Chapter 1
The Quickest Transshipment Problem*

Bruce Hoppef

Abstract

A dynamic network consists of a graph with capacities and
transit times on its edges. The quickest transshipment
problem is defined by a dynamic network with several
sources and sinks; each source has a specified supply and
each sink has a specified demand. The problem is to send
exactly the right amount of flow out of each source and into
each sink in the minimum overall time.

Variations of the quickest transshipment problem have
been studied extensively; the special case of the problem
with a single sink is commonly used to model building evac-
uation. Similar dynamic network flow problems have nu-
merous other applications; in some of these, the capacities
are small integers and it is important to find integral flows.
There are no polynomial-time algorithms known for most
of these problems.

In this paper we give the first polynomial-time algo-
rithm for the integral quickest transshipment problem. In
an earlier draft of this paper [11], we gave a more compli-
cated polynomial-time algorithm for the single-sink special
case. Previously, the integral quickest transshipment prob-
lem could only be solved efficiently in the special case of a
single source and single sink.

1 Introduction

Evacuating some structures seems harder than evacu-
ating others. Young pupils in a one-room schoolhouse
can simply scramble for the nearest exit when the fi-
nal bell rings each day. Office workers in a modern
skyscraper face a greater logistical challenge. If each
occupant rushes greedily towards his nearest exit, the
likely result is a set of congested bottlenecks, leaving
some people inside for longer than truly necessary. Va-
cations can be even worse than the office, however.
Passengers on a cruise ship face an even more com-
plicated evacuation problem when their luxury liner

Department of Computer Science, Cornell University,
Ithaca, NY 14853. Research supported by a National Science
Foundation Graduate Research Fellowship.

*School of Operations Research & Industrial Engineering,
Cornell University, Ithaca, NY 14853. Research supported in
part by a Packard Fellowship and an NSF PYTI award.

Eva Tardost

founders on an iceberg. Not only must they leave their
cabins and negotiate a network of narrow corridors, but
they must also account for the finite capacities of the
lifeboats that provide their only hope in the frigid wa-
ters. The problem is not just getting everyone off the
cruise ship; it is getting everyone into a lifeboat in the
minimum overall time.

In this paper we formalize these problems and
describe the first polynomial-time algorithm that solves
all of them. We use dynamic networks to model these
problems. A dynamic network is defined by a directed
graph G = (V, E) with sources, sinks, and non-negative
capacities u,, and integral transit times 7,, for every
edge yz € E. In a feasible dynamic flow, at most .,
units of flow can be pipelined along edge yz with each
time step; flow leaving y at time 6 reaches z at time
0+ Ty

The quickest transshipment problem is defined by
a dynamic network with a set of sources and sinks;
each source has a specified supply of flow, and each
sink has a specified demand. The problem is to send
exactly the right amount of low out of each source and
into each sink in the minimum overall time, if possible.
The integral quickest transshipment problem requires
a solution that is not only optimal but also integral.
(As in traditional network flows, integral instances of
dynamic network flow problems always have integer
solutions.) This paper describes the first polynomial-
time algorithm for the integral quickest transshipment
problem.

Dynamic networks typically allow not only flow on
edges but also intermediate storage at vertices. This
corresponds to holding inventory at a node before send-
ing it onward. We solve the quickest transshipment
problem without using such holdover flow, and further-
more, we prove that our solution is still optimal even
if holdover flow is allowed.

Dynamic network flow problems with several
sources and sinks arise in many applications (e.g., air-
line, truck, and railway scheduling). In a number of
these applications (e.g., airline scheduling) the capac-
ities in the network are small integers, and it is im-
portant to find an integral solution. While there has

been a fair amount of work in this area (see the sur-
veys [1, 18]), there are no polynomial-time algorithms
known for most of these problems, including the in-
tegral quickest transshipment problem with just two
sources and one sink.

Special cases of the quickest transshipment prob-
lem have been studied elsewhere. The evacuation prob-
lem is the quickest transshipment problem with a single
sink;! it is commonly used to model building evacu-
ation. Chalmet et ol [3], Hamacher and Tufekci [9],
and Jarvis and Ratliff [12] all studied pseudopolyno-
mial algorithms for the evacuation problem. Hajek and
Ogier [8] studied dynamic flows in networks with iden-
tically zero transit times; for this special case, they
reduced the evacuation problem to m maximum flow
computations, where n is the number of vertices in
the network. In a previous paper [10], we described
a polynomial-time algorithm for the (fractional) evac-
uation problem with a fixed number of sources. This
paper describes the first polynomial-time algorithm for
the integral evacuation problem (with a variable num-
ber of sources).

The growing topic of network scheduling is closely
related to the evacuation problem. A network schedul-
ing problem consists of a set of processors connected
by links with capacities and transit times; each pro-
cessor begins with a set of jobs of various sizes. The
goal is to run all the jobs in the minimum overall
time, where each job may be run by its home proces-
sor or may be sent into the network for remote exe-
cution. Based on a simple reduction to the integral
evacuation problem (described in Section 7), this pa-
per gives the first polynomial-time algorithm for the
network scheduling problem when every job has unit
size. Further-restricted special cases have been studied
by Deng et al [4] and Fizzano and Stein [5]. Deng et
al [4] described a polynomial-time algorithm for unit-
job network scheduling when every link is uncapaci-
tated and has unit transit time. Recently, Fizzano and
Stein [5] have described a polynomial-time algorithm
for unit-job network scheduling when every link has
unit capacity and unit transit time, and the network
is a ring. Phillips et al [17] studied network schedul-
ing with arbitrary size jobs but without link capacities.
This version of the problem is NP-hard. They obtained
an approximation algorithm that produces a schedule
no more than twice optimal.

TAn earlier draft of this paper [11] defined the evacuation
problem to require a flow that sends at least enough flow out of
each source. The quickest transshipment problem requires a flow
that sends ezactly the right amount of flow out of each source.
In a single-sink setting, the optimal times for these two problems
are equal, and the problems are essentially equivalent.

HOPPE AND TARDOS

Single-source single-sink variants of the quickest
transshipment problem have been well-studied. Two
classical problems are the maximum dynamic flow
problem and the quickest flow problem. A maximum
dynamic flow sends as much flow as possible from
the source to the sink within a specified time bound
T. Ford and Fulkerson [6] showed that the maximum
dynamic flow problem can be solved in polynomial
time via one minimum-cost flow computation. The
quickest flow problem is the single-source single-sink
version of the quickest transshipment problem. It can
be reduced to the maximum dynamic flow problem by
binary search; Burkard et al [2] gave more efficient and
strongly polynomial algorithms for this problem.

Problems in dynamic networks are equivalent to
traditional network problems on an exponentially large
time-expanded graph. Most known methods for solving
practical dynamic network flow problems work directly
on the time-expanded graph. These algorithms are
pseudopolynomial: their running times are polynomial
in the size of the graph G and the maximum allowed
time T (rather than log T').

Dynamic network flow problems are used to model
real-time phenomena. Restricting the value of time
bound T increases the granularity of the model and
hence limits the approximation of reality. A pseu-
dopolynomial dependence of running time on 7" thus
forces a rough approximation of reality with large time
steps. Designing polynomial algorithms for these prob-
lems allows for much greater precision in modeling.

After some definitions and preliminary discussion,
Section 3 defines the lexicographic maximum dynamic
flow problem (extending our original definition in [10])
and describes a polynomial-time algorithm for it. Sec-
tion 4 describes how to compute the optimal time
bound for a quickest transshipment problem. The next
two sections contain the main result of this paper: Sec-
tion 5 shows how to solve a quickest transshipment
problem whose time bound is known, by reducing it to
a lexicographic maximum dynamic flow problem; and
Section 6 proves the correctness and running time of
our algorithm. Finally, Section 7 applies our quickest
transshipment algorithm to unit-job network schedul-
ing and also discusses extensions of our main results.

2 Definitions and Preliminaries

A dynamic network N = (G,u,7,S) consists of a
directed graph G = (V, E) with a non-negative capacity
uy. and integral transit time 7, associated with each
edge yz € E, and a set of terminals S C V. The
maximum capacity is denoted by U and the maximum

THE QUICKEST TRANSSHIPMENT PROBLEM

transit time by 7,,. We also refer to transit times as
length and cost. A terminal is either a source or a sink;
the set of sources is denoted by St and the set of sinks
by S~. We distinguish edges with positive capacity by
including them also in set ET. For simplicity, we make
the following assumptions. E is symmetric: if yz € E
then zy € E; and 7 is antisymmetric: if yz € E then
Tyz = —Tay. Lhere are no parallel edges or zero length
cycles in E. ET contains no opposite edges, and edges
in ET have non-negative transit time. Sources have no
entering edges in ET, and sinks has no leaving edges
in Et. We use k to denote |S|; likewise, n = |V| and
m=|E|.

We refer to flows and circulations in G in the
traditional sense as static flows and circulations. A
static (s,t)-flow is a function f on E that satisfies
antisymmetry constraints f,. = —f., for every edge
yz, and conservation constraints), f,, = 0 for every
node y # s,t, where we use the notation that f,, =0
if y2 ¢ E. A static circulation is defined analogously,
except it must satisfy the conservation constraints
for every node y € V. Static flow or circulation
f is feasible if it also satisfies capacity constraints
fyz < uy, for every edge yz. The residual network
of the static flow or circulation f is defined as Ny =
((V, E),uf,7,8), where the residual capacity function
is uf, = uy. — fy.. The value of a static (s, t)-flow f is
|f| = 32, fsy- Multi-source multi-sink static flows are
defined analogously.

A finite horizon dynamic flow f with time bound
T is equivalent to a static flow in the time-expanded
graph G(T) = (V(T), E(T)). Each vertex y € V has
T + 1 copies in V(T'), denoted y(0),...,y(T). Each
edge yz € E has T — |1y,|+1 copies in E(T), each with
capacity uy., denoted y(#)z(f0+7y.) for any time 6 such
that both y(#) and z(0 + 7,.) are in V(T'). In addition,
E(T) contains a holdover edge y(0)y(0+1) with infinite
capacity for each vertex y and time 0 < 6 < T.
Dynamic flow f with time horizon T is a static flow in
G(T); we assume that f is identically zero before time
0 and after time T'. An infinite horizon dynamic flowis
equivalent to a static low in the infinite time-expanded
graph G(x), defined analogously to G(T'). A dynamic
flow is feasible if it satisfies the capacity constraints.
The dynamic value of f is the net flow out of the
source for all time steps, denoted by |f|. Multi-source
multi-sink dynamic flows are defined analogously; in
this case, |f|, denotes the net flow out of a particular
terminal z(@) for all time 6; note that for a sink z this
is a non-positive amount.

The dynamic network flow problems in this paper
are equivalent to easy (static) flow problems on the
time-expanded graph; however, the size of the graph

G(T) is not polynomial when T is large.

The following dynamic network flow problems ap-
ply to networks with one source and one sink. In the
mazimum dynamic flow problem we are given a time
bound T; we seek to maximize the value |f| of a feasi-
ble dynamic flow f with time horizon 7". In the quickest
flow problem we are given a flow amount v; we seek to
find the minimum time 7" so that there is a feasible
dynamic flow f with time horizon T' and value |f| = v.

The dynamic transshipment problem is a multiple
source and multiple sink version of the maximum
dynamic flow problem. We are given a time bound 7',
and supplies v, where v, > 0 for every source z € ST,
and v, < 0 for every sink x € S~. The problem is to
find a feasible dynamic flow f with time horizon T" and
|f|l« = vz for every terminal z, if such a flow exists.
In the quickest transshipment problem, we are given
supplies v, for z € S; the problem is to minimize the
time 7' so that the resulting dynamic transshipment
problem is feasible. The evacuation problem is the
special case of the quickest transshipment problem with
a single sink.

Generalized Temporally Repeated Flows. As
the value of time bound T grows, so does the size
of time-expanded graph G(T'). Thus, dynamic net-
work flow problems with large time bounds cannot be
solved efficiently by ordinary static network flow com-
putations on a time-expanded graph. Ford and Fulker-
son [6] introduced temporally repeated flows to repre-
sent some simple dynamic flows efficiently. We define
temporally repeated flows in this section and generalize
the concept to allow efficient representation of a consid-
erably larger class of dynamic flows; this generalization
was originally introduced in [10].

A chain flow v = (v, P) is a static flow of value
v > 0 along path P in a network NV. If P is an (s,)-
path of length 7(+y), then given a time bound T no less
than 7(v), any feasible chain flow + induces a feasible
dynamic flow by sending v units of dynamic flow along
path P every time step from time zero till time 7'—7 (7).
The last v units of flow finally reach the sink at time
T.

Let T' = {71,...,7} be a multiset of (s,¢)-chain
flows. We say that I' is a chain decomposition of static
(s,t)-flow f if Ele v = f, and that T is a standard
chain decomposition of f if all chain flows in I" use edges
in the same direction as f does. If I' is a standard
chain decomposition of f, every chain flow in I' is no
longer than time bound T, and f is feasible, then T
induces a feasible dynamic flow, obtained by summing
the dynamic flows induced by each chain flow in T.

A dynamic flow computed in this manner is called a
temporally repeated flow, and we denote it by [[']7. In
the absence of any time bound, I'" induces an infinite
horizon temporally repeated flow [I'] by repeating each
chain flow endlessly.

Consider a standard chain decomposition I' of
static flow f. Ford and Fulkerson [6] observed that
the dynamic value of [T depends only on f, and
is independent of the choice of the standard chain
decomposition I'. The dynamic value can be expressed
as
1) T = @I = D TS

yz€E+

This implies that finding a maximum temporally re-
peated dynamic flow is equivalent to a minimum cost
circulation problem: assign every edge yz cost c,, =
Tyz and introduce a return arc ¢s with infinite capac-
ity and cost —(7'+1). Ford and Fulkerson showed that
there is always a maximum dynamic flow in the class of
temporally repeated flows; thus a maximum dynamic
flow can be computed via one minimum cost circulation
computation.

We use non-standard chain decompositions to in-
duce dynamic flows. The chain flows in a non-standard
decomposition may use oppositely directed flows on
arcs. For example, suppose network N consists of a
single (s,t)-path P of capacity v. To this network,
add a return arc ts with infinite capacity and length
—(T +1). Let C be the cycle consisting of P followed
by ts, and let C’ be the reverse of C' (that is, st followed
by the reverse of P). Define chain flows v = (v, C) and
v = (v,C"), so that v + 7' is the zero flow. Notice
that dynamic flow [{7,7'}] is equivalent to dynamic
flow [{(v, P)}]".

The dynamic flow induced by a non-standard chain
decomposition may not be feasible, even if the sum
of all chain flows is feasible. Consider the previous
example. Chain flow 7' uses opposite edges of path
P to cancel the flow induced by v. If (T + 1) is less
than the total length of path P, however, then the flow
induced by 4’ reaches each opposite edge before v has
provided any flow to cancel. The resulting dynamic
flow is infeasible, even though v + +' is the zero flow,
which is feasible.

3 Lexicographic Maximum Dy-
namic Flows

In the lexicographic maezimum dynamic flow problem
we are given an ordering of the sources and sinks as

HOPPE AND TARDOS

S = {s1,...,s,} and we seek a feasible dynamic flow
with specified time horizon 7' that lexicographically
maximizes the amounts leaving the terminals in the
order si,...,8; (that is, for sinks lexicographically
minimizes the amounts entering the sinks in this order).
In our earlier paper [10] we considered the special case
when the network has a unique sink ¢ and ¢ is last
in the given order. In this section we show how the
algorithm in [10] can be extended to solve the more
general problem. The quickest transshipment problem
will be solved in Sections 4, 5 and 6 by reducing it to
the problem considered in this section.

Minieka [16] and Megiddo [14] showed that in a

static network with terminal set S = {s1,..., sz} there
exists a feasible flow such that the amount of flow
leaving the sets of terminals S; = {s1,...,8;} is si-

multaneously maximum for every i. Such a flow is
clearly lexicographically maximum. This observation
applies to the formulation of the lexicographic maxi-
mum dynamic flow problem using the time-expanded
graph G(T'), with s;(0) corresponding to source s; and
$;(T) corresponding to sink s;.

Beginning with the zero flow, our lexicographic
maximum dynamic flow algorithm computes successive
layers of minimum cost (static) flows in the residual
graphs of previous layers. Each layer yields a standard
chain decomposition that is added to set I'. At the
end of the algorithm, [I'] is a lexicographic maximum
dynamic flow.

We introduce a supersource s, connected to the
network by infinite-capacity zero-transit-time artificial
arcs ss; for all sources s; € ST. Let G* denote the
resulting network, and g* the zero flow in this network.
Notice that ¢* is a minimum cost circulation in G*
using transit times as costs, since there are no negative-
cost positive-capacity edges in G*.

The algorithm consists of k iterations indexed in
descending fashion. In iteration ¢ = k — 1,...,0 we
consider terminal s;41. If s;41 is a sink, we add an
infinite capacity arc s;y1s to G*t1 with transit time
—(T +1) to create graph G*, and compute a minimum
cost circulation f* in the residual graph of the flow
¢t in G*. We add f* to g*t! to obtain flow g*. If
Si+1 is a source, then we delete the edge ss;11 from
G to create graph G*, and compute a minimum-cost
maximum flow f* from s to s;;1 in the residual graph
of the flow ¢**! in G*. We add this minimum-cost flow
f#to the flow g**! to obtain flow g*. Each flow f* yields
a standard chain decomposition. The assumption that
there are no zero length cycles in G guarantees that
there are no cycles in the decomposition. The chain
flows are accumulated into chain decomposition T.
Note that chain flows using an arc ss; for a sink s;

THE QUICKEST TRANSSHIPMENT PROBLEM

leave s; at time 7"+ 1.

The proof of correctness of the algorithm proceeds
essentially along the same lines as in [10]. We sketch
the proof here, emphasizing the differences only.

The artificial edges and the assumption that
sources have no entering edges in ET guarantee that
after iteration ¢, the node s;41 is balanced in the static
flow ¢g*. This implies the following lemma:

Lemma 3.1 For any iteration i, static flow ¢ is a
minimum cost circulation in graph G*.

The feasibility of the resulting dynamic flow rests
fundamentally on the following lemma. Let pi(z)
denote the minimum cost of a path from supersource s
to vertex z € V in the residual graph of the flow g’ in
G

Lemma 3.2 For any vertex z € V and any iteration g,
p(z) > p"(2).

Proof: Every iteration computes a minimum-cost
flow from node s to some node s;+1 in the residual
graph of a previously computed flow. If s;41 is a source
this is true by definition, if s;y1 is a sink, then the
minimum-cost circulation f* is a flow through the arc
si+15 added in this iteration. The only edges added
to the network are entering s, and the residual graphs
have no negative cycles. This implies the lemma. O

Theorem 3.3 [I'] is a feasible dynamic flow.

Proof: In [10] it was shown that Lemma 3.2 implies
that the chain flows obtained from flow f* reach every
edgein G after the chain flows obtained from flow f for
every j > ¢. This implies by induction on the number
of iterations that the resulting dynamic flow does not
violate the capacity constraints. To see that at no time
do sources have net incoming flow, nor sinks have net
outgoing flow, we use the assumption that sources have
no entering edges and sinks have no leaving edges in
Et. O

Theorem 3.4 [I'] is a lexicographic maximum dynamic
flow.

Proof: Our proof relies on the infinite time-expanded
graph G(x). Given any index ¢ : 1 < ¢ < k, we
construct a cut C; in the time-expanded graph, and
show that [I'] saturates C;. The cut C; separates the
source set {s;(0): j <455, € STIU{s;(T):j < i85 €
S~} from the sink set {s;(T) : j > i;5; € S~ }U{s;(0):
j > i;s; € ST}. This saturated cut implies that the
amount of dynamic flow leaving the set of terminals
S; ={s1,...,8i} is maximum.

The cut is defined as C; = {z(f) : 8 > pi(z)} U
{s;(T) : j < i,s; € S7}. The artificial edges ss;
for j < 7 imply that C; contains the source set. To
see that C; is disjoint from the sink set, we use the
fact that the residual graph has no negative cycles,
therefore p*(s;) > T+1 for sink s; such that j > i; and
we use the fact that there are no edges in E* entering
sources, therefore p(s;) = +oo for sources s; such that
J >

The fact that [['] saturates the cut C; can be shown
along the same lines as the analogous theorem in [10]
using in addition the assumption that there are no
edges in ET leaving the set S~. O

Dynamic flow [I'] appears to be an infinite horizon
dynamic flow, and so in Theorem 3.4 we explicitly
ignore any flow in [I'] reaching some sink s; after time
T; however, [I'] is actually a finite horizon dynamic
flow in G with time bound 7. The proof is similar to
one given in [10].

Theorem 3.5 [I'] has time horizon T'.

Theorem 3.6 A lexicographic maximum dynamic flow
with & sources and sinks can be computed via £ minimum
cost flow computations.

4 Testing Feasibility

In this section we describe two strongly polynomial
algorithms: (1) testing the feasibility of a dynamic
transshipment problem (N,v,T), and (2) finding the
optimal time 7" for a quickest transshipment problem
(N, v). The first algorithm is used as a subroutine in
the second.

Let S be the set of terminals in network A. For
a subset A of S, let v(A) denote the total supply of A
(thatis, > . 4 v2), and let o(A) denote the maximum
amount of flow that the sources in A can send to
the sinks in S\ A in time T without regard to the
needs of other terminals. Notice that computing o(A)
is equivalent to a single-source single-sink maximum
dynamic flow problem. Let MCF denote the time of
a single minimum cost flow computation; then o(A)
can be determined in O(MCF) time. For a dynamic
transshipment problem (A,v,T) to be feasible, we
must have that o(A4) > v(A) for every set A C S.
Klinz [13] observed that this condition is equivalent
to the cut condition of feasibility on the exponentially
large time-expanded graph, and therefore the condition
is also sufficient. We call a subset of sources A tight if
o(A) = v(A), and violated if o(A) < v(A).

Theorem 4.1 (Klinz [13]) The dynamic transshipment
problem (N, v,T) is feasible if and only if o(A) > v(A)
for every subset A C S.

Next we show how to test feasibility in polynomial
time. A function o(.) is submodular if it satisfies
0(A) + o(B) > o(AN B) + o(A U B) for every pair
of subsets A and B. It is not hard to show that the
o(.) function above is submodular (see Megiddo [14]).

Theorem 4.2 A violated set in a dynamic transship-
ment problem (N,v,T) can be found in O(2* MCF)
time, in O(k2 MCF log(nTU)) time?, and also in strongly
polynomial time.

Proof: The O(2*MCF) time is immediate. To ob-
tain the other two versions, consider the submodular
function b(A) = o(A) — v(A). A violated set is a set
A such that b(A) is negative. Therefore, a violated set
can be found by minimizing the submodular function b.
A strongly polynomial algorithm for minimizing sub-
modular functions was given by Grotschel, Lovédsz and
Schrijver [7]. For the O(k?MCFlog(nTU)) time ver-
sion, we use Vaidya’s algorithm [19]. We omit details
here. O

To solve a quickest transshipment problem (N, v),
we must find the minimum time 7 such that the
dynamic transshipment problem (A,v,T) becomes
feasible. This can be done in polynomial time using
a binary search and Theorem 4.2.

To analyze the binary search, we need an upper
bound for the optimal time 7. Theorem 4.1 implies
that there is some set W C S such that the quickest
flow sending v(W) units of flow collectively from the
sources of W to the sinks of S \ W takes T time
steps; this is equivalent to a single-source single-sink
evacuation problem. An upper bound for this simpler
problem is therefore also an upper bound for the
quickest transshipment problem.

Consider the first time step when flow reaches a
sink. An upper bound for this time is n7,. Let V
equal the sum of all positive supplies: »(St). In a
single-source single-sink setting, it is easy to see that
after n7,, time steps, at least one unit of flow can reach
the sink with each time step, until there is no more flow.
Thus the optimal time for the quickest transshipment
problem can be bounded: T < n7, + V.

We can also find the optimal time 7 in
strongly polynomial time using Megiddo’s parametric
search [15] instead of the binary search.

?To simplify this and subsequent running times, we assume
k MCF > the time required for a k x k matrix inversion.

HOPPE AND TARDOS

Theorem 4.3

The optimal time T for the quickest transshipment prob-
lem can be found in O(2*MCFlog(nV7,.)) time, in
O(k?> MCF log?(nUV T,,)) time, and also in strongly poly-
nomial time.

We will assume from now on that we know the
optimal time bound T for any quickest transshipment
problem (A,v). We then need to find a dynamic
transshipment with time bound 7.

5 Integral Dynamic Transship-
ment Algorithm

Overview of Algorithm. Our algorithm reduces
any dynamic transshipment problem (N,v,T) to an
equivalent lexicographic maximum dynamic flow prob-
lem on a slightly more complicated network A/’. We
described an algorithm to solve the lexicographic max-
imum dynamic flow problem in Section 3.

Let S be the set of terminalsin the original network
N. Our algorithm attaches a new set of terminals S’ to
S. Initially, S’ contains one source so for each source
s € S, connected by edge sos with infinite capacity and
zero transit time; likewise, S’ contains one sink ¢y for
each sink ¢ € S, connected by edge ttp with infinite
capacity and zero transit time. Define v’ : §' - N
based on v : § — N in the obvious manner: v, = v,.
Clearly (N’,v',T) is equivalent to (N, v, T).

The body of the algorithm is a loop. Each
iteration of the loop adds new terminals to S’. Each
new terminal z; is attached to a terminal z of the
original network A" by an edge as described above,
but using finite capacities and non-negative transit
times. These capacities and transit times restrict the
ability of new terminals to send or receive flow; the
algorithm assigns a supply to each new terminal z;
based on these restrictions and adjusts the supply of
the corresponding z¢ so that for any =z € S, the total
supply of terminals in S’ associated with z is v,. This
maintains the invariant that any solution to (N’,v’,T)
yields a solution to (N,v,T).

The algorithm maintains a chain C whose elements
are tight subsets of S’ ordered by inclusion. The
goal of the algorithm is to extend C to a complete
chain. The following theorem implies that a complete
chain C reduces the associated dynamic transshipment
problem to a single lexicographic maximum dynamic
flow problem on the same network:

Theorem 5.1 Suppose C is a chain of tight subsets of
S’ in dynamic transshipment problem (N’,v',T), and

THE QUICKEST TRANSSHIPMENT PROBLEM

|C| =|S’| +1. Then the dynamic transshipment problem
can be solved by a single lexicographic maximum dynamic
flow in N,

Proof: If |C| = |S’| + 1, then there is an ordering
S' ={s1,...,81 } such that {s1,...,s;}is a tight set in
Cforalls =1,...,k". This meansthat any feasible flow
satisfying all supplies must be lexicographically maxi-
mum with respect to the order of chain C. Conversely,
this also means that any solution to the lexicographic
maximum dynamic flow problem corresponding to this
order yields a solution to the original dynamic trans-
shipment problem. O

We measure the progress of the algorithm by the
formula |C| — |S’|. Initially, ¢ = {0,S’}, and so
IC] —|S'| = 2 — k. By the above theorem, we are
done when |C| — |S’| = 1, and so we need to increase
the value of this expression. Below, we describe how
one iteration of the algorithm increases |C| — |S’| by
one and maintains the feasibility of (N’,v',T). Thus,
the given dynamic transshipment problem is reduced
to an equivalent lexicographic maximum dynamic flow
problem after k — 1 iterations.

One Iteration of the Algorithm. An iteration be-
gins with a modified dynamic transshipment problem
(N',v',T). Network N contains terminal set S’. In
addition, each iteration starts with a chain C of tight
subsets of S’ ordered by inclusion. The goal of an it-
eration is to increase |C| — |S’| by one. The first step
towards this goal is to add more terminals to S’. Done
arbitrarily, these terminals would take the algorithm
farther from the goal; but new terminals are connected
to the network through arcs with carefully computed
capacities and transit times. By assigning supplies to
new terminals according to these capacities and tran-
sit times (and adjusting the supplies of other termi-
nals appropriately) the algorithm creates a modified
but equivalent problem with enough new tight sets so
that |C| — |S’| increases by one.

Let @ C R be adjacent sets in C such that |R\ Q| >
1. (By adjacent we mean AA€C: Q CACR.) If
no such @ and R exist, then |C| — |S’| = 1 and we
are done. The algorithm maintains the invariant that
every terminal in R\ @ is one of the first terminals z
in §”.

Let so be a source in R\ Q. (The treatment of
sinks is symmetric.) We first check if the set Q U {s¢}
is tight; if so, then we can add it to chain C and the
current iteration is done. If the set QU{so} is not tight,
however, then we use the following steps to increase
|C| = |S’| by one.

Source s¢ is adjacent to s, one of the original
sources in .S; suppose there are s — 1 other sourcesin S’
adjacent to s. Add a new source s; to S’, connected to
s by a parameterized a-capacity zero-length arc. Let
Q' = QU {s;}. Recall that o(A4) is the maximum
dynamic flow out of a subset of terminals A. Define
new supply v: the supply of s; is v5 = 0o(Q’') — 0(Q);
the supply of so is reduced by vg,; and other terminal
supplies remain unchanged.

Consider the above parameterized dynamic trans-
shipment problem (N*,v*,T). Notice that if & = 0,
then the maximum flow out of s; is zero: the problem
is equivalent to (N, v’,T) and is therefore feasible. At
the opposite extreme, if & = oo then (N*,v*,T) must
be infeasible — if it were feasible then Q U {sq} must
be a tight set, but we have already determined that
Q U {so} is not tight. Thus, we can binary search for
an integer a* such that & = a* yields a feasible prob-
lem but o = a* + 1 yields an infeasible problem. An
upper bound for this binary search is the total capacity
out of original source s € S.

Consider the dynamic transshipment problem
(N, v T). In this network, add another source s;1
t0 S, connected to s by a parameterized §-length unit-
capacity arc. Let Q" = Q"U{s;11}. Define new supply

7°: the supply of s;41 is 6?1,“ = 0(Q") — 0o(Q'); the
; and other terminal

supply of sg is reduced by ﬁﬁiﬂ,
supplies remain unchanged.

Now we have a new parameterized dynamic trans-
shipment problem (Ns,i‘s, T). Notice thatif 6 = T+1,
then the maximum flow out of s;41 is zero: the prob-
lem is equivalent to the old capacity-parameterized
problem (N ,v®" T) and is therefore feasible. On
the other hand, if § = 0, then the problem is
equivalent to the old capacity-parameterized problem
(Ne™+1 9@ +1 T and is therefore infeasible. Thus, we
can binary search for an integer ¢* such that § = 6*
yields a feasible problem but § = 6* — 1 yields an in-
feasible problem.

So far, we have described how one iteration adds
two new sources to dynaglic transshipment problem
(N, 4',T) to obtain (N° ,7°,T), which is used in
the next iteration. Chain C contains tight sets for
the former problem and has not yet been modified.
The progress of the algorithm depends on the following
proRerties of the new dynamic transshipment problem

(N6 A T
Property 5.2 Q' and Q" are both tight sets.

Property 5.3 If A € C and A C @Q, then A is still a
tight set.

Property 5.4 If Ac Cand Q C A, then Q" U A is a
tight set.

Property 5.5 There exists a tight set W such that
Q'cWcC(Q"UR).

The first three properties are easy to show. In the next
section, we not only prove Property 5.5 but also show
how to find such a tight set in polynomial time.
Given these properties, we can augment C as
follows: (1) For every A € C such that @ C A, replace
Aby Q"UA. (2) Add Q' and Q" to C. (3) Find set W
satisfying Property 5.5 and add W to C. These three
steps maintain the invariant that C is a chain of tight
subsets of S’, and they increase |C| — |S’| by one.

6 Proof of Correctness

Suppose @ C R are both tight sets in dynamic
transshipment problem (N’,v',T), and |[R\ Q| > 1.
Suppose source sp € R\ @ is chosen by an iteration of
the algorithm. (The treatment of sinks is symmetric.)
The iteration ultimately yields @ = Q U {s;} and
Q" = Q' U {si+1} and transit-time-parameterized

problem (N‘5 ,7°,T), which is feasible. Problem
N’ ! %51 T) is infeasible. Let o(.) and v(.) refer

N
to feasible (N”° ,7%",T)), while o(.) and v'(.) refer to

infeasible (N° *,7°"1,T).

Lemma 6.1 If o/(4) < v'(A) then o(4) = v(A) and
si+1 € Abut s ¢ A.

Proof: Suppose 0'(A) < v'(A). Feasibility implies
0o(A) > v(A). Decreasing the delay § of source s;i1
cannot decrease the maximum dynamic flow out of
any set: o'(A) > o(A). Furthermore, decreasing §
has no effect on o(A) for any A F s;11; but a unit
decrease of § could increase o(A) by at most one if
sit1 € A. Applied to Q' and Q", this means v,,,, <
Vg, < VUs;y; +1. Combined with the observation that
no terminal supply other than v,, , can increase, the
above inequalities yield

v'(4) > 0'(A) > o(A) > v(4) > v'(4) - 1.

Notice that all but the first element of this chain must
in fact be equal, so that A is a tight set: o(A4) = v(A4).
This chain also shows v'(A4) > v(A); because parameter
6 changes vs, exactly opposite to vs,, ,, this means that
si+1 € Abut 59 ¢ A. O

Lemma 6.2 If (AN R) C Q" then o'(A4) > v'(4).

HOPPE AND TARDOS

Proof: We prove the lemma in two parts:

(1) If A C Q" then o'(A) > v'(A). Suppose A C
Q". By Lemma 6.1, if s;11 ¢ A then o'(A4) > v'(A4);
thus we need only worry about the case when s;11 € A,
which means AU Q' = Q". Using submodularity with
Aand Q', weget 0o'(4) > o(Q")+0'(ANQ")—0'(Q").
Both Q' and Q" are tight. Since sit+1 ¢ AN Q,
Lemma 6.1 implies o'(4) > ¢ (Q")+ ' (ANQ') -
V(Q") = v'(4).

(2) If (AN R) C Q" then o'(A) > v'(A). Let
R" = (Q"U R). Suppose (AN R) C Q"; this implies
(AN R") C @". Using submodularity with A and R",
we get 0'(A) > O (AUR")+d(ANR")-d(R").
Since sp € (AU R"), Lemma 6.1 implies o'(AU R") >
v'(AU R"). Because we assume (AN R") C Q", the
first part of the proof implies o'(ANR") > v'(ANR").
Property 5.4 implies o'(R") = v'(R"). Thus, we obtain
o'(4) > V(AUR")+ v (ANR")—v'(R") = V'(4).
O

Lemma 6.3 is a basic property of tight sets that
follows from the submodularity of the o(.) function:

Lemma 6.3 In a feasible dynamic transshipment prob-
lem, the union and intersection of tight sets are tight.

Let FEAS denote the time required to check feasi-
bility of a dynamic transshipment problem. (See Sec-
tion 4.) The following theorem restates and proves
Property 5.5:

Theorem 6.4 (Ng*,T)’S* ,T') contains a tight set of ter-
minals W such that Q” ¢ W C (Q"” U R), and W can
be computed in O(FEAS) time.

Proof: L*et W' be any violated set in infeasible prob-
lem (N° ', 75 -1.T), so that o/(W') < o'(W").
By Lemma 6.1, W' is a tight set in (N ,7°,T).
Lemma 6.1 also implies so ¢ W'. Because sp € R\ @,
this means R ¢ (Q"” U W'). Lemma 6.2 implies
(W'NR)Z Q".

Consider W = Q" U (W' N R). The above state-
ments imply that @” C W C (Q" U R). Furthermore,
after rewriting W as (Q" U W') N (Q" U R), observe
that Properties 5.2 and 5.4 and Lemma 6.3 imply that
W is tight.

To prove the running time, observe that W' is an
arbitrary violated set whose*computation requires only

one feasibility check of (N ',7%"~1,T). O

Theorem 6.5 The dynamic transshipment problem can
be solved in O(klog(nUT)FEAS) time, and also in
strongly polynomial time.

THE QUICKEST TRANSSHIPMENT PROBLEM

Proof: The algorithm is dominated by the O(k) it-
erations described in Section 5. FEach iteration is
dominated by the two binary searches. The first a-
binary search tests feasibility each time it seeks integer
a* € [0,nU]. The second §-binary search tests feasibil-
ity each time it seeks integer 6* € [0,T + 1]. To obtain
the strongly polynomial time bound, replace each bi-
nary search by Megiddo’s parametric search [15]. O

To analyze the running time of the quickest trans-
shipment algorithm, we bound the optimal time T' <
n7., +V as described in Section 4, and we observe that
the time to solve the dynamic transshipment problem
(NV,v,T) dominates the time to find the optimal time
of the quickest transshipment problem (N, v).

Corollary 6.6 The quickest transshipment problem can
be solved in O(klog(nUVT,)FEAS) time, and also in
strongly polynomial time.

7 Application and Extensions

In this section we describe an application of our quick-
est transshipment algorithm to network scheduling.
We also discuss extensions of the dynamic transship-
ment problem that can be solved in polynomial time.

Network Scheduling. We defined network schedul-
ing in Section 1. Various network scheduling problems
have been studied by Deng et al [4], Phillips et al [17],
and Fizzano and Stein [5].

We consider the network scheduling problem when
unit size jobs are distributed throughout a network
of computers and we want to execute the last job as
soon as possible. Based on a reduction to the integral
quickest transshipment problem, we can compute an
exact optimal schedule for this problem in polynomial
time. This is the first efficient algorithm for general
unit-job network scheduling.

Theorem 7.1 The unit-job network scheduling problem
can be solved via one quickest transshipment computa-
tion.

Proof: Consider a unit-job network scheduling prob-
lem. Let V be the set of processors, connected by a
set of links F, which are characterized by capacity and
transit time functions v and 7. Let v, be the number
of unit-jobs initially assigned to each processor z in V.

We reduce this to an integral quickest transship-
ment problem by adding a supersink ¢ to the network.
Each processor z in V is connected to ¢ by a unit-
capacity zero transit time edge. Let V' and E’ denote

the augmented graph, and likewise denote the extended
capacity and transit time functions by »’ and 7. We
define a supply function v’ : V/ — N based on v as
follows: v}, = v, for all nodes z in V, and v; = —v(V).
Network ((V', E'),v', 7', V') with supply function v’ is
an integral quickest transshipment problem. A solu-
tion to this dynamic flow problem corresponds directly
to an optimal network schedule — each unit of flow
corresponds to one job, and sending one unit of flow
from some node z in V to supersink ¢ corresponds to
executing one job on processor z. O

Notice in the above proof that we can also model
faster processors. If each processor z in V' can execute
Sz jobs per time step (where sp 1S a non-negative
integer), then in our reduction each edge zt entering
the supersink has capacity s,.

Networks with Release Times and Deadlines.
We can extend our dynamic transshipment algorithm
to handle more complicated networks consisting of
sources with release times, sinks with deadlines, termi-
nals with flow restrictions, and edges with start times
and end times. These techniques also extend our quick-
est transshipment algorithm.

In a traditional dynamic transshipment problem,
flow may leave each source vertex starting at time zero.
We can generalize the problem and specify a release
time function for sources; each source z cannot send
flow before its specified release time r,. This problem
reduces to the original version simply by adding to the
network a new set of sources S’; each new source z’
in S’ corresponds to an old source z in S; they are
connected by an uncapacitated edge =’z with transit
time r,. In this augmented network, allowing flow to
leave 2’ at time zero is equivalent to holding flow at z
until its release time 7. In a similar manner, we can
also allow a deadline function for sinks, so that each
sink z cannot receive flow after its specified deadline
dz. We can also restrict the ability of sources to send
flow or sinks to receive low by augmenting the network
as above but with capacitated edges.

We can further generalize a dynamic transship-
ment problem by specifying a start time o, and an
end time §,, for each edge yz in the network. Edge yz
cannot admit flow outside the time interval oy, By];
however, we allow any node to hold an arbitrary non-
negative amount of flow at any time.> We call interval

3Holdover flow is permitted in the ordinary dynamic trans-

shipment problem, but it is not required at any non-terminal ver-
tex. If edges have start and end times, however, then holdover
flow may be required throughout the network, and restricting
the problem to flows without holdovers makes it NP-hard.

10

[0z, Byz] the lifespan of edge yz, and refer to yz as a
mortal edge.

We can solve dynamic transshipment problems
on networks built of mortal edges by adding extra
terminals to the network. Each mortal edge yz requires
a new source z, with release time . and a new
sink z., with deadline f,.; terminal z, (z,,) can
only send (receive) u,, units of flow per time step.
Then mortal edge yz reduces to three traditional edges:
YT, Ti,T,,, and z,z. The capacity of each edge is
Uy,. Transit time 7., is assigned to edge a:jzz, while
yz,, and zi x , have zero transit time. Source z],
has supply uy.(By: — ay. + 1); sink z, has supply
—Uyz(Byz — 0y +1); and the supplies of y and z remain
unchanged.

Let D be a dynamic transshipment problem with
release times, deadlines, and mortal edges. The above
reduction yields a dynamic transshipment problem
D' with release times, deadlines, and terminal flow
restrictions, but without mortal edges. Notice that this
reduction is very similar to the standard technique used
to transform a capacitated minimum cost flow problem
into an uncapacitated minimum cost flow problem.
The following theorem and proof sketch imply that we
can solve problem D by first solving problem D’:

Theorem 7.2 There is a feasible solution to D if and
only if there is a feasible solution to D’.

Proof sketch: Given a solution to problem D, it is not
hard to produce a solution to problem D’. To see the
other direction, let f’ be a feasible dynamic flow that
solves D'. For any mortal edge yz in the network of
D, define fy.(0) to be uy, — f, () for any time 0
in the lifespan of yz, or zero ogcheyrwise. Then f is a
feasible dynamic flow that solves D.

Acknowledgement

We are grateful to Monika Rauch for numerous
discussions concerning integral dynamic flows.

References

[1] Aronson, J.E., A Survey of Dynamic Network Flows,
Annals of Operations Research 20(1989)1-66.

[2] Burkard, R.E., Dlaska, K. and Klinz, B., The Quickest
Flow Problem, ZOR Methods and Models of Opera-
tions Research 37:1(1993)31-58.

[3] Chalmet, L.G., Francis, R.L. and Saunders P.B., Net-
work Models for Building Evacuation, Management
Science 28(1982)86-105.

(4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

18]

[19]

HOPPE AND TARDOS

Deng, X., Liu, H., and Xiao, B., Deterministic Load
Balancing in Computer Networks, Proc. 2nd IEEE
Symp. on Parallel and Distributed Processing, 1992,
50-57.

Fizzano, P. and Stein, C., Scheduling on a Ring with
Unit Capacity Links, Dartmouth College Technical
Report PC5-TR94-216.

Ford, L.R. and Fulkerson, D.R., Flows in Networks,
Princeton University Press, New Jersey, 1962.
Grotschel, M., Lovdsz, L. and Schrijver, A., Geo-
metric Algorithms and Combinatorial Optimization,
Springer Verlag, 1988.

Hajek, B. and Ogier, R.G., Optimal Dynamic Routing
in Communication Networks with Continuous Traffic,
Networks 14(1984)457-487.

Hamacher, H.W. and Tufekci, S., On the Use of Lex-
icographic Min Cost Flows in Evacuation Modeling,
Naval Research Logistics 34(1987)487-503.

Hoppe, B. and Tardos, E., Polynomial Time Algo-
rithms for Some Evacuation Problems, Proc. 5th An-
nual ACM-SIAM Symp. Discrete Algorithms, 1994,
433-441.

Hoppe, B. and Tardos,]*fl., A Polynomial Time Al-
gorithm for the Integral Evacuation Problem, unpub-
lished manuscript, November 1993.

Jarvis, J.R. and Ratliff, D.H., Some Equivalent Ob-
jectives for Dynamic Network Flow Problems, Man-
agement Science 28(1982)106-109.

Klinz, B. Personal communication.

Megiddo, N., Optimal Flows in Networks with Mul-
tiple Sources and Sinks, Mathematical Programming
7(1974)97-107.

Megiddo, N., Combinatorial Optimization with Ratio-
nal Objective Functions, Mathematics of Operations
Research, 4(1979)414-424.

Minieka, E., Maximal, Lexicographic, and Dynamic
Network Flows, Operations Research 21(1973)517-
527.

Phillips, C., Stein, C., and Wein, J., Task Scheduling
in Networks, Proc. Fourth Scandinavian Workshop on
Algorithm Theory, 1994, 290-301.

Powell, W.B., Jaillet, P. and Odoni, A., Stochastic
and Dynamic Networks and Routing, in Handbooks
in Operations Research and Management Science,
Networks, (M.O. Ball, T.L. Magnanti, C.L. Monma,
G.L. Nemhauser, eds.), Elsevier Science Publishers
B.V. (to appear).

Vaidya, P.M., A New Algorithm for Minimizing Con-
vex Functions over Convex Sets. Proc. 30th Annual
IEEE Symp. on Foundations of Computer Science,
1989, 338-343.

