Mathematical Modeling of Tuberculosis Granuloma Activation
Abstract
:1. Introduction
2. Methods
2.1. MMP Dynamics
2.2. Collagen Dynamics
2.3. Bacterial Leakage
2.4. Biological Feedback
2.5. Parameter Values
2.6. Numerical Methods and Code Repository
3. Results and Discussion
3.1. Representative Latent Case
3.2. Sensitivity Analysis
3.3. Effects of Collagen Degradation Rate Constant
3.4. In Silico Experiment Perturbing the Immune System
3.5. In Silico HIV Co-Infection Experiment via T Cell Depletion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 2012, 12, 352–366. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2016; Technical Report; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ai, J.W.; Ruan, Q.L.; Liu, Q.H.; Zhang, W.H. Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerg. Microbes Infect. 2016, 5, e10. [Google Scholar] [CrossRef] [PubMed]
- Selwyn, P.A.; Hartel, D.; Lewis, V.A.; Schoenbaum, E.E.; Vermund, S.H.; Klein, R.S.; Walker, A.T.; Friedland, G.H. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N. Engl. J. Med. 1989, 320, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.L.; Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 2001, 19, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, K.J.; Werb, Z.; Kheradmand, F. Matrix metalloproteinases in lung: Multiple, multifarious, and multifaceted. Physiol. Rev. 2007, 87, 69–98. [Google Scholar] [CrossRef] [PubMed]
- Elkington, P.; Shiomi, T.; Breen, R.; Nuttall, R.K.; Ugarte-Gil, C.A.; Walker, N.F.; Saraiva, L.; Pedersen, B.; Mauri, F.; Lipman, M.; et al. MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J. Clin. Investig. 2011, 121, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Salgame, P. MMPs in tuberculosis: Granuloma creators and tissue destroyers. J. Clin. Investig. 2011, 121, 1686–1688. [Google Scholar] [CrossRef] [PubMed]
- Sathyamoorthy, T.; Tezera, L.B.; Walker, N.F.; Brilha, S.; Saraiva, L.; Mauri, F.A.; Wilkinson, R.J.; Friedland, J.S.; Elkington, P.T. Membrane type 1 matrix metalloproteinase regulates monocyte migration and collagen destruction in tuberculosis. J. Immunol. 2015, 195, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Kubler, A.; Luna, B.; Larsson, C.; Ammerman, N.C.; Andrade, B.B.; Orandle, M.; Bock, K.; Xu, Z.; Bagci, U.; Mollura, D.; et al. Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J. Pathol. 2015, 235, 431–444. [Google Scholar] [CrossRef] [PubMed]
- North, R.J.; Jung, Y.J. Immunity to tuberculosis. Annu. Rev. Immunol. 2004, 22, 599–623. [Google Scholar] [CrossRef] [PubMed]
- Young, D. Animal models of tuberculosis. Eur. J. Immunol. 2009, 39, 2011–2014. [Google Scholar] [CrossRef] [PubMed]
- Sud, D.; Bigbee, C.; Flynn, J.L.; Kirschner, D.E. Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J. Immunol. 2006, 176, 4296–4314. [Google Scholar] [CrossRef] [PubMed]
- Fallahi-Sichani, M.; El-Kebir, M.; Marino, S.; Kirschner, D.; Linderman, J. Multiscale computational modeling reveals a critical role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 2011, 186, 3472–3483. [Google Scholar] [CrossRef] [PubMed]
- Cilfone, N.; Perry, C.; Kirschner, D.; Linderman, J. Multi-scale modeling predicts a balance of tumor necrosis factor-alpha and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS ONE 2013, 8, e68680. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Schlesinger, L.S.; Friedman, A. Modeling granulomas in response to infection in the Lung. PLoS ONE 2016, 11, e0148738. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Sud, D.; Plessner, H.; Lin, P.L.; Chan, J.; Flynn, J.L.; Kirschner, D.E. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput. Biol. 2007, 3, 1904–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Kane, C.M.; Elkington, P.T.; Friedland, J.S. Monocyte-dependent oncostatin M and TNF-α synergize to stimulate unopposed matrix metalloproteinase-1/3 secretion from human lung fibroblasts in tuberculosis. Eur. J. Immunol. 2008, 38, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Elkington, P.T.; Green, J.A.; Emerson, J.E.; Lopez-Pascua, L.D.; Boyle, J.J.; O’Kane, C.M.; Friedland, J.S. Synergistic up-regulation of epithelial cell matrix metalloproteinase-9 secretion in tuberculosis. Am. J. Respir. Cell Mol. Biol. 2007, 37, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Elkington, P.T.; Emerson, J.E.; Lopez-Pascua, L.D.; O’Kane, C.M.; Horncastle, D.E.; Boyle, J.J.; Friedland, J.S. Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p38 MAPK switch. J. Immunol. 2005, 175, 5333–5340. [Google Scholar] [CrossRef] [PubMed]
- O’Kane, C.M.; Elkington, P.T.; Jones, M.D.; Caviedes, L.; Tovar, M.; Gilman, R.H.; Stamp, G.; Friedland, J.S. STAT3, p38 MAPK, and NF-κB drive unopposed monocyte-dependent fibroblast MMP-1 secretion in tuberculosis. Am. J. Respir. Cell Mol. Biol. 2010, 43, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Turto, H.; Lindy, S.; Uitto, V.J.; Wegelius, O.; Uitto, J. Human leukocyte collagenase: Characterization of enzyme kinetics by a new method. Anal. Biochem. 1977, 83, 557–569. [Google Scholar] [CrossRef]
- Fasciglione, G.; Gioia, M.; Tsukada, H.; Liang, J.; Iundusi, R.; Tarantino, U.; Coletta, M.; Pourmotabbed, T.; Marini, S. The collagenolytic action of MMP-1 is regulated by the interaction between the catalytic domain and the hinge region. J. Biol. Inorg. Chem. 2012, 17, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Rovin, B.H.; Friedman, A. Mathematical model of renal interstitial fibrosis. Proc. Natl. Acad. Sci. USA 2014, 111, 14193–14198. [Google Scholar] [CrossRef] [PubMed]
- Brace, P.T.; Tezera, L.B.; Bielecka, M.K.; Mellows, T.; Garay, D.; Tian, S.; Rand, L.; Green, J.; Jogai, S.; Steele, A.J.; et al. Mycobacterium tuberculosis subverts negative regulatory pathways in human macrophages to drive immunopathology. PLoS Pathog. 2017, 13, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.M.; Ford Versypt, A.N. tbActivationDynamics. 2017. Available online: http://github.com/ashleefv/tbActivationDynamics (accessed on 21 October 2017). [CrossRef]
- Nusbaum, R.J.; Calderon, V.E.; Huante, M.B.; Sutjita, P.; Vijayakumar, S.; Lancaster, K.L.; Hunter, R.L.; Actor, J.K.; Cirillo, J.D.; Aronson, J.; et al. Pulmonary tuberculosis in humanized mice infected with HIV-1. Sci. Rep. 2016, 6, 21522. [Google Scholar] [CrossRef] [PubMed]
- Bourgarit, A.; Carcelain, G.; Martinez, V.; Lascoux, C.; Delcey, V.; Gicquel, B.; Vicaut, E.; Lagrange, P.H.; Sereni, D.; Autran, B. Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients. AIDS 2006, 20, F1–F7. [Google Scholar] [CrossRef] [PubMed]
- Dierich, C.R.; Flynn, J.L. HIV-1/Mycobacterium tuberculosis coinfection immunology: How does HIV-1 exacerbate tuberculosis? Infect. Immun. 2011, 79, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
Parameter | Description | Value | Units |
---|---|---|---|
Rate constant for production of MMP by stromal cells | |||
Rate constant for production of MMP by | |||
Half-sat constant of the effect of TNF- on TNF- dependent MMP production | |||
Half life of MMP | |||
Constant recruitment rate of MMPs | |||
Constant recruitment rate of collagen | |||
Rate constant of collagen degradation | |||
Half-sat constant of the effect of collagen on collagen degradation | |||
Rate of bacterial leakage at zero collagen | |||
Half-sat constant on the effect of collagen depletion on bacterial leakage | |||
Concentration of collagen at latency |
Species | Description | Initial Value | Units |
---|---|---|---|
Resting macrophage count | Count | ||
Infected macrophage count | 0 | Count | |
Activated macrophage count | 0 | Count | |
Th0 cells count | 0 | Count | |
Th1 cells count | 0 | Count | |
Th2 cells count | 0 | Count | |
T80 cells count | 0 | Count | |
T8 cells count | 0 | Count | |
TC cells count | 0 | Count | |
Intracellular bacteria | 0 | Count | |
Extracellular bacteria introduced by infection | 10 | Count | |
Extracellular bacteria generated during immune response to infection | 0 | Count | |
Leaking extracellular bacteria | 0 | Count | |
TNF- concentration | 0 | ||
IFN- concentration | 0 | ||
IL-4 concentration | 0 | ||
IL-10 concentration | 0 | ||
IL-12 concentration | 0 | ||
C | Collagen concentration | 0 | |
MMP concentration |
Species knocked out Suppressed in the Simulation | Notation | Resulting State |
---|---|---|
IFN- | Active | |
CD4+ Th1 cells | Active | |
TNF- | Active | |
CD8+ Tc cells | Active and highly unstable | |
CD8+ T8 cells | Leaking | |
Activated macrophages | Leaking | |
CD4+ Th0 cells | Periodic switching | |
CD8+ T80 cells | Periodic switching | |
IL-12 | Periodic Switching | |
CD4+ Th2 cells | Latent | |
IL-4 | Latent | |
IL-10 | Latent |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggiero, S.M.; Pilvankar, M.R.; Ford Versypt, A.N. Mathematical Modeling of Tuberculosis Granuloma Activation. Processes 2017, 5, 79. https://doi.org/10.3390/pr5040079
Ruggiero SM, Pilvankar MR, Ford Versypt AN. Mathematical Modeling of Tuberculosis Granuloma Activation. Processes. 2017; 5(4):79. https://doi.org/10.3390/pr5040079
Chicago/Turabian StyleRuggiero, Steve M., Minu R. Pilvankar, and Ashlee N. Ford Versypt. 2017. "Mathematical Modeling of Tuberculosis Granuloma Activation" Processes 5, no. 4: 79. https://doi.org/10.3390/pr5040079
APA StyleRuggiero, S. M., Pilvankar, M. R., & Ford Versypt, A. N. (2017). Mathematical Modeling of Tuberculosis Granuloma Activation. Processes, 5(4), 79. https://doi.org/10.3390/pr5040079