Investigating the Effects of the Built Environment on PM2.5 and PM10: A Case Study of Seoul Metropolitan City, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Air Pollution
2.2.2. Land Use
2.2.3. Transportation
2.2.4. Housing Type and Development Density
2.3. Measurement of Variables
2.3.1. Spatial Unit of Analysis
2.3.2. Dependent Variables
2.3.3. Independent Variables
3. Results and Discussion
3.1. Spatial Autocorrelation Analysis
3.2. Descriptive Statistics of Variables
3.3. Regression Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, H.J.; Jun, M.J. Analysis on Relationship between Urban Development Characteristics and Air Pollution level. J. Korea Plan. Assoc. 2014, 49, 151–167. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: http://www.who.int/airpollution/ambient/en/ (accessed on 22 August 2018).[Green Version]
- Bell, M.L.; Dominici, F. Effect Modification by Community Characteristics on the Short-Term Effects of Ozone Exposure and Mortality in 98 US Communities. Am. J. Epidemiol. 2008, 167, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, X.; Le, L.H.; Hwang, S.A. Chronic Exposure to Ambient Ozone and Asthma Hospital Admissions among Children. Environ. Health Perspect. 2008, 116, 1725–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, U.; Herder, C.; Sugiri, D.; Strassburger, K.; Schikowski, T.; Ranft, U.; Rathmann, W. Traffic-Related Air Pollution and Incident Type 2 Diabetes: Results from the SALIA Cohort Study. Environ. Health Perspect. 2010, 118, 1273–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puett, R.C.; Hart, J.E.; Schwartz, J.; Hu, F.B.; Liese, A.D.; Laden, F. Are Particulate Matter Exposures Associated with Risk of Type 2 Diabetes? Environ. Health Perspect. 2011, 119, 384–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.C.; Lee, J.T.; Kim, H.; Ha, E.H.; Schwartz, J.; Christiani, D.C. Effects of Air Pollutants on Acute Stroke Mortality. Environ. Health Perspect. 2002, 110, 187–191. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Center (IARC). Available online: https://www.iarc.fr/en/media-centre/iarcnews/pdf/pr221_E.pdf (accessed on 23 August 2018).
- Organisation for Economic Co-Operation and Development (OECD). Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/EPOC/WPEI (accessed on 19 August 2018).
- Weichenthal, S.; Van Ryswyk, K.; Goldstein, A.; Shekarrizfard, M.; Hatzopoulou, M. Characterizing the Spatial Distribution of Ambient Ultrafine Particles in Toronto, Canada: A Land use Regression Model. Environ. Pollut. 2016, 208, 241–248. [Google Scholar] [CrossRef]
- Wolf, K.; Cyrys, J.; Harciníková, T.; Gu, J.; Kusch, T.; Hampel, R.; Schneider, A.; Peters, A. Land use Regression Modeling of Ultrafine Particles, Ozone, Nitrogen Oxides and Markers of Particulate Matter Pollution in Augsburg, Germany. Sci. Total Environ. 2017, 579, 1531–1540. [Google Scholar] [CrossRef]
- Ho, C.; Chan, C.; Cho, C.; Lin, H.; Lee, J.; Wu, C. Land use Regression Modeling with Vertical Distribution Measurements for Fine Particulate Matter and Elements in an Urban Area. Atmos. Environ. 2015, 104, 256–263. [Google Scholar] [CrossRef]
- Tang, R.; Blangiardo, M.; Gulliver, J. Using Building Heights and Street Configuration to Enhance Intraurban PM10, NOx, and NO2 Land use Regression Models. Environ. Sci. Technol. 2013, 47, 11643–11650. [Google Scholar] [CrossRef]
- Kim, Y.K. An Analysis of Traffic Flows and Land-Use on Urban Air Pollution Concentrations Using Geographic Information System. Korea Transp. Inst. 2017, 24, 67–81. [Google Scholar] [CrossRef]
- Oh, I.B.; Bang, J.H.; Kim, S.T.; Kim, E.H.; Hwang, M.K.; Kim, Y.H. Spatial Distribution of Air Pollution in the Ulsan Metropolitan Region. J. Korea Soc. Atmos. Environ. 2016, 32, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Hankey, S.; Marshall, J.D. Land use Regression Models of on-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) using Mobile Monitoring. Environ. Sci. Technol. 2015, 49, 9194–9202. [Google Scholar] [CrossRef]
- Sabaliauskas, K.; Jeong, C.; Yao, X.; Reali, C.; Sun, T.; Evans, G.J. Development of a Land-use Regression Model for Ultrafine Particles in Toronto, Canada. Atmos. Environ. 2015, 110, 84–92. [Google Scholar] [CrossRef]
- Weichenthal, S.; Farrell, W.; Goldberg, M.; Joseph, L.; Hatzopoulou, M. Characterizing the Impact of Traffic and the Built Environment on Near-Road Ultrafine Particle and Black Carbon Concentrations. Environ. Res. 2014, 132, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.; Kim, H.Y.; Lee, S.J. An Analysis of the Effects of Urban Characteristics on NO2 Concentrations in Seoul. Seoul Inst. 2007, 8, 117–130. [Google Scholar]
- Weichenthal, S.; Van Ryswyk, K.; Kulka, R.; Sun, L.; Wallace, L.; Joseph, L. In-Vehicle Exposures to Particulate Air Pollution in Canadian Metropolitan Areas: The Urban Transportation Exposure Study. Environ. Sci. Technol. 2015, 49, 597–605. [Google Scholar] [CrossRef]
- Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A Land use Regression for Predicting NO2 and PM10 Concentrations in Different Seasons in Tianjin Region, China. J. Environ. Sci. 2010, 22, 1364–1373. [Google Scholar] [CrossRef]
- Rivera, M.; Basagaña, X.; Aguilera, I.; Agis, D.; Bouso, L.; Foraster, M.; Medina-Ramón, M.; Pey, J.; Künzli, N.; Hoek, G. Spatial Distribution of Ultrafine Particles in Urban Settings: A Land use Regression Model. Atmos. Environ. 2012, 54, 657–666. [Google Scholar] [CrossRef]
- Farrell, W.; Weichenthal, S.; Goldberg, M.; Valois, M.; Shekarrizfard, M.; Hatzopoulou, M. Near Roadway Air Pollution Across a Spatially Extensive Road and Cycling Network. Environ. Pollut. 2016, 212, 498–507. [Google Scholar] [CrossRef]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z. A Land use Regression Application into Assessing Spatial Variation of Intra-Urban Fine Particulate Matter (PM2.5) and Nitrogen Dioxide (NO2) Concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.C.; Dupont-Courtade, L.; Oueslati, W. Air Pollution and Urban Structure Linkages: Evidence from European Cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Cho, H.; Choi, M.J. Effects of Compact Urban Development on Air Pollution: Empirical Evidence from Korea. Sustainability 2014, 6, 5968–5982. [Google Scholar] [CrossRef] [Green Version]
- Hoek, G.; Beelen, R.; Kos, G.; Dijkema, M.; Zee, S.C.; Fischer, P.H.; Brunekreef, B. Land use Regression Model for Ultrafine Particles in Amsterdam. Environ. Sci. Technol. 2010, 45, 622–628. [Google Scholar] [CrossRef] [PubMed]
- McCarty, J.; Kaza, N. Urban Form and Air Quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Contini, D.; Cesari, D.; Donateo, A.; Chirizzi, D.; Belosi, F. Characterization of PM10 and PM2. 5 and their metals content in different typologies of sites in South-Eastern Italy. Atmosphere 2014, 5, 435–453. [Google Scholar] [CrossRef]
- Oh, K.S.; Chung, H.B. The Influence of Urban Development Density on Air Pollution. J. Korea Plan. Assoc. 2007, 42, 197–210. [Google Scholar]
- Clougherty, J.E.; Kheirbek, I.; Eisl, H.M.; Ross, Z.; Pezeshki, G.; Gorczynski, J.E.; Johnson, S.; Markowitz, S.; Kass, D.; Matte, T. Intra-Urban Spatial Variability in Wintertime Street-Level Concentrations of Multiple Combustion-Related Air Pollutants: The New York City Community Air Survey (NYCCAS). J. Exp. Sci. Environ. Epidemiol. 2013, 23, 232–240. [Google Scholar] [CrossRef]
- Abernethy, R.C.; Allen, R.W.; McKendry, I.G.; Brauer, M. A Land use Regression Model for Ultrafine Particles in Vancouver, Canada. Environ. Sci. Technol. 2013, 47, 5217–5225. [Google Scholar] [CrossRef]
- Air Korea. Available online: http://www.airkorea.or.kr/last_amb_hour_data (accessed on 27 July 2018).
- National Geographic Information Institute. Available online: http://www.ngii.go.kr/kor/main/main.do?rbsIdx=1 (accessed on 30 July 2018).
- Seoul Open Data Plaza. Available online: http://data.seoul.go.kr/search/newSearch.jsp (accessed on 30 July 2018).
- Korea Local Information Research & Development Institute. Available online: http://www.juso.go.kr/addrlink/main.do (accessed on 3 August 2018).
- National Spatial Data Infrastructure Portal. Available online: http://www.nsdi.go.kr/lxportal/?menuno=2679 (accessed on 5 August 2018).
- Wu, H.; Reis, S.; Lin, C.; Heal, M.R. Effect of Monitoring Network Design on Land use Regression Models for Estimating Residential NO2 Concentration. Atmos. Environ. 2017, 149, 24–33. [Google Scholar] [CrossRef]
- Rajamani, J.; Bhat, C.; Handy, S.; Knaap, G.; Song, Y. Assessing Impact of Urban Form Measures on Nonwork Trip Mode Choice After Controlling for Demographic and Level-of-Service Effects. Transp. Res. Rec. J. Transp. Res. Board 2003, 1831, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Habermann, M.; Billger, M.; Haeger-Eugensson, M. Land use Regression as Method to Model Air Pollution. Previous Results for Gothenburg/Sweden. Procedia Eng. 2015, 115, 21–28. [Google Scholar] [CrossRef]
- Nagpure, A.S.; Gurjar, B.R.; Kumar, V.; Kumar, P. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmos. Environ. 2016, 127, 118–124. [Google Scholar] [CrossRef]
Air Pollutants | Moran’s I | p-Value |
---|---|---|
PM2.5 | −0.224 | 0.181 |
PM10 | −0.210 | 0.220 |
Variables | Definition (Measures of Neighborhood) | Unit | Mean | Std. Deviation | |
---|---|---|---|---|---|
Particulate matter | PM2.5 | Annual average concentration of PM2.5 | µg/m3 | 25.54 | 1.54 |
PM10 | Annual average concentration of PM10 | µg/m3 | 48.44 | 2.16 | |
Land use | Commercial area | Proportion of commercial area | % | 5.25 | 13.18 |
Industrial area | Proportion of industrial area | % | 3.70 | 13.34 | |
Green area | Proportion of green area | % | 19.99 | 24.82 | |
Water area | Proportion of water area | % | 4.65 | 10.10 | |
Mixed use | Land-use mix index | 0 ≤ × ≤ 1 | 0.21 | 0.18 | |
Transportation | Bus route | Number of bus routes per hectare | counts/ha | 0.30 | 0.26 |
Bus stop | Number of bus stops per hectare | counts/ha | 0.23 | 0.13 | |
Intersection | Number of intersections per hectare | counts/ha | 0.21 | 0.12 | |
Neighborhood road | Proportion of neighborhood roads | % | 57.21 | 17.46 | |
Main road | Proportion of main roads | % | 25.11 | 15.41 | |
Subway station | Presence of subway station (0 = no presence, 1 = presence) | dummy | 0.50 | 0.50 | |
Housing type | Single-family housing | Number of single-family houses per hectare | counts/ha | 8.78 | 7.60 |
Multi-family housing | Number of multi-family houses per hectare | counts/ha | 3.28 | 2.55 | |
Development density | Gross commercial floor area | Average gross floor area of commercial areas | Avg. (m2) | 2903.64 | 21,370.91 |
Gross residential floor area | Average gross floor area of residential areas | Avg. (m2) | 4714.19 | 54,272.23 |
PM2.5 | PM10 | ||||
---|---|---|---|---|---|
Variable | β | t-Value | β | t-Value | |
Constant | 25.094 | 28.126*** | 46.992 | 38.192 *** | |
Land use | Commercial area | −0.025 | −3.055 *** | −0.033 | −2.936 *** |
Industrial area | 0.003 | 0.427 | 0 | −0.027 | |
Green area | −0.007 | −1.212 | 0.009 | 1.204 | |
Water area | 0.002 | 0.264 | 0.022 | 1.908 * | |
Mixed use | 0.206 | 0.376 | 0.072 | 0.095 | |
Transportation | Bus route | −0.128 | −0.372 | 1.249 | 2.628 *** |
Bus stop | −0.184 | −0.277 | 1.563 | 1.705 * | |
Intersection a | 0.014 | 0.104 | 0.244 | 1.349 | |
Neighborhood road | 0.007 | 0.904 | 0.003 | 0.315 | |
Main road | 0.025 | 3.104 *** | 0.032 | 2.890 *** | |
Subway station (dummy) | −0.037 | −0.238 | 0.193 | 0.895 | |
Housing type | Single-family | 0.18 | 2.875 *** | 0.162 | 1.876 * |
housing a | |||||
Multi-family | −0.583 | −4.793 *** | −0.344 | −2.052 ** | |
housing a | |||||
Development | Gross commercial | 0.089 | 3.868 *** | 0.12 | 3.769 *** |
density | floor area a | ||||
Gross residential | −0.052 | −0.645 | −0.075 | −0.674 | |
floor area a | |||||
F | 4.395 *** | 5.237 *** | |||
R-Square | 0.139 | 0.161 | |||
Adj. R-Square | 0.107 | 0.131 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-H.; Ko, D.-W. Investigating the Effects of the Built Environment on PM2.5 and PM10: A Case Study of Seoul Metropolitan City, South Korea. Sustainability 2018, 10, 4552. https://doi.org/10.3390/su10124552
Park S-H, Ko D-W. Investigating the Effects of the Built Environment on PM2.5 and PM10: A Case Study of Seoul Metropolitan City, South Korea. Sustainability. 2018; 10(12):4552. https://doi.org/10.3390/su10124552
Chicago/Turabian StylePark, Seung-Hoon, and Dong-Won Ko. 2018. "Investigating the Effects of the Built Environment on PM2.5 and PM10: A Case Study of Seoul Metropolitan City, South Korea" Sustainability 10, no. 12: 4552. https://doi.org/10.3390/su10124552
APA StylePark, S. -H., & Ko, D. -W. (2018). Investigating the Effects of the Built Environment on PM2.5 and PM10: A Case Study of Seoul Metropolitan City, South Korea. Sustainability, 10(12), 4552. https://doi.org/10.3390/su10124552