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Children experience vastly different home environments prior to formal schooling 

(Gilkerson & Richards, 2009; Kaushal, Magnuson, & Waldfogel, 2011; Kornrich & Furstenberg, 

2013) and thus arrive to kindergarten with a wide range of starting skills (Lee & Burkam, 2002; 

Magnuson, Meyers, Ruhm, & Waldfogel, 2004). Yet even once school begins, children continue to 

spend a significant portion of their school-age years outside the school setting. That out-of-school 

time is concentrated in the summer months—a time when schools play little to no direct role in 

children’s lives. Instead, children return to full-time care of their families, who have vastly different 

options and preferences for how children spend this time (Gershenson, 2013). Student achievement 

disparities1 may grow dramatically during these summer months, when child experiences appear 

most diverse. 

We use a novel dataset with over 200 million test scores for students across the U.S. to 

explore whether the “fanning out” of achievement from grade 1 to 8 occurs while students are in 

school or during the intervening summers. The field is generally aware of the phenomenon called 

summer learning loss (SLL)—that student learning slows during the summer. Less apparent, 

however, is how little consensus actually exists on basic questions about SLL. Moreover, many of 

the canonical findings on SLL have recently been called into question based on measurement 

concerns that apply to data used in most prior SLL research (von Hippel & Hamrock, 2019).  

At a time when even fundamental questions in the SLL literature need to be revisited, our 

analyses also contribute a unique focus on the total variability in SLL—a surprisingly understudied 

phenomenon. Nearly all prior SLL work focuses on how summers contribute to race/ethnic or 

socioeconomic (SES) gaps.2 However, these factors together only account for about 4 percent of the 

variance in summer learning rates (von Hippel et al., 2018). These gaps deserve our attention,3 yet 

a sole focus on these gaps alone misses important big-picture questions about the SLL landscape. 

Herein, we zoom out to explore the full spread of SLL experiences and examine how differential 

SLL contributes to where students end up in the achievement distribution at the end of 8th grade.
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Even before concerns arose about possible measurement artifacts in SLL, surprisingly few 

aspects of SLL have been well-established. For instance: Do students, on average, actually lose 

ground during the summer, or just exhibit no gain (i.e., flat)? What proportion of a student’s 

school-year gain tends to be lost in the summer that immediately follows? Is the magnitude of SLL 

similar across students, or do some students exhibit gains while others actually lose ground? Does 

this vary by grade level? Do summer losses accrue to the same students year after year? We tackle 

these questions using a set of achievement scores that are less susceptible to the measurement 

concerns raised by von Hippel and Hamrock (2019). These foundational questions have theoretical 

implications for the production of outcome inequality, as well as practical implications for where 

researchers and policy makers look for opportunities to disrupt this stratification process.  

We focus on estimating the total variability in SLL across students, relative to school-year 

gains. Describing this total (or unconditional) variance is important for at least four reasons: (1) 

Summers will only contribute to widening achievement disparities if students exhibit meaningful 

variation around the typical summer pattern. We find that SLL does vary dramatically across 

students. (2) Because of this wide variability, mean SLL patterns—those that most researchers, 

policymakers, and practitioners are familiar with—do not characterize most students’ summer 

experiences very well. (3) We find evidence that the same students are likely to lose ground from 

summer to summer, suggesting a non-random accumulation of summer decrements. (4) Prior work 

finds that even a full vector of student demographics, home characteristics, prior achievement, and 

a list of summer activities account for only 13 percent of the variation in SLL (Burkam et al., 

2004).4 In other words, SLL appears to vary greatly, but race and class—which have been the main 

focus of prior SLL research—are an important but limited part of the story.  

Contribution of Current Study 

Data provided by the Northwest Evaluation Association (NWEA) allow us to estimate 

means and variances in SLL across 8 grade levels, using a dataset with over 200 million test scores 
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for nearly 18 million students in 7,500 districts across all 50 states in a very recent time period 

(2008 through 2016). NWEA’s Measures of Academic Progress (MAP) scores are IRT-based, 

computer adaptive in all grades, and cover a broader range of content than scores used in prior 

SLL research. The use of MAP scores, in and of itself, represents a timely contribution to the field 

of SLL, because von Hippel and Hamrock (2019) have recently shown that newer data sources 

and scaling practices can dampen and sometimes even reverse some of the long-standing 

inferences about SLL gaps. They also argue that the above features of NWEA’s test scores can 

make achievement gain inferences less susceptible to measurement artifacts. Their work has raised 

troubling questions about the robustness of what we thought we knew about SLL. The current 

study is among a new wave of SLL research to revisit our foundational knowledge about SLL, and 

our findings reaffirm the existence and importance of this phenomenon.   

We use this powerful dataset in a hierarchical student growth modeling framework to 

characterize the contribution of SLL to end-of-school achievement disparities. Specifically, we 

answer the following four questions:  

(1) On average, how do learning gains during the school-year compare to gains/losses during the 
summer across grade levels?  

(2) Of more relevance to the current investigation, how much do students vary in terms of how 
much they gain or lose?  

(3) Do the same students tend to exhibit summer learning loss year after year, or are these 
gains/losses randomly distributed?  

(4) How large is the role of summers in producing end-of-school outcome disparities? 

With respect to the questions posed above, we do find that some students maintain their 

school-year learning rate throughout the summer, while others can lose almost as much ground as 

they had gained in the preceding school-year. We show that even if all the inequality in school-

year learning rates could be entirely eliminated, students would still end up with very different 

achievement levels due to SLL alone. Our findings also suggest that negative summer decrements 

tend to accumulate to the same students over time: We find that more than twice as many students 
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exhibit 5 years of consecutive summer losses (as opposed to no change or gains) than one would 

expect if summer losses were independently distributed across students and grades. Furthermore, 

these consecutive losses add up to a sizeable impact on where students end up in the achievement 

distribution: In a five year period, the average student in this group ultimately loses nearly 40 

percent of their total school-year gains during the intervening summers.  

In what follows, we first (1) situate the contributions of the current study within existing 

SLL literature. (2) Next, we introduce this unique dataset and how it compares to the broader U.S. 

public school population. We also describe a significant primary data collection activity 

undertaken to address a methodological concern in SLL research about the dates on which tests 

are taken (more on this below). (3) In the Methods section, we present our multilevel model and 

key parameters. (4) The Results section is organized by the four research questions previously 

described. (5) The Conclusion provides a reflection on our results relative to prior SLL findings, 

the study limitations, and implications for future research.   

(1) Evidence on SLL 
 

There are logistical challenges to studying SLL: The data provided by annual end-of-

school-year statewide testing systems, which are most often used by researchers, lack the fall 

datapoint needed to separate learning gains between the school-year and the summer. 

Opportunities to investigate SLL have necessarily been limited to idiosyncratic samples (e.g., one 

city), specific years, or particular grades (e.g., only after grade K/1). Figure 1 provides an overview 

of the data used across 17 key SLL studies, including if each one focuses on seasonal patterns in 

White-Black achievement gaps, SES gaps, and/or unconditional variance in achievement—the 

latter of which is our focus and is relatively unique. Figure 1 also highlights some advantageous 

features of the current dataset in terms of size, number of grades included, and recency. 
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Much has been written about SLL (see e.g., Gershenson (2013) for a particularly thorough 

recent overview; or Cooper, Nye, Charlton, Lindsay, and Greathouse (1996) for a meta-analysis 

across early studies). Today, there is a common understanding among policy-makers, researchers, 

and practitioners that, during the summer, students lose some knowledge and skills acquired during 

the school-year.5 The seminal research on summer setback comes from two key studies: Heyns’ 

study of the summer after 5th grade for about 3,000 students in 42 Atlanta schools from 1970 to 

1972 (Heyns, 1978), and Entwisle and Alexander’s study of the summers after grades 1 - 4 for 

about 750 students in 20 Baltimore schools from 1982 to 1987 (Alexander et al., 2001; Alexander 

et al., 2007; Entwisle & Alexander, 1992). These studies documented the now-accepted conclusion 

that, on average, students tend to learn at slower rates during the summer. Heyns found that average 

5th and 6th grade school-year gains in Atlanta were positive (about 60 percent of a national norm 

for one year of achievement gains), while summer after 5th grade gains were either flat or very 

modestly negative, depending on cohort. Alexander et al. (2001) used a multilevel, quadratic 

individual growth curve model to document slower summer (versus school-year) learning. The 

authors have continued to follow their Baltimore sample through adulthood and have found that 

early differences in summer learning are predictive of later life outcomes such as high school 

completion and college-going (Alexander et al., 2007). The findings from these studies became 

the definitive word on summer setback, raising awareness of the phenomenon and the role it plays 

in growing educational inequality.6  

More recently, researchers have used the Early Childhood Longitudinal Study 

Kindergarten Class (ECLS-K) 1998-99 or 2010-11 cohorts to study SLL (Benson & Borman, 

2010; Burkam et al., 2004; Downey et al., 2004; Downey, von Hippel, & Hughes, 2008; Quinn, 

2014; Quinn et al., 2016; Quinn & Le, 2018; von Hippel & Hamrock, 2019; von Hippel et al., 

2018). The advantage of the ECLS-K is that the samples are nationally-representative (which 
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NWEA is not). This constituted a major step forward for the SLL literature. The ECLS-K data 

have a few limitations: While the current study includes grades 1 to 8, ECLS-K only covers the 

summer after K or 1st grade, which limits one’s view of how SLL accumulates as students move 

through school. In addition, because of the sampling methods used for ECLS-K data (for example, 

on average 3 students per K classroom are sampled), clustered analyses seeking to estimate the 

variability in SLL are not straightforward. The current NWEA data is therefore a useful 

complement to the ECLS-K data, since the weaknesses of each one is a strength of the other.   

One of these ECLS-K studies—by von Hippel et al. (2018)—has a unique analysis that is 

particularly relevant to the current study. These authors also examine the unconditional variance 

in SLL at the student level (most like the current study) through the summer after grade 1. 

Interestingly, they find that the variation in achievement shrinks over that time. They also find that 

the variation in achievement arises more in summers than in school-years. The current study 

extends these analyses through grade 8, and we consider how results from the two compare.   

Another recent study by von Hippel and Hamrock (2019), which compares SLL racial and 

SES gap findings7 across three datasets, warrants more detailed discussion. This paper has raised 

some important questions about SLL, since the authors show that measurement artifacts can lead 

to quite different conclusions about how much gaps grow over time. For instance, when they use 

two different scalings8 of math achievement scores available in ECLS-K 1998-99, one indicates 

that student-SES gaps grow by 83 percent between grade 1 through 8 while their preferred scaling 

suggests these gaps decrease by 27 percent. When von Hippel and Hamrock (2019) conduct that 

same analysis using BSS achievement scores—which the authors posit have several undesirable 

measurement properties—they find that SES gaps appear to grow 369 percent. The question of 

whether SES gaps grow more in summers versus school-years, however, appears to be less 
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sensitive to variations in data sources and scalings: In most permutations, they confirm the finding 

from the original BSS data that SES gaps grow faster in the summer period versus the school year.   

The von Hippel and Hamrock (2019) study is also particularly relevant to our current 

analysis, because they use a subsample from NWEA’s Growth Research Database (GRD). The 

full NWEA data that we use may not necessarily be comparable to the GRD subsample; the GRD 

is much smaller (e.g., 25 school districts versus 7,500) and has a shorter panel (2 versus 8 years). 

For the current analysis, the key point from their study is the authors’ argument that the features 

of the NWEA/GRD data make achievement gain inferences less susceptible to measurement 

artifacts (e.g., IRT scaling, computer adaptive in all grades, broader content). Their exploration of 

how measurement properties affect the study of SLL would bolster confidence in our results.   

Finally, though both of these papers use similar data, they focus on different questions: 

Whereas the current study describes the degree of total variation in SLL, von Hippel and Hamrock 

(2019) focus in on racial and SES gaps (although due to data limitations one cannot look at student-

level SES gaps with the GRD data). As mentioned above, race and SES appear to play an 

important, but quite small part in explaining variability in SLL.    

We are aware of one other peer-reviewed study that uses a subsample of NWEA data to 

explore specific aspects of SLL. Rambo-Hernandez and McCoach (2015) compare the school-year 

and summer growth trajectories of initially high-achieving students to the trajectories of average-

achieving students.9 Their results suggest that high-achieving students exhibit steadier growth 

throughout the panel, while “average-achieving” students actually grow faster during the school 

year but lose more during summers.  

In sum, the extant research on SLL took an important leap forward in the late twentieth 

century, and it now seems to be experiencing a resurgence of interest, particularly spurred by the 
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availability of the ECLS-K data. This new work improves upon the methods used in prior work 

(e.g., by taking into account test timing, considering measurement artifacts), updates the evidence 

to the a more recent period, and covers a nationally representative sample (in grades K and 1).  

The current paper continues in this tradition, building off the various methodological 

advances in this domain. First, NWEA’s Measures of Academic Progress (MAP) tests are designed 

to be vertically-scaled assessments of math and reading achievement, which facilitates an 

examination of student growth across grades (Quinn, 2014; von Hippel & Hamrock, 2019). In 

addition, we undertake a massive primary data collection effort to recover over 44,000 district-

year calendar dates for the start and end of the school-year, allowing us to make crucial adjustments 

to SLL estimates on a large scale. We also implement a set of multi-level models that we think 

connect more clearly to the central research questions in this domain: The coefficients (“fixed 

effects” in the language of HLM) correspond to school-year gains and summer losses, while the 

variance components allow us to characterize a plausible range of gain/losses one should expect 

across students during those periods. These variance components connect directly to our primary 

research question: The larger the variation in summer losses across students, relative to the school-

year gains, the more summers are the time when end-of-school achievement disparities arise.  

Figure 1 compares key aspects of the current study to prior work. The defining feature of 

the current study is our unique focus on documenting the scope and seasonality of the total 

(unconditional) variation in achievement across U.S. students. The current dataset also provides 

data on over 18 million students across a wider range of grades than possible in prior work. In 

addition, the NWEA dataset comes from the 2008 through 2016’s post-accountability era—a time 

in which it is at least conceivable that the dynamics of access to quality schooling have changed.   
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(2) Data and Sample 
NWEA Data 

The current study primarily uses data from the NWEA’s MAP assessment. The dataset 

contains math and reading scores based on a computer adaptive test designed to serve as part of a 

formative, benchmarking data system, used in about 32,000 schools located in 7500 districts across 

all 50 states in the U.S. The MAP assessment is used as a supplementary tool to aid schools’ in 

improving their instruction and meeting students’ needs, not as the high-stakes test of record. 

Because the MAP assessment is intended to monitor students’ progress throughout the school-

year, it is administered in both the fall and the spring.10  

NWEA’s MAP test is designed so that its scores can be expressed on a vertical scale (which 

the NWEA calls the RIT scale), with the intent that the scale can be used to support equal-interval 

interpretations. In theory, the vertical scale allows comparisons of student learning across grades 

and over time, while the equal-interval property of the scale ensures that a unit increase in a 

student’s score represents the same learning gain across the entire distribution. It is worth noting 

that there are many different ways of designing and calibrating a vertical scale, and there is little 

consensus with regard to the best methods for evaluating the properties of the scale (Briggs, 2013; 

Briggs & Dadey, 2015; Briggs & Domingue, 2013; Briggs & Weeks, 2009). Therefore, our 

findings regarding changes across grades assume NWEA’s vertical scale is valid. However, much 

of the paper concerns itself with comparing learning gains in the same grade (that is, a given 

school-year relative to the subsequent summer).           

The full dataset used for the current study comes from 7,685 U.S school districts that 

administered the MAP assessment during the nine years between 2008 and 2016. Different districts 

opt to administer the MAP in different grades, however the NWEA full dataset includes 

203,234,153 test scores for 17,955,222 students who took a test between grades K and 11th grade. 
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The dataset includes students’ race and gender, their math and reading MAP scores, number of 

items attempted and correctly answered, duration of the test, grade of enrollment, and the date of 

test administration.  The file does not include indicators for whether the student is an English 

Language Learner, belongs to the federal Free- and Reduced-Price Lunch program, or receives 

special education services. For this reason, the current dataset is not well-suited to study 

achievement gaps along these dimensions.   

Adjustments to NWEA RIT Scores 

Students do not take MAP tests exactly on the first and last day of school—in fact, students 

often take these tests 3 to 6 weeks before/after the school-year starts/ends. As a result, some of the 

time between the spring and fall administrations of the test—what one would mislabel as summer 

time—is actually spent in school. While the NWEA dataset does include the test date, crucially, it 

does not include school-year start or end dates.  

We therefore conducted a large-scale data collection effort to record the start- and end-date 

in every district in a subset of 11 states with the greatest use of MAP assessments. We found 

23,223 school-year start dates and 20,807 school-year end dates—about 77 percent of the district-

year calendar dates in those 11 states from 2008 to 2015. In later years, NWEA also began to 

collect school-year start and end dates. Together, these efforts allowed us to collect actual calendar 

start/end dates for 50.3 percent of the observed school-years for the entire NWEA dataset. Based 

on that data, we also extrapolate likely dates for other districts.11 Following practices in prior SLL 

studies, we then use these calendar data to make a linear projection of each students’ score on the 

first and last day of the school-year. For more information about this process, including a 

description of our approach to collecting this data, the percent of actual dates recovered, our 

extrapolation process, our score projection process, and how study results differ when using 
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observed scores instead of projected scores, see Online Appendix A. For fall ELA scores, the 

correlation between observed and projected RIT scores is 0.996, with an RMSE of 2.3 points.12  

Figure 2 illustrates how even small changes in estimated scores using projection methods 

could have a large impact on estimating summer learning rates.13 Figure 2 presents two 

hypothetical students as they progress through school between January 2008 and January 2012. 

Student 1’s observed scores—and their test dates—are shown in orange. In dashed green, we 

project Student 1’s achievement scores linearly based on their school-year learning rate. The green 

line connects the student’s projected achievement on the last day of school to the projected 

achievement on the first day of school after that summer. In some grades, the summer learning 

gains estimated in the absence of school calendar information would be positive, but instead appear 

negative once the projections are used. The results are similar for Student 2 (red solid= observed 

scores, blue dashed= projected scores). The main takeaway here is that the linear projection 

process—though it produces scores strongly correlated with the observed scores—could have a 

profound impact on the estimated summer learning gain/loss. Throughout this paper, we therefore 

use the projected RIT scores in favor of the observed RIT scores. However, in Online Appendix 

A, we reconduct the analyses using observed scores in place of projected scores and replicate the 

figures in this paper that capture the main findings. 

Analytic Sample 
 

For the current analysis, we first restrict the NWEA sample to students observed in grades 

1 through 8 (because these are the grades with most complete coverage) and to the 89 percent of 

those students who neither repeat or skip grades. In our preferred models, we also restrict the 

sample to a “balanced panel”—that is, the subset of students who possess test scores for the full 

grade range being included in the model. For instance, if we examine test score patterns between 
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1st through 5th grade in a given model, only students who have both fall and spring test scores in 

every grade between 1st and 5th grade (that is, a full vector of all 10 reading test scores) will be 

included in the sample. While this is quite restrictive sample limitation, it ensures that our findings 

cannot be conflated with compositional changes from one time point to the next. In Online 

Appendix B, we replicate our primary findings on a less restrictive sample by running models with 

only 3 consecutive grades at a time (e.g., grades K through 2, grades 3 through 5, etc.). In these 

models, more students are included because the vector of required test scores is much shorter. 

These two samples have different advantages in terms of internal and external validity. Ultimately, 

however, results are relatively consistent (see Online Appendix B).   

In Table 1, we compare the demographic descriptives for the students, schools, and districts 

from 4 groups: The population of U.S. public schools (from Common Core of Data), the entire 

population of NWEA test takers, the subset of students who meet the less restrictive inclusion 

criteria (for Online Appendix B), and the more restrictive inclusion criteria for our preferred results 

. See Table 1 (for simplicity, we conduct this comparison in the 2011-2012 school-year). First, 

recall that that a student-level indicator of free/reduced-price lunch (FRPL) status is not available 

in the NWEA dataset. However, at the school level, the mean percent of students in a school who 

are FRPL-eligible is very similar across the four groups: 50 percent both nationally and in NWEA 

universe of schools, 48 percent in the larger Online Appendix B sample, and 51 percent in the 

more restrictive, primary analytic sample. In many ways, the NWEA sample reflects the U.S. 

public school population. For instance, it is similar in terms of percentage of students identified as 

Black, Asian, White, and male. In addition, the majority of U.S. public schools are in rural 

geographic codes, followed by suburban and urban geographies, and this ordering also holds in 

NWEA. Many of the district characteristics are also quite similar.  
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To consider potential (limitations of) generalizability, we point out that the largest 

differences between the U.S. public school population and the NWEA universe are that (a) the 

NWEA sample has a lower percentage of Hispanic students, (b) the average NWEA school has 

somewhat smaller mean enrollment, and (c) the NWEA districts tend to have more schools in 

them, have a lower percentage of FRPL students, and are less likely to be rural. These differences 

could be connected to potential for unobservable differences between the NWEA sample and the 

public-school population (e.g., orientation towards innovation and technology, resource allocation 

strategies, district leadership, etc.). What is also of note, however, is the sheer number of students 

in the NWEA universe in 2012 alone. NWEA students may comprise more than 11 percent of the 

entire K-12 public school population in 2012. NWEA data are available in nearly 37 percent of all 

U.S. public schools and in over half of all districts. This population is large enough to be of interest 

in its own right. Nonetheless, the lack of national representativeness is a weakness of NWEA data, 

relative to ECLS-K data.  

Finally, we examine how the analytic sample limitations affect the characteristics of the 

NWEA students included in the models (compare the right three columns of Table 114). The final 

column reflects the requirements for inclusion in the balanced panel. Generally, the analytic 

restrictions do not dramatically alter the descriptive profile of included NWEA students, schools 

or districts. However, the primary analytic sample has a higher percentage of white students than 

the NWEA full dataset (60 percent versus 53 percent), and the schools tend to be a smaller (mean 

enrollment of 391 versus 486) and are less likely to be suburban. 

(3) Methods 

We use a multilevel model to estimate an individual learning trajectory for each student as 

they progress through sequential school-years and summers. We then look across students to 
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estimate how much students tend to gain, on average, during the school-year versus what they 

typically lose during the summer. A multilevel modeling approach also allows us to estimate the 

variation in these gains/losses across students. Our multilevel model uses a Bayesian approach to 

estimate the variances and covariances. This approach produces more conservative estimates of 

student-level variances and is therefore preferable to calculating the raw standard deviation of 

summer gains, which reflects measurement error (Raudenbush & Bryk, 2002).15    

Longitudinal Multi-Level Models 

We use a two-level random effects (hierarchical) model, in which the outcome of interest 

is a test score, 𝑆𝑐𝑜𝑟𝑒௧௜, for student i at grade-semester t. In our preferred models, we separately 

model scores in 1st through 5th grade (students included here must have all 10 math score 

outcomes) and then in 5th through 8th grade16 (again, students must have all 6 test scores in these 

grades). For brevity, we present the model (Eq. 1) for math scores from grade 6 through grade 8. 

These six repeated observations (L1) are nested within students (L2):  

 
Level One: Repeated Observations of Students (i) across Grade-Sems (t) 𝑆𝑐𝑜𝑟𝑒௧௜ =  𝜋଴௜ + 𝜋ଵ௜ሺ𝑠𝑐ℎ𝑦𝑟6௧௜ሻ + 𝜋ଶ௜ሺ𝑠𝑢𝑚𝑎𝑓6௧௜ሻ +  𝜋ଷ௜ሺ𝑠𝑐ℎ𝑦𝑟7௧௜ሻ + 𝜋ସ௜ሺ𝑠𝑢𝑚𝑎𝑓7௧௜ሻ +  

 𝜋ହ௜ሺ𝑠𝑐ℎ𝑦𝑟8௧௜ሻ + 𝜋଺௜ሺ𝑠𝑢𝑚𝑎𝑓8௧௜ሻ + 𝜀௧௜  where 𝜀௧௜~𝑁௜௜ௗ(0,𝜎) 
  

Level Two: Students (i) 𝜋଴௜ = 𝛽଴଴ 𝜋ଵ௜ = 𝛽ଵ଴ + 𝑟ଵ௜  where 𝑟ଵ௜~𝑁௜௜ௗ(0, 𝜏ଵ,ଵ) ⋮ 𝜋଺௜ = 𝛽଺଴ + 𝑟଺௜  where 𝑟଺௜~𝑁௜௜ௗ(0, 𝜏଺,଺)     Eq (1) 

 
At L1, students’ growth trajectories are modeled with a set of dummy variables—𝑠𝑐ℎ𝑦𝑟6௧௜, 𝑠𝑢𝑚𝑎𝑓6௧௜, 𝑠𝑐ℎ𝑦𝑟7௧௜, 𝑠𝑢𝑚𝑎𝑓7௧௜, etc.—for each grade-semester. They are each coded as 1 if the 

observation occurred on or after the ending timepoint for the period.17 This coding scheme is 



15 
 

different than that chosen in some prior work18 and may at first seem confusing, but it has the 

advantage of giving the level-one coefficients intuitive meaning that now match the variable 

names: They represent an individual student i's grade-specific school-year gain or grade-specific 

summer gain/loss. For example, 𝜋ଵ௜—the coefficient on 𝑠𝑐ℎ𝑦𝑟6௧௜—captures student i's 6th grade 

school-year learning gain. The coefficient on 𝑠𝑢𝑚𝑎𝑓6௧௜ captures student i's summer after 6th grade 

gain/loss.  These coefficients are now the very learning gains/losses we are interested in estimating 

for each student. We allow all of the level-one coefficients 𝜋ଵ௜ through 𝜋଺௜ to vary randomly at the 

student level, and we assume that the level-two errors (𝑟ଵ௜ through 𝑟଺௜) are normally distributed 

with a mean of zero and a constant variance given by 𝜏ଵ,ଵ through 𝜏଺,଺. At level two, we use a fully 

unstructured covariance matrix. These models estimate the parameters we need to answer each of 

our research questions, in turn.19  

(4) Results 
 
(RQ1) Average Students’ School-Year vs. Summer Learning Gains/Losses across Grades 

Throughout the Results section, we present findings both formally (i.e., point estimates in 

tables) and visually to make takeaways as tangible as possible. For instance, to address this first 

question, we present the 𝛽 coefficients (or “fixed effects” in the language of HLM) in Table 2 

(ELA) and Table 3 (math) because, substantively, they capture mean gains/losses in each grade 

and following summer. These 𝛽 coefficients are also graphed in Figure 3 as mean growth 

trajectories.  

During school-years. To contextualize the findings about summer experiences, we first 

present mean school-year learning gains. Beginning with ELA school-year gains (left column of 

Table 2), we find that students’ school-year learning gains are largest in the early grades and 

generally diminish over time. This is depicted in Figure 3 with blue, dashed lines. For instance, 
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students gain on average 23.7 ELA test score points in 1st grade, 18.5 points in 2nd grade, 13.3 

points in 3rd grade, and so on. By 8th grade, the average ELA learning gain on NWEA’s RIT scale 

is just 4.4 points. We observe a very similar pattern for math (left column of Table 3). In all grade 

levels, the average student gains—as opposed to loses—ground during school-years. This suggests 

that students accumulate knowledge over time during school-years as measured by the NWEA 

MAP test.  

During summers. The pattern of mean summer learning gains/losses—the 𝛽 coefficients 

in the right column of Table 2 and Table 3—are shown as solid red lines in Figure 3. Summer 

estimates differ from school-year gains in two important ways. First, in both ELA and math, the 

summer coefficients between 1st and 8th grade are negative and tend to be smaller in magnitude. 

For instance, the average ELA loss in the summer after 1st grade is -6.6 test score points, -3.9 in 

summer after 2nd, -3.4 in the summer after 3rd, and falls to a low of -0.9 just before grade 8. In 

math, the mean summer learning estimates are also negative and of similar magnitude. An 

implication here is that, depending on grade, the average student loses between 17 and 28 percent 

of their school-year ELA gains (a 9-month period) during the following summer (a 3-month 

period). In math, the relative losses are a little larger: The average student loses between 25 and 

34 percent of each school-year gain during the following summer.  

The second way in which summer estimates differ from their school-year counterparts is 

that the magnitude of mean summer learning losses does not decrease over time to the same degree 

as school-year learning. Put differently, although mean school-year gains in ELA fall from 23.7 to 

4.4 across grades, mean summer losses stay within a tighter range of -6.6 to -0.9.    

Turning to the visual representation of these findings in Figure 3, we consistently see a zig-

zag pattern at every grade level, though the intensity of gains/losses flattens at higher grades. These 
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results generally confirm the notion that summers can be characterized as a time when, on average, 

students lose ground.  Historically, SLL studies have not reached consensus on the direction of 

mean summer learning rates; some find losses, while others find stagnation, mere slowdown, or a 

mix of results across grades, subjects, or datasets. The current study joins those that find mean 

losses, but we will see that the 95 percent plausible value range across students always includes 

zero. However, we caution against over-emphasizing mean SLL since it will become clear that 

this mean does not well-characterize what students experience in the summer, because it masks 

dramatic underlying variability across students. 

(RQ2) Variation in Students’ School-Year vs. Summer Learning Gains/Losses, by Grade 

It is important to recognize that the trends illustrated in Figure 3 only tell us one part of the 

story: the seasonal learning patterns for the average student. However, achievement disparities are 

driven by differential learning patterns, and so we now focus on how students vary on both school-

year and summer learning gains/losses. We are particularly interested in determining whether 

student growth trajectories vary more during school-years or summers.  

During school-years. We begin with an examination of variability in school-year learning 

across students. Also reported in the first column of Table 2 (ELA) and Table 3 (math) are the 

estimated standard deviations (SDs) of learning gains/losses across students in and after each grade 

(i.e., the square root of the diagonal elements of the tau matrix). As an example, while we saw 

before that the average student gain in 1st grade ELA was 23.7 points, students also typically differ 

from this mean by 9.7 points, suggesting a notable range across students in 1st grade school-year 

gains. To provide context for the magnitude of this variability, under the assumption of normality 

across students (Raudenbush & Bryk, 2002), we construct a 95 percent plausible value range 

(PVR) for learning gains across students. These are also reported in Table 2 (ELA) and Table 3 



18 
 

(math) beneath the corresponding student SD. To follow up with the example of ELA gains in 1st 

grade, we expect that 95 percent of students would have an average learning gain between 4.4 and 

42.7 ELA test score points. Therefore, in 1st grade, students at the high end of the PVR gain about 

80 percent more than the average student.  

Estimates of the SD of school-year learning gains across students are relatively consistent 

across school-years and subjects, generally in the range of 6 to 10 test score points. In grades that 

exhibit smaller average school-year gains, this variation implies larger discrepancies across 

students. For instance, in 8th grade when average growth is only 4.4 test score points during the 

school-year, we see a 95 percent PVR across students of -7.0 to +15.9 points. Here, students at the 

top of this PVR will experience nearly four times larger gains than the average student. Students 

at the lowest end of that same PVR, however, are actually losing ground during 8th grade.  

To juxtapose mean gains/losses with variation around them, we calculate the ratio of the 

variation (SD) across students for each learning gain to the mean learning gain. Larger ratios 

indicate greater variability, relative to the mean gain. In 1st grade ELA, that ratio is about 0.41 

(9.7 over 23.7), indicating that the SD is a little less than half the size of the mean gain. In ELA, 

that ratio grows slowly across grades and reaches 1.3 in grade 8 (that is, the SD is now about 30 

percent larger than the mean). The ratio also increases across grades in math, but less dramatically 

from 0.40 in 1st grade to 0.91 in 8th grade. However, the fact that the relative variability in learning 

gains grows as students progress through school may suggest that inequities in achievement 

accumulate to some extent during school-years as students who are underprepared are being left 

further and further behind with each successive grade.  

 During summers. While the variability in school-year patterns are interesting in and of 

themselves, our main interest lies in whether the summer gains/losses vary more than gains in the 
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school-year periods. This has direct implications for our understanding of when discrepancies in 

student achievement arise across the course of students’ school-age years. Turning to the second 

columns of Table 2 (ELA) and Table 3 (math), we see that the SD for a given summer tends to be 

a little smaller than the SD in the preceding school-year (with the exception of 1st grade). For 

instance, in 3rd grade math, the SD is 6.6 in the school-year and 3.6 in the following summer. This 

is expected; the summer is about one-third the length of the summer and so gains will be smaller. 

However, in a relative sense, the summer SDs are much larger with respect to means. In ELA, the 

SD-to-mean ratios described above are much larger in summers, ranging from 1.4 to as high as 

5.2. A ratio of 5.2 indicates that the SD is over five times larger than the mean loss. Recall that the 

largest such ratio during a school-year was only 1.4. In math, we also see that summer ratios, 

which range from 0.8 to 2.3 are larger than school-year ratios (which only range from 0.40 to 0.91). 

Keep in mind that this larger summer variation is arising in a comparatively shorter time (around 

9 versus 3 months). This highlights the fact that a great deal of variability in gains/losses is packed 

into a relatively short time frame. 

The PVRs are large for summer learning loss. Take 2nd grade math as an example:  

Summer learning loss in grade 2 for math (second column of Table 3) ranges from -16.3 to +6.8. 

While students at the top of that PVR are gaining, during the summer, another 32 percent of 

average growth from the preceding 2nd grade school-year (6.8 over 18.6), students at the bottom 

of the PVR will lose during the summer just as much as the typical student gained in 2nd grade. 

Looking across all grades in ELA, we find that students at the top of the summer loss PVR will 

gain during the summer between 45 to 154 percent of the mean growth in the preceding grade (12 

to 86 percent for math). However, students at the bottom of the summer loss PVR will lose during 

the summer between 93 to 194 percent of the mean growth in the preceding grade (73 to 136 
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percent for math). In sum, some students experience accelerated learning during the summer, 

relative to the preceding school-year, while others lose nearly all of their prior gains.  

The takeaways for RQ2 are also illustrated visually in Figure 4 (ELA) and Figure 5 (math), 

wherein we present box plots of individual students’ empirical Bayes estimated learning gains and 

losses in each school-year and summer. These concisely capture the essence of what is presented 

in the tables: Larger gains during school-years that diminish across grades, smaller average losses 

during summers that are more consistent in magnitude, but real variability around typical 

gains/losses. In Online Appendix B, we replicate Figure 4 (ELA) and Figure 5 (math) using results 

from models using a shorter three-grade increment. Though the data coverage is sparser before 1st 

and after 9th grade, we do include those grades in Online Appendix B.    

 In sum, students certainly appear to vary in terms of how much they learn during the 

school-year, but most students tend to exhibit some test score gains while in school. However, the 

picture in the summer is quite different. While our results re-document the mean summer learning 

loss phenomenon, this finding obscures a more problematic pattern: For mostly unknown 

reasons,20 certain students can gain at a faster rate in the summer than the mean rate in the 

preceding school-year, while other students could lose most of what is typically gained.  

(RQ3) Student-Level Correlation of Summer Gains/Losses across Summers  

To this point, we have highlighted important variability in summer learning patterns across 

students. However, if that phenomenon occurs to students randomly—that is, a student might gain 

in one summer and then randomly lose in the next—then the contribution of summer learning loss 

to end-of-school achievement disparities would be limited. However, if the same students tend to 

experience losses summer after summer, while others gain summer after summer, it would lead to 

a more dramatic “fanning out” of student outcomes as they progress through school. We would be 
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particularly concerned if the students who exhibit the greatest summer losses also tend to be from 

historically marginalized student populations—a question that has been taken up in many prior 

SLL studies. However, since student demographics appear to only account for about 4 percent of 

the variance in summer learning rates (von Hippel et al., 2018), we explore the systematicity of 

SLL across grades beyond just the differences by race and class.   

To explore this question empirically, we examine from our multilevel models the estimated 

covariances of students’ summer losses across grades.21 The upper panels of  

Table 4 (ELA) and Table 5 (math) present these covariances (expressed in correlations). 

Positive correlations are the most problematic: summer losses accrue to the same students over 

time in a way that would contribute to the widening of end-of-schooling student outcomes. 

Correlations near zero would suggest gains/losses occur randomly. In ELA, all correlations are 

positive (between 0.12 and 0.65), and most are substantively large. The corresponding correlations 

are also positive in math, ranging between 0.10 and 0.65. This suggests that students who lose 

ground in the summer tend to also lose ground in other summers. Likewise, students who make 

summer gains in one summer are also more likely to make gains in other summers. While few 

other studies have presented similar correlations across summers, von Hippel et al. (2018) also 

find a positive (though weaker) relationship between summer learning rates in the summers after 

K and 1 for reading (of +0.06) in ECLS-K:2011 but interestingly find that relationship is negative 

(−0.21) in math.   

In the lower panels of  

Table 4 (ELA) and Table 5 (math), we also present the correlations of summer gains with 

school-year gains. Given that we have observed a notable zig-zag pattern in learning trajectories 

and that the majority of students do exhibit learning gains while in school, we should anticipate 
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that these correlations will be negative, particularly in adjoining periods (e.g., when a student loses 

ground in the summer after grade 4, they start grade 5 in the fall from a lower point from which to 

grow). Indeed, this is what we observe. For ELA, all but one22 of the 16 correlations presented in 

the lower panel of  

Table 4 are negative, and correlations from adjoining periods are strongest. Of course, the 

more time separates the given summer (rows) and school year (columns), the weaker that negative 

relationship becomes. For instance, school year gains in grade 1 exhibit a negative correlation of −0.41 with summer gains/losses in the summer directly after grade 1, −0.23 with the summer 

after grade 2, −0.01 with the summer after grade 3, and +0.01 with the summer after grade 4. The 

results for math (lower panel of Table 5) follow a very similar pattern. These findings are also 

consistent with those of von Hippel et al. (2018) who also report negative correlations between 

summer and school year learning rates across grades K, 1, and 2 on the order of −0.55 to −0.21 

in both reading and math.23      

(RQ4) The Role of Summers in Producing End-of-school Outcome Disparities  

Taken together, these three findings—(RQ1) slightly negative mean summer losses, (RQ2) 

large variances in summer loss/gains, and (RQ3) systematic gain/loss patterns across summers—

imply that end-of-school achievement disparities arise at least partly during the summer. How 

large of a role do summers play? To consider this question, we begin by presenting a thought 

experiment designed to characterize the role of summers between grade 1 and 8. We imagine a 

hypothetical scenario in which all students enter 1st grade at the exact same achievement level, 

and all students experience the exact same (let’s say, the mean) learning gain in each grade while 

school is in session. If there were no summer periods, all students in this scenario would end 8th 

grade with the same test score, because no variation in gains arises while in school. We now return 
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to the results from our multilevel model to characterize three plausible student experiences during 

the summers following each grade: The typical gain among students in the top, middle, and bottom 

thirds of a given summer’s gain/loss distribution.24 We now illustrate these three levels of summer 

experiences in Figure 6 (ELA in top panel, math in bottom panel), while assuming school-year 

gains are always equal (i.e., parallel slopes of dashed blue lines fall to spring).  

Figure 6 shows how the differences in summer experiences by themselves would lead to 

sizeable achievement over time. In ELA, the spread in test scores at the end of 8th grade is from 

about 185 to 255 test score points (and about 200 to 265 in math)—around 2.5 standard deviations 

of spring 8th grade RIT scores. This thought experiment illustrates the idea that, even in an ideal 

world where school inequities could be eliminated, achievement disparities would arise simply 

because of the summer break. The “fanning out” of achievement during these school-age years 

would need to be addressed in large part with respect to summer experiences.  

(5) Conclusion 
 
Reflections on Findings 

In this paper, we conduct a thorough exploration of the seasonality of learning from a 

dataset covering nearly 18 million students in 2008 through 2016 across all 50 states. We focus on 

characterizing the degree of variability in students’ summer experiences and the role of summers 

in contributing to end-of-school achievement disparities. We find that students, on average, do 

indeed lose meaningful ground during the summer period in both math and ELA.  

We add to the existing research by estimating the total variance across students in SLL. 

For instance, consider the SLL pattern after second grade, in which the average school-year gain 

is 18.6 points in math. During the summer that follows, the 95 percent plausible value range 

indicates that some students will lose as much as 16.3 test score points in math during summer, 



24 
 

while other students could gain up to 6.8 test score points (relative to a mean SLL of 4.8 points). 

Students do also exhibit significant variance in school-year learning, however the lower bounds of 

the 95 percent plausible value ranges during the school-year tend to be much closer to zero. This 

means that, while some students learn more than others during the school-year, most students are 

moving in the same direction—that is, making learning gains—while school is in session.  

The same cannot be said for summers. During the summer, a little more than half of 

students exhibit summer learning losses, while the other half exhibits summer learning gains. It is 

clear that the summer period is a particularly variable time for students. We find that many students 

can in fact maintain average school-year learning rates during the summer in the absence of formal 

schooling. Other students, however, will lose nearly as much as what is typically gained in the 

preceding school-year.  

This remarkable variability in summer learning appears to be an important contributor to 

widening achievement disparities as students move through their school-age years. However, most 

education research tends to overlook the summer period by focusing on programs, policies, and 

practices designed to shape schooling experiences. But summers deserve greater attention: In 

Figure 7, we present the distribution, across students, in the percentage of their absolute value 

fluctuations from 1st through 5th grade that occurs during summers. One can think of this as the 

percentage of each student’s up/down “pathway” between their initial and end score that arises 

during the summer. Far from having no role in outcome inequality, we see that on average, 19.4 

percent of students’ ELA test score changes occur during the summer (19.3 for math).25 However, 

for some students, summer fluctuations account for much more—even upwards of 30 percent—of 

where they end up.  
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Our findings also suggest that summer learning gains/losses can be quite large and may 

accrue non-randomly across students. If the likelihood of experiencing a loss during the summer 

were independent across students and grades, we would expect that only 24 percent of students 

would exhibit losses in five consecutive summers.26 In contrast, we actually find that 52 percent 

exhibit losses (in ELA) in all 5 consecutive years observed—more than double what one would 

expect by chance. Furthermore, the average student in this group ultimately loses 39 percent of 

their total school-year ELA gains during the summer periods (results are similar for math). This 

suggests that negative summer decrements tend to accumulate to the same students over time and 

that these consecutive losses add up a sizeable impact on where students end up in the achievement 

distribution.     

Contextualizing Findings in Larger Body of SLL Literature 

Historically, SLL studies have not reached consensus on the direction (+/-) of mean SLL. 

Some find mean summer learning losses (e.g., Allinder et al., 1992; Borman et al., 2005), summer 

learning stagnation (e.g., Benson & Borman, 2010; Downey et al., 2008), summer learning 

slowdown  (e.g., Alexander et al., 2001; Burkam et al., 2004; Quinn et al., 2016), or a mix of the 

three (e.g., Downey et al., 2004; Heyns, 1978; von Hippel et al., 2018). For instance, von Hippel 

et al. (2018) finds positive summer learning rates in some grades, subjects, or ECLS-K cohorts, 

but flat or negative rates in others. The current study joins those that find mean summer losses. 

We observe this in every summer between 1st and 8th grade in both math and ELA.  

How does the consistency we see across subjects align with not only recent studies, but 

also with Cooper et al. (1996)’s meta-analysis which found, on average, more negative impacts of 

summer vacation in math-related subjects than in reading-related subjects? Cooper et al. (1996) 

hypothesize that math skills are more the domain of formal schooling, while reading happens both 
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at home and in school. However, the authors also point out that SLL skill patterns did not always 

fall along a math/ELA divide: Rather, the skills they viewed as more “procedural” (e.g., spelling 

and math computation) declined most during the summer (although reading comprehension also 

appears to decline in summers, which does not align with this theory). Since we cannot 

disaggregate our results to more specific math and reading skills, it is less clear whether our 

findings are in conflict with those of Cooper et al. (1996). Moreover, while Cooper et al. found 

patterns of skill-specific gains/losses, in more recent studies that document mean SLL, no clear 

pattern by subject has emerged.27  

Is the magnitude of mean SLL similar across studies? As a reminder, the current study 

covers different grade levels than the ECLS-K studies; the only overlapping summer is the one 

after 1st grade (see Figure 1 to review which studies cover which summer grades). This may be 

partly responsible for any disparate findings. However, in this case (summer after 1st grade), we 

think the results from NWEA and ECLS-K:11 are complementary. Take seasonality in ELA 

learning as an example: von Hippel et al. (2018) document a modest but statistically significant 

mean SLL rate of -0.02 SDs/month. We find a mean SLL rate of around -2.2 points/month, with a 

95 percent plausible value range across students that includes zero (for context, the K fall SD is 

about 13 points). However, once these mean SLL rates are contextualized with respect to the 

student level SDs in SLL, the studies look even more similar: both show that the student SD is 

much larger—2 to 4 times larger— than the mean of SLL.  

The majority of prior SLL research has focused on SES or racial/ethnic gaps in SLL, which 

is not the focus of the current study. As highlighted in Figure 1, we are aware of only one other 

study that examines seasonal patterns of unconditional variance in SLL.28 Our results support two 
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primary claims: (1) First, we find that variation in achievement grows significantly from grade 1 

to 8. (2) Second, summer learning varies dramatically and more so than school-year learning.  

 With respect to the first claim, while we find evidence of widening achievement disparities 

when we follow students from grade 1 to 8, prior research has not reached consensus on this matter. 

In von Hippel and Hamrock’s (2019) survey of the literature, they conclude that “[n]et of artifacts, 

results consistently show that gaps… grow relatively little [after children enter school]” (pg. 44). 

When von Hippel, Workman, and Downey (2018) use improved, IRT-based theta achievement 

measures to report grade-specific SDs of (true or observed) scores, they actually find that those 

standard deviations shrink by up to 28 percent from K to 2. In contrast, when Claessens, Duncan, 

and Engel (2009) use IRT-based scale scores from ECLS-K:99, they document SDs that grow 

from K to 8 by 141 percent.29 Our results also do not reflect the basic finding in von Hippel et al. 

(2018) that student-level variation in achievement shrinks across grades, though the two studies 

examine very different grade ranges.  

Though not directly related to widening unconditional variance across grades, it is also 

useful to consider whether other researchers have found that race/ethnicity or SES gaps widen as 

students move through school, since demographic gaps could at least partly contribute to overall 

variation. Again, prior evidence is mixed. For instance, Duncan and Magnuson (2011) show 

increasing SES, Black-White, Hispanic-White, and gender achievement gaps in math between 1st 

and 5th grade. In Reardon (2008), IRT-based theta scores show the Black-White gap increases 

from -0.32 in grade K to -0.41 in grade 5. Recent results based on ECLS-K:11 from von Hippel 

and Hamrock (2019) and Quinn et al. (2016) both suggest that the Black-White gap may grow in 

the early grades, but—in contrast to prior studies that may suffer from measurement artifacts—

SES gaps may shrink between K and 2.  
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With regard to our second claim—that learning in the summer contributes more to 

achievement disparities than in school-year—our results are consistent with the one other study in 

this domain (von Hippel et al., 2018). In both studies, students exhibit meaningful student-level 

variation in learning in school-years and summers. But, as in the current study, von Hippel et al. 

(2018) find that the student-level SDs of learning rates are larger in the summer than in the school-

year learning. They find this in both ECLS-K cohorts, both subjects, and in the summer after K 

and 1. Though school-years are generally three times longer than summers and thus have more 

opportunity to contribute to widening achievement disparities, summers clearly play a key role in 

where students end up. Other SLL researchers have pointed out that, if learning rates vary less 

during the school year than during the summer, it suggests that schools may be keeping at bay 

some of the powerful forces that exacerbate outcome inequality when school is not in session. The 

idea that schools ameliorate—rather than exacerbate—achievement inequality is not widely 

embraced in the education research community. Our findings to this effect align with previous 

seasonal scholarship (e.g., Downey et al., 2004; von Hippel et al., 2018), though the current study 

provides perhaps the most comprehensive empirical analyses to date, given its large sample, 

extension beyond the early grades, and its focus on overall variation. 

Finally, we can provide some limited reflections on the recent debate about whether 

inferences concerning the growth and seasonality of SES or race gaps have been distorted by 

measurement artifacts in earlier work. The von Hippel and Hamrock (2019) article does make it 

clear that scaling matters: They show that the same dataset can yield opposing inferences when a 

different version of the test scores is used. While we find the arguments made by von Hippel and 

Hamrock (2019) regarding preferred measurement properties compelling, we do not have the 

ability in the current dataset to empirically explore these issues, since we do not have item-level 
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data. Moreover, their study documents an entirely different phenomenon—race and SES gaps—

than we document here. We should not necessarily expect that the patterns in overall variability in 

SLL would move in tandem with patterns by demographics, since demographics seem to explain 

only a little of the variation in SLL. Whether or not this is an appropriate interpretation of von 

Hippel and Hamrock’s findings, their study has shaken some people’s confidence in the idea that 

SLL matters. However, we use test scores with the very measurement features that von Hippel and 

Hamrock (2019) prefer and still find clear evidence that SLL exists and contributes substantially 

to where children end up in the achievement distribution. This suggests that SLL is very much 

worthy of continued research.   

Study Limitations 

First and foremost, the NWEA dataset does not include some key student variables that 

one would want available to more deeply understand the variance in summer learning rates across 

students (e.g., FRPL status, language status, special education status). Moreover, a key component 

of the education production function is unavailable to us in the NWEA dataset—links to individual 

teachers. In addition, the current study rests on the assumption that NWEA’s RIT scores are a valid 

measure of student math and reading skills in both the fall and spring and over time (i.e., the 

vertical scaling). NWEA’s MAP test is a formative assessment without stakes, and it is not entirely 

clear that there are incentives in place for students and teachers to take it equally seriously in the 

fall and spring. Students tend to spend slightly less time on the fall tests than their spring tests. One 

would be concerned if this signals that students do not put forward as much effort on their fall 

assessments, thus making summer learning losses appear larger than they actually are. We believe 

that the difference in time spent is not large (about 6 additional seconds per item, on average, in 

the spring), and we find that controlling for time spent on test affects the results very little. In 
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addition, most of the analyses herein do not rely on making direct comparisons across distal grades, 

thus reducing reliance on vertical scaling properties for these particular inferences. That said, the 

findings herein should be considered with these caveats in mind.  

Implications  

Our results do show that achievement disparities widen during school-years. As such, we 

should of course continue to develop policies that change how students experience schools, 

particularly around issues of access. On the other hand, we find that—even in an ideal scenario in 

which students all learn the same amount during the school-year—the time spent out of school in 

summer break, by itself, gives rise to much of the dramatic spread of achievement outcomes, on 

the order of several standard deviations.  

One natural policy idea, then, is to extend the school-year to reduce summer atrophy and 

minimize opportunities for this divergence to occur. However existing research on year-round 

school calendars does not indicate that SLL is mitigated by these schedules (Graves, 2011; 

McMullen & Rouse, 2012). It is possible that year-round calendars implemented to address over-

crowding (a common impetus) may have different impacts on learning than year-round calendars 

implemented explicitly to reduce SLL, but to our knowledge this hypothesis has not been tested.  

Another policy lever might be to focus on programs that bridge the gap between May and 

August like summer school. The causal evaluation of summer school is often fraught, given the 

non-random selection of who is required to enroll and known issues around low attendance 

(especially in higher grades). Yet there is growing evidence that summer interventions can help 

mitigate students’ SLL (Kim & Quinn, 2013; McCombs et al., 2012; McCombs et al., 2015). For 

instance, seven New Mexico school districts randomized early grade children in low-income 

schools into an ambitious (and presumably expensive) summer program called K-3+, that 
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essentially amounted to a full-blown extension of the typical school-year for much of the summer 

period. Early results from the experimental study indicated that children assigned to K-3+ 

exhibited stronger literacy outcomes across four domains of the Woodcock Johnson achievement 

assessment (Cann, Karakaplan, Lubke, & Rowland, 2015).   

But our results also suggest that we should look beyond schooling solutions to address out-

of-school learning disparities. Researchers have pointed to differential resources in terms of 

families’ economic capital, parental time availability, and parenting skill and expectations as 

potential drivers of outcome inequality (see for example, Borman et al. (2005)). Many of these 

resource differences are likely exacerbated by summer break when, for some families, work 

schedules come in greater conflict with reduced childcare. Many social policies other than public 

education touch on these crucial resource inequalities and thus could help reduce summer learning 

disparities.    

Finally, it remains an open—but important—question whether schools can or should be 

held accountable for students’ summer learning experiences (for a discussion, see McEachin & 

Atteberry, 2017). On the one hand, schools do make some efforts to provide curricular guidance 

for students after the school-year ends (e.g., summer reading books). On the other hand, if some 

schools serve students who are systematically more likely to lose ground during the summer, then 

those schools face a quite different challenge at the start of each school to bring their students back 

to where they left off when school ended the previous spring. Traditional statewide testing systems 

would not be able to detect such a pattern, and school accountability measures based on spring-

only scores essentially conflate schools’ impacts on both school-year and summer learning.  
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Next Steps for SLL 

The objective of this paper is to document the magnitude of a social problem—the role of 

summers in the “fanning out” of student achievement outcomes as students move through school. 

While we can conclude that this happens and to what extent, the current dataset is not well-

positioned to understand why summer learning patterns are so varied across students. Though it is 

an important first step to know when inequality arises and how unequal the learning patterns are, 

the obvious next question is: What accounts for that variation?  

In some sense we have reached a precipice on SLL research. It seems clear that summers 

play a key role in outcome inequality and that the range of students’ summer learning experiences 

is sizeable. Prior research suggests that this variability may fall partly along racial and 

socioeconomic lines (Alexander et al., 2001; Benson & Borman, 2010; Borman et al., 2005; 

Burkam et al., 2004; Downey et al., 2004; Gershenson, 2013; Heyns, 1978; Quinn, 2014; Quinn 

et al., 2016; von Hippel et al., 2018). However, prior research has also shown that demographic 

factors only account for a small part of the story here: In an insightful SLL study by Burkam et al. 

(2004) using ECLS-K:1999 data, the authors leverage the parent surveys of children’s home and 

summer activities, in conjunction with student gender, racial, and socio-economic demographics—

that is, most of the first-order candidates for explaining variability. However, they can explain only 

about 13 percent of the variance in learning gains in the summer after K. New research is needed 

to reconcile the fact that summer learning differs dramatically from child to child, but to date we 

have only limited insight into what accounts for most of that variation.   
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Tables 
 
Table 1. Descriptive Statistics in the Nation, in Full Dataset, in Analytic Sample in 2011-12 

 
FN: Data for U.S. public school population come from the NCES Common Core of Data and has been restricted to 
public schools (https://nces.ed.gov/ccd/). FRPL status is not available at the student level in the NWEA dataset. The 
Online Appendix B sample includes more NWEA students because it does not require students to have as long of a 
panel of available test scores to be included. The primary analytic sample used in the main narrative requires 
students to have up to ten available test scores in a row without missing data.    
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Table 2. ELA: HLM Model-Based Estimates of School-Year & Summer Learning Gains/Losses, 
Student-Level Standard Deviations, 95% Plausible Value Ranges across Students  

 
FN: We report Huber-corrected standard errors for the estimated beta coefficients, however due to the large sample sizes, all of 
the beta coefficients are highly statistically significant (distinguishable from zero). We focus more on the substantive significance 
more than the statistical significance in our discussion of these results.   

Grade 1 coeff (beta) 23.7 ***  -6.6 *** 28% 80% 0.41 1.6 55% 114%
Grade 1 (se of beta) (0.05)  (0.05)

Grade 1 stud sd (tau) 9.7 ***  10.4 ***
Grade 1 (stud 95% PVR)  

Grade 2 coeff (beta) 18.5 ***  -3.9 *** 21% 109% 0.56 1.7 49% 93%
Grade 2 (se of beta) (0.05)  (0.04)

Grade 2 stud sd (tau) 10.3 ***  6.8 ***
Grade 2 (stud 95% PVR)  

Grade 3 coeff (beta) 13.3 ***  -3.4 *** 26% 119% 0.61 1.4 45% 98%
Grade 3 (se of beta) (0.05)  (0.04)

Grade 3 stud sd (tau) 8.1 ***  4.9 ***
Grade 3 (stud 95% PVR)  

Grade 4 coeff (beta) 10.1 ***  -2.6 *** 26% 132% 0.67 1.8 59% 118%
Grade 4 (se of beta) (0.04)  (0.04)

Grade 4 stud sd (tau) 6.8 ***  4.7 ***
Grade 4 (stud 95% PVR)  

Grade 5 coeff (beta) 7.8 ***  -2.2 *** 28% 204% 1.04 2.5 103% 169%
Grade 5 (se of beta) (0.05)  (0.04)

Grade 5 stud sd (tau) 8.1 ***  5.6 ***
Grade 5 (stud 95% PVR)  

Grade 6 coeff (beta) 6.4 ***  -1.6 *** 25% 236% 1.20 3.3 125% 186%
Grade 6 (se of beta) (0.05)  (0.04)

Grade 6 stud sd (tau) 7.7 ***  5.3 ***
Grade 6 (stud 95% PVR)  

Grade 7 coeff (beta) 5.2 ***  -0.9 *** 17% 275% 1.40 5.2 154% 194%
Grade 7 (se of beta) (0.05)  (0.04)

Grade 7 stud sd (tau) 7.3 ***  4.7 ***
Grade 7 (stud 95% PVR)  

Grade 8 coeff (beta) 4.4 ***  n/a 258% 1.32 n/a n/a n/a
Grade 8 (se of beta) (0.04)  

Grade 8 stud sd (tau) 5.8 ***  
Grade 8 (stud 95% PVR)  

Summer: 
Ratio of 
SD to 
Mean 
Gain

Summer: 
% of SY 

Gained @ 
Top of 

PVR

Summer: 
% of SY 
Lost @ 
Low of 

PVR

Post-Hoc Statistics for Given Grade

Means: 
% of 
Schyr 

Gain Lost 
in Summer

% More 
Gained @ 

Top of 
PVR in 
Schyr

Schyr:
Ratio of
SD to 
Mean 
Gain

(-2.6 to 29.3) (-13.0 to 6.3)

(-3.2 to 23.4) (-11.9 to 6.7)

(-8.1 to 23.8)

(-8.7 to 21.4) (-11.9 to 8.8)

(-9.1 to 19.6) (-10.1 to 8.4)

(-7.0 to 15.9)

Model-Based Estimates

(-13.2 to 8.8)

(4.6 to 42.7) (-26.9 to 13.7)

(-1.6 to 38.7) (-17.2 to 9.3)

Gains/ Losses
during the

School Year

Gains/ Losses
during the
Following 
Summer
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Table 3. Math: HLM Model-Based Estimates of School-Year & Summer Learning Gains/Losses, 
Student-Level Standard Deviations, 95% Plausible Value Ranges across Students  

 
FN: We report Huber-corrected standard errors for the estimated beta coefficients, however due to the large sample sizes, all of 
the beta coefficients are highly statistically significant (distinguishable from zero). We focus more on the substantive 
significance more than the statistical significance in our discussion of these results.

Grade 1 coeff (beta) 24.0 ***  -6.4 *** 27% 91% 0.46 1.7 58% 114%
Grade 1 (se of beta) (0.05)  (0.05)

Grade 1 stud sd (tau) 11.1 ***  10.7 ***
Grade 1 (stud 95% PVR)  

Grade 2 coeff (beta) 18.6 ***  -4.8 *** 26% 92% 0.47 1.2 32% 88%
Grade 2 (se of beta) (0.04)  (0.04)

Grade 2 stud sd (tau) 8.7 ***  5.9 ***
Grade 2 (stud 95% PVR)  

Grade 3 coeff (beta) 16.5 ***  -4.6 *** 28% 78% 0.40 0.8 12% 73%
Grade 3 (se of beta) (0.04)  (0.03)

Grade 3 stud sd (tau) 6.6 ***  3.7 ***
Grade 3 (stud 95% PVR)  

Grade 4 coeff (beta) 14.2 ***  -4.3 *** 30% 86% 0.44 1.1 28% 96%
Grade 4 (se of beta) (0.04)  (0.03)

Grade 4 stud sd (tau) 6.2 ***  4.7 ***
Grade 4 (stud 95% PVR)  

Grade 5 coeff (beta) 11.7 ***  -4.0 *** 34% 136% 0.69 1.3 51% 121%
Grade 5 (se of beta) (0.05)  (0.04)

Grade 5 stud sd (tau) 8.1 ***  5.2 ***
Grade 5 (stud 95% PVR)  

Grade 6 coeff (beta) 9.8 ***  -2.7 *** 28% 144% 0.73 1.8 61% 127%
Grade 6 (se of beta) (0.05)  (0.04)

Grade 6 stud sd (tau) 7.2 ***  4.9 ***
Grade 6 (stud 95% PVR)  

Grade 7 coeff (beta) 8.1 ***  -2.0 *** 25% 179% 0.91 2.3 86% 136%
Grade 7 (se of beta) (0.05)  (0.04)

Grade 7 stud sd (tau) 7.4 ***  4.6 ***
Grade 7 (stud 95% PVR)  

Grade 8 coeff (beta) 6.5 ***  n/a 163% 0.83 n/a n/a n/a
Grade 8 (se of beta) (0.04)  

Grade 8 stud sd (tau) 5.4 ***  
Grade 8 (stud 95% PVR)  

Gains/ Losses
during the

School Year

Gains/ Losses
during the
Following 
Summer

Means: 
% of 
Schyr 

Gain Lost 
in Summer

% More 
Gained @ 

Top of 
PVR in 
Schyr

Schyr:
Ratio of
SD to 
Mean 
Gain

Summer: 
Ratio of 
SD to 
Mean 
Gain

Summer: 
% of SY 

Gained @ 
Top of 

PVR

Summer: 
% of SY 
Lost @ 
Low of 

PVR

Model-Based Estimates Post-Hoc Statistics for Given Grade

(2.2 to 45.9) (-27.4 to 14.6)

(1.6 to 35.6) (-16.3 to 6.8)

(3.6 to 29.4) (-12.0 to 2.7)

(2.0 to 26.3) (-13.6 to 4.9)

(-4.2 to 27.5) (-14.2 to 6.2)

(-4.4 to 23.9) (-12.4 to 6.9)

(-6.4 to 22.6) (-11.0 to 7.0)

(-4.1 to 17.2)
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Table 4. ELA: Student-Level Correlations of Estimated Summer Gains, across Grades 

  
FN:  In this table, we present the relevant off-diagonal elements of the covariance matrix, in the units of correlations. The model 
is run separately on early grades and later grades. Because the panel is only 9 years long, very few (less than 1 percent) of students 
have all 19 test scores between first through eighth grades. We therefore cannot estimate correlations across these two models.  

Summer After --> Grade 1, 
Sum.

Grade 2, 
Sum.

Grade 3, 
Sum.

Grade 4, 
Sum.

Grade 5, 
Sum.

Grade 6, 
Sum.

Grade 7, 
Sum.

Sum. After Grade 1 1.00
Sum. After Grade 2 0.65 1.00
Sum. After Grade 3 0.28 0.57 1.00
Sum. After Grade 4 0.20 0.25 0.56 1.00
Sum. After Grade 5 0.17 0.15 0.19 0.57 1.00
Sum. After Grade 6 0.09 0.07 0.11 0.07 0.54 1.00
Sum. After Grade 7 0.05 0.04 0.05 0.06 0.12 0.57 1.00

School Year --> Grade 1, 
SY

Grade 2, 
SY

Grade 3, 
SY

Grade 4, 
SY

Grade 5, 
SY

Grade 6, 
SY

Grade 7, 
SY

Sum. After Grade 1 -0.41
Sum. After Grade 2 -0.23 -0.51
Sum. After Grade 3 -0.01 -0.17 -0.63
Sum. After Grade 4 0.01 -0.12 -0.19 -0.53
Sum. After Grade 5 0.00 -0.08 -0.16 -0.18 -0.61
Sum. After Grade 6 -0.01 -0.05 -0.10 -0.09 -0.09 -0.58
Sum. After Grade 7 -0.05 -0.04 -0.03 -0.05 -0.07 -0.08 -0.66

Corr(Summer, Summer Gains) across grades

Corr( Summer & School Year Gains) across grades
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Table 5 Math: Correlation Matrix Across Students’ Summers Losses 

  
FN: In this table, we present the relevant off-diagonal elements of the covariance matrix, in the units of correlations. The model 
is run separately on early grades and later grades. Because the panel is only 9 years long, very few (less than 1 percent) of 
students have all 19 test scores between first through eighth grades. We therefore cannot estimate correlations across these two 
models. 

Summer After --> Grade 1, 
Sum.

Grade 2, 
Sum.

Grade 3, 
Sum.

Grade 4, 
Sum.

Grade 5, 
Sum.

Grade 6, 
Sum.

Grade 7, 
Sum.

Sum. After Grade 1 1.00
Sum. After Grade 2 0.65 1.00
Sum. After Grade 3 0.15 0.43 1.00
Sum. After Grade 4 0.09 0.15 0.49 1.00
Sum. After Grade 5 0.04 0.05 0.03 0.53 1.00
Sum. After Grade 6 -0.01 0.06 0.06 0.11 0.42 1.00
Sum. After Grade 7 -0.01 0.04 0.04 0.08 0.10 0.53 1.00

School Year --> Grade 1, 
SY

Grade 2, 
SY

Grade 3, 
SY

Grade 4, 
SY

Grade 5, 
SY

Grade 6, 
SY

Grade 7, 
SY

Sum. After Grade 1 -0.56
Sum. After Grade 2 -0.38 -0.57
Sum. After Grade 3 -0.08 -0.14 -0.60
Sum. After Grade 4 -0.06 -0.13 -0.10 -0.40
Sum. After Grade 5 -0.04 -0.12 -0.07 -0.18 -0.68
Sum. After Grade 6 0.03 -0.02 -0.02 -0.01 -0.08 -0.59
Sum. After Grade 7 0.05 -0.03 -0.04 -0.08 -0.07 -0.09 -0.72

Corr(Summer, Summer Gains) across grades

Corr( Summer & School Year Gains) across grades
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Figures 
 
Figure 1. Compare Studies: Datasets, Data Years, Grades Included, Number of Students, Location (page 1 of 2) 

 
  

Authors
Year of 
Publish Dataset Data Yrs

Years Since 
Data Collected

Summers After  
Grades…

# of
Students 

# of
Schools

# of
Districts

# of
States Geography

Unconditional 
Var(SLL)?

W 
SLL Gaps?

Overall SES
SLL Gaps?

Current 
Study -- NWEA  5 2008-2016 3 years prior

1st, 2nd, 3rd, 4th, 
5th, 6th, 7th, 8th 18 million ~32,000 7500 50

Spread 
across all US 
states

Yes No No

Heyns 1978 unnamed 1970 -1972 47 years prior 5th 2,978 101 1 1 Atlanta
No Yes Yes

Allinder, 
Fuchs, Fuchs, 
Hamlett

1992 unnamed not found
27 years prior 
at least 2nd, 3rd, 4th 275 2 1 1

2 rural schools 
in  midwest 
state

Yes 
(aggregated 

across grades)

No No

Entwisle, 
Alexander 1992 BSS 1 Fall 1982 - 

Fall 1984
35 years prior 1st, 2nd 542 20

(max) 1 1 Baltimore
No Yes+ Yes+

Entwisle, 
Alexander 1994 BSS Fall 1982 - 

Fall 1984
35 years prior 1st, 2nd 539 

(max)
20
(max) 1 1 Baltimore

No Yes+ Yes+

Alexander, 
Entwisle, 
Olson

2001 BSS Fall 1982-
Spr 1987

32 years prior 1st, 2nd, 3rd, 4th 678 20
(max) 1 1 Baltimore

No Yes Yes

Burkam, 
Ready, Lee, 
LoGerfo

2004 ECLS-K:99 2 Fall 1998 - 
Fall 1999

20 years prior K 3,664 ~600* ~230* ~30* nationally 
representative

No No Yes

Downey, von 
Hippel, Broh 2004 ECLS-K:99 Fall 1998 - 

Fall 1999
20 years prior K

~5,000 w/ 
summer 
data*

992 ~230* ~30* nationally 
representative

Yes**  Yes Yes

Borman, 
Benson, 
Overman

2005 "Teach 
Baltimore" 1999-2000 19 years prior K (2 cohorts) 303 10 1 1 Baltimore high- 

povery schools

No Yes Yes
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Figure 1 (cont’d). Compare Studies: Datasets, Data Years, Grades Included, Number of Students, Location (page 2 of 2) 

1 BSS (Beginning School Study); 2 ECLS-K (Early Childhood Longitudinal Study: Kindergarten Class of 1999 or 2011); 3 APSCC (Activity Pattern Survey of California Children; 
4 ATUS (American Time Use Study. (time-diary surveys); 5 Growth Research Database from Northwest Evaluation Association -- subset of 25 school districts in 2008-2010. 6 
Full Northwest Evaluation Association dataset-- current study. * These papers use ECLS-K:99 or ECLS-K:11 to study SLL, which can only be calculated for a subsample of 
~30% of students. The student, school, district, and state N's for this subsample are not consistently reported in these papers, however we include approximate sample sizes from 
the Author(s)' direct examination of ECLS-K:1999 or ECLS-K:2011 public use datasets. N's are intended to be approximate upper bounds. **This 2004 article also examines 
unconditional variance, but in the authors' updated analysis, von Hippel, Workman, and Downey (2018) argue that the 2004 findings may have been affected by measurement 
artifacts. + These gaps are not presented by themselves, but only presented crossed with another demographic, such as SES, race/ethnicity, or school segregation status 
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Figure 2. Illustration of the Timeline for Observed and Projected RIT Test Scores 

 
FN: Student 1: Observed scores in orange, projected scores in green. Student 2: Observed scores in red, 
projected scores in blue. 
 
  

19aug

05jun

18aug

04jun17aug

03jun
16aug

02jun

15aug
31may

21sep

14mar
18sep

17mar 10sep

23mar

15sep 11mar

13sep 21mar

19aug

05jun
18aug

04jun

17aug

03jun

16aug

02jun15aug
31may

19sep

09apr

30sep

16apr
12oct

29apr 27sep

04apr
29sep

03apr

20
0

22
0

24
0

26
0

01jan2008 01jan2009 01jan2010 01jan2011 01jan2012



41 
 

Figure 3. ELA and Math: Estimated Mean School-year Gains and Summer Losses 
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Figure 4. ELA: Boxplot of Students’ Empirical Bayes Estimated Gains/Losses, across Grades 
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Figure 5. Math: Boxplot of Students’ Empirical Bayes Estimated Gains/Losses, across Grades 
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Figure 6. Math and ELA: Assume Equal Learning in School, Three Levels of Summer Gains/Losses 
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Figure 7. ELA and Math: Proportion of Students’ Test Score Fluctuations Occurring in Summers 
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Online Appendix A. School Calendar Dates and Projected RIT Scores 
 
Approach to Calendar Data Collection 

One unique aspect of the current project was to collect, clean, and incorporate a new source 
of information about school-years into both the current analyses, as well as to share the information 
back with our research partner NWEA to improve their own internal analyses. We collected 
longitudinal information on school calendars at the district level for all districts in a set of eleven 
states that have the largest percentage of students with MAP scores. In fact, 44.4 percent of all student-
year observations from the NWEA data come from this subset of states.  

In Figure 1, we show a hypothetical timeline for a given student’s test-taking from 3rd through 
5th grade. The Figure illustrates that students do not take MAP tests exactly on the first and last day 
of school—in fact, students often take these tests three to six weeks before/after the school-year starts 
or ends. As a result, some of the time between the spring and fall administrations of the test is actually 
spent in school. However, we do not observe school-year start or end dates, leaving us with a distorted 
sense of how long students spend without the structure of the school-year—the very time when we 
suspect learning rates may slow. Without knowledge of school-year calendars, we would misattribute 
some of the learning that takes place during the school-year to the summer period, potentially masking 
some of the actual variation in the summer period. We therefore obtained the school-year calendar 
information through original data collection.  
 
Figure A1. Illustration of the Need for School Calendar Data 

 
 
The scope of this data collection task varied considerably, and it depended largely on whether 

each state has adopted a statewide policy on school-year start- and end-dates, or whether state 
departments of education kept this information in existing data files. For example, the process for 
South Carolina was relatively simple because, beginning in August of 2007, South Carolina adopted 
new statewide legislation that specified consistent school start and end dates. We have found online 
a document that reported each of South Carolina school districts’ calendars from 2010-11 through 
2015-16. We examined the extent to which school districts actually used the uniform start and end 
dates mandated by the legislation (district level calendars are no longer available prior to 2010-11).  In 
the years of district-level calendar that we have, it appears that the vast majority of South Carolina 
districts uses the same school-year start and end dates that is described in the legislation: School 
typically starts on the third Monday of August, and the last day of school falls on the first Thursday 
of June.  

In the eleven other states in which we conducted data collection, there is no statewide 
legislation that specifies district start and end dates. To gather the data in other states and years, we 
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worked with a team of undergraduate and graduate student research assistants in efforts to collect 
complete records on school district calendars across our twelve-state sample. The first step was to 
exploit all online resources to find existing records from state- and district-level education 
departments. We also used an internet archive website (https://archive.org/web/) to search for this 
information that had potentially been archived in prior years. In cases where such documentation 
could not be found, research assistants also examined news sources archived online that document 
district-wide school calendars. We found that newspapers often run stories about the school-year 
timeline. Finally, once all indirect methods of obtaining school calendar records have been exhausted, 
research assistants contacted appropriate district or state personnel directly to request the information.  

Altogether, we proposed collecting school-year start and end dates in 3,119 unique districts 
across eleven states and nine school-years, for a total of about 28,000 district-years. We collected 
23,223 school-year start dates and 20,807 school-year end dates. We therefore found about 77 percent 
of the district-year calendar dates we sought to find. In Table 1, we present the percentage of districts 
in each state and in each year for which we have collected school-year start dates. In green we 
highlight cells that have over 90 percentage coverage, and in red we highlight cells that have less than 
55 percent coverage.  
 
Table A1. District Coverage (Percentage), by State and Year 

 
 

In later years, NWEA also began to collect some school-year start and end dates. We 
combined our original data collection with theirs. Across the entire NWEA dataset in all states and 
years, these efforts allowed us to collect actual calendar start/end dates for 50.3 percent of the 
observed school-years. We refer to these as the “actual calendar dates”, because we also opt to 
extrapolate calendar dates for all districts in which they are missing.   
 
Using Actual Calendar Dates to Extrapolate Missing Calendar Dates 

In order to project scores for students in districts for which we were unable to recover actual 
calendar dates, we chose to impute approximate school calendar dates under the basic assumption 
that, while there is some variation in when public school districts start and end the school-year, it is 
not large. For example, in the subset of districts for which NWEA collected school level calendar 
start dates, we observe that the standard deviation of start dates across schools in the same district and 
same year is 8.2 days (8.1 days for end dates). Looking across all the districts in a given state in the 
same year, the standard deviation of start dates is 6.3 days (8.2 for end dates).  

State 2008 2009 2010 2011 2012 2013 2014 2015 2016
CO 23.6 23.6 23.6 25.1 24.6 25.6 26.1 86.2 77.6
IA 93.1 96.4 96.4 96.4 96.4 96.4 95.8 93.6 93.1
IN 99.1 99.1 99.1 99.2 99.2 98.7 98.7 98.7 98.7
KS 95.6 95.9 96.2 96.5 96.3 96.0 96.3 96.3 94.9
KY 10.9 9.8 100.0 100.0 100.0 100.0 99.4 99.4 99.4

MN 99.4 99.4 99.6 99.6 99.6 99.6 98.5 97.4 54.0
NH 97.7 97.7 97.7 97.7 97.7 97.7 97.2 97.2 96.7
SC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
WA 31.9 43.4 61.1 65.5 65.2 63.9 75.7 91.2 96.3
WI 99.3 98.2 98.6 99.5 99.6 99.6 99.6 99.6 0.0
WV 100.0 100.0 100.0 98.2 100.0 100.0 100.0 100.0 0.0
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We therefore extrapolated dates privileging these decision rules in the following order: (1) If 
we have actual school calendar data, use that. (2) For schools in a district-year with some school 
calendar data, use the mean of the start/end dates in the district-year. (3) For a district that has calendar 
data in some years but not others, use the district’s own mean start/end dates across years. (4) For 
districts still missing start/end calendar dates, use the state’s mean dates in the given year. (5) For 
districts in states that have no calendar data in a given year, use the state’s mean calendar dates across 
all years. Because we had calendar data in at least one year for each state, this covered all observations 
in the dataset.  

We tested the effectiveness of this extrapolation approach with the following exercise: We 
limited the sample to district-years with actual school calendar dates, hid a random sample of 25 
percent of the actual dates as if they were missing, and then used the procedure above to produce 
extrapolated dates for that 25 percent. We then compare the extrapolated dates to the actual dates we 
had hidden to assess the performance of the extrapolation process. On average, the process produced 
an extrapolated start date 3.8 days off from the actual start date and 6.6 days off from the actual end 
dates. We believe this provides some additional confidence in the extrapolation process.   
 
Projecting RIT Scores to First and Last Day of School 

We leverage the calendar data described above to project scores for individual students to 
what they might have been on the first and last day of school. To do so, we calculate the average daily 
learning rate between each student’s fall and spring NWEA test administrations by dividing the 
change in score by the number of days between the two tests (Quinn, 2014). Extant research finds 
that students’ within school-year achievement growth is approximately linear (Fitzpatrick et al., 
2011). We then calculate both the number of school days between the start of the school-year and 
each student’s fall NWEA test, as well as the number of days of school between each student’s spring 
NWEA and the end of the school-year. On average, students take the fall test about 26 days after the 
first day of school, and they take the spring test 39 days before the last day of school.  

To project scores to the start of the school-year, we subtract from the student’s observed fall 
score his or her individual daily learning rate multiplied by the number of days between the first day 
of school and the date of the test. We follow the same procedure for projecting scores to the last day 
of the school-year. The correlation between fall observed and projected scores in ELA is 0.996, with 
an RMSE of 2.3 points. The correlation between spring observed and projected scores in ELA is 
0.992, with an RMSE of 2.8 points.  
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Online Appendix A: Replicate Figure 3 and 4 using Observed Scores 
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Online Appendix B. Replicate Figure 4 & 5 with 3-Grade Increment 
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Endnotes 

1 We use the term disparities broadly to refer to any large, potentially systematic variability across students. While 
some use the term disparities to refer to group mean differences (e.g., by race/ethnicity or SES), we use disparate or 
disparities synonymously with spread or variability across students. We use gaps only to for group mean differences. 
2 Race and SES gaps have been the main focus of prior SLL research.(Alexander, Entwisle, & Olson, 2001; Alexander, 
Entwisle, & Olson, 2007; Benson & Borman, 2010; Borman, Benson, & Overman, 2005; Burkam, Ready, Lee, & 
LoGerfo, 2004; Downey, von Hippel, & Broh, 2004; Entwisle & Alexander, 1992, 1994; Heyns, 1978; Quinn, 2014; 
Quinn, Cooc, McIntyre, & Gomez, 2016; von Hippel & Hamrock, 2019; von Hippel, Workman, & Downey, 2018) 
3 Given the importance of assessing the role of SLL on the development of racial/ethnic and SES achievement gaps, 
some of their methodological nuances (Quinn, 2014), and the large amount of variability that remains unexplained by 
these demographics, exploring race and/or SES gaps in SLL deserves its own separate and full investigation. The goal 
of the current paper is to update the existing knowledge base about overall 1st through 8th grade school-year learning 
gains and subsequent summer loss patterns, document the degree of variability in those patterns, and characterize the 
extent to which end-of-school achievement disparities arise during summers. 
4 This and many SLL studies specifically examine the summer after kindergarten. 
5 Strictly speaking, most studies actually show that, on average, students do not lose ground during the summer, but 
instead either gain less in the summer than in the school-year (learning rate slows) or have no gains in the summer.  
6 A series of studies followed that examined SLL in specific locations (e.g., Allinder, Fuchs, Fuchs, & Hamlett (1992) 
in 2 rural schools around 1990; Borman, Benson, & Overman (2005) with about 300 students in Baltimore high 
poverty schools; Skibbe, Grimm, Bowles, & Morrison (2012) with about 380 students in 1 suburban Midwest town). 
That said, it has been unclear whether the results from those early studies would either generalize outside of their local 
contexts or to a vastly different educational landscape up to forty years later.  
7 We provide a brief summary of their findings with respect to race and SES gaps, using scores that were not 
standardized by subject-semester-grade, the preferred theta scale from ECLS-K:99, and the most comparable grade 
ranges: With respect to Black-White race gaps, the authors find—across the three datasets—that gaps grow across 
grades (with the exception of an aberrant finding from the BSS of 556 percent shrinkage of the Black-White ELA gap 
across grades), though that growth is more moderate in the ECLS-K:99 and GRD datasets. In both the BSS and the 
ECLS-K:99 datasets (preferred theta scores), the authors find that there is no significant difference in how fast the 
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Black-White gap grows in the summer vs. the school-year. However, in the more recent GRD dataset, it appears these 
gaps grow more during the school-year. With respect to SES gaps, von Hippel and Hamrock (2019) find that, while 
student-level SES gaps appear to grow across grades in the BSS, they appear to shrink in ECLS-K:99. Gaps in low- 
versus high-poverty schools seem to grow using BSS data and GRD data (though to a smaller degree), but shrink 
using ECLS-K:99 data. Both ECLS-K and BSS datasets show that student SES gaps grow faster in the summer, as 
opposed to the school-year, and all three datasets indicate that low- versus high-poverty school gaps grow faster in the 
summer (with the exception of math results using the GRD).  
8 Here, we highlight the comparison between the ECLS-K IRT-based scale scores (which estimate the number of items 
a child would correctly answer and is not designed for comparison over time) in their original metric (i.e., not 
standardized by subject-semester-year) versus that same dataset’s IRT-based theta scores in their original metric. 
9 Rambo-Hernandez and McCoach (2015) use a sample that follows a 2006-2009 cohort of about 118 thousand grade 
3 students as they move through grade 6. 
10 It is also administered in the winter by some districts; however, the winter data are not available in the current 
dataset.  
11 We also conduct analyses presented in Table 2, Table 3, Figure 4, and Figure 5 using only the set of district-years 
with actual school-year start/end dates (rather than extrapolated dates). Results are quite similar and available upon 
request.  
12 To contextualize the RMSE, NWEA reports the achievement status norm for ELA is about 161 in fall of grade 1 
and about 217 in fall of grade 8 (Thum & Hauser, 2015).   
13 Because the summer learning rate is estimated off of just two points—the first and last day of school—the slope 
between those points is quite sensitive to even minor adjustments. Note that the method we describe assumes that 
students learn just as much on days in May as they do in, say, February. While there is some evidence that learning 
rates are relatively linearly within the school-year (Fitzpatrick, Grissmer, & Hastedt, 2011; von Hippel & Hamrock, 
2019), there are also reasons to question this assumption, especially given anecdotal reports that the intensity of school 
activities slows after spring standardized test are given. 
14 The analytic samples in this paper are first limited to NWEA students observed in grades 1 through 8, hence the 
large drop in sample size between the full NWEA sample and the Appendix B analytic sample. 
15 See Raudenbush and Bryk (2002), pp. 55-56 for a more complete description of the Bayesian approach to estimation 
of the variances and covariances. For a discussion of how the observed variability in OLS estimates compares to the 
empirical Bayes estimate of the variability, see pg. 88.  
16 We include 5th grade in both panels to informally check how similar 5th grade estimates are across the models. 
17 For example, 𝑠𝑐ℎ𝑦𝑟6௧௜ takes a value of 1 at the end of 6th grade (i.e., grade 6 spring test score) and remains a 1 for 
all observations thereafter. And 𝑠𝑢𝑚𝑎𝑓6௧௜ takes a value of 1 at the end of the summer after 6th grade (i.e., grade 7 
fall test score) and remains a 1 for all observations after. 
18 For example, Downey et al. (2004) code time variables so that the relevant coefficients represent a linear learning 
rate per month between the first and last day of school (or first and last day of summer). In contrast, we have chosen 
to code time variables so that the relevant coefficients capture the total gain from the first to last day of a given school 
year (or, in the case of summer, the total gain/loss from the first to last day of summer). Scaling coefficients as monthly 
learning rates does allow one to more directly compare the school-year versus summer speed of gaining or losing that 
would occur in a 1-month period (that is, the unit of time is the same). A disadvantage of reporting results as monthly 
learning rates is that it is less straightforward to compare, for instance, the total gain a given student actually made 
throughout a 9-month school year, relative to the total loss in the summer that immediately follows. In addition, 
presenting the estimates as a monthly learning rate may imply to some readers that we have data on what happened 
on a monthly basis and that the function is, indeed, linear. 
19 The parameters are presented with a focus on their substantive meaning in the Results section, but for those 
interested in a more formal roadmap between research questions and parameters: For RQ1 concerning mean 
gains/losses, we focus on the 𝛽 coefficients. For RQ2 concerning student-level variation in gains/losses, we interpret 
the 𝝉 variance parameters from the diagonal of the covariance matrix. For RQ3 concerning whether the same students 
tend to lose ground summer after summer, we present the off-diagonal elements of the covariance matrix 
corresponding to 𝜋ଶ௜ and 𝜋ସ௜, as correlations (take, for example, the relationship between losses in the summers after 
6th vs. 7th grade; for this example, the covariance is 𝝉𝟐,𝟒). For RQ 4, we make use of the student-level Bayes shrunken 
residuals. 
20 Burkam et al.’s (2004) SLL analysis of ECLS-K:1999 data shows that, taken together, students’ gender, racial, and 
socio-economic demographics in conjunction with detailed information from parent surveys about children’s home 
and summer activities only accounts for about 13 percent of the variance in learning gains in the summer after K. 
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21 Returning briefly to Equation (1) for a concrete example, consider the covariance of the 𝜋ଶ௜’s (student i's estimated 
change in the summer after 6th grade) with the 𝜋ସ௜’s (in summer after 7th grade). That covariance (𝜏ସ,଺) from the 
covariance matrix captures the extent to which students who lose ground in one summer tend to be the same ones who 
lose ground in the next summer. Like the variances presented earlier, these estimated covariances are more 
conservative than simply taking the standard deviation of student-level gain/loss scores (Raudenbush & Bryk, 2002). 
We present the covariance as correlations for ease of interpretation. 
22 The one exception to the otherwise uniformly-negative correlations in the lower panel of  
Table 4 (ELA) is the near-zero correlation of +0.01 between grade 1 school-year gains and gains/losses in the summer 
after grade 4. 
23 In von Hippel et al. (2018), 11 of these 12 reported correlations are negative and between −0.55 to −0.21, with the 
one exception of a modest, positive correlation (+0.09) between the ELA learning rates in the summer after grade 1 
and the grade 2 school year. 
24 We split the distribution of student-specific, empirical Bayes shrunken summer learning gain/loss estimates into a 
top, middle, and bottom tercile and then calculate the mean learning gain within each of those terciles. We do this 
separately for residuals for each summer following a school-year between first and 8th grade.  
25 We calculate for each student the sum of all absolute fluctuations in their test scores during a panel (here, from the 
start of 1st to the end of 5th grade) and then calculate what percentage of those absolute value fluctuations arose during 
summers. For a hypothetical student who experiences no change in their scores from the start to the end of the summers 
(i.e., always flat slopes in the summers), this percentage would be zero. In contrast, if a hypothetical student’s test 
score changes during the summer were always equal to the student’s gain/loss during the school-year, the 
corresponding statistic would be 50 percent. 
26 Looking across the full study sample, about 75 percent of all summer period changes were negative (as opposed to 
gains or no change). If summer loss events were truly independent, the probability of 5 consecutive summer losses is 
0.75 raised to the 5th power, which equals about 0.24. 
27 For instance, von Hippel, Workman, Downey (2018) find that students exhibit slightly greater SLL in reading than 
in math in the summer after K, but equal losses across subjects in the summer after grade 1. Descriptive results from 
Quinn, Cooc, McIntyre, & Gomez (2016) suggest that students gained very similar amounts in math and reading 
during summers, but perhaps gained slightly more in math in the summer after K and slightly more in reading in the 
summer after grade 1. Downey, von Hippel, & Broh (2004) document modest mean summer losses in reading, 
alongside summer learning gains in math. Many of the studies since 1996 that specifically present mean SLL rates, 
only present these results for a single subject, preventing a cross-subject comparison (e.g., Borman, Benson, & 
Overman (2005); Downey, von Hippel, Hughes (2008); Benson & Borman (2010); Skibbe, Grimm, Bowles, & 
Morrison (2012); Rambo-Hernandez & McCoach (2015). 
28 Downey et al. (2004) also do so, but they subsequently discount those findings and update them in von Hippel et al. 
(2018). 
29 The authors describe the achievement measures they use from ECLS-K:99 as “IRT scores” (see Table A1 on pg. 
424), and we believe these are likely the IRT-based scale scores (rather than IRT-based theta scores), which model 
the number of items children would have answered correctly, using summed probabilities of correct answers 
(Tourangeau et al., 2009). It is beyond the scope to reconcile this difference across ECLS-K studies, but this warrants 
further attention. 


