Spatiotemporal Distribution of PM2.5 and O3 and Their Interaction During the Summer and Winter Seasons in Beijing, China
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Analysis
3. Results
3.1. PM2.5 and O3 Concentrations
3.2. Diurnal Variations in PM2.5 and O3 Concentrations
3.3. Spatial Variations in PM2.5 and O3 Concentrations
3.4. Interaction between PM2.5 and O3 during the Summer and Winter Seasons
4. Discussion
5. Conclusions
Author Contributions
Fund
Conflicts of Interest
References
- Hu, J.L.; Wang, Y.G.; Ying, Q.; Zhang, H.L. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [Google Scholar] [CrossRef]
- Torretta, V.; Rada, E.C.; Capodaglio, A.G. An example of the use of bio-indicators for air quality assessment in areas with high industrial presence. Environ. Eng. Manag. J. 2015, 14, 2679–2687. [Google Scholar]
- Mannucci, P.M.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Aranda, A.; Mera, Y.D.; Notario, A.; Rodriguez, D.; Rodriguez, A. Fine and ultrafine particles in small cities. A case study in the south of Europe. Environ. Sci. Pollut. Res. 2015, 22, 18477–18486. [Google Scholar] [CrossRef] [PubMed]
- Debaje, S.B. Estimated crop yield losses due to surface ozone exposure and economic damage in India. Environ. Sci. Pollut. Res. 2014, 21, 7329–7338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.Y.; Zhang, X.L.; Gong, D.Y.; Quan, W.J.; Zhao, X.J.; Ma, Z.Q.; Kim, S.J. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.G.; Zhang, H.L. Characterization of criteria air pollutants in Beijing during 2014–2015. Environ. Res. 2017, 154, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.F.; Shang, D.J.; Zheng, J.; Du, Z.F.; Wu, Z.J.; Shao, M.; Zeng, L.M.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, G.; Hayes, F.; Simpson, D.; Emberson, L.; Norris, D.; Harmens, H.; Buker, P. Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps. Global. Change Biol. 2011, 17, 592–613. [Google Scholar] [CrossRef] [Green Version]
- Sicard, P.; Anav, A.; Marco, A.D.; Paoletti, E. Projected global tropospheric ozone impacts on vegetation under different emission and climate scenarios. Atmos. Chem. Phys. 2017, 17, 12177–12196. [Google Scholar] [CrossRef]
- Calatayud, V.; Diéguez, J.J.; Sicard, P.; Schaub, M.; Marco, A.D. Testing approaches for calculating stomatal ozone fluxes from passive samplers. Sci. Total. Environ. 2016, 572, 56–67. [Google Scholar] [CrossRef] [PubMed]
- State Environmental Protection Administration of China, State Bureau of Technical Supervision; Ambient Air Quality Standard (GB3095–1996); China Standards Press: Beijing, China, 1996.
- Chen, W.; Tang, H.Z.; Zhao, H.M. Urban air quality evaluations under two versions of the national ambient air quality standards of China. Atmos. Pollut. Res. 2016, 7, 49–57. [Google Scholar] [CrossRef]
- Pausata, F.S.R.; Gaetani, M.; Messori, G.; Kloster, S.; Dentener, F.J. The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality. Atmos. Chem. Phys. 2015, 15, 1725–1743. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zheng, Y.F.; Li, T.; Wei, L.; Guan, Q. Temporal and spatial variation in, and population exposure to, summertime ground-level ozone in Beijing. Int. J. Environ. Res. Public Health 2018, 15, 628. [Google Scholar] [CrossRef] [PubMed]
- Sikder, H.A.; Suthawaree, J.; Kato, S.; Kajii, Y. Surface ozone and carbon monoxide levels observed at Oki, Japan: Regional air pollution trends in East Asia. J. Environ. Manag. 2011, 92, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.B.; Lee, S.H.; Lee, H.; Park, C.; Kim, D.H.; Park, S.Y. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula. Atmos. Environ. 2014, 89, 10–21. [Google Scholar] [CrossRef]
- Tong, N.Y.O.; Leung, D.Y.C.; Liu, C.H. A review on ozone evolution and its relationship with boundary layer characteristics in urban environments. Water. Air. Soil Pollut. 2011, 214, 13–36. [Google Scholar] [CrossRef]
- Schiavon, M.; Torretta, V.; Casazza, A.; Ragazzi, M. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water. Air. Soil Pollut. 2017, 228, 388. [Google Scholar] [CrossRef]
- Schiavon, M.; Schiorlin, M.; Torretta, V.; Ragazzi, M.; Rada, E.C. Biofiltration combined with non-thermal plasma for air pollution control: A preliminary investigation. Int. J. Sustain. Dev. Plan. 2016, 4, 627–635. [Google Scholar] [CrossRef]
- Collet, S.; Kidokoro, T.; Karamchandani, P.; Shah, T. Future-year ozone isopleths for South Coast, San Joaquin Valley, and Maryland. Atmosphere 2018, 9, 354. [Google Scholar] [CrossRef]
- Thompson, D.R.; Kahn, B.H.; Green, R.O.; Chien, S.A.; Middleton, E.M.; Tran, D.Q. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005–2015. Atmos. Meas. Tech. 2018, 11, 1019–1030. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Ju, Y.; Wang, G.; Alvarado, E.C.; Yang, X.; Ma, Y.; Liu, A. Inorganic chemical composition of PM2.5 emissions from the combustion of six main tree species in subtropical china. Atmos. Environ. 2018, 189, 107–115. [Google Scholar] [CrossRef]
- Schiavon, M.; Ragazzi, M.; Rada, E.C.; Torretta, V. Air pollution control through biotrickling filters: A review considering operational aspects and expected performance. Crit. Rev. Biotechnol. 2016, 36, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Hartono, D.; Lioe, B.; Zhang, Y.; Li, B.; Yu, J. Impacts of particulate matter (PM2.5) on the behavior of freshwater snail Parafossarulus striatulus. Sci. Rep. 2017, 7, 644. [Google Scholar] [CrossRef] [PubMed]
- Torretta, V.; Raboni, M.; Copelli, S.; Rada, E.C.; Ragazzi, M.; Ionescu, G.; Apostol, T.; Badea, A. Application of strategies for particulate matter reduction in urban areas: An Italian case. UPB. Sci. Bull. Ser. D 2013, 75, 1454–2358. [Google Scholar]
- Qiu, X.; Duan, L.; Gao, J.; Wang, S.; Chai, F.; Hu, J.; Zhang, J.; Yun, Y. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. J. Environ. Sci 2016, 40, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.Y.; Wang, Y.J.; Zhao, B.; Wang, S.X.; Chang, X.; Hao, J.M. The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Sci. Total. Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.M.; Pang, J.M.; He, K.B. Feasibility and difficulties of China’s new air quality standard compliance: PRD case of PM2.5 and ozone from 2010 to 2025. Atmos. Chem. Phys. 2013, 13, 12013–12027. [Google Scholar] [CrossRef]
- Sicard, P.; Serra, R.; Rossello, P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ. Res. 2016, 149, 122–144. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Aneja, V.P.; Mathur, R.; Ray, J.D. Observed and modeled VOC chemistry under high VOC/NOx conditions in the Southeast United States national parks. Atmos. Environ. 2004, 38, 4969–4974. [Google Scholar] [CrossRef]
- Wang, Z.S.; Li, Y.T.; Chen, T.; Li, L.J.; Liu, B.X.; Zhang, D.W.; Sun, F.; Wei, Q.; Jiang, L.; Pan, L.B. Changes in atmospheric composition during the 2014 APEC conference in Beijing. J. Geophys. Res. Atmos. 2015, 120, 12695–12707. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.F.; Wei, L.; Guan, Q.; Wang, Z.S. Evolution and evaluation of air quality in Hangzhou and its surrounding area during the G20 summit [in Chinese]. China. Environ. Sci. 2017, 37, 2016–2024. [Google Scholar]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Lee, C.T. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmos. Environ. 2007, 41, 4002–4017. [Google Scholar] [CrossRef]
- Penn, S.L.; Arunachalam, S.; Woody, M.; Heiger-Bernays, W.; Tripodis, Y.; Levy, J.I. Estimating state-specific contributions to PM2.5 and O3 related health burden from residential combustion and electricity generating unit emissions in the United States. Environ. Health. Persp. 2017, 125, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Bei, N.F.; Huang, R.J.; Cao, J.J.; Zhang, Q.; Zhou, W.J.; Tie, X.X.; Liu, S.X.; Zhang, T.; Su, X.L.; et al. Summertime ozone formation in Xi’an and surrounding areas, China. Atmos. Chem. Phys. 2016, 15, 4323–4342. [Google Scholar] [CrossRef]
- Jia, M.W.; Zhao, T.L.; Cheng, X.H.; Gong, S.L.; Zhang, X.Z.; Tang, L.L.; Liu, D.Y.; Wu, X.H.; Wang, L.M.; Chen, Y.S. Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of east China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef]
- Xiao, Z.M.; Zhang, Y.F.; Hong, S.M.; Bi, X.H.; Jiao, L.; Feng, Y.C.; Wang, Y.Q. Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China. Aerosol. Air. Qual. Res. 2011, 11, 873–882. [Google Scholar] [CrossRef]
- Song, S.J.; Wu, Y.; Xu, J.Y.; Ohara, T.; Hasegawa, S.C.; Li, J.Q.; Hao, J.M. Black carbon at a roadside site in Beijing: Temporal variations and relationships with carbon monoxide and particle number size distribution. Atmos. Environ. 2013, 77, 213–221. [Google Scholar] [CrossRef]
- Li, R.K.; Li, Z.P.; Gao, W.J.; Ding, W.J.; Xu, Q.; Song, X.F. Diurnal, seasonal, and spatial variation of PM2.5 in Beijing. Sci. Bull. 2015, 60, 387–395. [Google Scholar] [CrossRef]
- Huang, F.F.; Li, X.; Wang, C.; Xu, Q.; Wang, W.; Luo, Y.X.; Tao, L.X.; Gao, Q.; Guo, J.; Chen, S.P.; et al. PM2.5 spatiotemporal variations and the relationship with meteorological factors during 2013–2014 in Beijing, China. PLoS ONE 2015, 10, e0141642. [Google Scholar] [CrossRef] [PubMed]
- Michanowicz, D.R.; Shmool, J.L.C.; Tunno, B.J.; Tripathy, S.; Gillooly, S.; Kinnee, E.; Clougherty, J.E. A hybrid land use regression/AERMOD model for predicting intra-urban variation in PM2.5. Atmos. Environ. 2016, 131, 307–315. [Google Scholar] [CrossRef]
- Lavi, A.; Potchter, O.; Omer, I.; Fireman, E. Mapping air pollution by biological monitoring in the metropolitan Tel Aviv area. Int. J. Environ. Heal. Res. 2015, 26, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Allshouse, W.B.; Adgate, J.L.; Blair, B.D.; McKenzie, L.M. A spatiotemporal industrial activity model for estimating the intensity of oil and gas operations in Colorado. Environ. Sci. Technol. 2017, 51, 10243–10250. [Google Scholar] [CrossRef] [PubMed]
- Li, T.X.; Zhou, X.K.; Ikhumhen, H.O.; Difei, A. Research on the optimization of air quality monitoring station layout based on spatial grid statistical analysis method. Environ. Technol. 2017, 39, 1271–1283. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Tang, H.Z.; Zhao, H.M. Diurnal, weekly and monthly spatial variations of air pollutants and air quality of Beijing. Atmos. Environ. 2015, 119, 21–34. [Google Scholar] [CrossRef]
- Cheng, L.J.; Wang, S.; Gong, Z.Y.; Li, H.; Yang, Q.; Wang, Y.Y. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China. J. Environ. Sci. 2018, 67, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.L.; Yao, L. PM2.5, Population exposure and economic effects in urban agglomerations of China using ground-based monitoring data. Int. J. Environ. Res. Public Health 2017, 14, 716. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Du, H.Y.; Xu, Y.Q.; Lu, D.B.; Wang, X.Y.; Guo, Z.Y. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631–632, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Pozzer, A.; Cao, C.X.; Lelieveld, J. Long-term (2001–2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China. Atmos. Chem. Phys. 2015, 15, 5715–5725. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.Z.; Hu, E.Z.; Wang, X.k.; Jiang, L.J.; Liu, X.J. Ground-level O3 pollution and its impacts on food crops in China: A review. Environ. Pollut. 2015, 199, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, S.; Xue, B.R.; Lv, Z.F.; Meng, Z.H.; Yang, X.F.; Xue, T.; Yu, Q.; He, K.B. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- He, J.J.; Gong, S.L.; Yu, Y.; Yu, L.J.; Wu, L.; Mao, H.J.; Song, C.B.; Zhao, S.P.; Liu, H.L.; Li, X.Y.; et al. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut. 2017, 223, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Berkemeier, T.; Ammann, M.; Mentel, T.F.; Poschl, U.; Shiraiwa, M. Organic nitrate contribution to new particle formation and growth in secondary organic aerosols from α-pinene ozonolysis. Environ. Sci. Technol. 2016, 50, 6334–6342. [Google Scholar] [CrossRef] [PubMed]
- Trieu, T.T.N.; Goto, D.; Yashiro, H.; Murata, R.; Sudo, K.; Tomita, H.; Satoh, M.; Nakajima, T. Evaluation of summertime surface ozone in Kanto area of Japan using a semi-regional model and observation. Atmos. Environ. 2017, 153, 163–181. [Google Scholar] [CrossRef]
- Latif, M.T.; Huey, L.S.; Juneng, L. Variations of surface ozone concentration across the Klang Valley, Malaysia. Atmos. Environ. 2012, 61, 434–445. [Google Scholar] [CrossRef]
- Pu, X.; Wang, T.J.; Huang, X.; Melas, D.; Zanis, P.; Papanastasiou, D.K.; Poupkou, A. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China. Sci. Total Environ. 2017, 603–604, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Rappengluck, B.; Perna, R.; Zhong, S.Y.; Morris, G.A. An analysis of the vertical structure of the atmosphere and the upper-level meteorology and their impact on surface ozone levels in Houston, Texas. J. Geophys. Res. Atmos. 2008, 113, D17315. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Fu, P.Q.; Jiang, Q.; Yang, T.; Li, J.; Ge, X.L. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ. 2013, 77, 927–934. [Google Scholar] [CrossRef]
- Bian, H.; Han, S.Q.; Tie, X.X.; Sun, M.L.; Liu, A.X. Evidence of impact of aerosols on surface ozone concentration in Tianjin, China. Atmos. Environ. 2007, 41, 4672–4681. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, C.F.; Zhou, L.J.; Wang, Y.; Liu, X.H. Distinct impact of different types of aerosols on surface solar radiation in China. J. Geophys. Res. Atmos. 2016, 121, 6459–6471. [Google Scholar] [CrossRef]
- Kulkarni, P.S.; Bortoli, D.; Silva, A.M. Nocturnal surface ozone enhancement and trend over urban and suburban sites in Portugal. Atmos. Environ. 2013, 71, 251–259. [Google Scholar] [CrossRef]
- Pusede, S.E.; Cohen, R.C. On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995-present. Atmos. Chem. Phys. 2012, 12, 9771–9811. [Google Scholar] [CrossRef]
- Susaya, J.; Kim, K.H.; Shon, Z.H.; Brown, R.J.C. Demonstration of long-term increases in tropospheric O3 levels: Causes and potential impacts. Chemosphere 2013, 92, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Marco, A.D.; Troussier, F.; Renou, C.; Vas, N.; Paoletti, E. Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos. Environ. 2013, 79, 705–715. [Google Scholar] [CrossRef]
- Guerreiro, C.B.B.; Foltescu, V.; Leeuw, F.D. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, E.; Marco, A.D.; Beddows, D.C.S.; Harrison, R.M.; Manning, W.J. Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ. Pollut. 2014, 192, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.S.; Li, Y.T.; Chen, T.; Zhang, D.W.; Sun, F.; Wei, Q.; Dong, X.; Sun, R.W.; Huan, N.; Pan, L.B. Ground-level ozone in urban Beijing over a 1-year period: Temporal variations and relationship to atmospheric oxidation. Atmos. Res. 2015, 164–165, 110–117. [Google Scholar] [CrossRef]
- Murphy, S.M.; Sorooshian, A.; Kroll, J.H.; Ng, N.L.; Chhabra, P.; Tong, C.; Surratt, J.D.; Knipping, E.; Flagan, R.C.; Seinfeld, J.H. Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmos. Chem. Phys. 2007, 7, 2313–2337. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Chen, J.M.; Yang, L.X.; Wang, X.F.; Xu, C.H.; Sui, X.; Yao, Y.; Zhu, Y.H.; Zhang, J.M.; Zhu, T.; et al. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone. Atmos. Environ. 2015, 101, 294–302. [Google Scholar] [CrossRef]
- Liu, Z.R.; Hu, B.; Wang, L.L.; Wu, F.K.; Gao, W.K.; Wang, Y.S. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study. Environ. Sci. Pollut. Res. 2015, 22, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Zhang, X.L.; Xu, X.F.; Xu, J.; Meng, W.; Pu, W.W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ. 2009, 43, 2893–2900. [Google Scholar] [CrossRef]
- Wang, D.F.; Zhou, B.; Fu, Q.Y.; Zhao, Q.B.; Zhang, Q.; Chen, J.M.; Yang, X.; Duan, Y.S.; Li, J. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: Observations at a rural site in eastern Yangtze River Delta of China. Sci. Total. Environ. 2016, 571, 1454–1466. [Google Scholar] [CrossRef] [PubMed]
- Chai, F.H.; Gao, J.; Chen, Z.X.; Wang, S.L.; Zhang, Y.C.; Zhang, J.Q.; Zhang, H.F.; Yun, Y.R.; Ren, C. Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. J. Environ. Sci. 2014, 26, 75–82. [Google Scholar] [CrossRef]
- Fu, D.S.; Xia, X.A.; Wang, J.; Zhang, X.L.; Li, X.J.; Liu, J.Z. Synergy of AERONET and MODIS AOD products in the estimation of PM2.5 concentrations in Beijing. Sci. Rep. 2018, 8, 10174. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Bei, N.; Tie, X.; Molina, L.T. Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign. Atmos. Chem. Phys. 2011, 11, 5169–5182. [Google Scholar] [CrossRef] [Green Version]
- Sicard, P.; Dalstein-Richier, L.; Vas, N. Annual and seasonal trends of ambient ozone concentration and its impact on forest vegetation in Mercantour National Park (South-eastern France) over the 2000–2008 period. Environ. Pollut. 2011, 159, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Cohan, A.; Biazar, A.P.; Cohan, D.S. Source apportionment of biogenic contributions to ozone formation over the United States. Atmos. Environ. 2017, 164, 8–19. [Google Scholar] [CrossRef]
- Cheng, N.L.; Zhang, D.W.; Li, Y.T.; Xie, X.M.; Chen, Z.Y.; Meng, F.; Gao, B.B.; He, B. Spatio-temporal variations of PM2.5 concentrations and the evaluation of emission reduction measures during two red air pollution alerts in Beijing. Sci. Rep. 2017, 7, 8220. [Google Scholar] [CrossRef] [PubMed]
Site name | Category | Region | Code |
---|---|---|---|
Dongsi | Urban Sites (To assess air quality and its overall variation in the urban environment) | Center | 1 |
Temple of Heaven | Center | 2 | |
West Park Officials | Center | 3 | |
West Wanshou Nishinomiya | Center | 4 | |
Olympic Sports Center | Center | 5 | |
Agricultural Exhibition Hall | Center | 6 | |
Wanliu | Center | 7 | |
Northern New Area | Center | 8 | |
Botanical Garden | Center | 9 | |
Fengtai Garden | Center | 10 | |
Yungang | Center | 11 | |
Shijingshan city | Center | 12 | |
Liangxiang | Suburban Sites (to characterize the variation of suburban air quality) | Southwest | 13 |
Daxing | Southeast | 14 | |
Yizhuang | Southeast | 15 | |
Tongzhou | Southeast | 16 | |
Shunyi | Northeast | 17 | |
Changping | Northwest | 18 | |
Mentougou | Southwest | 19 | |
Pinggu | Northeast | 20 | |
Huairou | Northeast | 21 | |
Miyun | Northeast | 22 | |
Yanqing | Northwest | 23 | |
Dingling | Background Sites (to describe regional background levels and reflect the transmission of pollutants between regions) | Northwest | 24 |
Badaling | Northwest | 25 | |
Miyun Reservoir | Northeast | 26 | |
Donggaocun | Northeast | 27 | |
Yongledian | Southeast | 28 | |
Yufa | Southeast | 29 | |
Liulihe | Southwest | 30 | |
Qianmen East Street | Traffic Monitoring Sites (to evaluate the impact of road traffic pollution on ambient air quality) | Center | 31 |
Yongdingmen Inner Street | Center | 32 | |
Xizhimen North Street | Center | 33 | |
South 3rd Ring Road | Center | 34 | |
East 4th Ring Road | Center | 35 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zheng, Y.; Li, C. Spatiotemporal Distribution of PM2.5 and O3 and Their Interaction During the Summer and Winter Seasons in Beijing, China. Sustainability 2018, 10, 4519. https://doi.org/10.3390/su10124519
Zhao H, Zheng Y, Li C. Spatiotemporal Distribution of PM2.5 and O3 and Their Interaction During the Summer and Winter Seasons in Beijing, China. Sustainability. 2018; 10(12):4519. https://doi.org/10.3390/su10124519
Chicago/Turabian StyleZhao, Hui, Youfei Zheng, and Chen Li. 2018. "Spatiotemporal Distribution of PM2.5 and O3 and Their Interaction During the Summer and Winter Seasons in Beijing, China" Sustainability 10, no. 12: 4519. https://doi.org/10.3390/su10124519
APA StyleZhao, H., Zheng, Y., & Li, C. (2018). Spatiotemporal Distribution of PM2.5 and O3 and Their Interaction During the Summer and Winter Seasons in Beijing, China. Sustainability, 10(12), 4519. https://doi.org/10.3390/su10124519