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Abstract

We use transfer entropy to quantify information flows between financial mar-
kets and propose a suitable bootstrap procedure for statistical inference. Trans-
fer entropy is a model-free measure designed as the Kullback-Leibler distance
of transition probabilities. Our approach allows to determine, measure and test
for information transfer without being restricted to linear dynamics. In our
empirical application, we examine the importance of the credit default swap
market relative to the corporate bond market for the pricing of credit risk. We
also analyze the dynamic relation between market risk and credit risk proxied
by the VIX and the iTraxx Europe, respectively. We conduct the analyses for
pre-crisis, crisis and post-crisis periods.
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1 Introduction

Detecting and measuring interactions between different time series is the subject of

research in various areas. In finance the informational link between different mar-

kets is of particular interest. Yet, there is only a small range of methods to empiri-

cally examine these linkages. The predominant concept is that of Granger causality

(see Granger, 1969) which is widely applied to detect lead-lag relationships be-

tween time series. However, the insights that can be gained from this method are

limited to the mere existence of information flows rather than their quantification.

An actual measure for information transfer between financial markets exists only

for a particular setting of empirical applications: if prices in different markets re-

fer to the same underlying asset, price discovery measures such as the Hasbrouck

(1995) information shares can be used to determine the informational dominant

market. This approach requires a cointegration relationship between the different

time series and only provides a sensible interpretation of the results if cointegration

is implied by theory and supported by the data. Furthermore, Granger causality

and price discovery measures are based on a Vector Autoregressive (VAR) or Vec-

tor Error Correction Model (VECM) framework which imposes rather restrictive

assumptions concerning the underlying (linear) dynamics.

As an alternative we propose to apply the concept of transfer entropy to

measure information flows between different financial time series. Transfer en-

tropy is a model-free measure which is designed as the Kullback-Leibler distance

of transition probabilities. Under weak assumptions this approach allows to quan-

tify information transfer without being restricted to linear dynamics. It is therefore

an appealing tool if the assumptions required by the standard models are not sup-

ported by the data. There exist only few studies that apply transfer entropy within

the context of financial markets. Kwon and Yang (2008a), for example, analyze

the information flow between the S&P 500, the Dow Jones index and selected indi-

vidual companies on a daily basis. Baek, Jung, Kwon, and Moon (2005) examine

the information transfer between groups of NYSE listed stocks to determine market

sensitive and market leading companies, and Kwon and Yang (2008b) investigate
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the strength and direction of information transfer between various stock indices us-

ing transfer entropy. The measurement of interactions between the Indian stock and

commodity market is the subject of a study by Reddy and Sebastin (2009).

In all these finance studies, statistical inference has not been accounted for.

We address this issue and propose to bootstrap the underlying Markov process (see

Horowitz, 2003) in order to derive the distribution of the estimates and assess the

statistical significance of the estimated information flows. Furthermore, we address

the issue of correcting for small sample bias of the transfer entropy estimator in a

novel way: we suggest to use the bootstrapped distribution under the null hypothesis

of no information flow to correct for finite sample bias rather than using shuffled

data which has been the standard procedure in the literature on information theory

so far (see, inter alia, Papana, Kugiumtzis, and Larsson, 2001).

This paper includes two empirical applications of the transfer entropy method-

ology to measure information flows between financial markets. First, we examine

the information flows between the credit default swap (CDS) and the bond market,

analyzing data on 27 iTraxx Europe companies. Both markets reflect the price of

credit risk for the same reference entity. Therefore, as outlined in Blanco, Brennan,

and Marsh (2005), assuming a cointegration relationship between the time series

is plausible. Our dataset consists of a sample of CDS and bond market data of 27

European companies from January 2004 to December 2011. Due to market imper-

fections cointegration is not always supported for each and every company (as is

also the case in the study of Blanco et al., 2005) so that a VECM cannot be reason-

ably applied. Using transfer entropy, we find in general significant bi-directional

information flow between the CDS and the bond market. Our results point towards

a slight dominance of the CDS market, in particular during the financial crisis, and

thus are in line with previous findings in the literature like Blanco et al. (2005) and

Coudert and Gex (2010).

In our second application we analyze factors that might influence the CDS

market by examining the link between market risk and credit risk. Thereby, we

follow Figuerola-Ferrett and Paraskevopoulos (2009) and consider the dynamic re-

lation between iTraxx and VIX. Again, we draw on a long sample of iTraxx and
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VIX data ranging from March 2005 to November 2011. We find that in general the

transfer entropy estimates for the flow of information from the VIX to the iTraxx

are statistically significant and exceed the information flow from the iTraxx to the

VIX.

The remainder of the paper is organized as follows. Section 2 introduces the

concept of transfer entropy. Diagnostics and inference are discussed in Section 3.

Section 4 contains the empirical applications and Section 5 concludes.

2 Measuring information flows by transfer entropy

The concept of transfer entropy is best understood within the context of information

theory. In the era of early telecommunications, when communication was based on

Morse code, Hartley (1928) introduced a measure for information relying on the

logarithm of the number of all possible symbol sequences that can occur. The

general aim was to optimally encode messages such that they can be transmitted

more quickly. For that purpose it was necessary to quantify the information that

can be derived from a specific sequence of transmitted symbols.

Consider the following example: when flipping a fair coin, there are two

equally likely outcomes, head or tail. According to Hartley (1928) the information

(denoted by H) that can be gained from flipping a coin once is given by H = log(2).

If the base of the logarithm is 2, H = log2(2) = 1 and the measurement unit will be

bits. Consequently, n flips of the coin yield n bits of information (H = log(2n) =

n× log2(2) = n) and we would need n binary digits to specify the resulting sequence

(such as 1 for heads and 0 for tails).

In the case of symbols that are not equally likely, but occur with different

probabilities p j, the amount of information gained from a specific symbol j is given

by log(1/p j). The average amount (per symbol) of information one can get from

such a sequence is defined as H = ∑
n
j=1 p jlog

(
1
p j

)
, where n is the number of dis-

tinct symbols. This leads to the general formula of Shannon (1948): assume that J

is a discrete variable with probability distribution p( j), where j labels the different
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values (or states) that J can take. Then the Shannon entropy

HJ =−∑
j

p( j)× log2 p( j) (1)

gives the average number of bits needed to optimally encode independent draws

from the distribution of J. In the following “log” denotes the base 2 logarithm and

the summation runs over the distinct values of J.1 Shannon’s formula in Equa-

tion (1) is a measure for uncertainty. The more bits are needed to optimally encode

realizations of the process, the higher is the uncertainty about possible realizations

of J. The largest amount of uncertainty will be given if all values of J are equally

likely, i.e., if J is uniformly distributed and a random draw produces any realization

of J with the same probability.

The link between uncertainty and information is established drawing on the

Kullback-Leibler distance (see Kullback and Leibler, 1951). It defines the excess

amount of bits needed in the encoding when erroneously assuming a probability

distribution q( j) of J different from p( j):

KJ = ∑
j

p( j)× log
p( j)
q( j)

. (2)

In the bivariate case, let I and J be two discrete random variables with

marginal probability distributions p(i) and p( j) and joint probability pIJ(i, j). The

mutual information of the two processes is defined as the reduction in uncertainty

compared to the case where both processes are independent, i.e. where the joint dis-

tribution is given by the product of the two marginal distributions, pIJ = p(i)p( j).

The corresponding Kullback entropy which is known as the formula for mutual

information is given by

MIJ = ∑
i, j

p(i, j)× log
p(i, j)

p(i)p( j)
(3)

1The choice of the basis does not change the information contained in the measure, but only
alters the unit of measurement: base 2 logarithm indicates bits, base 10 gives digits and the base of
the natural logarithm yields nats.
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where the summation runs over all possible values i and j. Mutual information can

detect any form of statistical dependency between different variables. However, it

is a symmetric measure and therefore does not deliver any evidence concerning the

dynamics of information exchange.

In the context of time series, dynamical structure can be introduced by

considering transition probabilities (see Schreiber, 2000). Let I be a stationary

Markov process of order k, then it holds for the probability to observe I at time

t +1 in state i conditional on the k previous observations that p(it+1|it , ..., it−k+1) =

p(it+1|it , ..., it−k). The average number of bits needed to encode one more time

series observation if the previous values are known is given by

hI(k) =−∑
i

p
(

it+1, i
(k)
t

)
× log p

(
it+1|i

(k)
t

)
(4)

where i(k)t = (it , ..., it−k+1). In the bivariate case Schreiber (2000) proposes to mea-

sure information flow from process J to process I by quantifying the deviation from

the generalized Markov property p
(

it+1|i
(k)
t

)
= p

(
it+1|i

(k)
t , j(l)t

)
, where l gives the

order of the assumed Markov process for J. In the case of no information flow from

J to I the transition probabilities of I are not affected by previous observations of

J. Schreiber (2000) then draws on the Kullback-Leibler distance to measure the

deviation of the bivariate system from this assumption and derives the formula for

transfer entropy as

TJ→I(k, l) = ∑p
(

it+1, i
(k)
t , j(l)t

)
× log

p
(

it+1|i
(k)
t , j(l)t

)
p
(

it+1|i
(k)
t

) . (5)

TJ→I consequently measures the information flow from process J to process I. Note

that transfer entropy is an asymmetric measure. This means that by exchanging J

and I and calculating TI→J(l,k) along with TJ→I(k, l) we can infer the dominant

direction of the information flow.

The transfer entropy measure in Equation (5) is derived for discrete data.

In any economic application, the observed time series are, however, continuous. In

order to apply transfer entropy, it is necessary to partition the data into discretized
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values. Motivated by the subsequent applications we present the partitioning into

three bins. A higher number of bins is possible, but requires a considerably greater

amount of data. To obtain the symbolically encoded series S(t) a time series x(t) is

partitioned as follows:

S(t) =


1 for x(t)≤ q1

2 for q1 < x(t)< q2

3 for x(t)≥ q2

. (6)

The symbolic encoding above replaces each value in the observed time series by a

corresponding symbol (A,B,C). The choice of the quantile should be motivated by

the distribution of the data (see also Section 4). In order to check for robustness of

the transfer entropy measure, the quantile can be varied.

3 Diagnostics and Inference

The choice of the block lengths (i.e. the order of the Markov process) k and l in

Equation (5) is a crucial point when calculating transfer entropy measures. k and

l will have to be large enough to capture the information flow between two time

series. However, finite sample effects will become more severe when increasing the

block length. Then again, if k in TJ→I(k, l) is too low, information contained in the

past values of I might erroneously be assigned to come from J. This will not happen

if I is independent from itself with a delay of k. We therefore base the selection of

the appropriate block length on the calculation of mutual information between the

time series and its own series with delay k:

MIIk(k) = ∑
i,ik

p(i, ik)× log
p(i, ik)

p(i)p(ik)
, (7)

where Ik denotes the series I with delay k. The value of k associated with the first

local minimum of this function is used as the optimal block length (see Fraser and

Swinney, 1986, Reddy and Sebastin, 2009).
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The transition probabilities needed to calculate transfer entropy measures

have to be estimated from a specific sample. Marschinski and Kantz (2002) show

that the transfer entropy estimates derived in Equation (5) are likely to be biased due

to small sample effects. They propose a modification, the effective transfer entropy

ETshuffled
J→I (k, l) := TJ→I(k, l)−TJshuffled→I(k, l) , (8)

where TJshuffled→I indicates the transfer entropy with shuffled series J. Shuffling

is implemented by randomly drawing realizations from the distribution of J and

realigning them to generate a new time series. Thus, all statistical dependencies

between the two (time) series are destroyed. TJshuffled→I(k, l) consequently converges

to zero with increasing sample size and any non-zero value of TJshuffled→I(k, l) is due

to small sample effects. It is common practice to shuffle the data several times and

use the transfer entropy estimate averaged over the simulations to estimate the bias

and calculate effective transfer entropy. However, shuffling the data destroys the

dependencies within the univariate time series as well. A more accurate detection

of the finite sample bias is provided by a setting that provides the distribution of

the transfer entropy estimates under the assumption of no information flow while

retaining the dynamics of the univariate time series. This issue is directly related

to the question of how to conduct inference concerning the estimated information

flows.

The straightforward approach is a standard block bootstrap along the lines

of Carlstein (1986). However, as outlined by Lahiri (1999), standard methods such

as non-overlapping-block bootstraps, moving-block bootstraps or bootstraps with

random block length produce biased estimates. We therefore draw on Horowitz

(2003) and bootstrap the underlying Markov process. This means that we simulate

process J based on the calculated transition probabilities, whereby the dependen-

cies between J and I are destroyed, but the dynamics of the series J is retained.

Transfer entropy is then estimated again using the simulated time series. Repeating

this procedure yields the distribution of the transfer entropy estimate under the null

hypothesis of no information flow which can be used to test for statistical signif-

icance. We also propose to use the bootstrapped distribution to estimate the bias
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which is due to finite sample effects and define Equation (8) as

ETboot
J→I(k, l) := TJ→I(k, l)−TJboot→I(k, l) (9)

where TJboot→I indicates the average over the estimates derived from the null boot-

strap outlined above.

Note again the difference between the shuffled version and our bootstrap-

ping approach: when shuffling the series, single symbols will be randomly rear-

ranged into blocks that might not even occur in the actual sample. In our bootstrap

the symbols will be rearranged based on the probabilities with which they occur

in the actual sample. Thereby we expect to derive a better estimate for the finite

sample bias since the joint probabilities of specific blocks of length k that have to

be estimated within the series J correspond more closely to those that are observed

in the actual sample.

To compare these two approaches we conduct a simulation study. First, we

simulate two independent white noise processes x and y. For each of the 499 simu-

lation runs we create a time series of 7.000 observations which are then discretized

according to Equation (6) using q1 = (1− q2) = 0.1. Due to independence of the

data series, both the shuffling as well as our proposed bootstrap procedure should

report estimates close to zero. Only in small samples the bias should be revealed.

Therefore, we use subsamples of length 1.000, 2.000, etc up to 7.000 and conduct

the bootstrap on these subsamples. The result is depicted in the left graph of Fig-

ure 1. Gray and black distinguish the directions from x to y and vice versa. As

can be seen, the biased transfer entropy estimate (dotted line) only slowly goes to

zero. Both shuffling (solid line) and bootstrapping (dashed line) efficiently capture

the bias such that the corrected transfer entropy estimates are both close to zero.

If we introduce some dependence in the individual time series while still keeping

them independent, the result holds that both shuffling and bootstrapping provide a

reliable bias correction.

Insert Figure 1 about here

The gains of the proposed bootstrapping become apparent when the data are
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not independent. We therefore simulate between 200 and 100.000 observations of

the following model

xt = 0.2xt−1 + εx,t (10)

yt = xt−1 + εy,t (11)

with εi,t ∼ N(0,2). In this case, knowing xt−1 helps to predict yt , but not vice versa.

Obviously these data are cointegrated, but cointegration is not always confirmed

by cointegration tests, in particular in the small samples. For the transfer entropy

measures we expect significant information flow from x to y and none from y to

x. The flow from x to y is colored in gray, y to x in black. As can be seen, the

shuffling, in particular in the smallest samples, overestimates the bias (the solid line

depicting ETshuffled is below the dashed line which depicts ETboot). The difference

vanishes as the sample size grows, but the bias generally vanishes as well. We

therefore conclude that our bootstrapping procedure outperforms the estimation of

the bias through shuffling in small samples.

In order to derive the distribution of the transfer entropy estimates them-

selves, we need to alter the proposed bootstrap procedure, since we have to preserve

the dependencies between both time series. Consequently, we conduct the follow-

ing steps: we first collapse and recode the two time series and define the block

length k of the collapsed time series according to the mutual information criterion

in Equation (7). Then, the transition probabilities of the implied Markov process

are estimated and used to produce replications of the collapsed time series. In a last

step the two time series are disentangled from the simulated (collapsed) time series

and transfer entropy is estimated. Repeating these steps yields the bootstrapped

distribution of the transfer entropy estimates and in particular their standard errors

can be derived.

A further issue that has to be considered is the discretization of the data. In

most empirical applications the data – even if already discrete – have to be further

discretized to reduce the number of possible states. The difficulties of discretizing

the data and determining the partitions is referred to as the generating partitions

10



problem. There exist different methods for discretization of the data as well as

for estimation of the joint and conditional probabilities in Equation (5) (see for

instance Hlavackova-Schindler, Palus, Vejmelka, and Bhattacharya, 2007). In the

following applications we will use a simple partitioning of the data into three dis-

joint bins (symbolic encoding) which is motivated by economic considerations (see

Section 4.1). Joint and conditional probabilities are approximated by the observed

frequencies.

4 Empirical Applications

4.1 Information flows between the CDS market and the corporate bond mar-
ket

With the emergence of the Credit Default Swap (CDS) market, default risk has

become directly tradable in the over-the-counter (OTC) market: a CDS is a contract

between two counterparties which transfers credit risk from the protection buyer to

the protection seller who is willing to assume the risk for a pre-specified fee. In

case of default of the underlying financial instrument the buyer receives a payoff.

The CDS spread or premia is denoted in basis points and gives the annualized fee

of the notional volume.

The CDS market is linked to the corporate bond market, as the difference

between a risky bond yield and the risk-free rate also determines the credit risk

associated with a specific company. Consequently, as both markets price credit risk,

there exists an approximate arbitrage relation between the CDS and the corporate

bond market (see Duffie, 1999, Hull and White, 2000a,b).

This arbitrage relation can be explained as follows. Suppose an investor

buys a T -year par bond with yield to maturity of y issued by the reference entity.

The investor also buys credit protection on that entity for T years at pCDS . The

net annual return is y− pCDS which, by arbitrage, and because default risk is elimi-

nated, should be equal to the T -year risk-free rate denoted by x. If y− pCDS < x, then

shorting the risky bond, writing protection on the CDS market, and buying the risk

free rate would present an arbitrage opportunity. If y− pCDS > x, then buying the
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risky bond and protection, and shorting the risk-free bond becomes profitable. Ac-

cordingly, the price of the CDS should equal the credit spread, pCDS = pCS = y−x.

However, with market imperfections such as liquidity premia, not exactly matching

maturity dates, and cheapest to delivery options in case of default, the arbitrage re-

lation is not perfect. Assuming cointegration accounts for the approximate nature

of the arbitrage relation between CDS price and credit spread.

Most empirical studies that examine the importance of the CDS and bond

market use a VECM framework and apply the Hasbrouck (1995) information shares

(see Blanco et al. (2005), Grammig and Peter (forthcoming) and Dötz (2007)).

However, these studies also note that due to market imperfections cointegration

is not always supported by the data and a VECM might not suit the observed time

series. Consequently, we propose to apply transfer entropy as an alternative, model-

free approach. The advantage of this methodology over Hasbrouck (1995) informa-

tion shares is that it does not rely on a cointegration relationship to exist. Still, it is

also applicable if the data are indeed cointegrated. The only requirement to apply

transfer entropy is that the data have to be stationary which is achieved by tak-

ing first differences. Transfer entropy is therefore still valid even if the Hasbrouck

(1995) assumptions are violated and, thus, can be applied much more flexibly.

Our data comprise 27 iTraxx companies and range from January 1, 2004

to December 31, 2011 (2085 observations). The time series of CDS premia are

obtained from Datastream. We use 5-year contracts as they are most liquid (com-

pare Blanco et al., 2005, Dötz, 2007). In order to calculate the corresponding bond

spreads, we have to construct a time series of bond yields that matches the constant

5-years maturity of the CDS time series. We follow Blanco et al. (2005) and use

linear interpolation: for each reference entity, we select in general a bond with less

than five years to maturity and another one with more than five years to maturity. In

some cases when only bonds with longer or shorter time to maturity are available

(on some subinterval of the whole eight years), we choose the two bonds which

are closest to five years to maturity. We then linearly interpolate these bond yields

obtaining a yield curve for different maturities which is in turn used to predict the

yield of an artificial bond with five years to maturity. This procedure is repeated for
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all trading days in the sample, thus generating a time series of bond yields for a five

years to maturity bond. In order to avoid measurement errors due to various options

in bonds, we only include bonds with fixed rate, which are not callable, puttable

or convertible (see also Zhu, 2006). To eventually derive the bond spread (also re-

ferred to as credit spread), we calculate the difference between the risky bond yields

and the risk-free interest rate. The latter is proxied by the 5-year swap rates2. The

bond data as well as the swap rates are obtained from Bloomberg.

As our sample period is rather long, the existing bond market data did not

allow for linear interpolation over the whole sample period for the majority of the

125 iTraxx companies as we need at least two bonds at any point in time of the

observation period. We therefore had to restrict our sample to 27 reference entities

for which data over the whole sample period are available. Note that the selection

of these reference entities is not based on specific criteria, but fully due to the avail-

ability of data. Table 1 provides information (ticker symbol, country of origin and

operating sector) on the reference entities used in this study.

Insert Table 1 about here

In order to derive the transfer entropy estimates, we calculate first differ-

ences of CDS prices rCDS
t = pCDS

t − pCDS
t−1 and the corresponding credit spreads (CS)

rCS
t = pCS

t − pCS
t−1 to ensure stationarity. The observations are then partitioned into

discretized values according to Equation (6). We choose the 0.05 quantile of either

series for q1 and the 0.95 quantile for q2.3 The first bin corresponds to extremely

large negative changes, the second to intermediate and the third to extremely large

changes in the CDS prices and the credit spread. This choice is motivated by the

leptokurtic distribution of changes in CDS prices and credit spreads.

Insert Figure 2 about here
2In several studies, government bond yields are used to proxy the risk-free rate. However, em-

pirical evidence is mostly in favor of the swap rate as an appropriate proxy for the risk-free rate (see
Blanco et al., 2005, Hull, Predescu, and White, 2004, Zhu, 2006).

3Using the values of the 0.1 quantile and 0.9 quantile as cut-off points does not qualitatively
change the overall results, in particular the estimates remain still significant at least on a 5% signifi-
cance level. When the observations in the second bin are further reduced, however, transfer entropy
estimates become mostly insignificant.
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As can be seen from Figure 2 the data deviate from a normal distribution

and reveal fat tails and a peaked center. Within the context of price discovery or in-

formation transfer in general the main task is to determine which market contributes

first and the most to a common information set. If a market is informationally dom-

inant, extreme changes in this market should be incorporated subsequently into the

other market’s prices. The observations in the tails of the leptokurtic return distri-

butions of CDS prices and bond spreads therefore are of major interest. Since the

time series are likely to contain a considerable amount of noise due to the illiquid-

ity of the bond market and the OTC trading of both assets, the intermediate bin is

kept rather large. Thereby, we seek to identify extreme, informative changes more

clearly.

For each reference entity we select the block lengths based on the condi-

tional mutual information criteria (see Equation (7)). The estimated block length

varies between k = l = 1 and k = l = 5.4

Table 2 presents the effective transfer entropy estimates ETboot which are

calculated according to Equation (9). Column 2 holds the estimates of information

flow from the CDS to the bond market, column 3 from the bond to the CDS market.

Column 4 gives the difference between the estimates.

Insert Table 2 about here

The effective transfer entropy estimates are statistically significant at con-

ventional levels for all reference entities. This indicates bi-directional information

transfer between the CDS and bond market. Considering the difference between the

estimates in the last column in Table 2, we observe a larger information flow from

the CDS market to the bond market for 19 reference entities. For the remaining

8 reference entities the information flow from the bond market to the CDS market

dominates. However, the difference between information flows is only statistically

significant for BMW and VOW where dominance of the CDS market is indicated.

Even though our results are weaker, they point towards the same conclusions as

Blanco et al. (2005) or Grammig and Peter (forthcoming) who, based on VECM,

4Detailed results are available upon request.
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state that the CDS market is the informational dominant market. However, these

studies use a different sample of reference entities including US listed corpora-

tions. They also select only those reference entities for estimation, for which the

data supports a cointegration relation. Norden and Weber (2009) also examine US

and European firms and conclude that the relative importance of the CDS market

is less pronounced for European firms than for US firms. Our results point into

the same direction: for our European reference entities, transfer entropy estimates

stress the importance of both the CDS and the bond market with regard to informa-

tion transfer.

One of the key factors of the recent financial crisis was the deterioration

of the CDS market. As our sample includes this period of time, we examine the

effect of the financial crisis on the information transfer between the CDS and the

bond market. As our full-length sample is rather long, we are able to partition the

data into three phases. Phase 1 (1/1/2004-6/30/2007) denotes the pre-crisis period,

phase 2 (7/1/2007-9/30/2009) the crisis and phase 3 (10/1/2009-12/31/2011) the

post-crisis period. We are aware that there is no exact date associated with the start

and end of the crisis. We follow Bai and Collin-Dufresne (2011) with this definition

and also consider the evolution of the CDS premia and bond spreads as shown for

an exemplary reference entity (BASF) in Figure 3 for which we observe a sharp

increase in both series between 2007 and 2009. In addition, as transfer entropy

estimates are based on transition probabilities derived from observed frequencies

in the sample, we avoid phases which are too short in order to keep the estimates

reliable across the three phases.

Insert Figure 3 about here

The results are given in Table 3. In phase 1 we overall observe less in-

formation transmission between both markets. Effective transfer entropy estimates

are statistically significant into both directions for only six reference entities. For

nine we observe significant information transmission in one direction, for four ref-

erence entities from the bond to the CDS market and for five reference entities from

the CDS to the bond market. The informational link between both markets then
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increases during the crisis period (phase 2). Effective transfer entropy estimates in-

dicate statistically significant bi-directional information flows for the majority (23

out of 27) of reference entities. The information flow from the CDS market exceeds

the information flow from the bond market for 16 reference entities. Phase 3 shows

a similar picture; effective transfer entropy estimates are significant for all but one

reference entity (EDF) and for eleven companies the information flow from the

CDS market exceeds the flow originating in the bond market. Overall, the results

show that information transmission between the CDS and bond market increased

over time and the importance of CDS market was highest during the crisis period.

This is similar to the results of a study by Coudert and Gex (2010) who find that for

sovereigns the CDS market leads the bond market especially during the period of

the recent crisis.

4.2 Information transfer between market risk and credit risk

With respect to the process of pricing credit risk, we have shown that the CDS

market plays an important role. Yet, when agents price CDS, they need informa-

tion concerning credit risk, i.e the default probability of the underlying reference

entity. Some information might be gained from rating agencies. Still, the ques-

tion remains whether information concerning credit risk can also be extracted from

the stock market. A theoretical link between stock market and credit risk can be

found in the model by Merton (1974). Empirical studies also document this link.

Byström (2005) examines the relation between the iTraxx indices as a measure for

credit risk and the stock price movements of the underlying entities. He detects a

positive correlation between stock index return volatility and the iTraxx. Further-

more, Longstaff, Pan, Lasse, and Singleton (2011), Collin-Dufresne, Goldstein, and

Spencer (2001) as well as Pan and Singleton (2008) find a link between sovereign

credit risk and volatility indices. Figuerola-Ferrett and Paraskevopoulos (2009) also

examine the dynamic link between market risk and credit risk. Using time series

data before and throughout the recent crisis, they find a cointegration relationship

between CDS premia and the VIX and estimate price discovery measures based on

a VECM.
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In the following, we use the concept of transfer entropy to determine the

dynamic link between market risk and credit risk by quantification of the informa-

tion transfer between the iTraxx and the VIX Index. The VIX is used as a proxy

for market risk as high VIX values are generally associated with a large amount

of volatility in the stock market as a result of investor uncertainty. It is based on

the implied volatilities of S&P 500 index options and measures the expectations of

stock market volatility over the next 30 days5.

The data comprise daily closing prices of the VIX ranging from March 21,

2005 to November 23, 2011 and the corresponding iTraxx Europe 5-year index

data, i.e. we have 1685 observations6. Figure 5 shows the time series of VIX and

iTraxx over the sampling period.

Insert Figure 5 about here

After computing first differences in both series the observations are selected

into three bins as in Equation (6) and effective transfer entropy measures are esti-

mated for both directions according to Equation (8). The number of lags included

was selected by the mutual information criterion (see Equation (7)). Furthermore,

the thresholds for selection into the three bins are varied. Figure 4 shows Kernel

density plots for VIX and iTraxx first differences. We can see that compared to the

distribution of the CDS premia and credit spread in the first application, the tails of

the distribution are much more pronounced. These tail observations are those that

we want to catch in the first and third bin as they are supposed to be most informa-

tive. Still, it is less evident to determine the appropriate size of the central bin than

in the CDS credit spread case. Therefore, we will vary the size of the second bin

in order to examine the effect on the resulting transfer entropy estimates in more

detail. To remain consistent with the economic reasoning above, we restrict the

5First constructed from the CBOE S&P 100 index option prices, the VIX was introduced in 1993.
In 2003 the construction of the VIX was revised and the underlying index has been changed to the
CBOE S&P 500 index (see Whaley, 2009).

6The iTraxx Europe is a CDS index which is composed of the 125 most liquid CDS referencing
European investment grade credits. The index resulted from a 2004 merger of the two main CDS
indices iBoxx and Trac-c and is traded over-the-counter, mostly with five years maturity.
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binning in such a way that the second (central) bin has to remain larger than the tail

bins.

Insert Figure 4 about here

The results are presented in Table 4. Overall, we observe a larger infor-

mation flow from the VIX to the iTraxx. Effective transfer entropy estimates are

statistically significant for three out of five of the different definitions of bins. In

three cases, the estimate of the bias became larger than the estimate of transfer en-

tropy, resulting in negative values of the effective transfer entropy (irrespective of

using shuffling or bootstrapping for bias correction). This result is closely linked

to the choice of the number of lags. Note that the mutual information criterion

did not select the same block length for all binnings. The longer the blocks, the

more transition probabilities are to be estimated from the sample, increasing the

variance of the estimates and possibly reducing their statistical significance. This

noise also leads to high estimates of the bias which may then render effective trans-

fer entropy negative. Still, our results are generally in line with Figuerola-Ferrett

and Paraskevopoulos (2009) who find that the VIX is informationally dominant

compared to the iTraxx. Even though the difference between the effective transfer

entropy estimates for our sample is only statistically significant in one case, we find

consistently larger estimates for the information flow from the VIX to the iTraxx

than vice versa. This result is robust across different binnings as long as the first

and third bin are restricted to the tails of the distribution.

Insert Table 4 about here

As the time series of VIX and iTraxx also include the recent crisis period,

we divide the data into the three phases as defined above to examine the effect of

the crisis period. Results are provided in Table 5.

Insert Table 5 about here

In the pre-crisis period, our results point towards bi-directional information

flow. In the first binning, both directions are significant with the iTraxx dominating

18



the VIX. The difference is, however, not statistically significant. In the second bin-

ning, the picture is reversed: we find significantly higher transfer entropy estimates

for the information flow from the VIX to the iTraxx. For the remaining binnings

the transfer entropy measure picks up too much noise and therefore the bias esti-

mates become larger than the estimator for the transfer entropy itself. This is due

to the comparatively high number of lags that the mutual information criterion sug-

gested. During the crisis period, the importance of the VIX becomes more explicit:

the effective transfer entropy from the VIX to the iTraxx is (highly) significant for

three binnings. In the other direction, it is only significant (but still smaller) in the

first binning. In some of the other binnings the noise component seems to domi-

nate again and transfer entropy estimates become negative which means that there

is no information flow from the iTraxx to the VIX, highlighting again the predom-

inance of the VIX during this period. After the crisis, the dominance of the VIX

still holds, but in general our results suggest that the market environment returns

to bi-directional information flow. We find significant effective transfer entropy

estimates in both directions, even though not throughout all binnings.

From the results presented above we conclude that a dynamic relation be-

tween market risk and credit risk exists with a predominant information transfer

from the VIX to the iTraxx. One should bear in mind that the two market designs

are different: the iTraxx is traded over-the-counter while the VIX is calculated on a

fixed time scale. The information flow from VIX to the iTraxx might therefore be

caused by other (macroeconomic) factors which are incorporated into the VIX first,

while the non-electronic OTC trading of the iTraxx might induce a delay of incorpo-

ration of information. As our analysis is carried out on daily data, this issue should,

however, be only of minor importance and not becloud our general conclusions.

Further research might be conducted regarding this point, since when calculating

transfer entropy, it is generally possible to condition on further variables to purge

the resulting information flows of the common reaction to an external factor. How-

ever, an additional variable further increases the number of transition probabilities

that have to be estimated from the sample, which requires more observations in

order to yield results of some accuracy. Furthermore, the partitioning of the obser-
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vations into the different bins seems to be of importance and should be taken into

consideration when interpreting transfer entropy estimates.

5 Conclusion

The paper uses the concept of transfer entropy to examine the information transfer

between financial markets. Transfer entropy as defined by Schreiber (2000) quanti-

fies information transmission based on the Kullback-Leibler distance. Its main ad-

vantages are that it is non-parametric and accounts for linear as well as non-linear

dynamics. Thereby, it constitutes an interesting alternative to standard measures

such as Granger causality, which can detect but not quantify the amount of infor-

mation transfer. The bootstrap procedure proposed in this paper allows to conduct

inference of the transfer entropy estimates, an issue that has not been addressed so

far. By bootstrapping the underlying Markov process rather than shuffling the data

or relying on block bootstraps we are able to test for statistical significance of the

transfer entropy estimates more accurately. The same method is used to correct the

bias in the transfer entropy estimates. It is shown that this method has favorable

properties as compared to the standard, shuffling procedure.

The standard methodology to measure information transmission between

financial markets is the information share technique of Hasbrouck (1995) which re-

lies on the existence of a cointegration relationship. In the absence of cointegration,

transfer entropy offers an appealing alternative to detect and quantify information

flows. Even if cointegration is supported, but the information share bounds are

very large, transfer entropy may be used as a further back-check to determine the

informationally dominant market.

We apply the concept of transfer entropy to examine the information flows

between the CDS and bond market using data on 27 iTraxx companies. The results

show that even though information flows in both directions, the CDS market domi-

nates the market for credit risk. By analyzing different time periods, we show that

information transmission between the CDS and bond market increased over time

and the importance of CDS market was highest during the crisis period. Our general
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results are therefore in line with previous studies by Blanco et al. (2005), Grammig

and Peter (forthcoming) and Dötz (2007) which emphasize the dominance of the

CDS market in pricing credit risk.

Furthermore, we examine the information transmission between market risk

and credit risk as proxied by the VIX and the iTraxx Europe index. We find that

information flows mainly from the VIX to the iTraxx. Before the recent financial

crisis, information flow was probably bi-directional, but during the crisis period the

importance of the VIX became apparent which constitutes an interesting result con-

cerning the evaluation of credit risk.
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Figure 1: Illustration of small sample bias.
The figure depicts the (biased) transfer entropy estimate (dotted line) due to small sample size along
with the bias corrected measures based on shuffling (solid line) and bootstrap (dashed line). Gray
and black distinguish the two directions of information flow. The left graph refers to two independent
white noise series, the right graph to a situation where one time series is the lag of the other plus
noise. Scaling of the abscissa denotes the sample size used in the simulation runs.
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Figure 2: Kernel density plots of BASF CDS and credit spread first differences.
The figure shows kernel density plots of CDS and credit spread (CS) first differences (solid line)

for BASF together with the normal density (dashed line).
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Figure 3: Credit spread and CDS premia for BASF
The graphic depicts time series of the credit spread (black line) and the CDS (grey line) premia for

BASF, denoted in basis points.
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Figure 4: Kernel Density plots of iTraxx and credit VIX first differences.
The figure shows kernel density plots of the iTraxx and VIX first differences (solid line) together

with the normal density (dashed line).
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Figure 5: VIX and iTraxx.
The figure shows the VIX (grey line) and iTraxx (black line) time series. The left axis scale

belongs to the iTraxx and is denoted in basis points. The right axis scale measures the VIX given in
percent.
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Ticker Company Country Sector
AZ Allianz Germany Financial
BASF BASF Germany Industrials
BAY Bayer Germany Industrials
BMW BMW Germany Automobiles
CAR Carrefour France Consumers
DT Deutsche Telekom Germany TMT
EDF Electricite de France France Energy
E Enel Italy Energy
FOT Fortum Oyi Finland Energy
FTE France Telecom France TMT
GDF GDF Suez France Energy
IBE Iberdrola Spain Energy
KPN Koninklijke KPN Netherlands TMT
LVMH LVMH France Consumers
MEO Metro Germany Consumers
MT ArcelorMittal Luxembourg Industrials
NGG National Grid UK Energy
REP Repsol Spain Energy
RWE RWE Germany Energy
SGO St Gobain France Industrials
SOL Solvay Belgium Industrials
STD Banco Santander Central Hispano Spain Financial
TEF Telefonica Spain TMT
TIT Telecom Italia Italy TMT
VAT Vattenfall Sweden Energy
VE Veolia France Energy
VOW VW Germany Automobiles

Table 1: Reference entities
The table shows the ticker symbol, company name, country of origin and industry sector for each

of the 27 iTraxx companies used in this study.
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Ticker ETboot(CDS→CS) ETboot(CS→CDS) DIFF
AZ 0.0989 *** 0.0966 *** 0.0023

(0.0135) (0.0138)
BASF 0.0736 *** 0.0514 *** 0.0222

(0.0173) (0.0168)
BAY 0.0826 *** 0.0794 *** 0.0032

(0.0176) (0.0170)
BMW 0.1204 *** 0.0889 *** 0.0315 **

(0.0178) (0.0163)
CAR 0.0737 *** 0.0603 *** 0.0134

(0.0162) (0.0160)
DT 0.0382 *** 0.0398 *** -0.0015

(0.0078) (0.0071)
EDF 0.0378 *** 0.0365 *** 0.0013

(0.0078) (0.0080)
EN 0.0646 *** 0.0694 *** -0.0049

(0.0171) (0.0156)
FOT 0.0837 *** 0.1006 *** -0.0169

(0.0124) (0.0142)
FTE 0.0695 *** 0.0787 *** -0.0092

(0.0157) (0.0156)
GDF 0.0751 *** 0.0719 *** 0.0032

(0.0163) (0.0170)
IBE 0.1072 *** 0.0972 *** 0.0100

(0.0173) (0.0173)
KPN 0.0324 *** 0.0364 *** -0.0039

(0.0068) (0.0076)
LVMH 0.1321 *** 0.1151 *** 0.0170

(0.0166) (0.0171)
MEO 0.0562 *** 0.0517 *** 0.0046

(0.0095) (0.0108)
MT 0.1160 *** 0.1106 *** 0.0054

(0.0173) (0.0171)
NGG 0.0580 *** 0.0413 *** 0.0167

(0.0090) (0.0075)
REP 0.1023 *** 0.1032 *** -0.0009

(0.0164) (0.0171)
RWE 0.0737 *** 0.1000 *** -0.0263

(0.0132) (0.0145)
SGO 0.0620 *** 0.0557 *** 0.0064

(0.0092) (0.0095)
SOL 0.0146 ** 0.0239 *** -0.0094

(0.0078) (0.0082)
STD 0.0863 *** 0.0780 *** 0.0083

(0.0124) (0.0120)
TEF 0.1121 *** 0.1046 *** 0.0075

(0.0145) (0.0146)
TIT 0.0345 *** 0.0201 *** 0.0144

(0.0071) (0.0061)
VAT 0.0369 *** 0.0369 *** 0.0000

(0.0070) (0.0073)
VE 0.0451 *** 0.0384 *** 0.0067

(0.0076) (0.0086)
VOW 0.0627 *** 0.0229 *** 0.0398 **

(0.0084) (0.0073)

Table 2: Effective transfer entropy estimates
The table shows effective transfer entropy estimates from the CDS to the bond market,

ET(CDS→CS) and from the bond market to the CDS market, ET(CS→CDS). The last column
gives the difference between both estimates, so that negative (positive) values indicate a larger

information flow from the bond (CDS) to the CDS (bond) market. Standard errors derived from the
bootstrap procedure outlined in Section 3 using 1000 simulation runs are given in parentheses.

*,**,*** indicate significance at the 10, 5, 1% significance level.
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PHASE 1 (PRE-CRISIS) PHASE 2 (CRISIS) PHASE 3 (POST-CRISIS)
ETboot ETboot ETboot

Ticker (CDS→CS) (CS→CDS) (CDS→CS) (CS→CDS) (CDS→CS) (CS→CDS)
AZ -0.0202 0.0416 *** 0.0704 *** 0.0408 *** 0.0348 *** 0.0479 ***

(0.0159) (0.0190) (0.0178) (0.0156) (0.0159) (0.0161)

BASF 0.0068 -0.0059 0.0931 *** 0.0806 *** 0.0922 *** 0.0996 ***
(0.0073) (0.0067) (0.0236) (0.0221) (0.0270) (0.0257)

BAY 0.0226 ** 0.0232 ** 0.0689 *** 0.0638 *** 0.0258 0.0299 *
(0.0118) (0.0108) (0.0198) (0.0189) (0.0291) (0.0312)

BMW 0.0017 0.018** 0.050*** 0.030*** 0.0238 *** 0.0282 ***
(0.0078) (0.0101) (0.0226) (0.0172) (0.0163) (0.0164)

CAR 0.0218 0.0129 0.0826 *** 0.0714 *** 0.1132 *** 0.1089 ***
(0.0198) (0.0187) (0.0224) (0.0244) (0.0296) (0.0295)

DT 0.0317 ** 0.0139 0.0089 * -0.0019 0.0742 *** 0.0942 ***
(0.0134) (0.0144) (0.0122) (0.0076) (0.0225) (0.0231)

EDF 0.0042 0.0012 0.0375 *** 0.0333 *** 0.0216 0.0152
(0.0111) (0.0102) (0.0137) (0.0156) (0.0309) (0.0307)

EN 0.0089 -0.0006 0.0237 * 0.0186 0.1086 *** 0.0563 ***
(0.0125) (0.0117) (0.0219) (0.0182) (0.0249) (0.0238)

FOT 0.0129 0.012 0.0449 *** 0.0467 *** 0.0488 *** 0.0714 ***
(0.0162) (0.0151) (0.0188) (0.0173) (0.0182) (0.0202)

FTE 0.0478 *** 0.0291 ** 0.0286 ** 0.0363 *** 0.0913 *** 0.0939 ***
(0.0184) (0.0185) (0.0146) (0.0145) (0.0254) (0.0230)

GDF 0.0129 0.0059 0.026*** 0.0133 ** 0.0789 *** 0.0688 ***
(0.0087) (0.0093) (0.0166) (0.0139) (0.0258) (0.0221)

IBE -0.0035 0.0008 0.0336 *** 0.0433 *** 0.0686 *** 0.0356 ***
(0.0065) (0.0083) (0.0142) (0.0152) (0.0182) (0.0140)

KPN 0.036*** 0.0371 *** 0.0206 0.0258 0.0332 *** 0.032***
(0.0115) (0.0114) (0.0235) (0.0233) (0.0162) (0.0172)

LVMH 0.0123 0.0314 *** 0.1224 *** 0.1033 *** 0.0237 ** 0.0304 ***
(0.0097) (0.0115) (0.0308) (0.0300) (0.0119) (0.0138)

MEO 0.0068 0.0118 0.0144 ** 0.0141 ** 0.0834 *** 0.0707 ***
(0.0213) (0.0218) (0.0140) (0.0139) (0.0164) (0.0232)

MT 0.0295 ** 0.0166 0.0217 *** 0.0109 ** 0.046** 0.0388 **
(0.0135) (0.0129) (0.0151) (0.0123) (0.0296) (0.0262)

NGG 0.0066 0.0084 0.0484 *** 0.045*** 0.0136 * 0.0233 **
(0.0072) (0.0074) (0.0145) (0.0173) (0.0138) (0.0121)

REP 0.0181 ** 0.0147 ** 0.0268 0.047** 0.0565 *** 0.0447 ***
(0.0076) (0.0084) (0.0302) (0.0298) (0.0169) (0.0181)

RWE 0.0152 ** 0.0122 * 0.0429 *** 0.0353 ** 0.0102 0.0272 **
(0.0090) (0.0085) (0.0160) (0.0176) (0.0144) (0.0147)

SGO -0.0108 -0.0038 0.0169 ** 0.0068 * 0.0731 *** 0.0834 ***
(0.0211) (0.0212) (0.0142) (0.0102) (0.0225) (0.0192)

SOL 0.0345 *** 0.0135 0.0598 *** 0.044** 0.021 0.0826 ***
(0.0123) (0.0115) (0.0234) (0.0214) (0.0201) (0.0234)

STD 0.0146 0.039*** 0.0276 ** 0.0207 ** 0.0234 ** 0.0404 ***
(0.0110) (0.0129) (0.0168) (0.0131) (0.0153) (0.0131)

TEF 0.0044 0.0062 0.0517 *** 0.0625 *** 0.0449 *** 0.0566 ***
(0.0107) (0.0102) (0.0186) (0.0193) (0.0191) (0.0212)

TIT 0.0352 ** 0.0148 0.0602 *** 0.055*** 0.0644 *** 0.056***
(0.0229) (0.0236) (0.0185) (0.0173) (0.0185) (0.0177)

VAT -0.0052 0.0077 0.073*** 0.0438 ** 0.0197 0.0532 ***
(0.0106) (0.0108) (0.0217) (0.0210) (0.0180) (0.0198)

VE 0.0139 ** 0.0062 0.0631 *** 0.0694 *** 0.0234 * 0.0434 ***
(0.0067) (0.0083) (0.0224) (0.0240) (0.0187) (0.0191)

VOW 0.0563 *** 0.0558 *** 0.0398 *** 0.0327 ** 0.0556 *** 0.0344 **
(0.0148) (0.0139) (0.0163) (0.0165) (0.0168) (0.0163)

Table 3: Effective transfer entropy estimates: pre-crisis, crisis and after crisis phase
The table shows effective transfer entropy estimates from the CDS to the bond market,

ET(CDS→CS) and from the bond to the CDS market, ET(CS→CDS). Standard errors derived
from the bootstrap procedure outlined in Section 3 using 1000 simulation runs are given in

parentheses. *,**,*** indicate significance at the 10, 5, 1% significance level.
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Quantiles ETboot(iTraxx→VIX) ETboot(VIX→iTraxx) DIFF
q1 q2 . .
5 95 0.0409 *** 0.0518 *** -0.0109

(0.0089) (0.0106)
10 90 0.0303 * 0.0665 *** -0.0362

(0.0298) (0.0306)
15 85 -0.0404 0.0351 -0.0755**

(0.0391) (0.0381)
20 80 0.0213 *** 0.0303 *** -0.0089

(0.0071) (0.0083)
25 75 -0.2968 -0.2750 -0.0218

(0.0369) (0.0380)

Table 4: Effective transfer entropy for VIX and iTraxx
The table shows the effective transfer entropy from VIX to iTraxx series and vice versa. All

measures are calculated with the data seperated into three bins according to the quantiles in the first
two columns (compare Equation (6)). The last column gives the difference between both estimates,

so that negative (positive) values indicate a larger information flow from the VIX (iTraxx) to the
iTraxx (VIX). Bootstrapped standard errors using 1000 simulation runs are given in parentheses.

*,**, *** denote statistical significance on the 10, 5, 1% level of significance.

Phase 1 (pre-crisis) Phase 2 (crisis) Phase 3 (post-crisis)
Quantiles ETboot ETboot ETboot

q1 q2 (iTraxx→VIX) (VIX→iTraxx) (iTraxx→VIX) (VIX→iTraxx) (iTraxx→VIX) (VIX→iTraxx)
5 95 0.0308 * 0.0285 ** 0.0337 ** 0.0685 *** 0.0168 ** 0.015 ***

(0.0212) (0.0175) (0.0147) (0.0161) (0.0142) (0.0142)
10 90 0.0088 0.0848 *** 0.0179 0.041 *** 0.0185 0.0289 *

(0.0436) (0.0425) (0.0198) (0.0232) (0.0225) (0.0233)
15 85 -0.0388 -0.0319 -0.014 0.0562 * -0.0027 0.0146 **

(0.0553) (0.0545) (0.049) (0.0517) (0.0101) (0.0132)
20 80 -0.2114 -0.2154 -0.0443 0.0241 0.0163 ** 0.0095 *

(0.0557) (0.0559) (0.021) (0.024) (0.0146) (0.0139)
25 75 -0.3278 -0.2912 -0.3917 -0.2941 0.0054 0.0045

(0.0457) (0.0462) (0.054) (0.0545) (0.0131) (0.0108)

Table 5: Effective transfer entropy for VIX and iTraxx: pre-, crisis and after crisis
phase

The table shows the effective transfer entropy from VIX to iTraxx series and vice versa. All
measures are calculated with the data seperated into three bins according to the quantiles in the first
two columns (compare Equation (6)). Bootstrapped standard errors using 1000 simulation runs are
given in parentheses. *,**, *** denote statistical significance on the 10, 5, 1% level of significance.
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