from a computational point of view it would be desirable to ignore the coupling
terms 23;11 75:Aq;, which yields the uncoupled form

(2.10) (I-QQ")(A-NI)(I—-QQ")Aq =~ —(Ajg; — QFy), 1=1...1L

For Hermitian matrices, this is identical to (2.8) as R is diagonal in this case. The fol-
lowing argument shows that even for general A the uncoupled formulation should pro-
vide suitable corrections Ag; for a subspace iteration. The standard JDQR method [17]

5

uses the following correction equation for a single eigenvalue (with deflation of an al-
ready converged eigenbasis Q) and) = (Qk (j)):

(2.11) (I = QQ)(A - A)(I — QQ")Aq = —(I — QrQ})(AG — AQ).

The individual correction equations from (2.10) are similar to (2.11), with the dif-
ference that they include a deflation of eigenvector approximations that have not
converged yet. The residuals of the two formulations are related in this way: in (2.11)
we need to orthogonalize the residual AG — AG with respect to Q, in the formulation
(Ag; — QFZ) from (2.10) we obtain directly the part of the residual of a single eigen-
value orthogonal to the eigenvector approximations due to the Galerkin condition of
the surrounding subspace iteration.

Generalized eigenproblems. We can use a similar approach for the generalized
eigenvalue problem (1.2) with Hermitian positive definite B if we require @ to be
B-orthogonal. The resulting uncoupled block correction equation (corresponding to
(2.10)) is:

(212) (I —(BQQ")(A-NB)(I - Q(BQ)")Aq; ~ —(Ag; — BQF), i=1...1

Inexact solution. If the single-vector JD correction equation is solved exactly
in a subspace method, one recovers the directions of the Rayleigh quotient iteration
(RQI) as discussed for example in [44]. Similarly the block correction equation (2.10)
can be related to a block variant of the RQI, which converges cubically to an invariant
subspace for the Hermitian case as shown in [1]. For the non-Hermitian case we still
expect quadratic convergence to at least single eigenvalues (from the standard RQI).
In [32], Notay shows for a special single-vector case that the fast convergence is pre-
served even with approximate corrections under the condition that we increase the
required accuracy of the corrections in the outer iteration fast enough. This obviously
holds for the block algorithm as well, and we will discuss the practical implementation
of varying the ‘inner tolerance’ for each eigenvalue approximation in Section 4.1.

Computational kernels. Block variants of iterative methods in general aim
to achieve higher performance by exploiting faster computational kernels. For the
method described in this section, we assume that one of the main contributors to
the overall runtime is the application of the operator (I —QQT)(A — AI) to a vector
in each iteration of an inner iterative solver for (2.10). In Section 4.1 we will show
how to implement the algorithm such that this operator is (almost) always applied
to a fixed number of vectors at a time (with a different shift 5\]- for each vector in
the block). To motivate this effort, we will next quantify the performance advantages
using simple qualitative models and a case study. Another important operation is the
orthogonalization of a block of vectors against an existing orthogonal basis. This step
also benefits from block operations and will be briefly discussed in Section 4.2.

3. Performance engineering for the key operations. In the field of sparse
eigensolvers in general it is often possible to extend existing algorithms that deter-
mine one eigenvector at a time to block algorithms that search for a set of eigenvalues
and -vectors at once. This is interesting from a numerical point of view since sub-
space methods usually gather information for several eigenvalues near a specific target
automatically. Blocking of operations is also beneficial for the performance of the im-
plementation. By grouping together several matrix-vector multiplications of the same
matrix with different right-hand-side vectors (in the following called sparse matrix-
multiple-vector multiplication, spMMVM in contrast to spMVM for the single-vector

6

case), we can achieve that the matrix needs to be loaded only once from main memory
for several vectors. Additionally, faster dense matrix operations can be employed for
the vector-vector calculations when using block vectors. The potential performance
gain from combining several BLAS level 1 or level 2 routines into specialized kernels
has been observed by, amongst others, Baker et al. [5] for GMRES and Howell et
al. [23] for Househoulder bidiagonalization. The relevance of this is also shown by the
inclusion of so-called BLAS 2.5 functions in the updated BLAS standard [7].

In addition, the number of global synchronization points and messages sent for
all key operations is reduced by using block vectors, although the amount of com-
municated data remains the same. Obviously, we can combine this approach with
appropriate matrix reorderings (e.g., using reverse Cuthill-McKee (RCM) [12], PT-
SCOTCH [11] or ParMETIS [25]) to further reduce the communication effort in the
spMMVM. Another idea is to overlap communication and computation during the
spMMVM. The price one has to pay is an additional write operation to the result
vector, so that it is not immediately clear whether the overall performance will bene-
fit or suffer [35]. We do not investigate this technique here, but note that it may be
beneficial if the network is slow or the number of nodes used is very large.

SpMMYVM performance models and implementation. Already for moder-
ately sized problems the spM(M)VM kernel is memory-bound on all modern computer
architectures. This is due to the fact that the kernel’s code balance (ratio of accessed
data from main memory to executed floating-point operations) is larger than typi-
cal values of machine balance (ratio of maximum memory bandwidth to arithmetic
peak performance). In addition, matrix properties like the density (share of non-zero
entries) and the sparsity pattern (distribution of non-zero entries) can have a large
influence on the performance.

A key factor for high spM(M)VM performance is the storage format of the sparse
matrix. While the popular compressed row storage (CRS) usually gives good per-
formance on CPUs, the more sophisticated SELL-C-o format [27] yields high perfor-
mance on a much wider set of architectures for many matrices in practice. It contains
two tuning parameters: The hardware-dependent chunk size C which is closely con-
nected to the width of the single-instruction multiple-data (SIMD) vector registers
and the matrix-dependent sorting scope o. All rows within a chunk will be stored
column-wise and chunks are stored one after another. All rows in a chunk are padded
to have the length of the longest row. In order to avoid excessive zero padding (espe-
cially for irregular matrices), local sorting by row length within blocks of ¢ > C rows
can be applied, which leads to similarly-sized rows in each chunk and less overhead.
The sorting is applied to both rows and columns, so that symmetry and spectral
properties of the matrix are preserved. We do note that it may have an impact on
the implementation and effectiveness of preconditioning techniques for iterative linear
solvers. This is briefly addressed at the end of Section 4.1.

Extending the results in [27] to the spMMVM (Y + AX, XY € R™™ with
a block size ny), our experiments have shown that it is important to use row-major
storage for the blocks of vectors X, Y, rather than the commonly used column-major
ordering. This design choice improves the spatial cache locality during the spMMVM
and thus the overall performance, independent of the matrix sparsity pattern or stor-
age scheme. On the other hand, the consecutive storage of many vectors in row-major
ordering may lead to strided memory access if single vectors or small blocks need to be
accessed, which led us to some of the implementation choices discussed in Section 4.
Row-major storage of the block vectors was also mentioned to be beneficial in [29], but

7

abandoned because of the inconvenience it imposes on the user. The GHOST library*
(General Hybrid Optimized Sparse Toolkit) provides simple mechanisms for changing
the data layout of a vector in-place or out-of-place to circumvent this problem.

Concerning the sparse matrix format, we find that for multi core CPUs C may be
reduced if n; > 1; for instance, a reasonable choice was C = 8,0 = 32 for n;, = 4 in
contrast to C = 32,0 = 256 for single vector computations. In practice, for BJDQR
ny is comparatively small (sometimes only 2), so introducing the SELL format helps
to increase the vectorization potential of the spMMVM. If n,, is equal to (or a multiple
of) the SIMD width of the CPU, one can often choose C = ¢ = 1 — which recovers
the CRS format — and still get good performance. For accelerator hardware such
as GPGPUs or the Intel(R) Xeon Phi, which have a larger SIMT/SIMD width, the
SELL-C-o format is to be preferred (c.f. [27]).

Assuming 64-bit matrix/vector values and 32-bit indices, no overhead in the ma-
trix storage (which can be achieved by a good choice of o) and a large enough cache to
hold X during the entire operation, the minimal data volume for a single spMMVM
can be computed as (generalizing from, e.g., [18,27]

(3.1) Vinin = (12n,,, + 16nny) bytes,

where n,,, denotes the number of non-zero matrix entries. The minimum code balance
of the spMMVM kernel for processing a single non-zero matrix element is then given
by

12 + 1622 byt 6 8 byt
(3.2) Be = e VRS _ (6 ytes
2ny, ﬁOp np Npzr ﬂOp

with n,., = *2= the average number of non-zero entries per row. Here we employ
non-temporal stores for the result vector Y, which eliminates the write-allocate data
transfer from memory for this vector. In practice we expect a larger data transfer
volume due to multiple loads of X elements from the main memory (the cache size is
limited and the access pattern to X may be sub-optimal).

More details on this topic can be found for example in [27] and [35]. The actual
transferred data volume Vieas > Vinin can be measured with hardware performance
monitoring tools like likwid-perfctr [41], and the traffic overhead due to multiple loads

of elements of X can be quantified as

(33) V:extra = Vmeas - Vmin~

In order to get an idea of the impact of Veyn on the performance, a metric for the
relative data traffic can be formulated as

Vmeas
Vmin

A value of = 1 indicates the optimal case where each element of X is loaded only
once from the main memory in an spMMVM.

Assuming boundedness of the kernel to the machine’s maximum memory band-
width b [bytes/s], one can apply a simple roofline performance model (cf. [42] and the
references therein) in order to predict the maximum performance:

b b flops
(3.5) P=p = P

ny Mnzr

(3.4) Q= > 1.

S

*https://bitbucket.org/essex/ghost/

https://bitbucket.org/essex/ghost/

Using this relation, one can also predict the potential speedup compared to ny; single
spMVMs:

P 6Nz + 8
3.6 §* = M . Mmar TO
(36) P " G + 81y

Benchmarking setup and results. The measurements are conducted on a sin-
gle socket Intel(R) Xeon CPU E5-2660 v2 (“Ivy Bridge”) running at 2.20 GHz. This
processor comes with 10 cores on which SMT has been disabled. It features 32 GB
of DDR3-1600 main memory and 25 MB of L3 cache. The maximum memory band-
width is between 41 GB/s for the STREAM [31] Triad and 47 GB/s for a purely load-
dominated micro-benchmark. Our implementation uses OpenMP for shared memory
parallelization and all results are obtained with the Intel(R) compiler version 14.0. In
the case n, = 1, the matrix is stored in SELL-32-2048 and "DYNAMIC, 250" OpenMP
scheduling is applied to the outer loop over C-blocks (chunks). Otherwise, "DYNAMIC,
1000" OpenMP scheduling is used together with SELIL-4-8. The choice of DYNAMIC
over STATIC,O scheduling (which is the default for Intel(R) compiler in the version
used) is motivated by possible load imbalance for static scheduling and irregular ma-
trices. The relatively large block size together with the fact that the parallelization
is done over SELL chunks instead of rows leads to having enough work for each
OpenMP thread at a time and a negligible scheduling overhead. In this paper we
only use OpenMP inside each UMA (uniform memory access) domain, e.g. a single
CPU socket. In a NUMA (non-uniform memory access) setting, one MPI process per
UMA domain is used to ensure local accesses to the matrix and vector elements.

Reducing €2 towards one is the key to achieving optimal spM(M)VM performance.
For a qualitative estimate of) the matrix bandwidth w plays an important role. It is
defined as the width of the diagonal band which contains all of the non-zero entries
of the matrix. Clearly, a small value of w is favorable in order to have a potentially
local access to the block vector X. The bandwidth of a matrix can be reduced by row
reordering which is also applied here.

L w/ ny = 1 ny = 4 ny = 8
103 Vmin Vmeas Q Vmin ‘/Ineas Q ‘/min Vmeas Q
22 76 | 0.117 0.120 1.02 | 0.151 0.173 1.15| 0.196 0.220 1.12

24 255 | 0.472 0.484 1.03 | 0.602 0.741 1.23 | 0.774 1.098 1.42
26 869 | 1.979 2.141 1.08 | 2478 3.820 1.54 | 3.143 5.629 1.79

Table 1: Test case properties and data traffic measurements for the matrices Spinsz[L].
Data traffic volumes V are given in GB.

Table 1 shows relevant information and data traffic measurement results for three
test cases. More details can be found in Table 3 in Section 5. The traffic overhead €
increases due to the limited cache size as the problem size n or the vector block size
ny are increased. The row-major storage of the vector blocks helps to keep Q2 close to
one as compared to column-major storage (see also Figure 2).

Figure 1 shows the intra-socket scaling performance and the speedup through
blocking for the same set of test matrices and block sizes n, = 4 and n, = 8. A first
observation is that the speedup achieved by using block operations decreases as the
problem size increases. On the other hand, higher speedups can be expected for larger

9

2 o—e Sping,[22]
20 >—» Sping,[24]
o Sping,[26]
%6 v—v Spl nsz[22], nb=1
ol +—e Sping,[24], n =1
" P Sping,[26], n.=1
020 2.6x
& 18
O 16
14
12
10
8 8
6 6
4 v - 4
21 o o 2
0 A I I I A A I A Y I A N 0
1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
Cores # Cores
(a) np =4 (b) np =8

Figure 1: Scaling performance for different block and problem sizes on the Ivy Bridge
test system. The upper performance bound P* as computed with Eq. 3.5 for n, = 1,
ny, = 4 and n, = 8 using the Spingz[22] matrix is shown (assuming @ = 1 and
b =47 GB/s).

values of n,. These observations can be related to the measured traffic overhead 2 in
Table 1. The discrepancy between the actual speedup S and the maximum speedup
S* from (3.6) is rooted in 2. As an example, we consider Spinsz[22] (n = 7-10° and
Npzr = 12.57, cf. Table 3) for ny, = 4:

67ipar + 8 6-12.57+8
3.7 S* =y - —4. ~31
(3.7) T e+ 8y 6-1257+8-4

However, the actual speedup adds up to S = 2.6 and S*/S ~ 1.19 ~ Q (= 1.15). The
rather moderate values of Q for Spinsz[22] for all values of n;, can be explained by
the fact that the outermost cache (25 MB) can easily accommodate n;, vector chunks
of length w. This is no longer true for Spinsz[26] for n, = 4 and higher, resulting in
a considerable increase in 2. Finally, the properties of a block algorithm may limit
the meaningful block size by introducing more iterations and memory overhead with
increasing ny (cf. Section 5).

Implementation and performance of the projection operator. Another
major contributor to the runtime is the projection Y < (I — QQT)Y, carried out
in each inner iteration of JD. It consists of two dense matrix-matrix multiplications
(GEMM operations) and a vector update. The matrices @ and Y are very tall and
skinny, so that the GEMM operation is memory-bound (as opposed to the case of
square matrices where it is typically compute-bound if implemented efficiently). Thus,

10

Operation code ny=1 ny = 2 ny =4

ba‘la‘nce P* Pmeas P* P77L6GS P* P77L6GS
S+ QTY) %tgs 1.2 109 | 214 200 |39.2 375

_ 8(20+2n;) bytes
Y+«Y-QS 72(207%; flop 10.7 103 | 19.6 182 | 33.6 30.1

Table 2: Predicted and measured performance in Gflop/s of the memory-bound
GEMM operations for the projection Y + (I — QQT)Y on the 10-core Ivy Bridge
system (assuming a peak bandwidth of b = 47 GB/s). We show results for Q € R"*2%
and Y € R™*™ with n, = 1, n, = 2 and n, = 4. The number of rows n in the
measurements is in the order of 107.

we can again apply the roofline model from (3.5) for performance predictions.

Using high-performance BLAS implementations typically does not yield satisfac-
tory performance for the case of tall skinny matrices. We therefore implemented
them by hand and provided automatically generated kernels for useful values of n; in
block Jacobi-Davidson (e.g., n, = 1,2,4,8) which were selected at run time. SIMD
extensions SSE (n, = 2) and AVX (np = 4, 8) were used for optimal floating point per-
formance. The operations we use in BJDQR are in particular C' < VIW, W « V .C,
and V(;,1 : k) < V- C, with V € R™™ W € R"™* and C € R™**. The lat-
ter operation (with k < m) occurs, e.g., when shrinking the subspace in step 29 of
Algorithm 1. Due to the simple nature of these operations, we could easily match
the measured performance to the maximum performance predicted by the model (see
Table 2).

Figure 2a shows the contribution of the different kernels to the overall runtime

of the Jacobi-Davidson operator. It is clear from our experiments that achieving a
block speed-up is owed to the choice of row-major storage for vector blocks, whereas
the sparse matrix format (SELL vs. CRS) may improve the overall performance,
depending on the matrix. Due to the characteristics of the (blocked) vector-vector
operations, the speedup due to blocking of the entire Jacobi-Davidson operator is
larger than the speedup only for the spMMVM. Taking into account the additional
flops of the projection, the total flop rate of the Jacobi-Davidson operator for n, = 8
and the Spinsz[26] matrix adds up to 34.7 Gflop/s compared to 19 Gflop/s (cf. Fig-
ure 1) for the spMMVM operation alone. The CPU socket has a peak performance
of 176 Gflop/s, of which we achieve 20%, which is quite satisfying. As we will see
in the next section, we can implement the block Jacobi-Davidson method such that
it exploits these fast kernels as much as possible. The tall skinny matrix operations
discussed here are also used in block orthogonalization steps using iterated classical
Gram-Schmidt (in combination with, e.g., TSQR, cf. Section 4.2).
In contrast, no block speedup for the spMMVM is achieved with the column-major
storage for the blocks of vectors X and Y (see Figure 2b). For the Trilinos implemen-
tation (see Figure 2c¢), we observe a small block speedup for block size two, but no
further improvement for n, = 4 and n; = 8.

4. Algorithmic choices. In this section we will discuss some aspects of our
implementation that are different from what is common practice. The first point
concerns the simultaneous solution of several linear systems with [shifted matrices
(A - 5\]»]),j = 1...1 using a Krylov subspace method. This is required for solving

11

20

\ \ -
;< (A
— S+ QY
— Y«Y-QS
15 — — — — — —
=
2
£10 - - F - F -
5 — — - —] — —]
0
1 2 4 8 1 2 4 8 1 2 4 8
block size ny, block size ny block size ny,
(a) SELL-C-o format, (b) SELL-C-o format, (c) CRS format,
row-major vector blocks col.-major vector blocks col.-major vector blocks
(GHOST) (GHOST) (Tpetra)

Figure 2: Required runtime on the 10-core Ivy Bridge CPU for 120/n; applications
of the Jacobi-Davidson operator (y; + (I —QQT)(A — \;I)x;) with shifts A € R and
20 projection vectors (q1, . . ., g20) = Q for different block sizes n;, using the bandwidth-
reduced Spinsz[26] matrix. For column-major vector blocks SELL-32-2048 was used,
whereas for the row-major case SELL-8-32 yields better performance for n, > 1. In
all cases dynamic OpenMP scheduling was employed with a chunk size of 1000. The
Trilinos [20] package Tpetra does not offer a shifted spMMVM operation, s.t. the
subtraction of S\jxj is done separately. Shared-memory parallelization in Tpetra was
provided by the Trilinos library ThreadPool.

the correction equations in block JD. We chose GMRES here because of its general
applicability (see for example [33]), but the ideas could be transfered to any other
Krylov subspace method. The second aspect we investigate is how to formulate the
algorithm to reduce the number of global synchronization points compared to textbook
implementations of JDQR.

4.1. Blocked solution of the correction equations. A blocked GMRES
solver allows the concurrent solution of lgmres independent linear systems of the
form (2.10) using a standard GMRES method, but grouping together similar opera-
tions across the systems. For real symmetric (Hermitian) matrices, we use a MINRES
variant which is simply obtained by replacing the long recurrence in GMRES by a
short one, saving some orthogonalization effort.

The block size l,qcn that would deliver the optimal performance on the given
machine is not always the best from a numerical point of view. For instance, the
number of vectors in a spMMVM should be chosen based on the sparsity pattern
and hardware characteristics such as the SIMD width or the network bandwidth
(cf. Section 3 and [27]), whereas the Jacobi-Davidson block size l;qq- might be chosen
to contain the largest multiplicity of the eigenvalues encountered. It is reasonable to
choose lgmres = lmach < lbjdqr-

A system that has converged (to its individual tolerance) is replaced by another
until the number of unconverged systems is smaller than [,,4c;. At this point the
iteration is stopped for all systems, or lgmres is reduced gradually until all systems

12

have converged. In our experience the former approach gives better overall perfor-
mance while not affecting the robustness of BJDQR, and is therefore chosen in the
experiments in Section 5.

A single (unpreconditioned) GMRES iteration consists of the following steps (cf.
[33, Section 6.5] for the complete algorithm):

1: apply operator to preceding basis vector (g1 < (I — QQ*)(A - S\j)vk),
2: orthogonalize ¥y41 w.r.t. all previous basis vectors,
3: local operations (compute/apply Givens rotations, check residual).

Step 1 is always performed on lg,es contiguously stored vectors at a time. Step
2 is implemented using a modified Gram-Schmidt (MGS) method. Similar to the
spMVM, the vector operations required are combined. If the shortest (longest) Krylov
sequence among the Iy, s systems currently iterated is My (M), We can perform
Mamin MGS steps with full blocks, and then m,,q: — Mmin Operations with single
vectors or parts of blocks (if lpjdgr = lgmres and the iteration is stopped as soon as a
system converges, only full blocks are used). In contrast to the outer Jacobi-Davidson
loop, MGS is preferred here because the basis vectors of a particular system are not
stored contiguously, so that it is not possible to gain additional performance from
block operations in classical Gram-Schmidt.

The basis vectors of the individual systems j are stored as column j of block
vectors in a ring buffer. Figure 3 illustrates a partly filled buffer for four systems. If
all blocks are filled for a particular solver, it is restarted. The next block vector to be
used is selected periodically.

’Ek+1 «— A’Uk

GMRES subspace 1:
MRE 2:
G RSs-ubspace e %»
o y

Figure 3: Visualization of the ring buffer used to store the Krylov subspace basis
vectors of the blocked GMRES algorithm for four linear systems. The vectors of the
different subspaces are grouped together in blocks (black dots in one column). The
different subspaces can have different dimensions (number of filled black dots in one
row, e.g. k1 = 4,ko = 6,ks = ky = 1). The blank circles indicate that some of the
pre-allocated blocks of vectors are currently (partially) unused.

Block GMRES. One could use a block Krylov method that constructs a single
Krylov space for all systems (the shifts A; do not change the Krylov space for a given
starting vector). Such an approach has the restriction lymres = lpjaqr and therefore
does not offer the full flexibility presented here. The performance results in Section 5,

however, indicate that this flexibility is not crucial for achieving high performance
with block JDQR.

13

Preconditioning. In this paper we do not employ additional preconditioning
for the linear systems, but the common practice of preconditioning based on a nearby
positive definite matrix could be readily implemented here, i.e., one may use a fixed
(or no) shift to compute the preconditioner and apply it to the individually shifted
systems. The MINRES method we use for symmetric matrices requires a positive
definite preconditioner, which immediately suggests this approach. Popular precon-
ditioning techniques such as incomplete factorization [10] or multigrid methods [16]
should benefit from similar performance gains due to blocking as the spMMVM in
this paper. If a multigrid method for the shifted systems is used (as in [16]), one
could choose a different shift per iterated system in smoothing operations like Jacobi
or Gauf-Seidel.

The SELL-C-o sparse matrix format (cf. Section 3) used in this paper does not
allow straight-forward row-wise access to matrix entries, and the local sorting it em-
ploys may additionally complicate constructing an effective preconditioner. For matri-
ces with a relatively simple structure (like the MATPDE example in Section 5), most
rows have the same length and sorting is only used in a limited area near the boundary
(or o can be set to 1 at the cost of some more zero-padding). If the desired precondi-
tioner cannot be implemented in the SELL format, one can choose C' = ¢ = 1, which
recovers the well-known CRS format. This may incur a slight performance degrada-
tion of the spMMVM, but good block speed-ups can still be expected, and applying
the preconditioner may be more costly than the spMMVM anyway.

For the quantum physics examples in this paper, it is an open research issue
to find effective preconditioners as they have little in common with the well under-
stood matrices stemming from discretized elliptic PDEs. Polynomial preconditioning
is one option as it can be implemented straight-forwardly in SELL-C-o and with dif-
ferent shifts per system solved simultaneously. An alternative is using model specific
‘physics-based’ preconditioners as in [3].

4.2. Improving the communication behavior. With the increasing number
of nodes (and cores per node) of HPC systems, it becomes inevitable to ask the
question if we can improve the communication behavior of a parallel algorithm. The
block JDQR method typically requires more matrix-vector and scalar products than
single vector JDQR, which leads to a higher total data volume to be transferred.
However, the blocking can lead to a significant reduction in the number of messages
sent, and thus in the number of global synchronization points. It is clear that this is
the case for the spMMVM operation, but for the orthogonalization with respect to
the current basis and converged eigenvectors, algorithmic choices need to be made.

Block orthogonalization. An accurate method to create an orthogonal basis
for the subspace W is crucial for the convergence of the Jacobi-Davidson algorithm.
The efficient (and accurate) parallel orthogonalization of a block of vectors T' with
respect to previously calculated basis vectors W is considerably more challenging
than just orthogonalizing one vector after another. Standard methods for the latter
are the iterated classical Gram-Schmidt (ICGS) and the (iterated) modified Gram-
Schmidt (IMGS) algorithms. Working with a complete block T', however, allows
using faster BLAS2.5 operations. One problem here lies in the fact that when we first
orthogonalize the columns of T internally and then against W, the second step may
reduce the accuracy of the first, and vice versa.

In [14,22] a new algorithm to orthogonalize a small block of vectors (TSQR)
is described. It uses Householder transformations of subblocks with reductions on
arbitrary tree structures to both optimize cache usage for intra-node performance and

14

communication between nodes. In combination with a rank revealing technique and
block ICGS to orthogonalize the new block T against W one obtains a very fast and
robust method (see the discussion about RR-TSQR-BGS in [22]). We use TSQR from
the Trilinos 11.12 [20] library, with thread-level parallelism provided by Intel(R)TBB.
As this implementation does not support row-major storage of the input block vector
(vet), we change the memory layout on-the-fly before and after TSQR, which incurs
a performance penalty. This is not further discussed in the following as it influences
the total runtime of the complete algorithm (c.f. Section 5) by less than 4%.

Locking vs. deflation. A deflation approach for Jacobi-Davidson explicitly
orthogonalizes the residual w.r.t. already converged Schur vectors @, 7 = (I — QQ*)7,
in every iteration. Additionally, explicit orthogonalization is required whenever an
eigenvalue converges. We can also achieve orthogonality by keeping the converged
vectors in the search space (through the Galerkin condition). Obviously, we still need
to orthogonalize the new corrections ¢ with respect to), but this is now part of
the regular orthogonalization step. As locking Schur vectors of converged eigenvalues
improves the stability of the method for multiple or tightly clustered eigenvalues
(see [36] and the references therein), it is important to transform the search space
such that the locked Schur vectors are listed as the first basis vectors in W. This
allows us to lock k¢ope eigenvalues and corresponding Schur vectors in the left part of
the projected Schur decomposition HQ = Q¥ R” with

I 0
H _
H
(4.1) RH — (Rl:kmal:kwm Hl:km,v;'%m:kq) and
(4'2) chonv:k7kcon'u:k qH = qurH :

When the search space grows too large, we shrink it to a fixed size j,;,. This op-
eration does not require communication, and as long as jin > kcono all converged
eigenvectors remain locked. Locking is a standard technique in the field of subspace
accelerated eigensolvers [34, Chapter 5], but we exploit this specific formulation to
illustrate how the additional communication required for the deflation can be avoided.

5. Numerical and performance studies. In this section, we first want to
check our implementation against an existing code. We then test the block JDQR
method with different symmetric and non-symmetric real eigenvalue problems, which
are summarized in Table 3. Finally, we show some results for larger matrices on up
to 256 nodes (5120 cores) of a state-of-the-art cluster consisting of dual socket Intel
Ivy Bridge nodes (cf. Section 3 for architectural details). The sparse matrix format
used in this section is SELL-32-256 for block size n;, = 1 and SELL-8-32 for n; > 1.

Test matrices. We choose the test matrices from two sources. On the one
hand, we show some numerical studies with a variety of small problems from vari-
ous applications (Table 3a) and a non-symmetric problem MATPDE[n] representing
a variable (but smooth) coefficient convection-diffusion problem on an n x n grid .
MATPDE3DIn]| is a straight forward generalization to a 3D problem on an n x n X n
grid. These matrices are partitioned using a simple quadtree (octree) algorithm and
no additional graph partitioning or local bandwidth reduction has to be applied.

TThe matrix generator can be found at
http://math.nist.gov/MatrixMarket/data/NEP/matpde/matpde.html

15

http://math.nist.gov/MatrixMarket/data/NEP/matpde/matpde.html

Name n Ny eigenvalues sought symmetry

Andrews 6.0-10* 7.6-10° smallest spd
cfdl 7.1-10* 1.8-106 i "
finan512 7.5-10* 6.0-10° " "
torsionl 1.0-10* 2.0-10° L L

ck656 656 3 884 rightmost none
cryl10000 1.0-10* 5.0-10* " "
dw8192 8192 4.2-10* " "
rdb32000 3200 1.9-10% " "

(a) various small matrices

Name n Nz eigenvalues sought symmetry
Spinsz[22] 7.0-10° 8.8-10° leftmost symm.
Spinsz[24] 2.7-10% 3.6-107 " "
Spinsz[26] 1.0-10" 1.5-108 " "
Spinsz[28] 4.0-107 6.1-10% " "
tV[26] 1.0-107 1.5-108 " "
tV[28] 4.0-107 6.2-10% " "
Hubbard[14] 1.2-10" 1.9-108 " "
Hubbard[16] 1.7-10% 3.0-10° " "
BosHub[20] 2.0-10" 3.0-108 " "
BosHub|22] 1.3-10% 2.0-10° " "
MATPDE[4k] 1.7-107 8.4-107 " none

MATPDE|[16k] 2.7-10% 1.3-10° " "
MATPDE3D[512] 1.3-10% 9.4-10% " "

(b) larger matrices

Table 3: Overview of the matrices used in the experiments. All matrices are sparse
and have real entries. The symmetric positive definite (spd) matrices come from the
University of Florida Sparse Matrix Collection [13], the non-symmetric (non-symm.)
matrices are from the Matrix Market [9], and the matrices in the lower table are used
as scalable examples, stemming from quantum physics and a generic PDE problem
(see text).

On the other hand, we want to test the block algorithm on larger matrices
from current real applications in quantum physics research. As typical examples we
choose the matrices Spinsz[L], tV[L] (spin chain and spinless fermions [4]), Hubbard[L]
(fermionic Hubbard model [15]), and BosHub[L] (bosonic Hubbard model [8]) from
solid state and ultracold atomic gas physics. These matrices pose ‘hard’ test cases for
exterior eigenvalue computations. First, the spectrum of the matrix depends critically
on the test problem and the problem parameters, with the possibility of several closely
or truly degenerate eigenvalues. Second, the matrix dimension grows exponentially
fast with the physical problem size L, such that scalability of the eigensolver becomes
an issue early on.

Consider, e.g., the matrices Spinsz[L] that reflect the Hamilton operator for the

16

Heisenberg XXZ spin chain model with S,-symmetry. For a chain with L spins, in
the case of zero total magnetization and without translational symmetry, the matrix
Spinsz[L] is a symmetric matrix with dimension Ny = % It contains between 2
and L + 1 non-zeroes per row, with about L/2 non-zeroes on average. The sparsity
pattern is characterized by many thin (one-element wide) outlying diagonals, such
that the band width is of the order Ny /2. Consequently, a good matrix reordering
strategy is required to reduce the communication overhead and achieve reasonable
performance on distributed memory machines. For moderately sized matrices (Ny, <
10%) the (serial) reverse Cuthill-McKee (RCM) algorithm [12] can be used, but for
larger matrices parallel strategies are required [11,25]. Here, a RCM reordering was
used for single-node calculations and PT-SCOTCH [11] for the inter-node tests.

Notice that a reasonably good partitioning and local ordering of the matrix en-
tries is key to achieving good performance of the single-vector spMVM and of the
spMMVM independent of the block size. Thus, the results depend to some extent on
the availability of such a pre-ordering. We do not report the time for the partitioning
here but mention that it is a significant overhead if tools like PT-SCOTCH have to
be used. In some of the larger runs the partitioning took longer than finding the
first 20 eigenvalues. An efficient numbering of the unknowns — similar to the fast
quadtree ordering used for the MATPDE problem — is a research topic of its own for
the quantum physics matrices used as examples here [35] and is beyond the scope of
this paper.

Comparison with another implementation. We would like to compare our

results to a state-of-the-art implementation of Jacobi-Davidson. Here we use the
PRIMME software [39], with sparse matrix-vector products (and spMMVM) pro-
vided by the Trilinos library Epetra [20]. Note that the aim here is not to compare
the overall runtimes of the two implementations, as they are very different in na-
ture (in particular, PRIMME’s JDQMR method does not use blocking in the inner
solves). Instead, we want to verify that the solver presented requires a similar num-
ber of iterations in total, and that the runtimes give a consistent picture. We run
PRIMME/Epetra using MPI on the 10 cores of a CPU socket of the above mentioned
cluster for block sizes 1, 2 and 4.
The software PHIST? (Pipelined Hybrid-parallel Iterative Solver Toolkit) used in our
work provides an abstract C interface for sparse parallel linear algebra operations
and implements the block Jacobi-Davidson algorithm discussed here, as well as some
Krylov-subspace solvers for large linear systems. The block Jacobi-Davidson imple-
mentation is also executed on one CPU socket of the same machine and uses GHOST
to provide the OpenMP-parallel building blocks discussed in Section 3. We remark
that the PRIMME interface only allows to provide a sparse matrix-vector product
on column-major block vectors and uses standard BLAS library calls for the (block)
vector operations. In measurements, providing a faster shared memory parallel spM-
MVM was outweighed by the slower BLAS operations in (multi-threaded) Intel MK,
so that the variant shown here was the fastest we found. The very low performance
level of the multi-threaded MKL performance for tall-skinny shaped block operations
is investigated in [28]|, where it was shown that manually tuned multi-threaded im-
plementations can outperform Intel MKL performance for small block dimensions by
more than an order of magnitude.

We also compare two ways of stopping the inner QMR iterations in PRIMME:

thttps://bitbucket.org/essex/phist
17

https://bitbucket.org/essex/phist

method ny matvecs walltime [s] time/spMVM [ms] block speedup

PRIMME (a) 1 1387 326 80 (34%) 1.00
2 1688 370 80 (37%) 0.82
4 1811 403 81 (39%) 0.77
PRIMME (b) 1 1395 327 80 (34%) 1.00
2 1487 326 80 (37%) 0.94
4 1746 366 81 (39%) 0.80
PHIST 1 1476 343 53 (23%) 1.00
2 1562 286 37 (20%) 1.20
4 1774 252 26 (19%) 1.36

Table 4: Comparison of our code PHIST with the PRIMME software. The column
‘time/spM VM’ shows the average time per single matrix-vector product and the con-
tribution to the overall runtime in percent. The different configurations (a) and (b)
are explained in the text.

(a) limiting the number of iterations to 8 or stopping if a decreasing inner tolerance
is reached (comparable to our own implementation), and (b) using an adaptive inner
tolerance or stopping when the eigenvalue residual has been reduced by one order of
magnitude (see also [37,38]). The test matrix is Spinsz[26] (cf. Table 3b) with RCM
reordering. We seek 20 eigenpairs at the lower end of the spectrum, the required
accuracy is 1078, and the methods are restarted from 28 vectors if a basis size of 60 is
reached. PHIST performs 28 single-vector Arnoldi steps to construct the initial basis.

The results are shown in Table 4. PRIMME is somewhat faster than our code
in the single-vector case, even though the matrix-vector product is slower. This is
because it requires fewer spMVMs and probably also saves some other operations by
smarter implementation details like delayed locking. The more sophisticated inner
stopping criterion can further accelerate the computations, especially in the block
variant (cf. the results for ‘PRIMME (b)’). As the JDQMR method used here does
not solve the correction equation in a blocked fashion, the overall ‘block speedup’
simply reflects the increase in the number spMVMs required.

PHIST becomes up to 1.36 times faster due to the techniques discussed in this
paper, in particular due to the massive performance gain of the spMMVM and the fast
block vector kernels shown in Section 3. Noting that the performance of the spMVMs
is increased by a factor of 2 by using n, = 4 instead of n, = 1, one might expect an
even larger speedup of up to 1.7 here. This is not achieved in practice because other
operations in the inner MINRES solver do not benefit likewise from the blocking. For
instance, vector AXPY operations achieve the same performance as for a single vector,
and scalar products only benefit in the sense that fewer reduction operations are
performed, which is not relevant on the single socket CPU used here. Consequently,
as the block size is increased, the contribution of the spMMVM decreases and other
operations start to dominate the overall runtime. Here more algorithmic optimizations
such as an adaptive inner tolerance, a true block Krylov solver and a direct usage of
TSQR (without intermediate transposition of the memory layout, see Section 4.2)
may further reduce the overall runtime of PHIST.

We do not claim that the algorithm discussed here is ‘better’ than the certainly

18

more sophisticated implementation in PRIMME. The advantages of the JDQMR
method presented in [37] over JDQR are obvious, but they are complementary to
the performance advantages of PHIST (i.e., runtime reduction by blocking).

Numerical behavior. To get an idea of the increase in the number of operations
due to blocking, we compare the number of spMVMs needed to calculate a given
number of eigenvalues with different block sizes. In order to get an indication of the
generality of our result — that blocking may reduce the overall run time of the method
— we use a variety of symmetric and non-symmetric test cases here. These matrices
are too small to yield realistic performance data (they typically fit in the cache of the
CPU), but from the increase in the number of spMVMs we can estimate under which
circumstances it may be beneficial to use a block method for larger problems. Figure 4
shows the relative number of spMVMs compared to the single vector method.

Andrews ——
cfdl ——
finan512
torsionl
ck656
cryl0000 —e—
— dw8192 —e—
rdb32001 —a—

40 50
number of eigenvalues found

relative number of spMVM operations

(a) np =2
7 7
2 2
Eol 4 Eel -
= =
8 8
5 5
S5 — 5 —
= =
& g
= =
& 4 -
L (e
3 3
g 8
: :
g3 E3
g =
£ £
=2 =2 |
) S
1 f 1 \ \ \ \
5 10 20 30 40 50 5 10 20 30 40 50
number of eigenvalues found number of eigenvalues found
(b) np =4 (c) np =8

Figure 4: Influence of the block size n; on the required number of spMV Ms for different
matrices. The relative increase compared to the single vector computation is shown.

19

As soon as more than about 20 eigenpairs are sought (30 for block size 8), the

increase in the number of spMVMs is roughly constant, so that a simple benchmark
of the spMMVM performance for a realistic matrix on a given machine can be used
to choose the block size that is most likely to give good overall performance a priori.
Thus, we can expect to improve the performance of the Jacobi-Davidson method by
blocking for a wide range of matrices, symmetric or non-symmetric. While the sp-
MVM may not be the dominant operation in all applications, the number of other
operations — such as preconditioner applications or inner products — typically increases
proportionally to this count, which justifies using spMVMs as a proxy here.
Note that in the setup of the numerical tests presented, no prior knowledge of the
spectrum of the matrix was assumed. Thus the shifts in the first block JDQR itera-
tions are in some cases far away from the finally calculated set of eigenvalues. This
might explain why the block method requires many more spMVM operations for the
first eigenvalues found. One might improve the behavior by starting with a single-
vector method and switching to the block method only after the first few eigenvalues
converged or by using predefined shifts for the first iterations. The latter approach,
however, requires some information on the spectrum of the matrix. In the present
implementation of the algorithm, we found that increasing the block size to 8 will
typically not pay off because there are no sufficiently accurate Ritz values for so many
eigenpairs at once, and consequently the overall number of matrix-vector operations
increases more than the performance gain can compensate. It may be possible to use a
larger block size if one seeks eigenvalues near two targets simultaneously, for instance,
at both ends of the spectrum; however, one should keep in mind that increasing the
block size also increases the communication volume of the spMMVM, which is another
argument against using n;, > 4. In the parallel performance tests below, we therefore
do not consider this case.

Parallel performance. Next, we investigate the strong scaling of the code be-
yond a single node for a spin chain matrix and the MATPDE example (2D and 3D),
which has better scaling properties of the spMVM but is non-symmetric. Figure 5
shows the runtime results scaled by the number of nodes used, so that a constant
bar height would indicate an optimal linear parallel speed-up. It is clear from these
results that excellent strong scaling can be achieved both for the single vector and
block method if the application of the Jacobi-Davidson operator (i.e. an spM(M)VM
followed by an orthogonal projection) scales well. We do not show weak scaling results
for the complete algorithm as the number of iterations depends on the problem size.
Hence, weak scaling results would be of very limited significance. The matrices from
quantum mechanics show relatively poor strong scaling behavior as more and more
communication is required with increasing node count.

Our final experiments are strong scaling tests for the larger test cases in Table 3b,
where we report the overall speed-up achieved by using block sizes 2 or 4, respectively.
Figure 6 shows that in most cases, blocking reduces the overall runtime for block
sizes 2 and 4 (points above the horizontal line at 1). When too many nodes are used for
a given problem size, the behavior changes from memory /network bandwidth bounded
to cache/latency bounded. Our analysis and implementation are not intended for this
case, which is why we do not report scaling on more than 32 resp. 128 nodes here.

Using a block method has two counteracting effects here: On one hand, the total
communication volume increases with the number of matrix-vector multiplications; on
the other hand, the individual messages become larger through message aggregation.
So the pure communication time can increase as well as decrease depending on the

20

10000 T T T 1
2000 — N T
] 8000 - |
g
=] 1500 — —
« 6000
- |
g 1000 — 4000 -
g -
= 500 — — 2000
0 - 0 -
8 16 32 64 128 16 32 64 128256 8 16 32 64 128
nodes nodes nodes
(a) Spinsz[28] (b) MATPDE[16k] (¢) MATPDE3DI[512]

Figure 5: Strong scaling of the computation of 20 exterior eigenvalues of three matrices
on an Intel Ivy Bridge cluster. The different bars represent the block size used, and the
lines show the overall contribution of applying the ‘JD operator’ (I —QQT)(A — \I).

sparsity pattern of the matrix and its distribution among the nodes, which explains the
deviations from the single-node case. For the matrices from the Hubbard (and Bose-
Hubbard) model, a block speed-up is not achieved for the larger node counts because
these matrices exhibit a notoriously poor scaling due to their sparsity pattern: In
this case the runtime is dominated by the communication bandwidth, s.t. the higher
communication volume of the block method impedes computational gains by blocking.

21

14

w 12
<
=
5 08
=
g
2 06
joN
=
2 04
(5]
o
w
0.2
0

1.4

w 12

El 1

=

® 08

=

e

= 06

o

=

T 04

(3

&
0.2
0

[I I I I]
N
:/*\ *%1:\#\‘;
Spinsz[26] ————
— tV[26] ————
Hubbard[14]
— BosHub[20] —
MATPDE|4k]
| | | |

1 2 4 8 16 32

nodes

(a) block size 2

— I I I]
- \\/\\/‘<’
— Spinsz[28] ——+— —
tV[28] ———
— Hubbard[16] —
BosHub[22]
— MATPDE[16k] —
MATPDE3D[512] — o
| | |
8 16 32 64 128

nodes

(c) block size 2

speedup through blocking

speedup through blocking

1.4

1.2

0.8

0.6

0.4

0.2

1.4

1.2

0.8

0.6

0.4

0.2

Spinsz[26] ————
tV[26] ————
Hubbard[14]
BosHub[20] —

MATPDE|[4k]
| |

2 4 8 16 32
nodes

(b) block size 4

Spinsz[28] —+—
tV[28] ———
Hubbard[16] —
BosHub[22]
MATPDE[16k] —

MATPDE3D[512]
| |

16 32 64 128
nodes

(d) block size 4

Figure 6: Relative performance gains through blocking for the computation of 20
exterior eigenvalues of several benchmark matrices on an Intel Ivy Bridge cluster.

22

Summary and conclusions. We have investigated a block formulation of the
Jacobi-Davidson method for general (non-symmetric) and symmetric eigenvalue prob-
lems. The key operation in this method, which is executed many times in the inner
loop, consists of a sparse matrix-vector product followed by an orthogonal projection.
By performance engineering and benchmarking we have demonstrated that apply-
ing this operation to blocks of vectors, as in our proposed algorithm, has significant
performance advantages over the single vector case. An important implementation
detail is the row-wise storage of blocks of vectors. This design choice is the key to
achieving the performance gains we have shown for the sparse matrix-vector products
and block vector operations, but it has consequences for the formulation of the com-
plete algorithm, as operations on single vectors in a block become much less efficient.
We therefore showed how to achieve optimal blocking of operations by collecting the
operations from separate inner solves and discussed some ways to further reduce the
total number of global synchronization points.

Our numerical results indicate that the block method works well for a wide range
of matrices, both symmetric and non-symmetric. The performance results show that
the hybrid parallel approach we take (MPI+OpenMP) gives good scalability on a
modern cluster, and that the block variant outperforms its single-vector counterpart
even for fairly large problems on up to 5120 cores.

In this study the performance and the block speedup on a cluster were mostly de-
termined by the spMMVM performance (cf. Figure 5). The aspect of synchronization
reduction by collecting scalar products was discussed but not demonstrated in prac-
tice because the test problems from quantum physics lead to a poorly strong-scaling
matrix-vector product. We plan to perform a separate study on suitable test cases
like MATPDE to demonstrate the benefits of blocking in this respect experimentally.

The direct comparison of eigensolvers and implementations is difficult because
there are so many aspects that determine the overall runtime. We chose the JDQMR
method in PRIMME. Of the schemes implemented in PRIMME; it is the most similar
one to the algorithm discussed, so we could verify that a similar number of matrix-
vector operations is needed. It may be interesting to also apply the GD+k block
method in PRIMME to the test problems for comparison.

The numerical results confirm that blocking can significantly reduce the time to
solution if implemented correctly. Going beyond block sizes of 2 and 4, however, may
not pay off because no good directions for those additional eigenmodes are added to the
subspace, and the subspace grows very quickly for e.g. block size n, = 8, increasing the
cost of orthogonalization. The communication volume during spMMVM also grows
linearly with n,. With these observation in mind, we advocate the use of ‘SIMD
friendly’ matrix storage formats (here SELL-C-0), as the SIMD width on upcoming
CPUs (like Intel(R) Skylake and Knight’s Landing) is already 8 doubles.

While we have shown experiments only on a single machine, the performance
models can easily be fitted to a variety of architectures, so that we can expect similar
overall results.

In the future we will work on including preconditioning techniques in the PHIST
library. We also plan to investigate communication hiding techniques to alleviate the
increased volume of the transferred data at large node counts, and develop fast matrix
ordering schemes for matrices from quantum physics. Furthermore, we will support
using accelerator hardware such as GPUs, which is already supported by the GHOST
library. Both PHIST and GHOST are open source projects and are available under a
BSD license from https://bitbucket.org/essex/.

23

https://bitbucket.org/essex/

(1]

2l

(3]

(4]

(5]

(6]

(7]

(8]
[l

[10]

(11]

(12]

[13]
(14]
[15]

[16]

(17]

(18]

[19]

20]

21]
[22]

23]

REFERENCES

P.-A. ABsiL, R. Manony, R. SEPULCHRE, AND P. VAN DooOREN, A Grassmann—Rayleigh
quotient iteration for computing invariant subspaces, STAM Review, 44 (2002), pp. 57-73.

H.M. AkTuLca, A. Buruc, S. WiLLiams, AND C. YANG, Optimizing sparse matriz-multiple
vectors multiplication for nuclear configuration interaction calculations, in 28th IEEE In-
ternational Parallel and Distributed Processing Symposium, 2014, IEEE Computer Society,
May 2014, pp. 1213-1222.

J. ANDRZEJEWSKI, On optimizing Jacobi-Davidson method for calculating eigenvalues in low
dimensional structures using eight band k- p model, J. Comput. Phys., 249 (2013), pp. 22—
35.

A. AUERBACH, Interacting Electrons and Quantum Magnetism, Graduate Texts in Contempo-
rary Physics, Springer New York, 1994.

A. H. Baker, J. M. Dennis, anD E. R. Jessupr, On improving linear solver performance:
A block variant of GMRES, SIAM J. Sci. Comp., 27 (2006), pp. 1608-1626.

F. L. BAUER, Das Verfahren der Treppeniteration und verwandte Verfahren zur Losung alge-
braischer Eigenwertprobleme, Zeitschrift fiir angewandte Mathematik und Physik ZAMP,
8 (1957), pp. 214-235.

L. SusanNn BrackrorD, JAMES DEMMEL, JACK DONGARRA, IAIN DUFF, SVEN HAMMARLING,
GRrEG HENRY, MicHAEL HErROUX, LINDA KAUFMAN, ANDREW LUMSDAINE, ANTOINE
PeTITET, ROLDAN P0z0, KARIN REMINGTON, AND R. CLINT WHALEY, An updated set of
Basic Linear Algebra Subprograms (BLAS), ACM Transactions on Mathematical Software,
28 (2002), pp. 135-151.

I. BrocH, J. DALIBARD, AND W. ZWERGER, Many-body physics with ultracold gases, Rev.
Mod. Phys., 80 (2008), pp. 885-964.

R. F. Boisverr, R. Pozo, K. REminGgTON, R. F. BARRETT, AND J. J. DONGARRA, Matrixz
Market: A web resource for test matriz collections, in The Quality of Numerical Software:
Assessment and Enhancement, Chapman & Hall, 1997, pp. 125-137.

M. BoLLHOFER AND Y. Notay, JADAMILU: a software code for computing selected eigenval-
ues of large sparse symmetric matrices, Computer Physics Communications, 177 (2007),
pp- 951 — 964.

C. CHEVALIER AND F. PELLEGRINI, PT-SCOTCH: A tool for efficient parallel graph ordering,
Parallel Comput., 34 (2008), pp. 318-331.

E. CurHiLL AND J. McKEE, Reducing the bandwidth of sparse symmetric matrices, in Pro-
ceedings of the 1969 24th National Conference, ACM ’69, New York, NY, USA, 1969,
ACM, pp. 157-172.

T. A. Davis anND Y. Hu, The university of Florida sparse matriz collection, ACM Transactions
on Mathematical Software, 38 (2011), pp. 1-25.

J. DEMMEL, L. Gricori, M. HoEMMEN, AND J. Lancou, Communication-optimal parallel
and sequential QR and LU factorizations, SIAM J. Sci. Comp., 34 (2012), pp. A206-A239.

F. H. L. EssLiEr, H. Fraum, F. Goumann, A. KLUMPER, AND V. E. KorePIN, The one-
dimensional Hubbard model, Cambridge University Press, 2005.

Y.T. FENG, An integrated Davidson and multigrid solution approach for very large scale sym-
metric eigenvalue problems, Computer Methods in Applied Mechanics and Engineering,
190 (2001), pp. 3543 — 3563.

D. R. FokkEma, G. L. G. SLEUPEN, AND H. A. vaN DER VORST, Jacobi—Davidson style
QR and QZ algorithms for the reduction of matriz pencils, SIAM J. Sci. Comp., 20 (1998),
pp. 94-125.

W. D. Grorp, D. K. KausHik, D. E. Keves, anp B. F. SMmitH, Towards realistic perfor-
mance bounds for implicit CFD codes, in Proceedings of Parallel CFD ’99, Elsevier, 1999,
pp. 233-240.

G. Hacer aAND G. WELLEIN, Introduction to High Performance Computing for Scientists and
Engineers (Chapman & all/CRC Computational Science), CRC Press, 2010.

M. A. HEroux, R. A. BarrLeTT, V. E. HOowWLE, R. J. HoEKSTRA, J. J. HU, T. G. KOLDA,
R. B. LEnoucq, K. R. Long, R. P. Pawrowski, E. T. Puipps, A. G. SALINGER, H. K.
THORNQUIST, R. S. TuMINARO, J. M. WILLENBRING, A. WILLIAMS, AND K. S. STANLEY,
An overview of the Trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397-423.

M. E. HocHSTENBACH AND Y. Notay, The Jacobi-Davidson method, GAMM-Mitteilungen,
29 (2006), pp. 368-382.

M. HoeMMEN, Communication-avoiding Krylov subspace methods, PhD thesis, University of
California, Berkeley, Apr. 2010.

Gary W. HoweLL, JamEs W. DeEMMEL, CHARLES T. FurroN, SVEN HAMMARLING, AND

24

[24]

25]

[26]

27]

28]

[29]

[30]
31]
32]
(33]
[34]
[35]

[36]

37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

KArReEN MAarMoOL, Cache efficient bidiagonalization using BLAS 2.5 operators, ACM Trans.
Math. Softw., 34 (2008), pp. 14:1-14:33.

E.-J. Im, K. A. YELICK, AND R. Vubpuc, SPARSITY: An optimization framework for sparse
matriz kernels, International J. High Performance Computing Appl., 18 (2004), pp. 135—
158.

G. Karypis aND K. ScHLOEGEL, ParMETIS. Parallel Graph Partitioning and Sparse Matrixz
Ordering Library, University of Minnesota, Department of Computer Science and Engi-
neering, Minneapolis, 4.0 ed., 2013.

A. KLiNnVEX, F. SAIED, AND A. SAaMEH, Parallel implementations of the trace minimization
scheme TraceMIN for the sparse symmetric eigenvalue problem, Computers & Mathemat-
ics w. Appl., 65 (2013), pp. 460—468.

M. KreuTzer, G. Hacer, G. WELLEIN, H. FEHske, aAND A. R. Bisnopr, A unified sparse
matrix data format for efficient general sparse matriz-vector multiplication on modern
processors with wide SIMD units, STAM J. Sci. Comp., 36 (2014), pp. C401-C423.

M. KreuTZER, J. THiEs, M. ROHRIG-ZOLLNER, A. PIEPER, F. SHanzap, M. GALGON,
A. BaserManN, H. FEnske, G. HAGER, aND G. WELLEIN, GHOST: building blocks for
high performance sparse linear algebra on heterogeneous systems, CoRR, abs/1507.08101
(2015).

B. C. Leg, R. W. Vupuc, J. W. DEMMEL, K. A. YELICK, M. DE LORIMIER, AND L. ZHONG,
Performance optimizations and bounds for sparse symmetric matriz-multiple vector multi-
ply, Tech. Report UCB/CSD-03-1297, EECS Department, University of California, Berke-
ley, November 2003.

X. Liu, E. Cuoow, K. VAIDYANATHAN, AND M. SMELYANSKIY, Improving the performance of
dynamical simulations via multiple right-hand sides, in 26th IEEE International Parallel
and Distributed Processing Symposium, 2012, IEEE Computer Society, 2012, pp. 36—47.

J. D. McCavrpriN, STREAM: Sustainable memory bandwidth in high performance computers,
tech. report, University of Virginia, Charlottesville, VA, 1991-2007. A continually updated
technical report.

Y. Noray, Convergence analysis of inexact Rayleigh quotient iteration, SIAM J. Matrix Anal-
ysis and Appl., 24 (2003), pp. 627-644.

Y. Saap, Iterative Methods for Sparse Linear Systems, SIAM, 2nd ed., 2003.

, Numerical Methods for Large Eigenvalue Problems, Classics in Applied Mathematics,
SIAM, revised ed., Jan 2011.

G. ScHUBERT, H. FEHSKE, G. HAGER, AND G. WELLEIN, Hybrid-parallel sparse matriz-vector
multiplication with explicit communication overlap on current multicore-based systems,
Parallel Processing Letters, 21 (2011), pp. 339-358.

A. StatHOPOULOS, Locking issues for finding a large number of eigenvectors of Hermitian
matrices, Tech. Report WM-CS-2005-09, College of William and Mary, Department of
Computer Science, Jul 2005.

———, Nearly optimal preconditioned methods for Hermitian eigenproblems under limited
memory. Part I: Seeking one eigenvalue, SIAM J. Sci. Comp., 29 (2007), pp. 481-514.

A. StatHorouLos AND J. R. McCowmBs, Nearly optimal preconditioned methods for Hermi-
tian eigenproblems under limited memory. Part II: Seeking many eigenvalues, STAM J.
Sci. Comp., 29 (2007), pp. 2162-2188.

, PRIMME: preconditioned iterative multimethod eigensolver—methods and software de-
scription, ACM Trans. Math. Softw., 37 (2010), pp. 1-30.

P. T. P. Tanc anp E. Povrizzi, FEAST as a subspace iteration eigensolver accelerated by
approzimate spectral projection, SIAM J. Matrix Analysis and Appl., 35 (2014), pp. 354—
390.

J. TreBIG, G. HacER, AND G. WELLEIN, LIKWID: A lightweight performance-oriented
tool suite for £86 multicore environments, in Proceedings of the 2010 39th International
Conference on Parallel Processing Workshops, ICPPW ’10, Washington, DC, USA, 2010,
IEEE Computer Society, pp. 207-216.

S. W. WirLLiams, A. WATERMAN, AND D. A. PATTERSON, Roofline: An insightful visual
performance model for multicore architectures, Commun. ACM, 52 (2009), pp. 65-76.

K. Wu, Y. Saap, anD A. STATHOPOULOS, Inexact Newton preconditioning techniques for
large symmetric eigenvalue problems., Electronic Transactions on Numerical Analysis, 7
(1998), pp. 202-214.

Y. Zuou, Studies on Jacobi-Davidson, Rayleigh quotient iteration, inverse iteration, gen-
eralized Davidson and Newton updates, Numerical Linear Algebra w. Appl., 13 (2006),
pp. 621-642.

25

Appendix A. Algorithm template.

Algorithm 1 Complete block Jacobi-Davidson QR (part 1)

Input: A e C*", hpd B € C*"*", vg € C", ngig, M, €tol, mazlter, Mmin, Mmaz
Output: approximative partial Schur composition AQ ~ BQR

Initialize result:
1: Q+0, Qa<+0, Q@p<+0, R+O0

2: 10 >number of locked converged eigenvalues

Initialize search space:

3: M 4 Monin > current subspace dimension

4: Compute My, Arnoldi-iterations: AW. 1:m.... = W timoin +1H 1momin+1,1:mmin

with wy = vg, Wp = BW and WgW =1
5 W <+ W:,l:m7 Wpg + WB:,l:m

6: Wy« AW, H + (W*Wy) >recalculated to prevent inaccuracies

Main iteration loop:
7. for niter < 1, maxIter do

8: [min(l + 2ny, ngEig + np — 1) > for multiplicity detection

Update projected Schur form:
9: Calculate Schur decomposition lem’l:qu =qgfrf
with the eigenvalues on the diagonal of r sorted by modulus
and locked part in Ry 14

H
0. QH « (é q%), RE (Rlzé,l:l Hl’l;lj{mq)

Update approximate Schur form:

1 g = WQE, (qa)i =WaQY, (¢)i = WpQH, i=1...,1
122 < Rf i=1...,1
13: res; < (QA)i_(QB):,l:iTiv ’L'ZZ,...,ZA
14: €; < Hresi||2, ’L:l,,l
15: For Hermitian A: > otherwise omitted due to possibly bad condition number

Reorder multiple eigenvalues in (Qf, RH) by ¢;
16: Update ordering of Q, @ p, R,res

26

Algorithm 2 Complete block Jacobi-Davidson QR (part 2)

Check for converged eigenpairs

17: Al max{i: € < €01, =1,...,nEig} —
18: if Al > 0 then
19: W« WQH:,I:WN WA — WAQH:,LWN WB « WBQH:,I:m
20: H « QHil:mHQH:,lzm
21: QT «+1I, RE«— RYy, 1m
22: I+ 1+ Al
23: if [= NEig then
24: return (Q, R)
25: end if
26: Ty < min(ny, [—1) > effective block size
27: end if
Shrink search space:
28: if m + np > My then
29: W WQH:,I:mmmv WA — WAQH:,l:mmmv WB — I/‘/vBCQILI:,l:77z,,”'n
30: H+ Q" ., HQY .
31: M < Mynin

32: end if

Calculate corrections:
33: Choose | > | + ny depending on eigenvalue multiplicity

34: Q — Qljv QB — (QB)I:Z~

35: for i < 1,73 do

36: Solve approximately (I — QBQ*)(A — rii 4 B) (I — QQ*B)tl = —res;y;
37: t; (I — QQ*B)tz

38: end for

Enlarge search space:
39: Orthogonalize ¢t wrt. W and < -,- >p;
use random orthogonal vector on breakdown
40: ta +— At, tp <+ Bt
H Wty

41: H + <t*WA 4)
42: W« (W t), Wa (WA tA), Wpg + (WB tB)

43: end for

44: abort >no convergence after maxlter iterations

27

