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Abstract-------------------------------------------------------------­
Many economic problems require a covariance matrix estimator that is not only invertible, but 

also well-conditioned (that is, inverting it does not amplify estimation error). For large­

dimensional covariance matrices, the usual estimator -the sample covariance matrix- is typically 

not well-conditioned and may not even be invertible. This paper introduces an estimator that is 

both well-conditioned and more accurate than the sample covariance matrix asymptotically. This 

estimator is distribution-free and has a simple explicit formula that is easy to compute and 

interpret. It is the asymptotically optimal convex linear combination of the sample covariance 

matrix with the identity matrix. Optimality is meant with respect to a quadratic loss function, 

asymptotically as the number of observations and the number of variables go to infinity 

together. Extensive Monte-Carlo confirm that the asymptotic results tend to hold well in finite 

sample. 
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1 Introduction 

Many problems of variance minimization in Finance and Economics are solved by inverting 
a covariance matrix. Sometimes the matrix dimension can be large. Examples include se­
lecting a mean-variance efficient portfolio from a large universe of stocks (Markowitz, 1952), 
running Generalized Least Squares (GLS) regressions in large cross-sections (see e.g. Kandel 

and Stambaugh, 1995), and choosing an optimal weighting matrix in the General Method of 
Moments (GMM; see Hansen, 1982) when the number of moment restrictions is large. In such 
situations the usual estimator - the sample covariance matrix - is known to perform poorly. 
When the matrix dimension p is larger than the number of observations available n, the sample 

covariance matrix is not even invertible. When the ratio pin is less than one but not negligible, 
the sample covariance matrix is invertible, but numerically ill-conditioned, which means that 

inverting it amplifies estimation error dramatically. 1 For large p, it is difficult to find enough 
observations to make pin negligible. Therefore it is important to develop a well-conditioned 
estimator for large-dimensional covariance matrices. 

If we wanted a well-conditioned estimator at any cost, we could always impose some ad-hoc 
structure on the covariance matrix to force it to be well-conditioned, such as diagonality or a 

factor model. But, in the absence of prior information about the true structure of the matrix, 

this ad-hoc structure will in general be misspecified. The resulting estimator can be so biased 
that it may bear little resemblance to the true covariance matrix. To the best of our knowledge, 
no existing estimator is both well-conditioned and more accurate than the sample covariance 
matrix. The contribution of this paper is to propose an estimator that possesses both these 
properties asymptotically. 

One way to get a well-conditioned structured estimator is to impose that all variances are 
the same and all covariances are zero. The estimator that we recommend is a weighted average 

of this structured estimator with the sample covariance matrix. The average inherits the good 

conditioning of the structured estimator. By choosing the weight optimally according to a 
quadratic loss function, we can ensure that our weighted average of the sample covariance 

matrix and the structured estimator is more accurate than either of them. The only difficulty 
is that the true optimal weight depends on the true covariance matrix, which is unobservable. 
We solve this difficulty by finding a consistent estimator for the optimal weight. We also 
show that replacing the' true optimal weight with a consistent estimator makes no difference 
asymptotically. 

Standard asymptotics assume that the number of variables p is finite, while the number of 

observations n goes to infinity. Under standard asymptotics, the sample covariance matrix is 
well-conditioned (in the limit), and has some appealing optimality properties (e.g., maximum 
likelihood for normally distributed data). However, this is a bad approximation of many real­
world situations where the number of variables p is of the same order of magnitude as the 
number of observations n, and possibly larger. We introduce a different framework, called 

general asymptotics, where we allow the number of variables p to go to infinity too. The 

lThe condition number is defined as the ratio of the largest to the smallest eigenvalue. It measures how 
illYertible a matrix is. A matrix with low condition number can be safely inverted, and is called well-conditioned. 
A matrix with high condition number is almost not invertible, and is called ill-conditioned. Jobson and Korkie 
(1980) and Michaud (1989) show that it is difficult to use the sample covariance matrix for portfolio selection 
because it is typically ill-conditioned. 
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only constraint is that the ratio pjn must remain bounded. We see standard asymptotics 
as a special case in which it is optimal to (asymptotically) put all the weight on the sample 

covariance matrix and none on the structured estimator. In the general case, however, our 
estimator is different from the sample covariance matrix, substantially more accurate, and of 
course well-conditioned. 

Extensive Monte-Carlo simulations indicate that: (i) the new estimator is more accurate 
than the sample covariance matrix, even for very small numbers of observations and variables, 
and usually by a lot; (ii) it is essentially as accurate or substantially more accurate than some 
estimators proposed in finite sample decision theory, as soon as there are at least ten variables 
and observations; (iii) it is better-conditioned than the true covariance matrix; and (iv) general 

asymptotics are a good approximation of finite sample behavior when there are at least twenty 
observations and variables. 

The next section characterizes in finite sample the linear combination of the identity matrix 

and the sample covariance matrix with minimum quadratic risk. Section 3 develops a linear 

shrinkage estimator with uniformly minimum quadratic risk in its class asymptotically as the 
number of observations and the number of variables go to infinity together. In Section 4, Monte­
Carlo simulations indicate that this estimator behaves well in finite sample. The conclusions 
suggest directions for future research. 

2 Analysis in Finite Sample 

The easiest way to explain what we do is to first analyze in detail the finite sample case. Let X 

denote a p x n matrix of n independent and identically distributed (iid) observations on a system 
of p random variables with mean zero and covariance matrix~. Following the lead of Muirhead 
and Leung (1987), we consider the Frobenius norm: IIAII = Jtr(AAt)jp.2 Our goal is to find 

the linear combination ~* = PII + P2S of the identity matrix I and the sample covariance 
matrix S = XXtjn whose expected quadratic loss E[II~* - ~112l is minimum. Haff (1980) 

studied this class of linear shrinkage estimators, but did not get any optimality results. The 
optimality result that we obtain in finite sample will come at a price: ~* will not be a bona fide 

estimator, because it will require hindsight knowledge of four scalar functions of the true (and 
unobservable) covariance matrix~. This would seem like a high price to pay but, interestingly, 
it is not: In the next section, we are able to develop a bona fide estimator S* with the same 
properties as ~* asymptotically as the number of observations ~and the number of variables go 

to infinity together. Furthermore, extensive Monte-Carlo simulations will indicate that twenty 
observations and variables are enough for the asymptotic approximations to typically hold well 
in finite sample. Even the formulas for ~* and S* will look the same and will have the same 
interpretations. This is why we study the properties of ~* in finite sample "as if' it was a 

bona fide estimator. 

2Dividing by the dimension p is not standard, but it does not matter in this section because p remains finite. 
The advantages of this convention are that the norm of the identity matrix is simply one, and that it will be 
consistent with Definition 2 below. 
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2.1 Optimal Linear Shrinkage 

The squared Frobenius norm 11 . 112 is a quadratic form whose associated inner product is: 

Ai oA2 = tr(AiA~)/p. Four scalars play a central role in the analysis: /-l = '£01, a 2 = 11 '£-/-lIII 2 , 
{32 = E[IIS - '£112], and 82 = E[IIS -/-lIII2]. We do not need to assume that the random variables 

in X follow a specific distribution, but we do need to assume that they have finite fourth 

moments, so that {32 and 82 are finite. The following relationship holds. 

Proof of Lemma 2.1 

E[IIS - '£ + '£ - /-lIII2] 

E[IIS - '£112] + E[II'£ - /-lIII2] + 2 E[(S - '£) 0 ('£ - /-lI)] 

E[IIS - '£112] + 11'£ - /-lI1I2 + 2 E[S - '£] 0 ('£ - /-lI) 

(1) 

(2) 

(3) 

Notice that E[S] = '£, therefore the third term on the right hand side of Equation (3) is equal 

to zero. This completes the proof of Theorem 2.1. 0 

The optimal linear combination '£* = PiI + P2S of the identity matrix I and the sample 

covariance matrix S is the standard solution to a simple quadratic programming problem 

under linear equality constraint. 

Theorem 2.1 Consider the optimization problem: 

min E[II'£* - '£112] 
Pl,P2 

s.t. '£* = PiI + P2S 
(4) 

where the coefficients Pi and P2 are nonmndom. Its solution verifies: 

(5) 

(6) 

Proof of Theorem 2.1 By a change of variables, Problem (4) can be rewritten as: 

minE[II'£* - '£112] 
p,v 

s.t. .'£* = pvI + (1 - p)S. 
(7) 

With a 1ittle a1gebra, and using E[S] = 1:: as in the proof of Lemma 2.1, we can rewrite the 

objective as: 
(8) 

Therefore the optimal value of v can be obtained as the solution to a reduced problem that 

does not depend on p: minv 11.'£ - vI1I2. Remember that the norm of the identity is one by 

convention, so the objective of this problem can be rewritten as: 1I'£-vIII2 = 11'£11 2 -2v,£oI +v2. 

The first order condition is: -2'£ 0 I + 2v = O. The solution is: v = '£ 0 I = /-l. 
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Replacing v by its optimal value fL in Equation (8), we can rewrite the objective of the 
original problem as: E[II~* - ~112] = p20:2 + (1 - p)2f32. The first order condition is: 2p0:2-

2(1 - p)f32 = O. The solution is: p = f32/(0:2 + (32) = f32 /82. Note that 1 - p = 0:2/82. At the 
optimum, the objective is equal to: (f32/82)20:2 + (0:2/82)2f32 = 0:2f32/82. This completes the 

proof. 0 

Note that fLI can be interpreted as a shrinkage target and the weight f32 /82 placed on fLI as a 
shrinkage intensity. The Percentage Relative Improvement in Average Loss (PRIAL) over the 

sample covariance matrix is equal to: 

ElIlS - ~112] - E[II~* - ~112] 
E[IIS - ~112] 

(9) 

same as the shrinkage intensity. Therefore everything is controlled by the ratio f32 /82, which 

is a properly normalized measure of the error of the sample covariance matrix S. Intuitively, 
if S is relatively accurate, then you should not shrink it too much, and shrinking it will not 
help you much either; if S is relatively inaccurate, then you should shrink it a lot, and you 

also stand to gain a lot from shrinking. 

2.2 Interpretations 

The mathematics underlying Theorem 2.1 are so rich that we are able to provide four comple­

mentary interpretations of it. One is geometric and the others echo some of the most important 
ideas in finite sample multivariate statistics. 

First, we can see Theorem 2.1 as a projection theorem in Hilbert space. The appropriate 
Hilbert space is the space of p-dimensional symmetric random matrices A such that E[IIAI12] < 
00. The associated norm is, of course, JElIl . 11 2], and the inner product of two random matrices 
Al and A2 is E[Al 0 A2]' With this structure, Lemma 2.1 is just a rewriting of the Pythagorean 

Theorem. Furthermore, Formula (5) can be justified as follows: In order to project the true 
covariance matrix ~ onto the space spanned by the identity matrix I and the sample covariance 

matrix S, we first project it onto the line spanned by the identity, which yields the shrinkage 
target fLI; then we project ~ onto the line joining the shrinkage target fLI to the sample 
covariance matrix S. Whether the projection ~* ends up closer to one end of the line (fLI) or 

to the other (S) depends on which one of them ~ was closer to. ,Figure 1 provides a geometrical 
illustration. 

The second way to interpret Theorem 2.1 is as a trade-off between bias and variance. We 

seek to minimize mean squared error, which can be decomposed into variance and squared 
bias: 

(10) 

The mean squared error of the shrinkage target fLI is all bias and no variance, while for the 
sample covariance matrix S it is exactly the opposite: all variance and no bias. ~* represents 
the optimal trade-off between error due to bias and error due to variance. See Figure 2 for 

an illustration. The idea of a trade-off between bias and variance was already central to the 
original J ames-Stein (1961) shrinkage technique. 
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Figure 1: Theorem 2.1 Interpreted as a Projection in Hilbert Space. 

The third interpretation is Bayesian. L;* can be seen as the combination of two signals: 
prior information and sample information. Prior information states that the true covariance 
matrix L; lies on the sphere centered around the shrinkage target J.lI with radius a. Sample 
information states that L; lies on another sphere, centered around the sample covariance matrix 
S with radius {3. Bringing together prior aIid sample information, L; must lie on the intersection 
of the two spheres, which is a circle. At the center of this circle stands L;*. The relative 
importance given to prior vs. sample information in determining L;* depends on which one is 
more accurate.3 See Figure 3 for an illustration. The idea of drawing inspiration from the 
Bayesian perspective to obtain an improved estimator of the covariance matrix was used by 
Haff (1980). 

The fourth and last interpretation involves the cross-sectional dispersion of covariance ma­
trix eigenvalues. Let AI, ... , Ap denote the eigenvalues of the true covariance matrix L;, and 
ll' ... , lp those of the sample covariance matrix S. We can exploit the Frobenius norm's elegant 
relationship to eigenvalues .. Note that 

;;, = ~ t Ai = E [~ t li] 
P i=l P i=l 

(11) 

represent.s the grand mean of both true and sample eigenva.lues. Then Lemma 2.1 can be 
rewritten as: 

1 r

l
P 

] 1 P 
pE ~(li _p)2 = ~ ~(>'i - J.l)2 + E[IIS - L;112]. (12) 

In words, sample eigenvalues are more dispersed around their gra."ld mean than true OIies, 
and the excess dispersion is equal to the error of the sample covariance matrix. Excess dis­
persion implies that the largest sample eigenvalues are biased upwards, and the smallest ones 

3Strictly speaking, a full Bayesian approach would specify not only the support of the distribution of~, but 
also the distribution itself. We could assume that ~ is uniformly distributed on the sphere, but it ffiight be 
difficult to justify. Thus, ~. should not be thought of as the expectation of the posterior di:;tribution, as is 
traditional, but rather as the cent er of mass of its support. 
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------- ~~~~--~~-~~-

- Mean Squared Error 
- -Variance 

.. Squared Bias 

.......... ' ....... - - --
o 1 

Shrinkage Intensity 

Figure 2: Theorem 2.1 Interpreted as a Trade-off Between Bias and Variance. Shrinkage inten­
sity zero corresponds to the sample covariance matrix S. Shrinkage intensity one corresponds 
to the shrinkage target p,l. Optimal shrinkage intensity (represented by .) corresponds to the 

minimum expected loss combination L;*. 

downwards. Therefore we can improve upon the sample covariance matrix by shrinking its 

eigenvalues towards their grand mean, as in: 

Vi = 1, ... ,p (13) 

Note that Ai, ... ,A; defined by Equation (13) are precisely the eigenvalues of L;*. Surprisingly, 

their dispersion E[2.:f=l (Ai - p,)2J/p = a.2 / 0 is even below the dispersion of true eigenvalues. 
For the interested reader, the next subsection explains why. The idea that shrinking sample 
eigenvalues towards their grand mean yields an improved estimator of the covariance matrix 

was highlighted in Muirhead's (1987) review paper. 

2.3 Further Results on Sample Eigenvalues 

The following paragraphs contain additional insights about the eigenvalues of the sample co­
variance matrix, but the reader can skip them and go directly to- Section 3 if he or she so wishes. 

'Ne discuss: 1) why the eigenvalues of the sample covariance matrix are more dispersed than 
those of the true covariance matrix (Equation (12)); 2) how important this effect is in practice; 

and 3) why we should use instead an estimator whose eigenvalues are less dispersed than those 
of the true covariance matrix (Equation (13))_ The explanation relies on a result from matrix 

algebra. 

Theorem 2.2 The eigenvalues are the most dispersed diagonal elements that can be obtained 

by rotation. 

Proof of Theorem 2.2 Let R denote a p-dimensional symmetric matrix and V a p-dimensional 

rotation matrix: VV' = V'V = I. First, note that (l/p)tr(V'RV) = (l/p)tr(R). The average 
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Bayesian Interpretation 

Figure 3: Bayesian Interpretation. The left sphere has cent er J-LI and radius a and represents 

prior information. The right sphere has center S and radius {3. The distance between sphere 
centers is 8 and represents sample information. If all we knew was that the true covariance 

matrix 1.; lies on the left sphere, our best guess would be its center: the shrinkage target J-LI. If 
all we knew was that the true covariance matrix 1.; lies on the right sphere, our best guess would 
be its center: the sample covariance matrix S. Putting together both pieces of information, 
the true covariance matrix 1.; must lie on the circle where the two spheres intersect, therefore 
our best guess is its center: the optimal linear shrinkage 1.;*. 

of the diagonal elements is invariant by rotation. Call it r. Let Vi denote the ith column of 

V. The dispersion of the diagonal elements of V'RV is (lip) L:f=l(V~Rvi - r)2. Note that 

L:f=l(V;Rvi - r)2 + L:f=1L:j=1(V~Rvj)2 = tr[(V'RV - rI)2] = tr[(R - rI)2] is invariant by 
Ni 

rotation. Therefore the rotation V maximizes the dispersion of the diagonal elements of V'RV 
if and only if it minimizes L:f=l L:j=l (v;RVj)2. This is achieved by setting v;Rvj to zero for 

j#i 

all i f:. j. In this case, V'RV is a diagonal matrix, call it D. V'RV = D is equivalent to 
R = V RV'. Since V is a rotation and D is diagonal, the columns of V must contain the eigen­
vectors of R and the diagonal of D its eigenvalues. Therefore the dispersion of the diagonal 
elements of V'RV is marximized when these diagonal elements are equal to the eigenvalues of 
R. This completes the proof of Theorem 2.2. 0 

Decompose the true covariance matrix into eigenvalues and eigenvectors: 1.; = r' Ar, where A is 
a diagonal matrix, and r is a rotation matrix. The diagonal elements of A are the eigenvalues 
.Ab' .. ,.Ap , and the columns of r are the eigenvectors 11, ... , IP' Similarly, decompose the 
sample covariance matrix into eigenvalues and eigenvectors: S = G'LG, where L is a diagonal 
matrix, and G is a rotation matrix. The diagonal elements of L are the eigenvalues ll, ... , lp, 

and the columns of G are the eigenvectors gl, ... , gp. 

Since S is unbiased and r is nonstochastic, r'sr is an unbiased estimator of A = r'1.;r. 
The diagonal elements of r'sr are approximately as dispersed as the ones of r'1.;r. For 
convenience, let us speak as if they were exactly as dispersed. By contrast, L = G'SC is 
not at all an unbiased estimator of r'1.;r. This is because the errors of G and S interact. 
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Theorem 2.2 shows us the effect of this interaction: the diagonal elements of G'SG are more 

dispersed than those of r'sr (and hence than those of r'~r). This is why sample eigenvalues 
are more dispersed than true ones. See Table 1 for a summary. 

r'sr -< G'SG 
11 

r'~r >- G'~G 

Table 1: Dispersion of Diagonal Elements 

This table compares the dispersion of the diagonal elements of certain products of matrices. 
The symbols -<, ::::::, and >- pertain to diagonal elements, and mean less dispersed than, approx­
imately as dispersed as, and more dispersed than, respectively. 

We illustrate how important this effect is in a particular case: when the true covariance 
matrix is the identity matrix. Let us sort the eigenvalues of the sample covariance matrix from 
largest to smallest, and plot them against their rank. The shape of the plot depends on the 

ratio pin, but does not depend on the particular realization of the sample covariance matrix, 
at least approximately when p and n are very large. Figure 4 shows the distribution of sample 
eigenvalues for various values of the ratio pin. This figure is based on the asymptotic formula 

proven by Marcenko and Pastur (1967). We notice that the largest sample eigenvalues are 
severely biased upwards, and the smallest ones downwards. The bias increases in pin. This 

phenomenon is very general and is not limited to the identity case. It is similar to the effect 
observed by Brown (1989) in Monte-Carlo simulations. 

Finally, let us remark that the sample eigenvalues li = g~Sgi should not be compared to 

the true eigenvalues Ai = ':~'i' but to g:~gi' We should compare estimated vs. true variance 
associated with vector gi. By Theorem 2.2 again, the diagonal elements of G'~G are even less 

dispersed than those of r'~r. Not only are sample eigenvalues more dispersed than true ones, 
but they should be less dispersed. This effect is attributable to error in the sample eigenvectors. 

Intuitively: Statisticians should shy away from taking a strong stance on extremely small and 

extremely large eigenvalues, because they know that they have the wrong eigenvectors. The 

sample covariance matrix is guilty of taking an unjustifiably strong stance. The optimal linear 
shrinkage ~* corrects for that. 

3 Analysis under General Asymptotics 

In the previous section, we have shown that ~* has an appealing optimality property and fits 

well in the existing literature. It has only one drawback: it is not a bona fide estimator, since it 
requires hindsight knowledge offour scalar functions of the true (and unobservable) covariance 
matrix ~: /1, a 2 , (32 and 62 . We now address this problem. The idea is that, asymptotically, 
there exists consistent estimators for /1, a 2 , (32 and 62 , hence for ~* too. At this point we need 

to choose an appropriate asymptotic framework. Standard asymptotics consider p fixed while 
n tends to infinity, implying that the optimal shrinkage intensity vanishes in the limit. This 
would be reasonable for situations where p is very small in comparison to n. However, in the 
problems of interest us p tends to be of the same order as n and can even be larger. Hence, 
we consider it more appropriate to use a framework that reflects this condition. 
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p/n=O.l p/n=O.S 
4~---------------------' 4~--------------------~ 

O~--------------------~ OL-----------------------~ 

Largest Smallest Largest Smallest 

p/n=l p/n=2 
4~----------------------~ 4~--------------------~ 

OL---------------~~~ OL---------~------~ 
Largest Smallest Largest Smallest 

Figure 4: Sample vs. True Eigenvalues. The solid line represents the distribution of the 

eigenvalues of the sample covariance matrix. Eigenvalues are sorted from largest to smallest, 
then plotted against their rank. In this case, the true covariance matrix is the identity, that 
is, the true eigenvalues are all equal to one. The distribution of true eigenvalues is plotted 

as a dashed horizontal line at one. Distributions are obtained in the limit as the number of 
observations n and the number of variables p both go to infinity with the ratio pin converging 

to a finite positive limit. The four plots correspond to different values of this limit. 

9 

1 
i 



This is achieved by allowing the number of variables P to go to infinity at the same speed 
as the number of observations n. It is called general asymptotics. 4 In this framework, the 

optimal shrinkage intensity generally does not vanish asymptotically but rather it tends to a 
limiting constant that we will be able to estimate consistently. The idea then is to use the 
estimated shrinkage intensity in order to arrive at a bona fide estimator. 

3.1 General Asymptotics 

Let n = 1,2, ... index a sequence of statistical models. For every n, Xn is a Pn X n matrix of n 

iid observations on a system of Pn random variables with mean zero and covariance matrix ~n' 
The number of variables Pn can change and even go to infinity with the number of observations 
n, but not too fast. 

Assumption 1 There exists a constant Kl independent of n such that Pn/n ~ K 1 . 

Assumption 1 is very weak. It does not require Pn to change and go to infinity, therefore 
standard asymptotics are included as a particular case. It is not even necessary for the ratio 

Pn/n to converge to any limit. 

Decompose the covariance matrix into eigenvalues and eigenvectors: ~n = f nAnf;, where 

An is a diagonal matrix, and f n a rotation matrix. The diagonal elements of An are the 

eigenvalues AI"" , A;n' and the columns of f n are the eigenvectors ,f, ... ";n' Yn = f;Xn 

is a Pn X n matrix of n iid observations on a system of Pn uncorrelated random variables that 
spans the same space as the original system. We impose restrictions on the higher moments 

of Yn . Let (yfl"'" y;nl)t denote the first column of the matrix Yn . 

1 Pn 
Assumption 2 There exists a constant K2 independent of n such that - L E[(yil)8] ~ K 2· 

Pn i=l 

Assumption 3 

hm P~ x L(i,j,k,l)EQJ COV[yflYj\, YA\y[1])
2 

= 0 
n-HXJ n Cardinal of Qn ' 

where Qn denotes the set of all the quadruples that are made of four distinct integers between 

1 and Pn. 

Assumption 2 states that the eighth moment is bounded (on average). Assumption 3 states 
that products of uncorrelated random variables are themselves uncorrelated (on average, in 
the limit). In the case where general asymptotics degenerate into standard asymptotics 

(Pn/n ~ 0), Assumption 3 is trivially verified as a consequence of Assumption 2. Assump­
tion 3 is verified when random variables are normally or even elliptically distributed, but it is 

much weaker than that. Assumptions 1-3 are implicit throughout the paper. 

Our matrix norm is based on the Frobenius norm. 

4To the best of our knowledge, the framework of general asymptotics has not been used before to improve 
oYer the sample covariance matrix, but only to characterize the distribution of its eigenvalues, as in Silverstein 
(1994). 
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Definition 1 The norm of the Pn -dimensional matrix A 2S: IIAII~ 
f(Pn) is a scalar function of the dimension. 

f(Pn) tr(AAt), where 

It defines a quadratic form on the linear space of Pn-dimensional symmetric matrices whose 

associated inner product is: Al On A2 = f(pn)tr(A1A~). 

The behavior of 11·lln across dimensions is controlled by the function fe). The norm 11·lln 
is used mainly to define a notion of consistency. A given estimator will be called consistent if 
the norm of its difference with the true covariance matrix goes to zero (in quadratic mean) as 

n goes to infinity. If Pn remains bounded, then all positive functions f (.) generate equivalent 
notions of consistency. But this particular case similar to standard asymptotics is not very 
representative. If Pn (or a subsequence) goes to infinity, then the choice of f(·) becomes much 

more important. If f(Pn) is too large (small) as Pn goes to infinity, then it will define too 
strong (weak) a notion of consistency. f(·) must define the notion of consistency that is "just 

right" under general asymptotics. 

Our solution is to define a relative norm. The norm of a Pn-dimensional matrix is divided 
by the norm of a benchmark matrix of the same dimension Pn. The benchmark must be 
chosen carefully. For lack of any other attractive candidate, we take the identity matrix as 

benchmark. Therefore, by convention, the identity matrix has norm one in every dimension. 
This determines the function f (.) uniquely as follows. 

Definition 2 The scalar coefficient left unspecified in Definition 1 is: f (Pn) = l/Pn. 

Intuitively, it seems that the norm of the identity matrix should remain bounded away from zero 
and from infinity as its dimension goes to infinity. All choices of f (.) satisfying this property 
would define equivalent notions of consistency. Therefore our particular norm is equivalent to 

any norm that would make sense under general asymptotics. 

An example might help familiarize the reader with Definitions 1-2. Let An be the Pn x Pn 

matrix with one in its top left entry and zeros everywhere else. Let Zn be the Pn x Pn matrix 
with zeros everywhere (i.e. the null matrix). An and Zn differ in a way that is independent 

of Pn: the top left entry is not the same. Yet their squared distance IIAn - Znl1 2 = l/Pn 

depends on Pn. This apparent paradox has an intuitive resolution. An and Zn disagree on the 
first dimension, but they agree on the Pn - 1 others. The importance of their disagreement is 

relative to the extent of their agreement. If Pn = 1, then An aIld Zn have nothing in common, 
and their distance is 1. If Pn -+ 00, then An and Zn have almost everything in common, and 
their distance goes to O. Thus, disagreeing on one entry can either be important (if this entry 

is the only one) or negligible (if this entry is just one among a large number of others). 

3.2 The Behavior of the Sample Covariance Matrix 

Define the sample covariance matrix Sn = XnX~/n. We follow the notation of Section 2, 
except that we add the subscript n to signal that all results hold asymptotically. Thus, we 

have: /-1n = ~n On In, a~ = II~n - /-1nInll~, {3; = E[IISn - ~nll~]' and 6; = E[lISn - /-1nInll~l· 
These four scalars are well behaved asymptotically. 
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Lemma 3.1 P,n, a;, f3~ and 15; remain bounded as n ---t 00. 

They can go to zero in special cases, but in general they do not, in spite of the division by Pn in 

the definition of the norm. The proofs of all the technical results of Section 3 are in Appendix 
A. 

The most basic question is whether the sample covariance matrix is consistent under general 
asymptotics. Specifically, we ask whether Sn converges in quadratic mean to the true covariance 
matrix, that is, whether f3~ vanishes. In general, the answer is no, as shown below.5 

e~ is bounded as n ---t 00, and we have: 

Theorem 3.1 shows that the expected loss of the sample covariance matrix E[IISn - ~nll;l is 
bounded, but it is at least of the order of Pn p,;, which does not usually vanish. Therefore the 

n 
sample covariance matrix is not consistent under general asymptotics, except in special cases. 

The first special case is when Pn/n ---t O. For example, under standard asymptotics, Pn is 
fixed, and it is well-known that the sample covariance matrix is consistent. Theorem 3.1 shows 
that consistency extends to cases where Pn is not fixed, not even necessarily bounded, as long 

as it is of order o(n). The second special case is when p,; ---t 0 and e~ ---t O. p,; ---t 0 implies 
that most of the Pn random variables have vanishing variances, i.e. they are asymptotically 
degenerate. The number of random variables escaping degeneracy must be negligible with 
respect to n. This is like the previous case, except that the o(n) nondegenerate random 
variables can now be augmented with O(n) degenerate ones. Overall, a loose condition for the 
consistency of the sample covariance matrix under general asymptotics is that the number of 

nondegenerate random variables be negligible with respect to the number of observations. 

If the sample covariance matrix is not consistent under general asymptotics, it is because 

of its off-diagonal elements. Granted, the error on each one of them vanishes, but their number 
grows too fast. The accumulation of a large number of small errors off the diagonal prevents 
the sample covariance matrix from being consistent. By contrast, the contribution of the errors 
on the diagonal is negligible. This is apparent from the proof of Theorem 3.1. After all, it 

should in general not be possible to consistently estimate Pn (Pn + 1) /2 parameters from a data 
set of n Pn random realizations if these two numbers are of the same order of magnitude. For 
this reason, we believe that there does not exist any consistent estimator of the covariance 
matrix under general asymptotics. 

Theorem 3.1 also shows what factors determine the error of Sno The first factor is the 

ratio Pn/n. It measures deviation from standard asymptotics. People often figure out whether 
they can use asymptotics by checking whether they have enough observations, but in this 

case it would be unwise: it is the ratio of observations to variables that needs to be big. 200 
observations might seem like a lot, but it is not nearly enough if there are 100 variables: it 

5The results stated in Theorem 3.1 and Lemmata 3.2 and 3.3 are related to special cases of a general result 
pro,oen by Yin (1986). But we work under weaker assumptions than he does. Also, his goal is to find the 
distribution of the eigenvalues of the sample covariance matrix, while ours is to find an improved estimator of 
the coyariance matrix. 
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would be about as bad as using 2 observations to estimate the variance of 1 random variable! 

The second factor /-L; simply gives the scale of the problem. The third factor 0; measures 
covariance between the squared variables over and above what is implied by covariance between 
the variables themselves. For example, 0; is zero in the normal case, but usually positive in 
the elliptic case. Intuitively, a "cross-sectional" law of large numbers could make the variance 

of p~ 1 2::f;;1 YTl vanish asymptotically as Pn --7 00 if the YTl'S were sufficiently uncorrelated with 
one another. But Assumption 3 is too weak to ensure that, so in general 0; is not negligible, 
which might be more realistic sometimes. 

This analysis enables us to answer another basic question: When does shrinkage matter? 
Remember that (3; = E[lISn - L;nll;] denotes the error of the sample covariance matrix, and 

pn 

that 8; = E[P~l :l)li - /-Ln)2] denotes the cross-sectional dispersion of the sample eigenvalues 
i=l 

l?, ... ,l;n around the expectation of their grand mean /-Ln = E[2::f;;lli /PnJ. Theorem 2.1 states 
that shrinkage matters unless the ratio (3;/8; is negligible, but this answer is rather abstract. 
Theorem 3.1 enables us to rewrite it in more intuitive terms. Ignoring the presence of 0;, the 
error of the sample covariance matrix (3; is asymptotically close to Pn /-L;. Therefore shrinkage 

n 
matters unless the ratio of variables to observations Pn/n is negligible with respect to 8;/ /-L;, 
which is a scale-free measure of cross-sectional dispersion of sample eigenvalues. Figure 5 

provides a graphical illustration. This constitutes an easy diagnostic test to reveal whether 

100 

Eigenvalues Dispersion 
0.Ql 0.Ql Ratio of Variables to Observations 

Figure 5: Optimal Shrinkage Intensity and PRIAL as Function of Eigenvalues Dispersion and 
the Ratio of Variables to Observations. Note that eigenvalues dispersion is measured by the 
scale-free ratio 8';,) /-L;. 

our shrinkage method can substantially improve upon the sample covariance matrix. In our 
opinion, there are many important practical situations where shrinkage does matter according 

to this criterion. Also, it is rather exceptional for gains from shrinkage to be as large as Pn/n, 
because most of the time (for example in estimation of the mean) they are of the much smaller 
order l/n. 
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3.3 A Consistent Estimator for ~~ 

L;~ is not a bona fide estimator because it depends on the true covariance matrix L;n, which 

is unobservable. Fortunately, computing L;~ does not require knowledge of the whole matrix 

L;n, but only of four scalar functions of L;n: J-Ln, a~, (3;" and 8;". Given the size of the data set 
(Pn X n), we cannot estimate all of L;n consistently, but we can estimate the optimal shrinkage 
target, the optimal shrinkage intensity, and even L;~ itself consistently. 

For J-Ln, a consistent estimator is its sample counterpart. 

Lemma 3.2 Define mn = Sn On In· Then E[mnl = J-Ln for all n, and mn - J-Ln converges to 

zero in quartic mean (fourth moment) as n goes to infinity. 

It implies that m~ - J-L~ ~. 0 and mn - J-Ln ~. 0, where ~. denotes convergence in quadratic 

mean as n -t 00. A consistent estimator for 8;" = E[IISn -J-LnInll~l is also its sample counterpart. 

Now let the Pn x 1 vector x~k denote the kth column of the observations matrix X n, for 

k = 1, ... ,n. Sn = n- 1 XnX; can be rewritten as Sn = n-1 Lk=l x~k(x~k)t. Sn is the average 
of the matrices x~k (x~k) t . Since the matrices x~k (x1Y are iid across k, we can estimate the 
error (3;" = E[lISn - L;nll~l of their average by seeing how far each one of them deviates from 
the average. 

d b2 - . (-b2 d2 ) Th -b2 (32 q.m. 0 an n - mIn n' n' en n - n =---t 

We introduce the constrained estimator b~ because (3;" ::; 8;" by Lemma 2.1. In general, this 

constraint is rarely binding. But it ensures that the following estimator of a~ is nonnegative. 

Lemma 3.5 Define a~ = d~ - b~. Then a~ - a~ ~. O. 

The next step of the strategy is to replace the unobservable scalars in the formula defining L;~ 
with consistent estimators, and to show that the asymptotic properties are unchanged. This 

yields our bona fide estimator of the covariance matrix: 

(14) 

The next theorem shows that S~ has the same asymptotic properties as L;~. Thus, we can 

neglect the error that we introduce when we replace the unobservable parameters J-Ln, a~, {3;" 
and 8;" by estimators. 

Theorem 3.2 S~ is a consistent estimator ofL;~, i.e. IIS~ -L;~lln ~. o. As a consequence, S~ 
has the same asymptotic expected loss (or risk) as L;~, i. e. E[lIS~ - L;n II~l- E[IIL;~ - L;nll~l -t O. 
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This justifies our studying the properties of ~~ in Section 2 "as if" it was a bona fide estimator. 

It is interesting to recall the Bayesian interpretation of ~~ (see Section 2.2). From this 

point of view, S~ is an empirical Bayesian estimator. Empirical Bayesians (see e.g. Frost and 
Savarino, 1986) ignore the fact that their prior contains estimation error because it comes from 

the data. Usually, this is done without any rigorous justification, and it requires sophisticated 
"judgement" to pick an empirical Bayesian prior whose estimation error is "not too" damaging. 
Here, we treat this issue rigorously instead: We give a set of conditions (Assumptions 1-3) under 
which it is legitimate to neglect the estimation error of our empirical Bayesian prior. 

Finally, it is possible to estimate the expected quadratic loss of ~~ and S~ consistently. 

3.4 Optimality Property of the Estimator S~ 

The final step of our strategy is to demonstrate that S~, which we obtained as a consistent 

estimator for ~~, possesses an important optimality property. We already know that ~~ (hence 
Sl~ in the limit) is optimal among the linear combinations of the identity and the sample 
covariance matrix with nonrandom coefficients (see Theorem 2.1). This is interesting, but only 

mildly so, because it excludes the other linear shrinkage estimators with random coefficients. 
In this section, we show that S~ is still optimal within a bigger class: the linear combinations 
of In and Sn with random coefficients. This class includes both the linear combinations that 

represent bona fide estimators, and those with coefficients that require hindsight knowledge of 

the true (and unobservable) covariance matrix ~n' 

Let ~~* denote the linear combination of In and Sn with minimum quadratic loss. It solves: 

min II~~* - ~nll; 
Pl,P2 

s.t. ~~* = PIIn + P2Sn' 
(15) 

In contrast to the optimization problem in Theorem 2.1 with solution ~~, here we minimize 

the loss instead of the expected loss, and we allow the coefficients PI and P2 to be random. It 
turns out that the formula for ~~* is a function of ~n, therefore ~~* does not constitute a bona 

fide estimator. By construction, ~~* has lower loss than ~~ and S~ a.s., but asymptotically it 
makes no difference. 

Theorem 3.3 S~ is a consistent estimator of~~*, i.e. IIS~ - ~~*lln ~. O. As a consequence, 

S~ has the same asymptotic expected loss (or risk) as ~~*, that is, E[IIS~ - ~nll;] - E[II~~* -: 
~nll;] -+ O. 

Both ~~ and ~~* have the same asymptotic properties as S~, therefore they also have the same 
asymptotic properties as each other. The most important result of this paper is the following: 
The bona fide estimator S~ has uniformly minimum quadratic risk asymptotically among all 
the linear combinations of the identity with the sample covariance matrix, including those that 
are bona fide estimators, and even those that use hindsight knowledge of the true covariance 

matrix. 
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Theorem 3.4 For any sequence of linear combinations L:n of the identity 

co variance matrix, the estimator S~ defined in Equation (14) verifies: 

and the sample 

(16) 

In addition, every L:n that performs as well as S~ is identical to S~ in the limit: 

Thus it is legitimate to say that S~ is an asymptotically optimal linear shrinkage estimator 
of the covariance matrix with respect to quadratic loss under general asymptotics. Typically, 

only maximum likelihood estimators have such a sweeping optimality property, so we believe 
that this result is unique in shrinkage theory. 

Yet another distinctive feature of S~ is that, to the best of our knowledge, it is the only es­
timator of the covariance matrix to retain a rigorous justification when the number of variables 

Pn exceeds the number of observations n. Not only that, but S~ is guaranteed to be always 
invertible, even in the case Pn > n, where rank deficiency makes the sample covariance matrix 
singular. Estimating the inverse covariance matrix when variables outnumber observations is 
sometimes dismissed as impossible, but the existence of (S~)-l certainly proves otherwise. The 

following theorem shows that S~ is usually well-conditioned. 

Theorem 3.5 Assume that the condition number of the true covariance matrix L:n is bounded, 

and that the normalized variables Yil / A are iid across i = 1, ... , n. Then the condition 

number of the estimator S~ is bounded in probability. 

This result follows from powerful results proven recently by probabilists (Bai and Yin, 1993). 
If the cross-sectional iid assumption is violated, it does not mean that the condition number 

goes to infinity, but rather that it is technically too difficult to find out anything about it. 

Interestingly, there is one case where the estimator S~ is even better-conditioned than 

the true covariance matrix L:n : if the ill-conditioning of L:n comes from eigenvalues close to 
zero (multicollinearity in the variables) and the ratio of variables to observations Pn/n is not 
negligible. In this case, S~ is well-conditioned because the sample observations do not provide 
enough information to update our prior belief that there is no multicollinearity. 

4 Monte-Carlo Simulations 

The goal is to compare the expected loss (or risk) of various estimators across a wide range 
of situations. The benchmark is the expected loss of the sample covariance matrix. We 

report the Percentage Relative Improvement in Average Loss of S*, defined as: PRIAL( S*) = 

(E[IIS - L:112] - E[IIS* - L:112])/E[IIS - L:112] x 100. The subscript n is omitted for brevity, 
since no confusion is possible. If the PRIAL is positive (negative), then S* performs better 
(worse) than S. The PRIAL of the sample covariance matrix S is zero by definition. The 
PRIAL cannot exceed 100%. We compare the PRIAL of S* to the PRIAL of other estimators 

from finite sample decision theory. There are many estimators worthy of investigation, and we 
cannot possibly study all the interesting ones. 
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4.1 Other Estimators 

Raff (1980) introduces an estimator with an empirical Bayesian inspiration. Like S*, it is a 

linear combination of the sample covariance matrix and the identity. The difference lies in the 
coefficients of the combination. Raff's coefficients do not depend on the observations X, only 
on p and n. If the criterion is the mean squared error, Raff's approach suggests: 

~ pn - 2n - 2 n 
SEB = 2 mEBI + --S 

pn n+ 1 
(18) 

with mEB = [det(S)Flp. When p > n we take mEB = m because the regular formula would 
yield zero. The initials EB stand for empirical Bayesian. 

Stein (1975) proposes an estimator that keeps the eigenvectors of the sample covariance 

matrix and replaces its eigenvalues h, ... ,lp by: 

i = 1, ... ,po (19) 

These corrected eigenvalues need neither be positive nor in the same order as sample eigenval­
ues. To prevent this from happening, an ad-hoc procedure called isotonic regression is applied 
before recombining corrected eigenvalues with sample eigenvectors.6 Raff (1982) independently 

obtains a closely related estimator. In any given simulation, we call SSH the better performing 
estimator of the two. The other one is not reported. The initials SR stand for Stein and Raff. 7 

Stein (1982) and Dey and Srinivasan (1985) both derive the same estimator. Under a 
certain loss function, it is minimax, which means that no other estimator has lower worst-case 
error. The minimax criterion is sometimes criticized as overly pessimistic, since it looks at the 
worst case only. This estimator preserves sample eigenvectors and replaces sample eigenvalues 

by: 
n -

------. .Ai, 
n + p + 1 - 22 

(20) 

where sample eigenvalues h, ... ,lp are sorted in descending order. We call this estimator SMX, 

where the initials MX stand for minimax. 

When the number of variables p is very large, S* and S take much less time to compute 

than SEB, SSH and SMX', because they do not need eigenvalues and determinants. Indeed the 
number and nature of operations needed to compute S* are of the same order as for S. It can 
be an enormous advantage in practice. The only seemingly slow step is the estimation of f32, 

but it can be accelerated by writing: 

(21) 

where [']ij denotes the entry (i,j) of a matrix and the symbol /\ denotes elementwise exponen­

tiation, i.e. [A/\2Jij = ([AJij)2 for any matrix A. 

6Intuitively, isotonic regression restores the ordering by assigning the same value to a subsequence of corrected 
eigenyalues that would yiolate it. Lin and Perlman (1985) explain it in detail. 

7When p > n some of the terms :\i - :\j in formula (19) result in a division by zero. We just ignore them. 
;\onetheless, when p is too large compared to n, the isotonic regression does not converge. In this case SSH does 
not exist. 
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4.2 Results 

The random variables used in the simulations are normally distributed. The true covariance 
matrix ~ is diagonal without loss of generality. Its eigenvalues are drawn according to a log­

normal distribution. Their grand mean J.-t is set equal to one without loss of generality. We let 
their cross-sectional dispersion a 2 vary around the central value 1/2. We let the ratio pin vary 
around the central value 1/2. Finally, we let the product pn vary around the central value 800. 
We study the influence of a 2

, pin an~ pn separately. When one parameter moves, the other 
two remain fixed at their central values. 

The asymptotic PRIAL of S* implied by Theorems 2.1, 3.1 and 3.2 is I pin 2 x 100. 
pn+a 

This is the "speed of light" that we would attain if we knew the true parameters J.-t, a 2 , 

(32, 02
, instead of having to estimate them. When all three parameters are fixed at their 

repective central values, we get the results in Table 2. "Risk" means the average loss over 

Estimator S S* SEB SSH SMX 
Risk 0.5372 0.2723 0.5120 0.3076 0.3222 

Standard Error on Risk (0.0033) (0.0013) (0.0031) (0.0014) (0.0014) 
PRIAL 0.0% 49.3% 4.7% 42.7% 40.0% 

Table 2: Result of 1,000 Monte-Carlo Simulations for Central Parameter Values. 

1,000 simulations. For the central values of the parameters, the asymptotic PRIAL of S* is 

equal to 50%, and its simulated PRIAL is 49.3%. Therefore asymptotic behavior is almost 
attained in this case for p = 20 and n = 40. S* improves substantially over Sand SEB, and 
moderately over SSH and Sl\1x. 

When we increase pin from zero to infinity, the asymptotic PRIAL of S* increases from 
0% to 100% with an "S" shape. Figure 6 confirms this.8 S* always has lower risk than Sand 

SEB. It usually has slightly lower risk than SSH and SMX. SSH is not defined for high values 
of pin. SMX performs slightly better than S* for the highest values of pin. This may be due 
to the fact that S* is not close to its asymptotic performance for values of n below 10. 

When we increase 0.2 from zero to infinity, the asymptotic PRIAL of S* decreases from 
100% to 0% with a reverse "S" shape. Figure 7 confirms this. S* has lower mean squared 
error than S always, and than SEB almost always. S* always has lower mean squared error 

than SSH and Sr-,IX. When a 2 gets too large, SSH and SMX perform worse than the sample 
covariance matrix. The reason is that true eigenvalues are very dispersed, and they shrink 

sample eigenvalues together too much. This may be due to the fact that SSH and SMX were 
originally derived under another loss function than the Frobenius norm. It is very reassuring 

that, even in a case where some of its competitors perform much worse than S, S* performs 
at least as well as S. 

When we increase pn from zero to infinity, we should see the PRIAL of S* converge to its 
asymptotic value of 50%. Figure 8 confirms this. S* always has lower risk than Sand SEB. It 

8Corresponding tables of results are available from the authors upon request. Standard errors on simulated 
risk have the same order of magnitude as in Table 2. 
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Figure 8: Effect of the Product of Variables by Observations on the PRIAL. 

has moderately lower risk than SSH and Sl\IX, except when n is below 20. When n is below 20, 
S* performs slightly worse than SSH and moderately worse than SMX, but still substantially 

better than Sand SEB. 

Simulations not reported here study departures from normality. These departures have 

very little impact on the above results. In relative terms, Sand SEB appear to suffer the most; 
~ ~ 

then SSH and SMX; and S* appears to suffer the least. 

We draw the following conclusions from these simulations. The asymptotic theory devel­

oped in Section 3 approximates finite sample behavior well, as soon as nand p become of the 
order of twenty. S* improves over the sample covariance matrix in everyone of the situations 

simulated, and usually by a lot. It also improves over SEB in almost every situation simulated, 

and usually by a lot too. S* never performs substantially worse than SSH and SMX, often 
performs about as well or slightly better, and in some cases does substantially better. In the 

cases where SSH or SMX do better, it is attributable to small sample size (less than ten).9 

4.3 Condition Number 

This section studies the condition number of the estimator S* in finite sample. The proce­

dure for the Monte-Carlo simulations is the same as in Section 4.2, except that we do not 
compute the other estimators SEB, SSH and SMX. Figures 9, 10 and 11 plot the behavior of 
the condition number when pin varies, when a 2 1/-L2 varies, and when pn varies, respectively. 

The graphs show the average condition number over 1,000 replications for the sample co­
variance matrix S and for the improved estimator S*. They also show the condition number 

of the true covariance matrix for comparison. We can see that the sample covariance matrix 

9\\'e acknowledge that SSH and SMX were designed with another criterion than the Frobenius norm in mind. 
Our conclusions say nothing about performance under any other criterion. Nonetheless, the Frobenius norm is 
an important criterion. 
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is always worse-conditioned than the true covariance matrix, while our estimator is always 

better-conditioned. This suggests that the asymptotic result proven in Theorem 3.5 holds well 

in finite sample. 

5 Conclusions 

In this paper we have discussed the estimation of large dimensional covarinance matrices where 
the number of (iid) variables is not small compared to the sample size. It is well-known that 

in such situations the usual estimator, the sample cbvariance matrix, is ill-conditioned and 
may not even be invertible. The approach suggested is to shrink the sample covariance matrix 
towards the identity matrix, which means to consider a convex linear combination of these two 

matrices. 

The practical problem is to determine the shrinkage intensity, that is, the amount of shrink­
age of the sample covariance matrix towards the identity matrix. To solve this problem, we 
considered a general asymptotics framework where the number of variables is allowed to tend 
to infinity with the sample size. It was seen that under mild conditions the optimal shrink­
age intensity then tends to a limiting constant; here, optimality is meant with respect to a 

quadratic loss function based on the Frobenius norm. It was shown that the asymptotically 
optimal shrinkage intensity can be estimated consistently, which leads to a feasible estimator. 

Both the asymptotic results and the extensive Monte-Carlo simulations presented in this 

paper indicate that the suggested shrinkage estimator can serve as an an-purpose alternative to 
the sample covariance matrix. It has smaller risk and is better-conditioned. This is especially 
true when the dimension of the covariance matrix is large. 

Directions for future research include: applying this technique to portfolio selection, Gener­
alized Least Squares (GLS) regressions, and the General Method of Moments (GMM); finding 
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the optimal non-linear way to shrink sample eigenvalues towards their grand mean; taking 

other shrinkage targets than the identity; minimizing alternative loss functions; relaxing the 
assumption that observations are iid across time; characterizing the limiting distribution of 
this estimator and its inverse; applying this technique to the estimation of the vector of means 
or the vector of variances. The authors are currently investigating some of these issues. 
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Appendix 

A Proofs of the Technical Results in Section 3 

For brevity we omit the subscript n, but it is understood that everything depends on n. 

The notation is as follows. The elements of the true covariance matrix ~ are called (Jij. 

~ can be decomposed into ~ = f Af', where A is a diagonal matrix, and f is a rotation matrix. 

We denote the elements of A by Aij, thus Aij = 0 for i i- j, and the eigenvalues of ~ are called 
Aii. This differs from the body of the paper, where the eigenvalues are called Ai instead, but 
no confusion should be possible. We use the matrix U to rotate the data: Y = ut X is a p x n 

matrix of n iid observations on a system of p random variables with mean zero and covariance 

matrix A. 

A.l Proof of Lemma 3.1 

Since the Frobenius norm is invariant by rotation, we have: 

where the constant K2 is defined by Assumption 2. Therefore the norm of the true covariance 

matrix remains bounded as n goes to infinity. This implies that p, = ~ 0 I ~ II~II is bounded 
too (remember that Definition 2 assigns norm one to the identity). Also, a 2 = II~ - p,I112 = 

11~112 _ p,2 remains bounded as n goes to infinity. Furthermore, we have: 

< 

< 

< 

< 

i 

I 
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< p 
n 

where the constants K1 and K2 are defined by Assumptions 1 and 2 respectively. It shows that 
(32 remains bounded as n goes to infinity. Finally, by Lemma 2.1, 82 = a 2 + (32 also remains 

bounded as n goes to infinity. 0 

A.2 Proof of Theorem 3.1 

We have: 

Therefore e2 remains bounded as n goes to infinity. We can rewrite the expected quadratic 

loss of the sample covariance matrix as: 

(32 = ~ t t E [(~ t YikYjk - Aij ) 2] 
p l=l )=1 k=l 

1 P P 
- L L E[(Yi1Yj1 - Aij)2] 
pn i=l j=l 

1 P PIP P 

- --;; L L E[Yf1Y]1] - --;; L L ATj 
P i=l j=l P i=l j=l 

E(fL2 + e2) _ ~ ~ A2 .. 
n pn~ n 

l=l 
The last term on the right hand side of the last equation verifies: 

1 ~ 2 1 (1 ~ 2 2) 1 (1 ~ 4) 1 - ~ \i = - - ~ E[Yid ::; - - ~ E[Yid <-
pn i=l n p i=l n p i=l n 

11 



therefore the difference {32 - E (J.L2 + 02) converges to zero as n goes to infinity. 0 
n 

A.3 Proof of Lemma 3.2 

The proof of the first statement is: 

E[m] = E[S 0 I] = E[S] 0 I = ~ 0 1= J.L. 

Consider the second statement. 

In the summation on the right hand side of Equation (22), the expectation is nonzero only if 

kl = k2 or kl = k3 or kl = k4 or k2 = k3 or k2 = k4 or k3 = k4. Since these six conditions are 
symmetric, we have: 

x ' E [ U t,(Yik' - Aii) } '] , E [ U t,(Yik' - Aii) } '] 

< ~E[U~(YI1-Aii)n 
Now we want to eliminate the Aii's from the bound. We can do it by using the inequality: 

III 



Therefore we have: 

This shows that the estimator m converges to its expectation J.l in quartic mean. 0 

AA Proof of Lemma 3.3 

We prove this lemma by successively decomposing d2 - 02 into terms that are easier to study. 

It is sufficient to show that both terms in parentheses on the right hand side of Equation (23) 

converge to zero in quadratic mean. Consider the first term. Since mI is the orthogonal 

projection for the inner product 0 of the sample covariance matrix 8 onto the line spanned 

by the identity, we have: 118 - J.lI11 2 - 118 - mII12 = IIJ.lI - mII12 = (J.l - m)2, therefore by 
Lemma 3.2 it converges to zero in quadratic mean. Now consider the second term. 

(24) 

Again it is sufficient to show that the three terms on the right hand side of Equation (24) 
converge to their expectations in quadratic mean. The first term J.l2 is equal to its expectation, 

so it trivially does. The second term 2J.lm does too by Lemma 3.2, keeping in mind that J.l is 
bounded by Lemma 3.1. Now consider the third term 118112: 

(25) 

Again it is sufficient to show that both terms on the right hand side of Equation (25) converge 
to their expectations in quadratic mean. Consider the first term. 

Var [:2 t (~ t YTk) 2] 
k=l P t=l 

[( ) 2] p2 1 P 2 

= n 3 Var p ~ Yil 

IV 



< ~:E [G t,YTl)'] 
< (~) (~r (~t, E [Y~l]) 
< KrK2 -+ 0 

n 

Therefore the first term on the right hand side of Equation (25) converges to its expectation 

in quadratic mean. Now consider the second term. 

The covariances on the right hand side of Equation (26) only depend on ({k1 , k2 } n {k3 , k4})#, 
the cardinal of the intersection of the set {k1 , k2 } with the set {k3 , k4}. This number can be 

zero, one or two. We study each case separately. 

(
1 p )2 (1 p )2 

In this case - L Yikj Yik2 and - L Yik 3 Y ik4 are independent, so their covariance 
Pi=l Pi=l 

is zero. 

({k 1,k2 } n {k3 ,k4})# = 1 

This case occurs 4n(n - 1)(n - 2) times in the summation on the right hand side of 
Equation (26). Each time we have: 

v 



and 

-COY [(~ tYiklYik2)2, (~tYik3Yik4)2] 
P t=l P t=l 

-COY [(~ tYi1Yi2)2, (~tYi1Yi3)2] 
P t=l P t=l 

< E [ G ~ YiI Yi2 ) '] E [ G ~ YilY") 2] 

< (:, ~ t ElM;I]' )' 

< ~ (~ t E[YT1l 2
) 2 

P P i=l 

< 12 (p~ t E[Yf1l) 
P t=l 

K2 < p2 . 

Therefore in this case the absolute value of the covariance on the right hand side of 

Equation (26) is bounded by K2/p2. 

({k 1,k2 } n {k3 ,k4 })# = 2 

This case occurs 2n(n-1) times in the summation on the rIght hand side of Equation (26). 
Each time we have: 

COY [(~ t Yikj Yik2) 2 , (~ t Yik3Yik4) 2] 
Pt=l Pt=l 

COY [(~ tYilYi2)2, (~tYi1Yi2)2j 
P t=l P t=l 

1 P P P P 

< 4 L L L L ICOV[Yi1Yi2Yj1Yj2, Yk1Yk2YllYl2l1 (27) 
P i=l j=l k=ll=l 

In the summation on the right hand side of Equation (27), the set of quadruples of integers 

between 1 and P can be decomposed into two disjoint subsets: {1, ... ,p}4 = QUR, where 

VI 



Q contains those quadruples that are made of four distinct integers, and R contains the 

remainder. Thus we can make the following decomposition: 

COy [(~ t Yikl Yik 2 ) 2 , (~ t Yik 3 Yik 4 ) 2] 
p 2=1 P 2=1 

1 
< 4 L ICOV[Yi1Yi2Yj1Yj2, Yk1Yk2Y11Y12] I 

P (ij,k,I)EQ 
1 

+4 L ICOV[Yi1Yi2Yj1Yj2, Yk1Yk2YllY!2l1 
P (i,j,k,I)ER 

Let us express the first term of this decomposition as a function of the quantity that 
. . p2 2::(ijkl)EQ(COV[Yi1Yj1,Yk1Yll])2. . 

vamshes under AssumptIOn 3: v = 2 x ' "C . f Q . FIrst, notIce 
n ardmalo 

that the cardinal of Q is p(p - l)(p - 2)(p - 3). Also, when i f= j and k f= l, we have 

E[Yi1Yj1] = E[Yk1Yll] = 0, therefore: 

IE[YilYi2Yj1Yj2Yk1Yk2YI1y!2l 

- E [Yi1Yi2Yj1Yj2] E [Yk1Yk2YllYI2] I 
lE [Yi1Yj1Yk1Yllf - E [Yi1Yj1f E [Yk1Yll]21 

E [Yi1Yj1Yk1Yll]2 

(Cov [Yi1Yj1, Yk1Yll] + E [Yi1Yj1] E [Yk1Yll])2 

(Cov [Yi1Yj1, Yk1Yll])2. 

n 2(p - l)(p - 2)(p - 3) 
This enables us to express the first term of the decomposition as: v. 

p5 
Now consider the second term of the decomposition. The summation over R only extends 

over the quadruples (i,j, k, l) such that i = j or i = k or i = l or j = k or j = l or k = l. 

Since these six conditions are symmetric, we have: 

1 
4 L ICOV[Yi1Yi2Yj1Yj2,Yk1Yk2YllYI2]1 

P (i,j,k,I)ER 

6 P P P 

< 4 L L L ICOV[Yi1Yi2Yi1Yi2, Yk1Yk2YllYI2] I 
P i=lk=lk=l 

6 P P P 

< 4 L L L E [YT1YT2YT1YT2] E [Yk1Yk2Yf1Yf2] 
p i=lk=lk=l 
6 P pp" 

< 4 L L LE [yt1] E [Yk1Yf1] 
P i=lk=lk=l 

< 64 t t t E [ytI J jE [YkIJ jE [ytlJ 
p i=lk=lk=l 

< ~Gt,E[Ytll) Gt,JE[YAl)' 
6 (1 p )2 

< P P ~E [yt1] 

< ~ (~ t, E [Yfd) 

vu 

~ 
i 



< 

This completes the study of the decomposition, and also of the three possible cases. We can now 
bring all the results together to bound the summation on the right hand side of Equation (26): 

Backing up, the second term on the right hand side of Equation (25) converges to its ex­
pectation in quadratic mean. Backing up again, the third term IISI1 2 on the right hand side 
of Equation (24) converges to its expectation in quadratic mean. Backing up more, the sec­
ond term between parentheses on the right hand side of Equation (23) converges to zero in 
quadratic mean. Backing up one last time, d2 - 82 converges to zero in quadratic mean. For 

future reference note that, since liS - p,I112 converges to its expectation 82 in quadratic mean 

and since 82 is bounded, ElIlS - p,II14] is bounded .. D 

A.5 Proof of Lemma 3.4 

We first prove that the unconstrained estimator 7} is consistent. As before, we do it by 
successively decomposing r} - (32 into terms that are easier to study. 

r} - (32 = { 1~ t 2 [ 2} n 2 ~ Ilx.kx.k - ~II - EllS - ~II ] 

{ 
1 ~ t 2 1 ~ t 12} + 2" ~ Ilx.kx.k - SII - 2" ~ Ilx.kx.k - ~I 

n k=l n k=l 

(28) 

It is sufficient to show that both bracketed terms on the right hand side of Equation (28) 
converge to zero in quadratic mean. Consider the first term. 
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Therefore the first bracketed term on the right hand side of Equation (28) has expectation 

zero. For k = 1, ... ,n let Y.k denote the Pn x 1 vector holding the kth column of the matrix Y. 

AVar [A IIY·1Y·1
t 

- A112] 

1 P P P P 

23 L L L L COV[Yi1Yj1 - Aij,Yk1Yll - AkL] 
P n i=l j=l k=ll=l 

1 P P P P 

23 L L L L COV[Yi1Yj1, Yk1Yll] 
P n i=l j=l k=ll=l 

1 P P P P 

< 2n3 L L L L E[YT1Y]1]E[Yk1Yf1] 
P i=l j=l k=ll=l 

1 P P P P 

< 23 L L L L 4 E[Y{1]E[YJ1]E[ytl]E[yt1] 
P n i=l j=l k=ll=l 

< :: G ~ yJE[ytll), 

n 

Therefore the first bracketed term on the right hand side of Equation (28) converges to zero 

in quadratic mean. Now consider the second term: 

1 n (t S + L:) 2" L 2(S - L:) 0 X·kX·k - -2-
n k=l 

-(S - L:) 0 - L X·kX·k ---2 (1 n t S + L:) 
n n k=l 2 

2 (S+~) ~(S-l:)o S--2-

1 2 
-liS - L:II 
n 

E[lIS - L:114] is bounded since E[IIS - J-lII14] and IlL: - J-lIII are bounded. Therefore the second 
term on the right hand side of Equation (28) converges to zero in quadratic mean. Backing up 

once more, 7} - {32 converges to zero in quadratic mean. 

IX 
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Now let us turn to the constrained estimator b2 = min(1?, d2 ). 

almost surely (a.s.). Furthermore, using 52 ~ f32, we have: 

b2 - f32 min(l?, d2) - f32 

a. s. Therefore 

min(1? - f32, d2 - f32) 

> min(1? - f32, d2 - 52) 

> min( -Il? - f321, -ld2 - 521) 

> - max(ll? - f321, Id2 - 521). 

On the right hand side, the first term converges to zero as we have shown earlier in this section, 

and the second term converges to zero as we have shown in Lemma 3.3. Therefore b2 - f32 

converges to zero in quadratic mean. 0 

A.6 Proof of Lemma 3.5 

Follows trivially from Lemmata 2.1, 3.3, and 3.4. 0 

A.7 Proof of Theorem 3.2 

The following lemma will be useful in proving Theorems 3.2 and 3.3 and Lemma 3.6. 

Lemma A.I If u 2 is a sequence of non-negative random variables (implicitly indexed by n, 

as usual) whose expectations converge to zero, and 71,72 are two non-random scalars, and 
u2 

-- < 2(d2 + 52) a.s., then: 
dT1 5T2 -

Proof of Lemma A.I Fix E > 0. Recall that the subscript n has been omitted to make 

the notation lighter, but is present implicitly. Let N denote the set of indices n such that 

52 :::; E/8. Since d2 - 52 -+ ° in quadratic mean, there exists an integer nl such that \/n ~ 
n1 E[ld2 

- 62 1] :::; E/4. For every n ~ n1 inside the set N, we have: 

Now consider the complementary of the set N. Since E[u2] -+ 0, there exists an integer n2 

such that: 

x 

I 
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Let 1 {-} denote the indicator function of an event, and let Pr(·) denote its probability. From 

the proof of Lemma 3.1, 152 is bounded by (1 + Kdv'K2. Since d2 - 152 converges to zero in 
quadratic mean, hence in probability, there exists an integer n3 such that: 

For every n ~ max(n2' n3) outside the set N, we have: 

Bringing together the results inside and outside the set N obtained in Equations (29)-(30) 

yields: 

This ends the proof of the lemma. 0 

Consider the first statement of Theorem 3.2. 

(31) 

It is sufficient to show that the expectations of both terms on the right hand side of Equa­
tion (31) converge to zero. The expectation ofthe first term does by Lemma 3.2. Now consider 

the second term. Since a 2 ~ 152 and a2 ~ d2
, note that: 

Furthermore, since a2 - a 2 and d2 - 152 converge to zero in quadratic mean, and since a 2 and 
62 are bounded, a2 J2 - a 2d2 = (a 2 - ( 2 )52 - a 2 (d2 - 152 ) converges to zero in quadratic mean. 
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Therefore the assumptions of Lemma A.l are verified by u 2 

T2 = 4. It implies that: 

The expectation of second term on the right hand side of Equation (31) converges to zero. 

Backing up, IIS* - ~* 11 converges to zero in quadratic mean. This completes the proof of the 

first statement of Theorem 3.2. 

Now consider the second statement. 

E [IIIS* - ~112 -II~* - ~1121] E[I(S* - ~*) 0 (S* + ~* - 2~)1] 

< VE[IIS* - ~*112]VE[IIS* + ~* - 2~112]. (32) 

As we have shown above, the first term on the right hand side of Equation (32) converges to 

zero. Given that E[II~* - ~112] is bounded, it also implies that the second term on the right 

hand side of Equation (32) is bounded. Therefore the product of the two terms on the right 

hand side of Equation (32) converges to zero. This completes the proof of the second and final 

statement. 0 

A.8 Proof of Lemma 3.6 

We have: 

l
a2b2 _ a 2(321 = la2b262-a2(32d21 
d2 62 d262 ' 

Let us verify that the assumptions of Lemma A.l hold for u2 = la2b262 - a 2(32d21, Tl = 2 and 

T2 = 2. Notice that: 

a.s. Furthermore, 

E[la2b262 - a 2(32d2
1] 

E[I(a2b2"- a 2(32)62 - a 2(32(d2 - 62 )1] 

E[I(a2 - a 2)(b2 _ (32)62 + a 2(b2 - (32)62 + (a2 ~ a 2)(3262 - a 2(32(d2 - 62)1] 

< VE[(a2 - a 2)2]VE[(b2 - (32)2]62 + a 2E[lb2 - (321]62 + E[la2 - a 21](3262 

- a 2(32E[ld2 - 621]. 

The right hand side converges to zero by Lemmata 3.1 3.3, 3.4, and 3.5. Therefore E[u2] ---+ 0, 

and the assumptions of Lemma A.l are verified. It implies that: 
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A.9 Proof of Theorem 3.3 

Define 0:2 = ~ 0 8 - fLm. Its expectation is E[0:2] = 11~112 - fL2 = 0:2. We have: 

10:21 = I~ 0 8 - fLml = I(~ - fLI) 0 (8 - mI)1 ~ /II~ - fLI112/118 - mII12 ~ 6d. 

Let us prove that 0:2 - 0:2 converges to zero in quadratic mean. 

Var[~ 0 8 - fLm] 

Var[~ 0 8] + Var[fLm] - 2Cov[~ 0 8, fLm] 

< 2Var[~ 0 8] + 2Var[p,m] 

< 2fL2Var[m] + 2Var[~ 0 8] 

(33) 

(34) 

The first term on the right hand side of Equation (34) converges to zero, since fL is bounded 

by Lemma 3.1, and since Var[m] converges to zero by Lemma 3.2. Consider the second term. 

Therefore: 

Var[~ 0 8] 

1 
~ 0 8 = -tr(~8t) 

p 
1 P P 

- L L (JijSij 
P i=1 j=1 

~ t t (Jij (.!. t XikXjk) 
p i=1 j=1 n k=1 

~ t t Aij (~ t YikYjk) 
p l=1 J=1 k=1 

- LAii - LYTk 
1 P (1 n ) 

P i=1 n k=1 

Xlll 
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< t p )' -;; P ~E [Yt1] 

1 (1 P ) < -;; -LE[Y~l] 
P 2=1 

< K2 
n 

It implies that the second term on the right hand side of Equation (34) converges to zero. 

Backing up, a2 - a2 converges to zero in quadratic mean. 

Now let us find an explicit formula for the solution ~** to the optimization problem in 
Equation (15). This problem is very similar to the one in Theorem 2.1 but, instead of solving 
it with calculus as we did then, we will give an equivalent treatment based on geometry. The 

solution is the orthogonal projection according to the inner product 0 of the true covariance 

matrix ~ onto the plane spanned by the identity matrix I and the sample covariance matrix 

S. Note that (S - mI) 0 I = 0, therefore (I, II~ = :~II) forms an orthonormal basis for this 

plane. The formula for the projection has a simple expression in terms of the orthonormal 

basis: 

~** ( 
S - mI) S - mI 

(~o I)I + ~ 0 liS _ mIll liS - mIll 

~oS-Mm 
MI + liS _ mII12 (S - mI) 

a2 
MI + d2 (S - mI). 

From now on, the proof is the same as for Theorem 3.2. 

IIS* - ~** 112 = IlmI + :: (S - m1) - MI- ~: (S - mIf 

11 (m - M)I + "' ;;, "2 (S _ mI) 11' 

(a2 - (2)2 a2 - a2 
(m - M)2 + d4 liS - mII12 + 2(m - M) d2 (S - mI) 0 I 

. 2)2 
( )

2 (a - a2 
m - M + ~-d--:2""""=':~ (35) 

It is sufficient to show that the expectations of both terms on the right hand side of Equa­
tion (35) converge to zero. The expectation of the first term does by Lemma 3.2. Now consider 
the second term. 

< 

a4 + a~ - 2a2
a2 

d2 

2a4 + 2a~ 
d2 

< 2d2 + 282
, 

where we have used Equation (33). Furthermore, since a2 - a2 and a2 - a2 both converge 
to zero in quadratic mean, a2 - a2 also does. Therefore the assumptions of Lemma A.l are 
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verified by '/1,2 = (a2 - 0:2)2,71 = 2 and 72 = O. It implies that: 

The expectation of second term on the right hand side of Equation (35) converges to zero. 

Backing up, 11 S* - 1;** 11 converges to zero in quadratic mean. This completes the proof of the 

first statement of Theorem 3.3. 

Now consider the second statement. 

E [IIIS* - 1;11 2 -111;** - 1;11 2 1] ElI(S* - 1;**) 0 (S* + 1;** - 21;)1] 

< JElIIS* - 1;**11 2]JE[IIS* + 1;** - 21;11 2]. (36) 

As we have shown above, the first term on the right hand side of Equation (36) converges to 

zero. Given that E[IIS* - 1;112] is bounded, it also implies that the second term on the right 

hand side of Equation (36) is bounded. Therefore the product of the two terms on the right 

hand side of Equation (36) converges to zero. This completes the proof of the second and final 

statement. D 

A.IO Proof of Theorem 3.4 

liminf(ElIlf; - 1;11 2]- E[IIS* - 1;112]) > inf(E[IIf; - 1;11 2]- ElIl1;** - 1;112]) 

+ lim(ElIl1;** - 1;112] - ElIIS* - 1;11 2]). 

By construction of 1;**, we have 11f; - 1;11 2 - 111;** - 1;11 2 ~ 0 a.s. , therefore the first term 

on the right hand side is non-negative. The second term on the right hand side is zero by 

Theorem 3.3. Therefore the left hand side is non-negative. This proves the first statement of 

Theorem 3.4. Now consider the second statement. 

lim(ElIlf; - 1;112] - E[IIS* - 1;112]) = 0 ~ lim(ElIlf; - 1;112] - E[II1;** - 1;112]) = 0 

~ limE[IIf; - 1;11 2 - 111;** - 1;112] = 0 

~ limE[IIf; - 1;**112] = 0 

~ limE[IIf; - S*112] = 0 

This completes the proof of the second and final statement. D 

A.II Proof of Theorem 3.5 

Let .Amax(A) (.Amin(A)) denote the largest (smallest) eigenvalue of the matrix A. The theorem 

is invariant to the multiplication of all the eigenvalues of 1; by a positive number. Therefore 

we can normalize 1; so that /-l = 1 without loss of generality. Then the assumption that the 

condition number of 1; is bounded is equivalent to the existence of two constants>: and ~ 

independent of n such that: 0 < ~ :::; .Amin(1;) :::; .Amax (1;) :::; >: < 00. 
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First, let us prove that the largest eigenvalue of S* is bounded in probability. Let Z = 

A -1/2y denote the normalized variables that are assumed to be cross-sectionally iid. We have: 

Amax(S*) = Amax (~: mI + ~: S ) 

b2 a2 

d2 m + d2 Amax(S) 

< 
b2 a2 

d2 Amax (S) + d2 Amax (S) 

< Amax(S) 

< Amax (~A 1/2 ZZtA 1/2) 

< Amax (~zzt) Amax(A) 

< Amax (~zzt) >: 

almost surely. Assume with loss of generality, but temporarily, that pin converges to some 

limit. Call the limit c. Assumption 1 implies that c ::; K 1 . In this case, Yin, Bai and 

Krishnaiah (1988) show that: 

Amax (~zzt) --t (1 + JC)2 a.s. (37) 

It implies that: 

Pr {Amax (~zzt) ::; 2(1 + JC)2} --t 1 

Pr { Amax(S*) ::; 2 (1 + ffI) 2>:} --t 1. (38) 

Therefore, in the particular case where pin converges to a limit, the largest eigenvalue of S* 
is bounded in probability. Now consider the general case where pin need not have a limit. 

Remember that pin is bounded by Assumption 1. Take any subsequence along which pin 
converges. Along this subsequence, the largest eigenvalue of S* is bounded in probability. 

Notice that the bound in Equation (38) is independent of the particular subsequence. Since 

Equation (38) holds along any converging subsequence, it holds along the sequence as a whole. 

This proves that the largest eigenvalue of S* is bounded in probability. 

Now let us prove that the smallest eigenvalue of S* is bounded away from zero in probability. 

A reasoning similar to the one above leads to: Amin(S*) ~ Amin(Zztln)~ a.s. Again assume 

with loss of generality, but temporarily, that pin converges to some limit c. First consider the 

case c::; 1/2. Bai and Yin (1993) show that: 

It implies that: 

Amin (~zzt) --t (1- JC)2 a.s. 

Pr { Amin (~zzt) ~ ~(1 - JC)2} --t 1 

P+m;"(S') :> HI -~)' ,,} --> 1. 
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Now turn to the other case: c> 1/2. In this case, we use: 

b2 a2 b2 
Amin(S*) = d2 m + d2 Amin(S) 2:: d2 m 

Fix any [ > 0. For large enough n, pin 2:: 1/2 - [. Also, by Theorem 3.1, for large enough 

n, (32 2:: (p/n)(fL2 + (P) - [ 2:: 1/2 - 2[. In particular (32 2:: 1/4 for large enough n. As a 

consequence, 152 2:: 1/4 for large enough n. We can make the following decomposition: 

b2 (32 _ (32 b2 
- {32 2 (1 1 ) 

d2 m - 152 fL - 82 (m - fL) + 152 m + b m d2 - 152 (41) 

We are going to show that all three terms on the right hand side of Equation (41) converge to 

zero in probability. The first term does as a consequence of Lemma 3.2 since (32 /152 ~ 1. Now 

consider the second term. For large enough n: 

[
lb2 - (321 1 JE[(b2 - (32)2]JE[m2] 

E 152 m ~ 1/4 . 

In the numerator on the right hand side, E[(b2 - (32)2] converges to zero by Lemma 3.4, and 

E[m2
] is bounded by Lemmata 3.1 and 3.2. Therefore the second term on the right hand side of 

Equation (41) converges to zero in first absolute moment, hence in probability. Now consider 

the third and last term. Since d2 - 152 converges to zero in probability by Lemma 3.3, and 

since 152 is bounded away from zero, d-2 - 15-2 converges to zero in probability. Furthermore, 

m and b2 are bounded in probability by Lemmata 3.1, 3.2, and 3.4. Therefore the third term 

on the right hand side of Equation (41) converges to zero in probability. It implies that the 

left hand side of Equation (41) converges to zero in probability. Remember that, in the proof 

of Lemma 3.1, we have shown that 152 ~ (1 + K 1 )JK2. For any [ > 0, we have: 

{ 
b2 (32 } 

Pr -m> -fL - [ -+ 1 
d2 - 152 

{ 
* (32 } Pr Amin(S) 2:: 82 fL - [ -+ 1 

{ 
* (32 } 

Pr Amin(S) 2:: (1 + K
1
)JK2 - [ -+ 1 

{ 
1 - 2[ } 

Pr Amin(S*) 2:: ( 2 )JK2 - [ -+ 1. 
1 + Kl K2 

There exists a particular value of [ > ° that yields: 

Pr {Amin(S*) 2:: ( 1 )JK2} ..::..r 1. 
4 1 + Kl K2 

Bringing together the results obtained in the cases c ~ 1/2 and c > 1/2, we have: 

Pr {Amin(S*) > min (~ (1 - !f) 2 A, ( 1 JK2)} -+ l. 
- 2 V2 -41+K1 ) K2 

(42) 

Therefore, in the particular case where pin converges to a limit, the smallest eigenvalue of S* 

is bounded away from zero in probability. Again notice that the bound in Equation (42) does 

not depend on pin. Therefore, by the same reasoning as for the largest eigenvalue, it implies 

that the smallest eigenvalue of S* is bounded away from zero in probability, even in the general 

case where pin need not have a limit. Bringing together the results obtained for the largest 

and the smallest eigenvalue, the condition number of S* is bounded in probability. D 
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