
System Verification Via Generic Games
Behavioural Equivalence and Model Checking Games

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Informatik und Angewandte Kognitionswissenschaften der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

von
Christina Mika-Michalski

aus
Zabrze

1. Gutachterin: Prof. Dr. Barbara König
2. Gutachter : Prof. Dr. Paolo Baldan

Tag der mündlichen Prüfung: 27. Juli 2021

ii

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/75302
URN: urn:nbn:de:hbz:464-20220201-070334-2

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/75302
https://nbn-resolving.org/urn:nbn:de:hbz:464-20220201-070334-2

System Verification Via Generic Games - Behavioural Equivalence and Model

Checking Games

© 2021 Christina Mika-Michalski - All rights reserved.

This thesis is based on the following original publications:

� Chapter 3,4 & 5:

[KM17b] Barbara König and Christina Mika. “Bisimulation Games on Coalge-
bras*”. In: CALCO Early Ideas ’17. 2017.

[KM18] Barbara König and Christina Mika-Michalski. “(Metric) Bisimulation
Games and Real-Valued Modal Logics for Coalgebras”. In: 29th Inter-
national Conference on Concurrency Theory (CONCUR 2018). Ed. by
S. Schewe and L. Zhang. Vol. 118. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2018, 37:1–37:17. isbn: 978-3-95977-087-3. doi:
10.4230/LIPIcs.CONCUR.2018.37.

[KMS20b] Barbara König, Christina Mika-Michalski, and Lutz Schröder. “Explain-
ing Non-Bisimilarity in a Coalgebraic Approach: Games and Distin-
guishing Formulas”. In: Coalgebraic Methods in Computer Science -
15th International Workshop, CMCS 2020, Colocated with ETAPS 2020,
Proceedings. Ed. by Daniela Petrisan and Jurriaan Rot. Vol. 12094.
Lecture Notes in Computer Science. Springer, 2020, pp. 133–154. doi:
10.1007/978-3-030-57201-3_8.

� Chapter 6:

[BK+19b] Harsh Beohar, Barbara König, Sebastian Küpper, and Christina Mika-
Michalski. “Coalgebraic Games in Kleisli Categories”. In: CALCO Early
Ideas ’19. 2019.

[BK+20] Harsh Beohar, Barbara König, Sebastian Küpper, and Christina Mika-
Michalski. Coalgebraic modal logic and games: an indexed category frame-
work. unpublished. 2020.

� Chapter 7:

[BK+19a] Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso
Padoan. “Fixpoint Games on Continuous Lattices”. In: Proc. ACM
Symposium on Principles of Programming Languages (POPL) 3 (2019),
26:1–26:29. doi: 10.1145/3290339.

iii

https://doi.org/10.4230/LIPIcs.CONCUR.2018.37
https://doi.org/10.1007/978-3-030-57201-3_8
https://doi.org/10.1145/3290339

iv

Abstract

Verification should be a major building block in any complex development process.
In general, software systems grow over the years and become almost unmanageable
over time. Therefore, theoretical modelling and verification techniques have become
an integral part in the computer science community.

In the last decades, the question whether an implementation meets the specifi-
cation serves as motivation to focus on model checking or logical equivalence where
requirements are formulated via logical formulas.

In order to enable these verification methods, state-based systems and notions of
behavioural equivalence or distance provide suitable models and techniques to analyze
and verify program code. At this point, coalgebra – a concept of category theory –
enters the scene. Coalgebra enables the modelling of different state-based systems
including branching types such as non-determinism, determinism, or probabilistic
systems. Furthermore, the coalgebraic framework provides an abstract definition of
modalities which are used to construct formulas. Therefore, the study of verification
problems from a coalgebraic (i.e. abstract) point of view enables the development of
generic algorithms.

Another focus in this thesis is given in terms of games which provide alternative
semantics with respect to behavioural notions such as bisimulation or language
equivalence or in terms of model checking.

Therefore, this dissertation aims at contributing to the research area of logic and
games via generic frameworks given by category theory or lattice theory.

v

vi

Acknowledgment
In my case, I have to emphasize that words can not express how thankful I am for

the last five years. Especially, I can not find words for the enthusiasm and patience
of my supervisor Barbara König. Briefly said: the appreciation that Barbara shows
when dealing with teaching, research, or fellow human beings has influenced me
positively.

Next, I want to thank Sebastian Küpper for pushing me into the right direction
and all the excellent discussions before, after, and during the time where we share
one office. Another memorable experience for me was my research visit in Italy,
where we met Paolo Baldan and Tommaso Padoan. The collaboration in research
was a great time. The fish served by Paolo and his family also remains unforgettable.

My husband Michael is also a great cook and has done an incredibly fantastic job
all along. You managed all my stress-eating attacks and much more.

There are many other people I would like to thank, but as I said above, I
lack the words. Therefore, I stick to the formal notation and define the following
acknowledgment morphism A. Please, interpret the terms as you feel:

A : people around me → {∞⋆,∞♡,∞,,,,♡,,∞}

x A ∞⋆ if x = Barbara König

x A ∞♡ if x = My Michael Michalski

x A (∞+ 1) if x = Sebastian Küpper

x A ∞ if x ∈ {Paolo Baldan,Tommaso Padoan,Harsh Beohar}

∪ {ThorstenWißmann,Lutz Schröder}

x A ,∞ if x ∈ {Rebecca Bernemann,Benjamin Cabrera,

Henning Kerstan,Dennis Nolte,Lars Stoltenow}

x A ,♡ if x ∈ MyFamily ∪MyFriends

x A ,∞ if x ∈ Eifel − Connection

x A , if x ∈ Voigtländer & König −Group Seminar

x A , if x ∈ CALCO or DCON − Community

Moreover, I enjoyed the work with all my colleges. The atmosphere in our group
seminar and at every conference was great (and not just because of the cakes). Our
research community really facilitates the introduction, and as a young researcher, I
always felt welcome.

vii

Z najgłębszą wdzięcznością:
Maria i Ludwik Włodarczyk, Katarzyna i Antoni Mika, Piotr i Valerie,

Jolanta i Tomasz Michalski,
&

Meike Müller i Markus Grosche

viii

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Structure, Contributions and Publications 19

2 Mathematical Foundations 25
2.1 Notations and Elementary Definitions 25
2.2 State-Based Systems . 28

2.2.1 Three Different State-Based Systems 29
2.2.2 Behavioural Equivalence . 34

2.3 Category Theory – Joy with Cats . 39
2.3.1 Categories and Morphisms . 39
2.3.2 Functors, Natural Transformations and Limits 42
2.3.3 Behaviour Coalgebraically . 46
2.3.4 Adjunctions and Monads . 55
2.3.5 (Bi)fibrations and Indexed Categories 65

3 Behavioural Equivalence:
Games over Set 71
3.1 Introduction . 71
3.2 Foundations for the Classical Case 73

3.2.1 The Triad for Labelled Transition Systems 73
3.2.2 Categorical Foundations for the Classical Case 75
3.2.3 Coalgebraic Modal Logics for the Classical Case 79

3.3 Coalgebraic Games for the Classical Case 85
3.3.1 Coalgebraic Games . 85
3.3.2 The Coalgebraic Triad: Bisimulation, Modal Logics & Games 94

3.4 Explaining Non-Bisimilarity in a Coalgebraic Approach 96
3.4.1 An Introduction into Coalgebraic Partition Refinement Algo-

rithms . 97
3.4.2 Computation of Spoiler Winning Strategies 104

ix

3.4.3 From Winning Strategies to Distinguishing Formulas 112
3.4.4 Recoding Modalities . 120

3.5 Conclusion and Discussion . 125

4 Tools and Case Studies 127
4.1 T-BEG: A Generic Tool for Behavioural Equivalence Games 127

4.1.1 Design . 128
4.1.2 Functor Interface . 129

4.2 Case Study on Mealy Machines . 131
4.3 Conclusion . 134

5 Behavioural Distances:
Modal Logic and Games over Set 135
5.1 Introduction . 135
5.2 Foundations . 138

5.2.1 Two Quantitative Models . 140
5.2.2 Behavioural Distance Coalgebraically 145

5.3 Modal Logics for the Metric Case . 162
5.4 Behavioural Distance Games over Set 170

5.4.1 Formulation of the Game . 171
5.4.2 Spoiler Strategy for the Metric Case 177

5.5 Conclusion and Discussion . 179

6 Behavioural Equivalence: Coalgebraic Modal Logic and Games
Beyond Set 183
6.1 Introduction . 183
6.2 Foundations . 185
6.3 Kleisli Extension of Predicate Liftings 190
6.4 Coalgebraic Modal Logic and Games Beyond Set 200

6.4.1 The Witnessing Coalgebra Homomorphisms 200
6.4.2 Logic . 208
6.4.3 The Game-Theoretical Perspective 212
6.4.4 The Relation between Logic and Games 220

6.5 Conclusion and Discussion . 222

7 Parity Games over Continuous Lattices 225
7.1 Introduction . 225
7.2 Foundations . 227

x

7.3 Fixpoint Equations: Solutions and Approximants 232
7.4 Application Scenarios . 241

7.4.1 Modal µ-Calculus . 241
7.4.2 Data Flow Analysis . 244

7.5 Fixpoint Games over Continuous Lattices 246
7.5.1 Definition of the Game . 246
7.5.2 Correctness and Completeness 249
7.5.3 Comparison with Other Games 260

7.6 Winning Strategies and Progress Measures 267
7.7 Conclusion and Discussion . 269

8 Conclusion and Future Work 273

A Additional Material 277
A.1 Games for Non-Weak Pullback preserving Functors 277
A.2 Our Coalgebraic Game over Two Coalgebras 282
A.3 Additional Material for Chapter 3 . 290
A.4 Proofs for Chapter 6 . 292

B Bibliography 301

C List of Symbols 333

Index 337

xi

xii

1

Introduction

The word game has different meanings depending on the language or culture, but
most of these interpretations have one association in common: joy and pleasure. Thus,
it is not a big surprise that games have already been recognized as a didactic concept
for children in ancient times, which can be found on the one hand in Platos and the
works of Aristotle [Van13]. And on the other hand, today, games for didactic purposes
at school or higher education are widely studied (cf. [Van13; May07; Mar19]).

Moreover, games provide an alternative representation of economic processes (i.e.
Nash equilibrium), social interaction [Pau01], or truth in a model of a first order
formula [Hin68].

Therefore, it is decisive enough for us to consider system verification from a
game-theoretical perspective.

1.1 Motivation

Any multiplayer game is determined by a set of rules that tells the players how they
have to interact with each other. Therefore, such playing rules can be seen as a
recipe that offers an intuitive way to model interactions. To analyze the observable
behaviour of software systems, any interaction between individual system components
or between a system and its environment (e.g. a user providing some input) plays a
significant role. Therefore, the thesis focuses on the concept of modelling interactions
between software components using game rules, which has already been investigated
beforehand [Sti99; DLT08; Bal99].

However, before we move to the verification of programs via games, we need to take
care of the right modelling techniques of software systems. Since we are interested in
program states and their possible interactions, we consider so-called labelled transition
systems (LTS). These state-based models have proven their reliability as suitable
representations for software systems, where labelled transitions represent actions
between the states. A state of such a graph-based representation can be seen as an
abstract interpretation of a system state [San11].

13

1. Introduction

Games for LTS: The advantages of comparing the behaviour of two states
in terms of two-player games has already been discussed in [Sti99; San11] which
introduce a game-theoretical characterization of bisimulation for labelled transition
systems. Bisimulation is a notion of behaviour equivalence which is weaker than
graph isomorphism but stronger than language equivalence (see [Gla01]). Informally,
one could say that two states in an LTS are bisimilar if they can mutually simulate
their actions where after a successful imitation the spoiler can change the site. In
this way, bisimulation takes care of the non-deterministic branching in LTS where
two states are language equivalent if both only enable the same set of words.

For any LTS, the game’s initial situation is given by a state pair (x, y). One player
is called Spoiler (S) and in the first step of the game he chooses one of the states
e.g. x and determines a transition x

a→ x′ (if available). Since in the second step of
the game, the opponent has to match the move dictated by the Spoiler from the
other state e.g. y, she is known as the Duplicator (D). If no transition y a→ y′ exists
the game terminates and S is winning. Otherwise, the game proceeds in a new round
given by (x′, y′), where S can independently from his previous choice switch between
x′ and y′. If the game never terminates because D can mimic all the moves by S,
she is the winner. Additionally, D is winning in the first step if neither of the states
has an outgoing transition.

Intuitively, the condition described in the second step guarantees that D has a
winning strategy iff the state pair admits the same behaviour with respect to the
actions and the branching of the system, which can be non-deterministic. Besides,
the possibility to choose between the two states in the first step enables a winning
strategy for S. More precisely, either the state pairs are distinguishable by at least
one labelled transition, or for one state there exists after some path p a reachable
state z so that for all matching paths p the other state has no successor state z′,
which matches all the actions of z. Therefore, the strategy for S is to follow p such
that it leads to z, which is enabled by the option to switch the side in step one of
the game. It depends on p, how often S has to switch the side.

But strictly speaking, the origin of bisimulation games lies in the realm of logic
analogously to the notion of bisimulation [San09]. It is slightly difficult to say who
exactly is the pioneer in linking logic and games since some people refer to the rules
of debating by Aristotle’s and “The Games of Logic” by Lewis Caroll in 1887 also
serves as an early example for teaching logic via games [HV19].

The Link between Logic and Games: In terms of first order logic the
work of Henkin [Hen61] addresses game-theoretical semantics for formulas with

14

1.1. Motivation

infinitely many quantifier alternations. Henkin recognized that choosing objects
of the underlying domain – which refers to Tarski’s definition of truth – enables
an interpretation via moves in a two-player game. One player is the ∀-player who
has to choose objects for variables bound by the universal quantifier. And the
positions for the other player, commonly known as the ∃-player, are determined by
the variables bound by the existential quantifier. Henkin observed that the ∃-player
has a winning-strategy if a sequence of Skolem functions exists.

Later, Hintikka [Hin68] extended the game approach of Henkin to conjunction,
disjunction and negation. A quite important fact is, that Hintikka discovered the
intuition of negation in terms of games, namely that it causes the switch of roles
between the two players (see [HV19], [MPT09, Introduction] for more details).

If we move from Hintikka’s game over a single first order logic formula to the
question if two models are distinguishable, we arrive at the Ehrenfeucht-Fraïssé
games. These games are based on Fraïssé’s theory which was developed for Tarski’s
idea to define the equivalence of two structures in such a way that the sentences which
are true in one structure also hold in the second [HV19]. Moreover, Ehrenfeucht-
Fraïssé games are used in the proof of the Van Benthem/Rosen theorem stating
that propositional modal logic is the bisimulation invariant fragment of first order
logic [Ott04].

Returning to the verification of program code, the previously described bisimulation
games over relational models (LTS) provide a game-based technique to decide if a
piece of code satisfies the requirements under the assumption that the systems are
finitely branching (i.e. no state has infinitely many outgoing transitions). Therefore,
one can model the requirements and the implementation via two labelled transition
systems and decide if such structures are bisimilar or one can say equivalently that
they satisfy the same set of modal logic formulas. This one-to-one correspondence
between logical equivalence and bisimulation for finitely branching LTS is known
under the name of Hennessy-Milner theorem [HM80] where the normal semantic for
modal logic is known as relational semantics, which include the 2 and 3-operators.
Intuitively, one can associate

2 with necessity and 3 with possibility.

Furthermore, any such modal formula can be converted into a predicate logic formula
of first order logic [BB07]. This means, that the core of the bisimulation game is given
by the comparison of two models (i.e. structures) and therefore Ehrenfeucht-Fraïssé
games can be seen as a generalization of the bisimulation games [Sti99; GO14].

15

1. Introduction

A Generic Perspective: Besides logic and games, the second dimension of this
thesis is generalization and since state-based systems serve as a suitable modelling
framework for software [San11], our focus moves to “Universal coalgebra” [Rut00] by
Rutten. This coalgebraic concept offers a universal way to handle different transition
systems such as deterministic, non-deterministic, or probabilistic branching.

More concretely, pure non-determinism as for unlabelled transition systems corre-
sponds to a mapping α : X → PX where X represents the state space and in case
a state x has two outgoing transitions x→ y, x→ z we write α(x) = {y, z} ∈ PX
(see left system of Figure 1.1).

x

y z

x

y z

0, 5 0, 5

1

Figure 1.1: Two different systems over X = {x, y, z}: a non-deterministic system on
the left. A probabilistic system with termination on the right.

A probabilistic branching with termination can be interpreted as a mapping
β : X → DX + 1 where DX denotes the set of all probability functions over X with
finite support (i.e. for each p ∈ DX there are finitely many x ∈ X with p(x) > 0).
We use + to denote disjunct union and a state maps to 1 = {•} if no transitions
are available. In the right system of Figure 1.1 state x is mapped to the probability
distribution p : X → [0, 1] with p(y) = p(z) = 0.5, p(x) = 0 and β(z) = •.

In addition, even structures such as neighbourhood frames, where a state x ∈ X
can be mapped to different subsets of X, fall into this framework. Such systems
are used as semantical structures for non-normal modal logic and are modeled via
functions of type X → QQX (where Q maps a set to its powerset and a function f

to the inverse image f−1[_]) [HK04].
Intuitively, the terms generic and coalgebraic can be used interchangeably in the

scope of state-based systems since components as P,D + 1 or QQ of the coalgebras
introduced above are so-called functors. The categorical concept of a functor is a
morphism which maps between (different) mathematical structures such that certain
properties of the source structure are preserved. Therefore, in general we write
α : X → FX where F is a placeholder for the branching type of the system.

Moreover, the theory of coalgebras allows us to generalize the notion of behavioural
equivalence [Rut00] in a very elegant way, which in turn enables generic algorithms

16

1.1. Motivation

to compute behaviour equivalences. These are known under partition refinement
algorithms and are extensively studied in the coalgebraic framework [KK18; DM+17;
WD+18]. A concrete instantiation of such an algorithm is the minimization technique
for deterministic finite automata (DFA) by Hopcroft [Hop71].

Furthermore, coalgebraic modal logic also generalizes modal logics since modalities
correspond to so-called predicate liftings [Pat04; Sch08] first introduced by Hermida
and Jacobs [HJ98] and [Röß00; Jac01]. A predicate lifting is a natural mechanism
which maps a subset of a state space X to a subset of FX where the term natural
means, that it is a structure preserving map between functors.

As mentioned above, modal logics have already been studied from the categor-
ical perspective, but work on coalgebraic games is rare. We are mainly aware of
Baltag’s game where the interaction between the two players is based on bisimula-
tion relations [Bal99] and these games are more reminiscent of Moss’ coalgebraic
logics [Mos99]. We are interested in a coalgebraic game characterization which
directly refers to the concept of coalgebraic modal logics via predicate liftings [Pat04;
Sch08]. One reason to consider predicate liftings is given by an automatism to derive
distinguishing formulas for non-equivalent states as worked out for LTS presented by
Cleaveland in [Cle90]. This algorithm is based on partition refinement techniques
and includes the 3-operator. Distinguishing formulas provide an explanation for
the non-bisimilarity of two states and we are not aware of a generalized version of
Cleaveland’s ideas [Cle90].

A Quantitative Perspective: In the third dimension of this thesis we refrain
from classifying systems or system states as either equivalent or non-equivalent, which
is often too strict, but rather measure their behavioural distance. This makes sense in
probabilistic systems, systems with time or real-valued output. For instance, we might
obtain the result, that the running times of two systems differ by 10 seconds, which
might be acceptable in some scenarios (departure of a train), but inacceptable in
others (delay of a vending machine). On the other hand, two states are behaviourally
equivalent in the classical sense if and only if they have distance 0. Such notions
are for instance useful in the area of conformance testing [KM15] and differential
privacy [CG+14].

Behavioural metrics have been studied in different variants, for instance in proba-
bilistic settings [Des99; DG+04; CGT16] as well as in the setting of metric transition
systems [AFS09; FLT11], which are non-deterministic transition systems with quanti-
tative information. The groundwork for the treatment of coalgebras in metric spaces
was laid by Turi and Rutten [TR98].

17

1. Introduction

Again, work on quantitative games is rather rare where the work in [DLT08]
presents a probabilistic game but pairs it with a qualitative logic. Besides a Van
Benthem theorem for fuzzy logic, the work in [WS+18a] introduces a game over
probabilistic systems which is based on the Wasserstein lifting. There are two
standard approaches to lift a metric over a state space X to a metric over the set of
probabilistic functions (i.e. DX + 1): the Wasserstein lifting uses couplings and the
Kantorovich lifting is based on non-expansive functions. A generalization of both
concepts in terms of category theory is studied in [BB+14].

We are only aware of quantitative coalgebraic games presented in [KK+19]
which does not treat coalgebraic modal logics at all. To our knowledge, it is a new
contribution to use the results in [BB+14] to obtain a quantitative version of the
Hennessy-Milner theorem equipped with a metric game and quantitative logic based
on the Kantorovich lifting.

Bisimulation vs. Model Checking: On some occasions one is rather interested
whether a state satisfies a certain specification than analyzing the whole state space
using bisimulation or behavioural distances [FV99]. Therefore another approach to
reason about the behaviour of system states is given by model checking via parity
games [Jur00; BW18; Sti95; EJ91] originating from the work in [Koz83] for the modal
µ-calculus.

In model checking an implementation is provided via a transition system as for
bisimulation. The specification is given in terms of a modal µ-calculus formula φ and
the goal is to verify if the model satisfies φ.

The modal µ-calculus is an extension of propositional modal logic to the greatest
and least fixpoint operators, denoted respectively ν and µ. Such operators are used
in linear temporal logic (LTL) and computational tree logic (CTL) which are basic
languages for verifying linear temporal and branching properties (see [BK08]). The
usage of greatest and smallest fixpoints enable more expressive statements as for
example “infinilty often p on some path” [BW18] where p is some proposition.

In analogy to Henkin’s and Hintikka’s game-theoretical approach, parity games
include an existential ∃ and universal player ∀, called respectively Eve and Adam.
The game board is derived from the µ-calculus formula with respect to the underlying
model where each position is equipped with a rank based on the alternation depths of
the fixpoint operators [BW18]. The rules for conjunction, disjunction, and negation
including the basic winning conditions refer to the concepts of Hintikka for first
order logic. The winning conditions due to the fixpoint operators µ, ν are defined in
terms of parity conditions. More precisely, in case of an infinite game sequence Eve

18

1.2. Structure, Contributions and Publications

is winning if the highest rank occurring infinitely often is even. Otherwise, Adam is
the winner of such an infinite game [BW18; EJ91].

Since it is quite hard to interpret such formulas, an alternative representation is
given by systems of fixpoint equations [HSC16] based on the equivalence between a
formula and its equational form [CKS92; Sei96]. Results to compute winning strategies
for parity games in terms of so-called progress measures are already studied [Jur00;
HSC16], but we are not aware of a game version for a wide range of lattices.

1.2 Structure, Contributions and Publications

First, the structure of my thesis is described via an overview in Figure 1.2. Afterwards,
the contributions and corresponding publications of this thesis are listed and an
overview of the self-citations in analogy to the structure of the thesis is illustrated in
Figure 1.4.

The publications in this overview (Figure 1.4) are based on the joint work with my
supervisor Barbara König and other researchers. In this thesis I reused the contents
of our publications, which are the results of several iterative processes by all authors.
Whenever I had the feeling, that some additional examples or explanations would
improve the overall understanding of the chapter, I added examples, definitions or
extended the clarifying text. At this point, I would like to point out that I have
not included those parts of the papers [BK+20; BK+19a] that I have not actively
worked on.

The material of the papers wrt. the chapters 3-5 is an outcome of a close
cooperation with my supervisor. For the other two chapters (6,7) I was mainly
contributing on the game-theoretical parts in [BK+20; BK+19a].

In the spirit of “Abstract and Concrete Categories - The Joy of Cats” [AHS09] by
Jirí Adámek I use a similar metaphor “Joy with Cats” to emphasize that our work is
mainly based on category theory.

My thesis begins with this introductory Chapter 1 including the motivation and
an additional section, which describes how the contents are structured and gives an
overview of the related publications.

Mathematical Foundations

Chapter 2, which splits into three parts, introduces the mathematical foundations
needed for our work. Section 2.1 includes general mathematical notation, some set
theory, algebra and standard fixpoint theory for applications in software verifica-

19

1. Introduction

3. Behavioural Equivalence Games over Set

8. Conclusion

2. Mathematical Foundations:
 State-based Systems & Category Theory - "Joy with Cats"

4. Tools &
Case Studies

5. Behavioural Distances:
Modal Logic and Games over Set

6. Behavioural Equivalence:
Modal Logic & Games Beyond Set

Appendix A
Proofs, Results & Examples

1.
Introduction

7. Parity Games
over Continuous Lattices

Figure 1.2: Relation between the chapters. All chapters are based on the mathematical
foundations. The work presented in Chapters 3-6 and the appendix build on each
other. The content in Chapter 7 is a stand-alone chapter i.e. an additional treasure
hidden in the burial chamber. The conclusion sums everything up and the introduction
brings clarity into the whole material.

tion. Section 2.2 is dedicated to transitions systems and the notion of behavioural
equivalence. The last Section 2.3 splits into five subsections where the first three
parts refer to basics of category theory as classes, functors, natural transformations,
and coalgebras. The last two subsections can be seen as an advanced course where
Section 2.3.4 treats adjunctions and monads, followed by indexed categories and
fibrations presented in Section 2.3.5.

Contributions

After formally introducing the Hennessy-Milner theorem for LTS and the foundations
of coalgebraic modal logic over the category Set – which is a standard setting dealing
with sets and functions – in Chapter 3, Section 3.3 presents a coalgebraic game that
is directly based on coalgebraic modal logic via predicate liftings (cf. Figure 1.3).

20

1.2. Structure, Contributions and Publications

α : X → FX

?

Coalgebraic
Games

Coalgebraic
Modal Logics

Coalgebraic
Bisimulation

x ∼ y

Spoiler strategy?

Duplicator strategy? Hennessy-Milner theorem

Figure 1.3: The classical coalgebraic triad: bisimulation, modal logic, and games
over Set.

Section 3.4 first concludes with a new categorical understanding of the different
partition refinement techniques based on the approach in [DM+17]. The second
part of Section 3.4 introduces a generalized version of the automatic explanation for
non-bisimilar states inspired by Cleaveland’s work [Cle90]. In addition, a prototype
implementation of our theoretical techniques called T-Beg (Tool for Behavioural
Equivalence Games) is presented in Chapter 4 [KMS20b; KM18].

In Chapter 5 the focus lies on quantitative system verification where first the
necessary preliminaries and some motivating examples (see Section 5.2) are provided.
Afterwards, Section 5.3 presents a quantitative modal logic and a quantitative version
of the Hennessy-Milner theorem. Finally, in Section 5.4 the corresponding metric
game [KM18] is explained.

Chapter 6 comes up with indexed categories to study an approach of generalized
and game-theoretical characterizations of behavioural notions, which works also
beyond Set [BK+19b; BK+20].

The last contributions are given in Chapter 7, presenting our parity games over
continuous lattices and the equational form of fixpoint formulas [BK+19a].

Besides some proofs, the Appendix A includes some additional results and examples
which mainly refer to the contents of Chapter 3. In Appendix A.4 some of the proofs
referring to Chapter 6 are given.

Publications

Finally, the publications this thesis is based on are listed. In order to indicate the
corresponding chapters I refer to the number of the chapter in Figure 1.4.

21

1. Introduction

Note that I was primarily working on the material of the publications presented
in the pyramid body. Therefore, Chapter 7 mainly focuses on the parts in [BK+19a]
that I have been involved in.

3. Coalgebraic Games via Predicate Liftings
Automatic Explanation for non-bisimilar States

 Categorical View of Different Partition Refinement Techniques
CMCS 2020, CONCUR 2018, CALCO Early Ideas 2017

4. Tools
CMCS 2020,
QAPL 2017

5. Quantitative
Modal Logic & Games over Set

CONCUR 2018

6. Games & Modal Logic
Beyond Set

CALCO Early Ideas 2019
Kleisli Extension of Predicate Liftings

Contributions

7. A Generalization of Parity Games
over Fixpoint Equations

POPL 2019

Figure 1.4: Publications related to the contributions referring to the corresponding
chapter.

• CALCO Early Ideas ’17: Barbara König and Christina Mika, Bisimulation
Games on Coalgebras*, 2017

• 29th International Conference on Concurrency Theory (CONCUR 2018): Bar-
bara König and Christina Mika-Michalski, (Metric) Bisimulation Games and
Real-Valued Modal Logics for Coalgebras, Leibniz International Proceedings
in Informatics (LIPIcs), 2018, 10.4230/LIPIcs.CONCUR.2018.37

• Coalgebraic Methods in Computer Science - 15th International Workshop,
CMCS 2020, Colocated with ETAPS 2020, Proceedings: Barbara König,
Christina Mika-Michalski, and Lutz Schröder, Explaining Non-Bisimilarity

22

1.2. Structure, Contributions and Publications

in a Coalgebraic Approach: Games and Distinguishing Formulas, Lecture Notes
in Computer Science, 2020, Springer, 10.1007/978-3-030-57201-3_8

• CALCO Early Ideas ’19: Harsh Beohar, Barbara König, Sebastian Küpper,
and Christina Mika-Michalski, Coalgebraic Games in Kleisli Categories, 2019

• unpublished (cf. [BK+21]): Harsh Beohar, Barbara König, Sebastian Küpper,
and Christina Mika-Michalski, Coalgebraic modal logic and games: an indexed
category framework, 2020

• Proc. ACM, Symposium on Principles of Programming Languages (POPL):
Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso Padoan,
Fixpoint Games on Continuous Lattices, 2019, 10.1145/3290339

23

2

Mathematical Foundations

The basis of this thesis is formed by parts of category theory and various model-
theoretical concepts summarized under the term state-based systems. Therefore, this
chapter introduces all relevant definitions and theorems that are required to present
our results and contributions. Furthermore, additional building blocks are given by
set theory as well as lattice theory.

The chapter starts with Section 2.1 which includes elementary notations, defini-
tions, and theorems form set theory and universal algebra. Section 2.2 serves as an
introduction to state-based systems and the characterization of system behaviour.
The first half of the last Section 2.3 covers basic categorical definitions. In the second
half, further concepts of categorical theory are introduced. Through all the sections
most of the definitions and concepts are explained using standard examples.

2.1 Notations and Elementary Definitions

In this section we introduce some notations, elementary definitions and theorems.
While most of the following symbols and definitions belong to the mathematical
standards known from set theory and universal algebra, we refer to [DP02; GH+03]
for the part dealing with lattice theory.

We use standard notations and definitions from set theory, e.g. we write x ∈ X
(x /∈ X) in order to denote that x is (not) an element in X. We denote the set of
natural numbers with N, rational numbers with Q and the set of reals with R (where
0 ∈ R0).

Given a binary relation R ⊆ X × Y we use xRy instead of (x, y) ∈ R to indicate
that x, y are related. For a non-empty set X we denote with idX the identity relation
over X. Furthermore, we consider relations on sets called partial ordered sets or
posets.

Definition 2.1.1: Poset
A poset ⟨X,⊑⟩ is a set endowed with a binary relation over X which represents
an order with the following three properties:

25

2. Mathematical Foundations

1. Reflexivity: For all x ∈ X we have x ⊑ x.

2. Antisymmetry: If x ⊑ y and y ⊑ x then x = y (where symmetry means
that for all x ⊑ y it holds that y ⊑ x).

3. Transitivity: If x ⊑ y and y ⊑ z then x ⊑ z.

An order that is reflexive and transitive is called preorder . Other relations used
within this thesis are given by reflexive, symmetric, and transitive relations also
known under the term equivalence relations. Given such a relation R ⊆ X ×X, we
use [x]R = {z ∈ X | ∃ (x, z) such that (x, z) ∈ R} to denote equivalence classes. In
addition, if we factor a non-empty set X through an equivalence relation R ⊆ X ×X
we denote this with X/R i.e. X/R = {[x]R | x ∈ X}.

A preordered or partially ordered set (P,⊑) is often denoted simply as P , omitting
the (pre)order relation. It is well-ordered if every non-empty subset X ⊆ P has a
minimum. The join and the meet of a subset X ⊆ P (if they exist) are denoted

⊔
X

and ⊔X, respectively.
Now we are ready to consider special partially ordered sets, the so-called lattices,

and some well-known theorems of lattice theory.

Definition 2.1.2: Lattice
A lattice (L,⊑) is a partially ordered set such that the

⊔
and ⊔of any two-element

subset S ⊆ L exist in L.

This way we obtain two binary operations ⊓,⊔ : L×L→ L satisfying the following
axioms:

1. Associativity: both operators ⊓,⊔ are associative.

2. Commutativity: both operators ⊓,⊔ are commutative.

3. Absorption: for all a, b ∈ L we have a ⊓ (a ⊔ b) = a and a ⊔ (a ⊓ b) = a

A bounded lattice additionally includes two elements ⊤ and ⊥ where for all l ∈ L,
⊥ ≤ l and l ≤ ⊤ hold and L satisfies the following two identity axioms:

x ⊓ ⊤ = x x ⊔ ⊥ = x

x ⊓ ⊥ = ⊥ x ⊔ ⊤ = ⊤

A complemented lattice is a bounded lattice where for each element l ∈ L at least
one complement c ∈ L exists such that l ⊔ c = ⊥ and l ⊓ c = ⊤.

26

2.1. Notations and Elementary Definitions

A complete lattice is a partially ordered set (L,⊑) such that each subset X ⊆ L
admits a join

⊔
X and a meet ⊔X. A complete lattice (L,⊑) always has a least

element ⊥ = ⊔L and a greatest element ⊤ =
⊔
L.

A lattice is completely distributive if it is complete and for any family {lj,k : j ∈
J, k ∈ K(j)} of L we have

⊔

j∈J

(
⊔

k∈K(j)
lj,k) =

⊔
g∈M

(⊔

j∈J

lj,g(j))

where M is the set of choice functions over J with values g(j) ∈ K(j) [GH+03].
A function f : L→ L is monotone if for all l, l′ ∈ L, if l ⊑ l′ then f(l) ⊑ f(l′). By

Knaster-Tarski’s theorem [Tar55], any monotone function on a complete lattice has
a least and a greatest fixpoint, denoted respectively µf and νf , characterized as the
infimum of all pre-fixpoints respectively the supremum of all post-fixpoints:

µf = ⊔{l | f(l) ⊑ l} νf =
⊔
{l | l ⊑ f(l)}

The least and greatest fixpoint can also be obtained by iterating the function on
the bottom and top elements of the lattice. This is often referred to as Kleene’s
theorem (at least for continuous functions) and it is one of the pillars of abstract
interpretation [CC79]. Consider the (transfinite) ascending chain (fβ(⊥))β where β
ranges over the ordinals, defined by f0(⊥) = ⊥, fα+1(⊥) = f(fα(⊥)) for any ordinal
α and fα(⊥) =

⊔
β<α f

β(⊥) for any limit ordinal α. Then µf = fγ(⊥) for some
ordinal γ. The greatest fixpoint νf can be characterized dually, via the (transfinite)
descending chain (fα(⊤))α. Note also that fα(⊥) is always a post-fixpoint and fα(⊤)
is always a pre-fixpoint [BK+19a].

Given a lattice L, we define its height λL as the supremum of the length of any
strictly ascending, possibly transfinite, chain. Then we have the following well-known
result:

Theorem 2.1.3: Kleene’s Iteration [CC79]

Let L be a lattice and let f : L → L be a monotone function. Consider the
(transfinite) ascending chain (fβ(⊥))β where β ranges over the ordinals, defined
by f0(⊥) = ⊥, fα+1(⊥) = f(fα(⊥)) for any ordinal α and fα(⊥) =

⊔
β<α f

β(⊥)
for any limit ordinal α. Then µf = fγ(⊥) for some ordinal γ ≤ λL. The
greatest fixpoint νf can be characterized dually, via the (transfinite) descending
chain (fα(⊤))α.

Note, that lattices can also be interpreted as algebraic structures [DP02]. We list
some of the algebraic structures used within this thesis.

27

2. Mathematical Foundations

Given a set M equipped with a binary operation ◦ : M ×M → M and some
element e ∈M , we call (M, ◦, e) a monoid if it satisfies the following two axioms:

1. Associativity: For all x, y, z ∈M we have (x ◦ y) ◦ z = x ◦ (y ◦ z).

2. Identity element: There exists one element e ∈M such that for all x ∈M the
equations e ◦ x = x ◦ e = x hold.

A Boolean algebra is given by a distributive and complemented lattice equipped
with two binary operations ⊔, ⊔

, and the unary operation of the complement.

Definition 2.1.4: Boolean Algebra

A Boolean algebra contains a set B, two elements 0 and 1, two binary operations
⊔,⊓ : B ×B → B, and a unary operation ¬ : B → B such that the boolean laws
given by the following axioms hold:

1. Distributivity: a⊓ (b⊔ c) = (a⊓ b)⊔ (a⊓ c) and a⊔ (b⊓ c) = (a⊔ b)⊓ (a⊔ c)
i.e. (B,⊔,⊓) is a distributive lattice.

2. Identity: x ⊔ 0 = x and x ⊓ 1 = x for all x ∈ B.

3. Double negation: ¬(¬x) = x for all x ∈ B.

4. Complementation: x ⊔ ¬x = 1 and x ⊓ ¬x = 0 for all x ∈ B.

Therefore, a complete boolean algebra can be seen as a complete lattice.
On some occasions we consider concepts of measure theory and therefore we

introduce σ-algebras.

Definition 2.1.5: σ-Algebra

Let X be a non-empty set and PX the corresponding powerset. A subset
A ⊆ PX is called a σ- algebra if the following three properties are satisfied by A:

X ∈ A

if A ∈ A then X \A ∈ A

if A1, A2, A3, . . . ∈ A then
⋃

n∈N

An ∈ A

2.2 State-Based Systems

Computer science is all about software systems. And such systems usually interact
in some way with their environment, which can have different forms. The interaction

28

2.2. State-Based Systems

can take place between several kinds of actors: humans, other systems, or literally in
a natural environment, as it is often the case with sensor-based monitoring systems.

Already two simple fragments of code [San11] make it clear that system behaviour
depends on interaction, and therefore can be modelled nicely via state-based systems.
Sangiorgi uses just two lines of source code, including addition, to demonstrate that
a system adopts different memory states depending on concurrency (see Figure 2.1).

x := 3 | x := 1;x := x+ 2

As a consequence, different behaviour can be observed from the outside, since the
output of a simple addition is different depending on the moment of access to the
memory state.

x:= x+2;

X

Initial value of x.
Value before executing
the addition.

X

Value of x after
executing the addition.

Memory
state ?

Memory
state ?

Figure 2.1: The value observable from the outside depends on the memory state.
Therefore, concurrent accesses yield different observations [San11].

There are a variety of scenarios in which complex software systems with thousands
lines of code play a role. Therefore, the next two subsections serve as an introduction
to the topic of state-based systems, which are also known as transition systems. This
is followed by an introduction to the term behavioural equivalence.

2.2.1 Three Different State-Based Systems

As already mentioned, state-based systems can be represented via transition systems,
which mainly consist of the states and the transitions between these states. To
facilitate the introduction, we start with the so-called labelled transition systems.

29

2. Mathematical Foundations

Definition 2.2.1: Labelled Transition System (LTS) [San11]

A labelled transition system is a triple (S,Σ,→) where S is a non-empty set called
the domain of the LTS, Σ is the set of actions (or labels), and →⊆ S ×Σ× S is
the transition relation.

LTS can be used to design systems to enable a clear presentation of requirements
or implementations. Therefore, transition systems offer a powerful tool to check
whether an implementation complies with the system specifications. The following
example is intended to give an idea of how the comparison of system specification
and implementation can work. In the real world, such designs encompass hundreds
of states and numerous transitions. For the sake of simplicity, we limit ourselves to a
rather abstract Example 2.2.2.

Example 2.2.2

A conference registration website is to be designed and implemented. There are
two requirements that the system must meet: Firstly, the user should be able to
pay after registration; secondly, the option to book a hotel should be available.

x

Ix

Rx R′
x

register register

Hx

Px P ′
x

pay

addHotel

pay

y

Iy

Ry

y

Py P ′
y

Hy

register

pay

addHotel

pay

Figure 2.2: Two different concepts modelling a conference registration interface.

Two different designs are illustrated in Figure 2.2. A concrete specification is
given by model y, and x represents a possible implementation. Both enable the
sequences of actions: register − pay and register − addhotel − pay.
However model x forces the user to decide whether he/she wants to book a hotel
right at the beginning of the registration process. But concerning specification y,

30

2.2. State-Based Systems

the user is supposed to make this decision right after the registration.

Example 2.2.2 makes it fairly clear that although both models support the same
sequences of actions, they cannot be classified as behaviourally equivalent. However,
this changes, when we think of deterministic finite automata (DFA), where the
behaviour of two states is identified as equivalent if the same set of words is accepted
from both states. In addition, non-deterministic (finite) automata (NFA) or in
short finite automata can be extended in adding weights to the transitions. Express-
ing the behaviour in terms of (weighted) words is known as (weighted) language
equivalence [BB+12a; Moh09].

An example application for weighted automata is digital text and language pro-
cessing. The composition of various transducers, finite automata that can produce an
output, is used for the representation of phonetic, acoustic and linguistic information.
At the end of that composition, a weighted automaton is inserted that checks the
outputs. In order to save computing time and storage space, minimization algorithms
are used for the weighted automata [MPR96].

State-based systems are in general optimized by minimizing the states. The
number of states can be reduced if states are behaviourally equivalent. Algorithms
for minimizing a wide variety of transition systems can be found in numerous
publications (see [Hop71; PT87; KS90]). The probably best-known algorithm is the
minimization method for deterministic finite automata by Hopcraft [Hop71], which,
in contrast to weighted automata, have a unique minimal representation [Moh09].
Generic approaches for minimizing transition systems are studied in more detail in
Section 3.4.1.

To remain in the subject of weighted systems, we now consider discrete probabilistic
systems. In general, there is a difference between discrete and continuous systems.
In a discrete system, changes happen only at discrete time snippets and continuous
systems update continuously over time. This results in state spaces that can no longer
be countable. Systems dealing with continuous spaces are Markov processes [Sok11]
or hybrid systems [KM15]. Hybrid or cyber-physical systems are used to enable the
modelling of application scenarios, where a continuous system (physical environment)
is connected to a control system (e.g. a system measuring coal combustion [MR+17]).

For the unfamiliar reader, we limit ourselves to a rather simple setting and
concentrate on probabilistic systems over a countable state space. Probabilistic
weights provide the right tools to model transition systems where we can not assume
that the occurrence of a transition is always guaranteed. This approach is much more

31

2. Mathematical Foundations

realistic instead of simply assuming that a transition is available or not, since there
are several application scenarios, where e.g. random events play a major role [Sok11].

Larsen and Skou [LS89] motivated their work about probabilistic transition
systems by the fact that systems are build on other systems, from which it is assumed
that they satisfy several properties. Testing whether such estimations hold leads
to probabilistic modelling, where probability distributions are created based on the
observations during several executions of a test.

Example 2.2.3

Given a system, consider the following assumption: there is a b-transition after
executing an a-transition. But testing this system could yield the observation
that this b-transition occurs only with a probability of 90%.

Definition 2.2.4: Discrete Probabilistic System [LS89]

A discrete probabilistic system is a quadruple (S,Σ, C, p) where S is a countable
set of states, Σ is a set of labels, C is a Σ-indexed family of sets, with Ca ⊆ S for
a ∈ Σ being the set of states which can perform an a-transition. Furthermore, p
is a family of probability distributions µs,a : S → [0, 1] for any a ∈ Σ and s ∈ Ca.

Note, that a probability distribution µs,a : S → [0, 1] satisfies the normalization
property: ∑

s′∈S

µs,a(s′) = 1

Such probabilistic systems are also known as discrete reactive systems. If a state
s /∈ Ca for a ∈ Σ, the a-behaviour of the state can be interpreted with termination.
Otherwise, if a state s ∈ Ca, µs,a(s′) = p means that s can perform the action a to
the successor state s′ with a probability of p [Sok11; LS89].

Example 2.2.5

The example in Figure 2.3 illustrates the weighted branching type working with
an abstract set of actions Σ = {a, b}, where a possible action l ∈ Σ from a state
s to t is equipped with a probability. For example, the probability for making a
b-transition from state 2 to state 5 is 0.8.
Furthermore, the states 3 and 5 do not admit the same weighted behaviour, since
3 does not enable a b-transition (3 is terminating for b), while 5 can even do a
b-transition with probability 1. Therefore, one can also distinguish 1 and 2, since
the probability reaching a state like 5 from 1 is 0 for all labels and we already

32

2.2. State-Based Systems

have mentioned, that the probability of 2 to reach 5 is clearly greater.

1

3 4

b, 0.8 a, 0.7

a, 1

a, 0.3

2

5

a, 0.7

a, 1

b, 1

a, 0.3

b, 0.2 b, 0.2

b, 0.8

Figure 2.3: A probabilistic system where states can terminate for a label or have
weighted l-transitions which sum up to 1 for each label l ∈ {a, b} [KMS20b].

Another interesting branching type is captured by the so-called Mealy machines,
where a transition from one state to another does not only model a possible action
itself, as with LTS, but an input also determines a so-called output. Therefore, Mealy
machines are eminently suited for the design of logical circuits [Mea55] or other
application scenarios [Yan96; ARP13; MK16].

Definition 2.2.6: Mealy Machine

A Mealy machine is given by a 5-tuple (S, s0,Σ, Γ, δ) where S is a non-empty
set representing the state space, s0 is the initial state, Σ is the set of input
labels, Γ is the set of output labels and the transitions are given by a function
δ : S × Σ→ S × Γ .

For the modelling of logical circuits, we restrict to special Mealy machines and
set both the input Σ and the output Γ alphabet to {0, 1}. There are two common
ways to represent Mealy machines. First of all, we deal with the so-called state
diagram, which is very close to the representation of LTS apart from the fact that
the transitions are labelled with I/O where I represents the input separated by a “/”
from the output O. The second concept is given by state transition tables. To get a
little more familiar with the first concept, let us consider some standard example:

Example 2.2.7: A simple Mealy Machine

A simple Mealy machine represented as a state diagram is given in Figure 2.4,
where we leave it unspecified which state is the initial one (while this plays a

33

2. Mathematical Foundations

significant role when looking at the question of what output the machine generates
for a given input sequence, it plays a less important role if we are interested in
the behaviour of individual states). To investigate this matter further, we take a
closer look at the states 0, 1 and 2.
For a given input sequence 000, the state 1 produces the output sequence 010.
Furthermore, for the same input the states 0 and 2 generate the output 001. So
you can tell from a short input that it makes a difference whether we choose state
0 or 1 as the initial state.
Although state 0 and 2 behave the same for the input 000, it is not clear from
this one example whether 0 and 2 differ or not. In fact, a closer look at 0, 2
reveals that these two states will also produce the same output for each other
input sequence and therefore, it makes no difference which of the two states is
taken as the initial state.

0

2

1

3

0/0

1/0

1/0

0/0

0/0

1/0

0/1

1/0

Figure 2.4: A simple Mealy machine represented as a state diagram based
on [Mea55].

Similar to the case of LTS, one gets an idea of when two states in a given Mealy
machine behave equivalently. Therefore, we will take a more formal look into this in
the next Section 2.2.2.

First of all, the next section considers the meaning of behavioural equivalence in
the individual scenarios. Secondly, an intensive introduction into a general definition
of the term behavioural equivalence is presented in Section 2.3, since it plays a central
role in the verification and optimization of systems.

2.2.2 Behavioural Equivalence

From the various types of branches discussed in the previous section (non-deterministic,
probabilistic, and deterministic I/O branching), it is already clear that the sequences
of transitions possible from a state are not sufficient to characterize the behaviour of

34

2.2. State-Based Systems

a state (see Example 2.2.2). The situation, therefore, differs from the case of finite
automata belonging to the class of acceptance models (or string recognizers [San11]),
where two states are called equivalent if they accept exactly the same set of words.
This is also referred to as language-equivalence or trace-equivalence (see [Nic11;
HU79; Gla01]). The question that arises here is whether it is even possible to define
a general term for behavioural equivalence that covers different concepts.

Therefore, we first consider a notion of behavioural equivalence for each of the
three branching types from the previous section. We start again with LTS and
introduce bisimulation that covers the following intuition: two states (in the same
system or different systems) are behaviour equivalent if the states can mutually
simulate each other. In addition, after each successful simulation the side that
determines the action – the spoiler side – can be swapped.

Definition 2.2.8: Bisimulation [San11]

Given a labelled transition system (X,Σ,→), a relation R ⊆ X ×X is called a
bisimulation if, whenever (x, y) ∈ R, for all a ∈ Σ we have:

1. for all x′ with x
a→ x′, there is a y′ such that y a→ y′ and (x′, y′) ∈ R;

and

2. for all y′ with y
a→ y′, there is a x′ such that x a→ x′ and (x′, y′) ∈ R.

Since bisimulations are closed under union, we can also speak about the greatest
bisimulation given as the union of all bisimulations, called bisimilarity [San11].
Finally we conclude, that two states x, y are bisimilar (i.e. x ∼ y) if there exists a
bisimulation R containing the state pair (x, y).

Bisimilarity can be characterized alternatively by the greatest fixpoint of a mono-
tone function over a powerset lattice.

Given an LTS (X,Σ,→). Let R ⊆ X×X we define F(R) : P(X×X)→ P(X×X)
as follows:

F(R) = {(x, y) ∈ X ×X | ∀ a ∈ Σ :

∀x′ with x
a→ x′,∃ y′ s.t. y a→ y′ and (x′, y′) ∈ R; and

∀ y′ with y
a→ y′,∃x′ s.t. x a→ x′ and (x′, y′) ∈ R

} (2.1)

Since we are working with monotone functions over complete lattices [San11],
the iterative computation starting form the ⊤-element yields the greatest fixpoint.

35

2. Mathematical Foundations

Here, ⊤ is X ×X with X being the state space of the underlying system. Therefore,
bisimilarity is the largest post-fixpoint of F and can be computed if X is finite (see
Knaster-Tarski [Tar55] and Theorem 2.1.3).

Proposition 2.2.9: Bisimilarity (∼) [San11]

We call F the functional associated to bisimulation and thus we get:

1. ∼ is the greatest fixpoint of F (i.e. ∼ = νF).

2. ∼ is the largest relation R such that R ⊆ F(R); thus R′ ⊆∼ for all R′

with R′ ⊆ F(R′).

Proving Proposition 2.2.9, Sangiorgi also demonstrates that bisimilarity can be
defined via coinduction [San11].

For probabilistic systems, we have already discussed in Example 2.2.5 the intuition,
why the two states (1, 2) do not admit the same weighted behaviour. To describe
this more formally, two states are probabilistically bisimilar and therefore related by
some relation R, if their probability to reach any equivalence class of R is the same
for all labels.

Definition 2.2.10: Probabilistic Bisimulation [LS89]

Let M = (S,Σ, C, p) be a discrete probabilistic system. Then a probabilistic
bisimulation R ⊆ S × S is an equivalence relation on S such that, whenever
(x, y) ∈ R, the following holds:

∀ a ∈ Σ.∀Cl ∈ S/R,
∑

s′∈Cl
µx,a(s′) =

∑
s′∈Cl

µy,a(s′).

Returning to Mealy machines, the first part defines when two states are equivalent
according to Mealy and Moore (cf. [Moo56]), which also covers the intuition one
might get from Example 2.2.7.

Definition 2.2.11: Equivalent States in a Circuit [Mea55]

Two states, s0 in circuit S and t0 in circuit T, are called equivalent if, given
S initially in state s0 and T initially in state t0, there is no sequence of input
combinations which, when presented to both S and T , will cause S and T to
produce different sequences of output combinations.

Intending to build a formal bridge to the approach used for LTS, an equivalent
definition given by [BRS08] with the restriction to the output Γ = {0, 1} is given

36

2.2. State-Based Systems

below.

Definition 2.2.12: Bisimulation for Mealy Machines

Let two Mealy machines SM = (S, t0,Σ, Γ, δ) and TM = (T, s0,Σ, Γ, δ) be given.
We call a relation R ⊆ S × T a bisimulation if for all (x, y) ∈ S × T and a ∈ Σ
the following two conditions hold:

1. (x, y) ∈ R : δ(x, a) = (x′, ox) and δ(y, a) = (y′, oy)⇒
ox = oy and (x′, y′) ∈ R.

2. (y, x) ∈ R : δ(y, a) = (y′, oy) and δ(x, a) = (x′, ox)⇒
oy = ox and (x′, y′) ∈ R.

Therefore, s0 and t0 are bisimilar if there exists no input sequence that leads to a
pair of successors that produce different outputs.

It is obvious that in analogy to LTS, a monotone function over a powerset lattice
can also be defined here and for the weighted setting, where the greatest fixpoint
characterizes bisimilarity.

Example 2.2.13: Logical Circuits and Bisimulation

Let’s go back again to our previous Example 2.2.7. Now, we want to construct
a truth table based on this Mealy machine and therefore we need to recode the
states into binary numbers. Truth tables are an alternative representation of
Mealy machines and are used to develop logical circuits, where this example only
focuses on the theoretical connection between transitions systems and logical
circuits (cf. [Mea55]).

A0,2

C3

B1

0/0
1/0

1/0

0/00/1

1/0

Figure 2.5: A minimized Mealy machine after merging the states 0, 2 given in
Figure 2.4.

First, we apply Definition 2.2.12 to recognize equivalent states. The states 0, 2
produce for each binary input sequence the same output. More precisely, both

37

2. Mathematical Foundations

states induce the output 1 in case a single series of three zeros (i.e. 000) is detected.
Merging these bisimilar states results in the state diagram in Figure 2.5.
Next, for a truth table we need to encode the three states A0,2, B1, C3 where the
indices indicate the states from the state diagram in Example 2.2.7. Thus two vari-
ables q1, q2 are needed to encode the three states A0,2 → 00, B1 → 01, C3 → 10
as illustrated in Figure 2.1.

q1 q2 X q̄1 q̄2 Y

A0,2
0 0 0 0 1 0
0 0 1 0 0 0

B1
0 1 0 1 0 0
0 1 1 0 0 0

C3
1 0 0 0 0 1
1 0 1 0 0 0
1 1 0
1 1 1

Table 2.1: Minimized Mealy machine represented in a truth table.

Consider the row of A0,2 then q1 = 0, q2 = 0 denote this state and X is the input
variable, where the input either can be 0 or 1. Depending on X, the successor
state is given by q̄1, q̄2 and the output Y is given in the last column on the right.
For input 0 the state A0,2 has a transition to B1 and so q̄1 = 0, q̄2 = 1 producing
the output Y = 0. The last row is not needed to model the Mealy machine and
such a state is treated as Don’t care.
That way we obtain Table 2.1, which is called a truth table and is another
representation of the behaviour modelled by a Mealy machine. Working with
such tables, boolean expressions are derived (e.g. via Karnaugh maps), which
serve as a base in the design process of logical circuits satisfying the modelled
behaviour (cf. synthesizing sequential circuits [Mea55]).
Therefore, our Mealy machine can be converted into a sequential circuit, which
is discussed in [Mea55]. The size of such a circuit depends on the number of
variables necessary to represent the states of the model and a minimization based
on bisimulation may reduce the effort of the synthesis procedure (cf. [BRS08;
Mea55]).

Moreover, the three introductory case studies demonstrate how important it is to

38

2.3. Category Theory – Joy with Cats

study behavioural equivalence in the development and implementation of (software)
systems.

Furthermore, despite the differences from branching type to branching type, there
are analogies in the way how bisimulation is defined. It is precisely these relationships
that one would like to generally grasp in order to be able to develop generic techniques
for the verification of state-based systems.

The foundations of such a generic framework are presented in detail in the next
section.

2.3 Category Theory – Joy with Cats

In this section, we mainly work towards a generic definition of behavioural equivalence.
But before we get to that, we need to introduce the basics of category theory.

In 1942 Eilenberg and McLane introduced the foundations of category the-
ory [EM42; ME45]. To put it concisely: their concept brings common properties of
different mathematical structures under one roof, and therefore category theory can
be seen as a kind of (meta) language about mathematics [AHS09]. We will focus
here on the basic definitions and background of these ideas.

But before we get lost in the details, let us first turn to the almost philosophical
meaning, which helps to understand the difference between category and set theory.
More precisely, we aim at the following paradoxical situation: Can there be a set
containing all sets? This problematic question is better known under Russell’s
paradox and leads to the fact that such a set can not exist. However, if we want to
study mathematical structures from a higher perspective, we have to circumvent this
limitation, because to keep things general, statements have to be made that apply to
all sets or all groups, etc. [AHS09].

Therefore, in the next Section 2.3.1 we introduce some formal definitions and
start with some intuition how the limitation described above can be circumvented.

2.3.1 Categories and Morphisms

Instead of working with sets, in category theory, one considers collections of objects
called classes, where an object can be a set. Therefore, one can define a class that
contains all sets without getting into contradictions.

Most of the definitions and examples presented on the following pages are derived
from [AHS09], but there also exist some variants in the literature.

39

2. Mathematical Foundations

Definition 2.3.1: Category

A category is a quadruple C = (O, hom, id, ◦) consisting of

1. a class O, whose members are called C-objects denoted with Ob(C),

2. the class Mor(C) of all C-morphisms which are given by arrows mapping
from C to D and (C,D) is a pair of C-objects. The expression hom(C ,D)
is an alternative notation for the C-morphisms mapping from C to D.
The statement “f is a hom(C ,D)” is expressed more graphically via arrows
(i.e. C f→ D). In addition, the domain C is denoted with dom(f) and we
write cod(f) for the codomain of f .

3. a morphism C
idC−→ C, called the C-identity on C, for each C-object C.

4. a (partial) composition operation ◦ associating with each pair (f, g) of
C-morphisms A f→ B, B g→ C a C-morphism A

g◦f−→ C.

such that the following three axioms hold:

• Associativity: For C-morphisms f, g, h with A f→ B, B g→ C and C h→ D,
the equation h ◦ (g ◦ f) = (h ◦ g) ◦ f holds.

• Identity: For all C-objects A,B and all morphisms A f→ B it holds that
f ◦ idA = f = idB ◦ f .

• Disjointness: The classes hom(C ,D) are pairwise disjoint.

In order to simplify the notations in concrete instantiations of the abstract definition
above, we will mainly use C, f ∈ C for C ∈ Ob(C) and f ∈ Mor(C).

A set is a small class while classes such as the class of all sets are called proper
classes. In case, the hom(C ,D) classes are restricted to sets, we have a so-called
locally small category. Before we introduce some illustrative examples, we would like
to conclude that if more than one category is considered simultaneously, subscripts
are used to distinguish the objects, morphisms, compositions and so on.

Example 2.3.2: Three Categories

1. Set is the category, which specifies the framework for Chapter 3. The
object class is the class of all sets and the morphisms are all functions.
Therefore the identities are just the identity functions idS : S → S on some
set S and ◦ is the usual composition of functions.

40

2.3. Category Theory – Joy with Cats

2. Rel is a category, which serves as an example in Chapter 6. The object
class is the class of all sets and the morphisms are all binary relations.
Therefore, the identity for some set S is given by the identity relation
idS = {(x, x) | x ∈ S} and the composition of two binary relations A f→ B

and B g→ C is relational composition A g◦f−→ C with g ◦f = {(a, c) ∈ A×C |
∃ b ∈ B s.t. (a, b) ∈ f, (b, c) ∈ g}.

3. Graph is a category, where the object class is the class of all finite graphs
and the morphisms are all graph morphisms.

Given two graphs GA = (VA, EA) and GB = (VB, EB), a graph morphism
f : (VA, EA) f→ (VB, EB) is a structure preserving map defined by a mor-
phism φV : VA → VB and a morphism φE : EA → EB, where for each
edge e mapping the vertices of e by φV is equal to the vertices of φE(e)
respecting the structure. In case of labelled graphs an edge in EA is mapped
by φE to an edge with the same label.

Therefore, the identity for some graph G = (V,E) is given by the identity
morphisms φV : V → V and φE : E → E.

Furthermore, let two graph morphisms f = (φV1 , φE1), g = (φV2 , φE2) with
(VA, EA) f→ (VB, EB), (VB, EB) g→ (VC , EC) where φV1 : VA → VB, φV2 :
VB → VC be given (analogous for the edge-morphisms).

The composition g ◦ f is given by the composition of the vertex-morphisms
φV2 ◦ φV1 and the composition of the edge-morphisms φE2 ◦ φE1 [BB+13]

The first category refers to the class of all sets, the second is intended to associate
with morphisms something else than functions, and the third category serves as
an example that objects can be different from sets.

These three examples already show how three completely different mathematical
structures and their properties can be elegantly reconciled as categories.

Let us briefly come back to set theory and consider one property of functions.
With a function A

f→ B each element in the domain is mapped to an element in
the codomain. One wonders whether this concept can be extended to categories.
The next section looks at such an approach, which also brings the features that are
particularly helpful in terms of our original motivation to design generic and suitable
algorithms for system verification.

41

2. Mathematical Foundations

2.3.2 Functors, Natural Transformations and Limits

A category consists of a class of objects and a class of morphisms. If you think about
a mapping between categories, it obviously makes sense to preserve the underlying
structures (as composition of morphisms).

Definition 2.3.3: Functor
If C and D are categories, then a functor F from C to D denoted with F : C→ D
assigns to each C-object C a D-object D, and to each C-morphism C

f→ C ′

a D-morphism FC
F f−→ FC ′, in such a way that

1. F preserves composition; i.e., F (f ◦ g) = Ff ◦Fg whenever f ◦ g is defined,
and

2. F preserves identity morphisms; i.e., F idC = idFC for each C-objectC.

We have for every functor F : C→ D the opposite functor F op : Cop → Dop which
works exactly like F . The opposite Cop of a category C has the same objects as C
but includes the reversed morphisms (i.e. (Cop)op = C).

Before we also extend the functional concept to mappings between functors, let
us first discuss a few simple functor examples followed by some significant properties
of these special arrows. Therefore, we start with a specific class of functors.

Definition 2.3.4: Endofunctor
A functor which maps a category to itself is called endofunctor.

Example 2.3.5: Three Functors

Here are three examples that will serve, among other things, to reconcile the
different definitions of bisimulations mentioned in the previous Section 2.2.2.
But first, let us take a look at the following endofunctors over Set to see how
mappings between categories work:

1. Linear functors: Here, we consider a very basic class of functors and
also choose this one subclass as a representative of the so-called class of
polynomial functors (see [GK09] for more information).

Given a (finite) set A, the functor F = A×_ maps an object X ∈ Set to
A×X and each function X

f→ Y to the function A×X F f−→ A× Y with
Ff(a, x) = (a, f(x)).

2. Covariant power set functor: Via the power set functor F = P , a setX is

42

2.3. Category Theory – Joy with Cats

assigned to its power set PX = {X ′ | X ′ ⊆ X}. Furthermore, each function
X

f→ Y is mapped to the function PX Pf−→ PY with Pf(X ′) = f [X ′]; i.e.
the image of the function.

There are some necessary variants of this functor: via the power set functor
F = Pκ a set X is assigned to the power set

PκX = {X ′ ⊆ X | card(X ′) < κ}

where κ is a cardinal number. We denote the finite powerset functor with
Pf where κ = ω.

3. Distribution functor: The last functor we consider is the (finitely
or countably supported) probability distribution functor D with
DX = {p : X → [0, 1] |

∑
x∈X

p(x) = 1} where either finitely or countably

many x ∈ X with p(x) > 0 exist.

For a function X
f→ Y we get DX Df−→ DY with Df(p) = q where

q : Y → [0, 1] and q(y) =
∑

x,f(x)=y
p(x).

Next, we consider the following useful closure property, which enables the compo-
sition of different functors.

Proposition 2.3.6: Composition of Functors

If F : C→ D and G : D→ E are functors, then the composite G ◦ F : C→ E
defined by

(G ◦ F)(A) = G(F (A))

and
(G ◦ F)(A f→ A′) = G(FA) G(F f)−→ G(FA′)

is a functor.

The Proposition above allows us to construct functors such as P(A × X) or
D(A×X) where X is a set. We will discuss examples of such composed functors in
more detail in the next section, but let us first complete the basic knowledge about
functors.

43

2. Mathematical Foundations

Definition 2.3.7
Let F : C→ D be a functor

1. F is called faithful provided that all hom(-set) restrictions

F : homC(C,C ′)→ homD(FC,FC ′)

are injective.

2. F is called full provided that all hom(-set) restrictions are surjective.

Faithful functors are used to define a special category. Such categories are summarized
as concrete categories over Set, so categories whose objects can be represented by a
set via a faithful functor U : C→ Set where U also somehow forgets the structure
of the object.

Definition 2.3.8: Concrete Category

Let C be a category. A concrete category over C is a pair (A, U) where A is
a category and U : A → C is a faithful functor. Sometimes U is called the
forgetful (or underlying) functor of the concrete category and C is called the
base category for (A, U).

There are numerous of these concrete categories, such as Poset, whose objects
consist of a set and an underlying structure.

Example 2.3.9: Poset

The category Poset is defined as follows:

Objects The objects are all pairs (M,≤M) of sets M which are partially ordered
by ≤M .

Arrows The arrows are all order-preserving functions.

◦ operator Concatenation is function composition:
f : (A,≤A) → (B,≤B), g : (B,≤B) → (C,≤C) can be composed
as g ◦ f : (A,≤A)→ (C,≤C) according to g ◦ f(x) = g(f(x)) for all
x ∈ (A,≤A).

Identity The identity arrows id(A,≤A) : (A,≤A)→ (A,≤A) are just the identity
functions where id(A,≤A)(x) = x for all x ∈ A.

A forgetful functor U : Poset→ Set maps an object (M,≤M) to M .

44

2.3. Category Theory – Joy with Cats

Before we turn to a generic concept of behavioural equivalence based on the
knowledge presented so far, we would like to close this section by looking at mappings
between functors. This concept is fundamental for most of the contents within this
thesis, especially for Section 3.3.1, since it serves as the basis for the definition of
generic modal logics.

Definition 2.3.10: Natural Transformation
Let F,G : C → D be functors. A natural transformation τ from F to G

(denoted by τ : F → G or F τ→ G) is an arrow that assigns to each C-object C
a D-morphism τC : FC → GC in such a way that the following naturality
condition holds: for each C-morphism C

f→ C ′, the square

FC GC

FC ′ GC ′

τC

τC′

Ff Gf

commutes. In the following we denote an identity natural transformation from
F to F with IdF .

Another basic categorical definition (limit or dually colimit) covers universal
properties of several constructions. Probably the most well-known example of a limit
is given by the product.

Let C and D be categories. A diagram of type C is a functor F : C→ D where
the category C is also called index category. A diagram from some object A to some
other object B given by A← C → B is called span with index category (∗ ← ◦ → ⋆)
and dually A→ C ← B is called cospan with index category (∗ → ◦ ← ⋆).

Definition 2.3.11: Cone, Limit

Let F : C → D be a diagram. A cone (to F) is a tuple (D,Ψ) with D ∈ D
and a family of morphisms ΨI : D → FI for each object I ∈ C such that each
triangle as follows commutes for all C-objects I, J and every f ∈ (I, J):

D

FI FJ

ΨJΨI

Ff

45

2. Mathematical Foundations

We call a cone (L,Φ) a limit if it is universal in the sense that for any cone D,Ψ
there is always a unique arrow uD,Ψ : D → L such that the following diagram
commutes for any I, J ∈ C and for any f ∈ (I, J):

L

FI FJ

D

ΦJΦI

Ff

ΨJΨI

uD,Ψ

In case uD,Ψ exists but it is not unique the limit is called a weak limit.

By the way, a very nice feature of category theory is that many properties of
mathematical constructions can be represented via diagrams, which simplify the
proof argumentation and improve the readability.

In the next section, we will discuss a generic way to model transition systems and
study bisimulation from a categorical perspective. And finally, we will see how the
notions of bisimulation we have introduced earlier (see Section 2.2.2) are related to a
categorical notion of behavioural equivalence over state-based systems.

2.3.3 Behaviour Coalgebraically

In order to handle system verification in a generic way, we not only need a more
general definition of behavioural equivalence. But above all, we require a formalism
in order to generically model state-based systems for different branching types as
listed in Section 2.2.2.

Here, we are studying a framework that gives us exactly the tools we need and all
the content presented in the following mainly originates from Rutten’s work known
under the title “universal coalgebra” [Rut00]. The definition we want to start with
makes use of functors to capture different branching types:

Definition 2.3.12: F -coalgebra

Let F : Set→ Set be a functor. An F -coalgebra or F -system is a pair (X,α)
consisting of a set X and a function α : X → FX. The set X is called the carrier
of the system (i.e. the state space); the function α is called the F -transition
structure of the system.

Note that F can also be defined over a category different from Set. However, to

46

2.3. Category Theory – Joy with Cats

avoid over-complicating, for now, let us stay with endofunctors over Set.

In order to bring the power of this definition and all the knowledge from the
previous sections together in one place, let us take a closer look at α. We have a
state space X and each x ∈ X is assigned to an element α(x) ∈ FX. Assume that X
is finite and F = P , then one state is related to a subset of X. Exactly this happens
to a state in an unlabelled transition system (i.e. a labelled system with |Σ| = 1, so
there is no need to use labels at all).

Example 2.3.13

As already indicated after Proposition 2.3.6 we come back to some examples
of composed functors and link this to our introductory examples of state-based
systems which are modelled via coalgebras α : X → FX with F defined as
follows:

1. Labelled transition systems: One can define an LTS via the composed
functor P(A × X), where X is the state space and A the set of actions.
In the example of Figure 2.2 this means that the state Ix is assigned
to α(Ix) = {(register , Rx), (register , R′

x)}, since under the action register ,
transitions to the two states Rx, R

′
x are possible and no further transitions

exist.

2. Probabilistic systems: Here, we combine termination represented via
1 = {•} with the space DX to (DX + 1)A. So for each action a ∈ A, x is
either terminating or maps to a probability distribution p ∈ DX, which
coincides with the branching illustrated in Figure 2.3.

3. Mealy machines: To model this kind of branching we restrict again to
Σ = Γ = {0, 1} and define FX = (Γ×X)Σ. Therefore, for each input signal
i ∈ Σ, x is associated with some successor state and the corresponding
output.

Note that we use A instead of Σ in terms of coalgebras.

Finally, we move to a coalgebraic view on bisimulation to enable a generalization
of system behaviour analysis. Therefore, we first introduce morphisms between
F -coalgebras that preserve and reflect F -transition structures.

47

2. Mathematical Foundations

Definition 2.3.14: F -homomorphism

Let (X,αX) and (Y, αY) be F -coalgebras, where F is again an arbitrary functor.
A morphism f : X → Y is called an F - or coalgebra homomorphism if
Ff ◦ αX = αY ◦ f , i.e. the following diagram commutes:

X FX

Y FY

αX

αY

f Ff

On some occasions we will need to construct a coalgebra homomorphism h :
X → Z in Set via factorizing through an equivalence relation R (i.e. quotient
by an equivalence relation). The generalization of this construction is given by a
coequalizer.

Definition 2.3.15: Coequalizer

Given a category C and two parallel morphisms f, g : A → B where A,B,
f, g ∈ C. An f, g-coequalizer is given by an object Q together with a morphism
q : B → Q such that q◦f = q◦g. Moreover, for any other pair (Q′, q′) there must
exist a unique morphism u : Q→ Q′ (i.e. ∃! u) such that u ◦ q = q′ (illustrated
in Figure 2.6).

A B Q

Q′

q

∃! u
q′

f

g

Figure 2.6: The triangle commutes and u is a unique morphism.

The most common coalgebraic bisimulation definition is taken from [Rut00] but
originates from the work presented in “A final coalgebra theorem” by Aczel and
Mendler [AM89]. Intuitively, given two coalgebras (X,αX), (Y, αY), this definition
requires that for the relation R a coalgebra αR exists, such that for each xRy the
transition structures of αX(x) and αY (y) are both matched by αR(x, y).

48

2.3. Category Theory – Joy with Cats

Definition 2.3.16: F -bisimulation
Let (X,αX) and (Y, αY) be F -coalgebras. A subset R ⊆ X × Y is called
an F -bisimulation between X and Y if there exists an F -transition structure
αR : R → FR such that the projections πi for i ∈ 1, 2 from R are coalgebra
homomorphisms Fπ1 ◦ αR = αX ◦ π1 and Fπ2 ◦ αR = αY ◦ π2 i.e. the following
two diagrams commute:

X R Y

∃

FX FR FY

π1 π2

αX αYαR

Fπ1 Fπ2

Having found a generic view of bisimulation, we could consider generic algorithms
that compute F -bisimulations. One idea would be to construct a generic monotone
function Fα : P(X×X)→ P(X×X) analogous to the case of LTS and to determine
the most efficient way to compute the greatest fixpoint. For now, we delay this
discussion until the preliminaries of Chapter 3. First, we need to review whether
F -bisimulation captures the three instances of bisimulations regarding our three
introductory examples. Luckily, our expectations are confirmed by the work in [Rut00;
dR99].

Therefore, one might think that we arrived at the end of our journey in the world
of generic definitions, but there exists another coalgebraic definition for behavioural
equivalence (cf. [Kur00]):

Definition 2.3.17: Coalgebraic Behavioural Equivalence

Let C be a concrete category and (X,X α→ FX),(Y, Y β→ FY) two F -coalgebras.
We call the elements x ∈ UX the states of (X,α). Two states x, y with x ∈ UX
and y ∈ UY are behaviourally equivalent if and only if there exists an F -coalgebra
(Z, γ) and two coalgebra-homomorphism f : (X,α)→ (Z, γ), g : (Y, β)→ (Z, γ)
such that Uf(x) = Ug(y).

In the next example [BB+12a] we will show that coalgebraic behavioural equivalence
captures weighted bisimulation where F -bisimulation does not. Unfortunately as
a consequence, one can conclude from this, that in general coalgebraic behavioural
equivalence and F -bisimulation do not coincide.

49

2. Mathematical Foundations

Example 2.3.18: F -bisimulation vs. Weighted Bisimulation

The authors in [BB+12a] study weighted automata with weights from a field K.
First, consider the functorW : Set→ Set withWX = R0×(RX

0)A
ω (where (RX

0)ω

is the set of functions X → R0 with finite support). Thus, weighted automata
are modelled as coalgebras α : X →WX where each x ∈ X is mapped to a
weighted termination behaviour and a function A

tx−→ (RX
0)ω, which determines

its weighted transition structure.
As can been seen in Figure 2.7, x1 and y1 are weighted bisimilar, witnessed by
the following equivalence classes: C1 = {x1, y1}, C2 = {x2, x3}.

x1

x2

x3a,−2

a, 2

0

2

2

y1

0

Figure 2.7: Two weighted systems for the functor WX = R0 × (RX
0)A

ω with
X = {x1, x2, x3}, Y = {y1} and A = {a}, where x1, y1 capture the same weighted
behaviour, but there exists no W-bisimulation R ⊆ X × Y including (x1, y1).

The states in class C2 = {x2, x3} admit the same behaviour given by their
2-weighted terminating transition. In addition, the termination weights of x1 and
y1 are equal and for both classes Ci with i ∈ {1, 2} we have that∑

c∈Ci

α2(x1)(c) =
∑
c∈Ci

α2(y1)(c)

holds, where α2(x) denotes the second component of the functor W. Therefore,
we are able to define two coalgebra homomorphisms:
g : ({x1, x2, x3}, αX) → ({c1, c2}, αC) and h : ({y1}, αY) → ({c1, c2}, αC) with
g(x1) = c1 = h(y1), but we can not derive a W-bisimulation from this. The only
relation R ⊆ X × Y , that can be defined including (x1, y1) is {(x1, y1)}, which
obviously does not include pairs of non-equivalent terminating states like (y1, x2)
or (y1, x3).
Therefore, no matter what we choose as mediating morphisms αR : R → WR

regarding the definition of F -bisimulation, the left square will not commute. For
π−1

1 (x2) = ∅ we get a function W(π1) ◦ αR mapping (x1, y1) into an element

50

2.3. Category Theory – Joy with Cats

(t, f) ∈ R0 × (RX
0)A

ω such that f(a)(x2) = f(a)(x3) = 0.
On the other hand αX ◦ π1(x1, y1) maps to a different element (t′, f ′) with
f ′(a)(x2) = 2 defined by the structure given in Figure 2.7 (see [BB+12a]).

The example above illustrates that two states are weighted bisimilar, but fail to be
F -bisimilar regarding X × Y .

Remark 2.1. Example 2.3.18 also serves as a witness, that in general F -bisimulation
regarding X×Y behaves differently compared to (X ∪Y)× (X ∪Y) for two given coal-
gebras α : X → FX, β : Y → FY . Indeed, there exists an F -bisimulation including
(x1, y1) over the state space union, namely R = idX∪Y ∪ {(x1, y1), (x2, x3), (x3, x2)}.

For other non-weak pullback preserving functors it is already known that they
preserve kernel pairs [HKP07]. In case a functor preserves kernel pairs one can show
that both notions coincide over single systems. In addition, it is well-known that a
monoid functor with a refinable monoid preserves kernel pairs (see [GS01]).

Moreover, we observed that the weighted bisimilarity of these states can be
captured by two coalgebra homomorphisms. In [BB+12a] the authors proved, that
for weighted automata described via the functorW = K×(K_)A

ω weighted bisimulation
and coalgebraic behaviour equivalence are equivalent.

It is also well known that when a functor preserves weak pullbacks, coalgebraic
behaviour equivalence and F -bisimulation coincide (cf. [Rut00; BSd04]).

Definition 2.3.19: (Weak) Pullback

Let two morphisms g : X → Z, h : Y → Z be given. A pullback of h and g

consist of an object P and two morphism p1 : P → X, p2 : P → Y such that the
diagram in Figure 2.8 commutes.

P X

Y Z

p1

p2 g

h

Figure 2.8: P is a limit of the cospan ⟨Z, g, h⟩.

Moreover, for any other triple (Q, q1, q2) for which the diagram in Figure 2.9
commutes, there must exist a unique morphism u : Q→ P such that qi = pi ◦ u
with i ∈ {1, 2}.

51

2. Mathematical Foundations

Q

P X

Y Z

∃!u p1

p2 g

h

q2

q1

Figure 2.9: P is a pullback.

In case this morphism u exists, but is not unique P is a weak pullback.

A commonly known example for a pullback in Set is a kernel of a morphism.

Example 2.3.20

Given a function f : X → Y in Set. A kernel is defined as follows:

ker(f) = {(x, x′) ∈ X ×X | f(x) = f(x′)}

Alternatively one can define ker(f) as a pullback P along f equipped with the
usual projections (P, π1, π2) with pi : P → X for i ∈ {1, 2}.

We proceed with a detailed discussion of the fact that in case a functor preserves
weak pullbacks, this implies that our two notions of behaviour equivalence coincide.
Although this result is very well known and mentioned in numerous publications
(e.g. [Rut00; BSd04]), we explore it here again, since it is one of the limitations that
we use within Chapter 3. Besides, it also demonstrates how categorical definitions
help to prove interesting theorems since one can use properties in a more general
way. For instance, one can assume that a certain morphism exists if one requires
that the underlying functor preserves pullbacks.

Given two F -coalgebras (X,αX), (Y, αY) and two coalgebra homomorphisms
g : X → Z, h : Y → Z we now try to identify how these homomorphisms can be
used to construct an F -bisimulation over X × Y in case F preserves weak pullbacks
while the opposite direction is straightforward. The first idea is to construct a
bisimulation via R = {(x, y) | g(x) = h(y)} as depicted in the commuting left
diagram of Figure 2.10. Note, that R is also a limit of the cospan ⟨Z, g, h⟩.

Let us turn our attention back to functors and assume that applying a functor to a
pullback preserves this property in a weaker sense. This means, that FR becomes a

52

2.3. Category Theory – Joy with Cats

R X

Y Z

π1

π2 g

h

Q

R X

Y Z

∃u π1

π2 g

h

q2

q1

Figure 2.10: Diagram to the left: R = {(x, y) | g(x) = h(y)} is a limit of the cospan
⟨Z, g, h⟩. Diagram to the right: In addition R is a pullback.

weak pullback and so for each triple Q, q1, q2 such that the diagram ⟨Q,FX,FY, FZ⟩
commutes, there exists a not necessarily unique morphism Q

m→ FR such that
q1 = Fπ1 ◦m and q2 = Fπ2 ◦m hold, as represented in Figure 2.11.

Q

FR FX

FY FZ

∃m Fπ1

Fπ2 Fg

Fh

q2

q1

Figure 2.11: A functor F transforms a pullback R into a weak pullback FR.

Considering the definition of F -bisimulation, a mapping m : R→ FR is required,
such that the projections πi with i ∈ {1, 2} are coalgebra homomorphisms and
therefore the left and right square in Definition 2.3.16 commute. For the triple
(R, q1, q2) with Fg ◦ q1 = Fh ◦ q2 we construct the required morphism m under the
assumption that (FR,Fπ1, Fπ2) is a weak pullback as illustrated in Figure 2.11.
Remember, that Fg ◦αX ◦π1 = Fh◦αY ◦π2 since g, h are coalgebra homomorphisms
with f(π1(r)) = g(π2(r)) for all r ∈ R and R is a pullback. In case F preserves weak
pullbacks, R is an F -bisimulation shown in Figure 2.12.

In [BB+12a] it is mentioned that negative weights cause the problem described
in Example 2.3.18 and that in general, there seems to be a connection between
weak pullback preserving functors and zero-sum-free monoids, which is extensively
discussed in [GS01]. At this point, we close this subject and summarize it in the
following well-known Theorem 2.3.21.

53

2. Mathematical Foundations

Z

FZ

FRX Y

FX FY

R

π1 π2

g h

αX αY

αZ

Fπ1 Fπ2

Fg Fh

∃m

Figure 2.12: A functor F preserves weak pullbacks and therefore R is an
F -bisimulation.

Theorem 2.3.21: (cf. [BSd04, Corollary 8])

When the functor F preserves weak pullbacks, the notion of F -bisimulation and
behavioural equivalence for F -coalgebras coincide.

Finally, we want to emphasize that for our three functors introduced above
(LTS, Mealy machines and discrete probabilistic systems) it is well-known, that they
preserve weak pullbacks.

An iterative and categorical concept to define behavioural equivalence between
states in a given system α : X → FX is based on the terminal object and final chain
with respect to the functor F [Wor05; AHS09].

Definition 2.3.22: Terminal Object and Final Chain

Let C be a category. An object T ∈ C is terminal, if there exists a unique
morphism tX : X → T for all objects X ∈ C. (A terminal object is usually
denoted with 1.)
Let F : C→ C be given. A construction of a sequence (called final chain) based
on the objects F i1 with i ∈ N0 is obtained by applying F iteratively starting
with the unique morphism:

1 !← F 11 F !← · · ·F i1 F i!← F i+11 · · ·

54

2.3. Category Theory – Joy with Cats

Example 2.3.23

In Set any singleton 1 = {s} is a terminal object and tX : X → 1 is the
corresponding unique morphism [AHS09].

To see how this is related to the behaviour of a given coalgebra α : X → FX,
we have to link the coalgebra to the final chain starting with the unique morphism
α0 = X → 1:

X

1 F 11 F i1 F i+11
. . .

α0
α1

! F i1

αi
αi+1 = Fαi ◦ α

Figure 2.13: Final chain equipped with a sequence αi : X → F i1 of mor-
phisms [KK18].

The final chain formalizes the intuition that two states are equal if they can not
be distinguished by their α-step behaviour. The codomains of each morphism
X → F i1 can be interpreted as the i-step behaviours for a given coalgebra α [Pat04;
WD+20]. It is well-known that in case of Set and X is finite, two states x, y ∈ X
are behaviourally equivalent iff αi(x) = αi(y) for all i < ω [Wor05]. We will see in
Section 3.4.1 how one can derive partition refinement algorithms from the final chain
to compute behavioural equivalence relations.

Regarding language equivalence mentioned in Section 2.2.2 the following question
arises: “Do we always want to consider F -bisimulation? Maybe sometimes language
equivalence plays a more important role? And we already know that in general they
do not coincide.”

Definitely, these are important questions and it still remains open how the definition
of coalgebraic behaviour equivalence is related to language equivalence. To briefly touch
some of the contents presented in the next section, there are different coalgebraic
ways to model the same branching type. By changing the category one can achieve
that coalgebraic behaviour equivalence is language equivalence [PT99; KK18].

2.3.4 Adjunctions and Monads

In this subsection, we study the categorical concepts adjunction and monad. Monads
can be used to model side effects, for instance in connection with trace equivalence
(see Section 2.2.2) and we will address such behavioural notions in Chapter 6.

55

2. Mathematical Foundations

The following definitions, examples, and explanations are taken from [Mac98;
AHS09; Ker16] and from the work by Power and Turi, which presents a coalgebraic
treatment of trace semantics for labelled transition systems [PT99].

We already introduced natural transformations in Definition 2.3.10 to obtain
structure preserving maps between functors. As the name indicates, a functor is
transformed into another functor in a natural way, i.e. the diagram of Definition 2.3.10
commutes. Next, we want to focus on the relation between two categories C,D in
case there exist two functors, where one maps from C to D and the other functor
goes from D to C. The next Definition 2.3.24 is taken from [Ker16] based on [Awo06].

Definition 2.3.24: Adjunction, Adjoint Functor

Let C and D be categories. An adjunction between C,D consists of

1. a functor L : C→ D, called left adjoint,

2. a functor R : D→ C, called right adjoint,

3. a natural transformation η : IDC → RL, called unit, and

4. a natural transformation ε : LR→ IDD, called counit,

such that the two diagrams in Figure 2.14 commute.

L LRL

L

Lη

IdL εL

R RLR

R

ηR

IdR Rε

Figure 2.14: Two commuting diagrams.

Such an adjunction is denoted by (L ⊣ R, η, ε) : C→ D. A functor F is a left or
right adjoint if it is a left or right adjoint of some adjunction.

At a first reading of this definition, it may seem difficult to understand what an
adjunction means intuitively. Since we will work with adjunctions in Chapter 6, we
consider the following concrete adjunction in Example 2.3.25.

56

2.3. Category Theory – Joy with Cats

Example 2.3.25

This example of a well-known adjunction serves as an introduction. We consider
the categories Set and Rel defined in Example 2.3.2. Let a functor L : Set→ Rel
map a set X to X and a function f : X → Y to the corresponding relation
Rf = {(x, y) | f(x) = y}. Obviously, L is the inclusion functor I : Set → Rel.
Next, we consider the functor R : Rel → Set (i.e. R = P) which maps each
object X to PX and each relation R ⊆ X × Y to the function fR : PX → PY
defined as follows:

fR(X ′) = {y ∈ Y | ∃x ∈ X ′ : xRy}

Furthermore, we define the unit η : IDSet → P by the functions

ηX : X → PX, ηX(x) = {x}

for every X ∈ Set. In addition, we obtain the counit ε : P → IDRel from the
relations

εX : PX → X, (X ′, x) ∈ εX ⇐⇒ x ∈ X ′

for each set X where X ′ ⊆ X. Finally, we summarize the four components of the
adjunction (I ⊣ P, η, ε).

Now we are ready to explain some useful properties of an adjunction, which we will
later use within our proofs (see Chapter 6). The properties we are interested in are
illustrated by Schema (2.2), which shows, that there is a one-to-one correspondence
between specific morphisms of the underlying categories C and D.

h : LX → A ∈ D
f : X → RA ∈ C

(L ⊣ R) (2.2)

To explain how Schema (2.2) is guaranteed by an adjunction, we will first give a
general proposition followed by a demonstration using the adjunction (I ⊣ P, η, ε) of
Example 2.3.25.

Proposition 2.3.26

Given an adjunction (L ⊣ R, η, ε) the natural transformation η is universal to R.
This means, that for every f : X → RA there is a unique h : LX → A such that
the diagram in Figure 2.15 commutes.

57

2. Mathematical Foundations

X RLX

RA

f

ηX

Rh

Figure 2.15: A unique transpose h of f wrt. (L ⊣ R, η, ε).

Now, we explain this using the standard adjunction (I ⊣ P, η, ε) where the general
proof of Proposition 2.3.26 can be found in [Vel17].

Example 2.3.27

Given the adjunction (I ⊣ P, η, ε), in this example we construct for each function
f : X → PA ∈ Set the unique arrow h ∈ Rel which makes the triangle of
Proposition 2.3.26 commute. Therefore, we set

h := IX
If−→ IPA εA−→ A

with If = {(x, f(x)) | x ∈ X} and we get (A′, a) ∈ εA ⇐⇒ a ∈ A′ from the counit.
Summed up, we have a relation h ⊆ IX ×A with (x, a) ∈ h if (f(x), a) ∈ εA.
Note, that due to η and ε given in Definition 2.3.24 we have IdPA = PεA ◦ ηPA

(i.e. the triangle below commutes) and therefore f = IdPA◦f = PεA◦ ηPA◦f . In
addition, the square commutes due to the naturality of η (i.e. ηPA◦f = PIf ◦ ηX)
and we can conclude that f = Ph holds.

X PIX

PIPAPA

PA

ηX

f PIf

ηPA

PεA

Ph

Furthermore, that h is unique can be shown via the naturality of ε and by the
commuting triangles in Definition 2.3.24 (see [Vel17]). In the literature h is called
the transpose of f .

Analogously to Proposition 2.3.26, the same result can be explored for each h ∈ Rel

58

2.3. Category Theory – Joy with Cats

with h : LX → A, where the construction of the transpose f ∈ Set is based on the
unit η of the adjunction, i.e. X ηX−→ RLX

Rh−→ RA. Thus, in summary the one-to-one
correspondence between the arrows depicted in Schema (2.2) holds (for more details
see [Vel17]).

Moreover, from each adjunction (L ⊣ R, η, ε) we get a special mathematical
structure called monad [Mac98; AHS09].

Definition 2.3.28: Monad
A monad on a category C is a triple T = (T, η, µ) where T is a endofunctor on
C and η, µ are two natural transformations

η : IDC → T and µ : T 2 → T

such that the following diagrams commute:

T 3 T 2

T 2 T

Tµ

µµT

µ

T T 2

T

T
Tη

IdT µ

ηT

IdT

As stated above, a monad can be derived from an adjunction. Here, we only give
the proposition, the proof can be found in [AHS09].

Proposition 2.3.29

Let L : C→ D and R : D→ C be two adjoints and (L ⊣ R, η, ε) an adjunction.
A monad (T, η, µ) is constructed as follows:

1. T = RL : C→ C

2. η : IDC → T

3. µ = RεL : T 2 → T

For the sake of completeness, it should be pointed out that from each monad one
can also derive several adjunctions (see [Mac98]).

59

2. Mathematical Foundations

Example 2.3.30

Here, we transform the adjunction given in Example 2.3.25 into the covariant
powerset monad T = P.

1. T = RL : Set → Rel → Set where first each set is mapped to itself and
each function f : X → Y to the corresponding relation Rf . Afterwards,
the set is mapped to its powerset and the relation Rf to Pf : PX → PY
denoted with fR in Example 2.3.25.

2. η : IDC → T as in Example 2.3.25.

3. µ = RεL : T 2 → T where the inclusion functor L maps X to the
object X ∈ Rel. The natural transformation ε maps this object to
εL(X) : PX → X. Next, the right adjoint maps this relation to the function
fεL(X) : P2X → PX with µX(A) = ∪A.

Example 2.3.31

Another monad is given by the multiset functor [JSS15]. Let S be a semiring
with a commutative additive monoid (S,+, 0) and a multiplicative monoid (S, ·, 1)
where multiplication distributes over addition.
The multiset functor MS : Set→ Set is defined as follows:

1. On objects X: MS(X) = {g : X → S | supp(g) is finite} where supp(g) =
{x ∈ X | g(x) ̸= 0}.

2. On functions f : X → Y : We define MS(f) : MS(X) → MS(Y) by
MSf(g)(y) =

∑
x∈f−1(y)

g(x)

The multiset functor MS is a monad (MS , η, µ) where the unit is given by
ηX : X →MS(X) defined as follows:

ηX(x)(y) =

1 y = x

0 y ̸= x

and the multiplication µ :MS(MS(X)) →MS(X) is defined in the following
way:

µ(Φ)(x) =
∑

g∈supp(Φ)
Φ(g) · g(x)

where Φ ∈MS(MS(X)).

60

2.3. Category Theory – Joy with Cats

Now, we have all the fundamental building blocks to create a category based on a
monad. The so-called Kleisli categories originate from the fact, that each monad is
given by an adjunction.

Definition 2.3.32: Kleisli Category

We denote the Kleisli category of a monad (T, η, µ) in C with Kℓ(T) which has
the same objects as C. For any two objects C and D, a Kleisli arrow f : C → D

is a C-arrow f : C → TD.
Identity for any Kleisli object C is ηC : C → TC and composition of Kleisli
arrows f : C → TD, g : D → TE is defined based on the multiplication µ:

g ◦T f = µE ◦ Tg ◦ f

Example 2.3.33

In this example we construct the Kleisli category based on the powerset monad P
presented in Example 2.3.30. The objects are given by the class of all sets. A
morphism X → Y is given by a function f : X → PY .
As mentioned in [HJS07], Kℓ(P) corresponds to the category Rel, since any
function f can be interpreted as a relation and any relation of type R ⊆ X × Y
can be converted into a function fR : X → PY (cf. [Ker16]).

The idea to work with a Kleisli category instead of the category Set is motivated by
the intuition that coalgebraic behavioural equivalence corresponds to another notion
of behavioural equivalence than in Set. But before we can move to trace (language)
equivalence, we need to show that an arrow X → FC ∈ Kℓ(T) corresponding to a
coalgebra α : C → TFC ∈ C is also a coalgebra in Kℓ(T). Therefore, we need to lift
F to F̄ such that the diagram in Figure 2.16 commutes.

Kℓ(T) Kℓ(T)

Set Set

F̄

JJ

F

Figure 2.16: Lifting of F to F̄ wrt. Kℓ(T).

Therefore, we refer to [HJS07; Mul94] and only present the necessary results here.
Once again, we need a natural transformation:

61

2. Mathematical Foundations

Definition 2.3.34: Distributive Law
A distributive law λ is a natural transformation λ : FT → TF which is compatible
with the monad structure of T in the following way:

FX FTX

TFX

FηX

λXηF X

FT 2X TFTX T 2FX

FTX TFX

λT X

FµX

TλX

λX

µF X

To guarantee a lifting of F to the corresponding Kleisli category Kℓ(T) where T is a
monad on Set, such a distributive law is necessary and F̄ is constructed as follows:

1. On objects: F̄X = FX

2. On morphisms: Given f : C → D ∈ Kℓ(T) we get F̄ f as follows

FC
F f−→ FTD

λD−→ TFD ∈ Set

It has been already shown that every polynomial endofunctor on Set has a canonical
distributive law over any commutative monad on Set [HJS07, Lemma 2.4]. In
addition, this result has been extended to analytic functors [MPS09].

Considering Set and the functor P the branching is non-determinism and it
becomes clear that in Kleisli an arrow X → Y hides this branching (see [HJS07] for
a very illustrative explanation of this phenomenon).

Where the lifting to Kleisli hides the specific side-effects (e.g. for T = P the
non-determinism) without changing the branching type of the coalgebra, the hiding
has an important effect on the coalgebra homomorphisms h : X → Y . Now, for
T = P a state is mapped to a subset of Y instead of a single state (as by a coalgebra
homomorphism in Set).

How coalgebraic behavioural equivalence becomes language equiva-
lence
In order to explore the results mentioned above on a concrete example, namely on non-
deterministic (finite) automata (NDA), we consider a coalgebra α : X → FX ∈ Kℓ(P)
for the functor F = A×_ + 1 where 1 = {•}. Furthermore we recall from [PT99]
(cf. [JSS15, Section 7.1]), that α can be linearized into a deterministic system ᾱ as
follows:

62

2.3. Category Theory – Joy with Cats

1. PX is the state space. (In [PT99] they omit the ∅ as a state due to a theorem
about the extension of final coalgebras and they interpret a transition system
with state space S as a deterministic one if for all a ∈ A and all states there
exists at most one a-successor state.)

2. An a-labelled transition U
a→ U ′ is given by

U ′ = {x′ | ∃x ∈ U s.t. x a→ x′}

for each a ∈ A and U,U ′ ∈ PX.

3. U is terminating (U ↓) if there exists a u ∈ U such that • ∈ α(u).

We consider two systems α, β ∈ Kℓ(P), the determinized versions ᾱ, β̄ and a
morphism g : X → Y ∈ Kℓ(P) which is a function g : X → PY ∈ Set. We define
the mapping of g to g# : PX → PY ∈ Set via g# = µY ◦ Pg as follows:

g#(X ′) =
⋃

x∈X′

g(x)

A function g ∈ is a coalgebra homomorphisms iff for all U ∈ PX and all a ∈ A

g#(U) a→ Y ′ ∈ P(Y) ⇐⇒ U
a→ U ′ and Y ′ = g#(U ′)

where the transitions a→ are taken from β̄, ᾱ and

g#(U) ↓ ⇐⇒ ∃x ∈ U such that • ∈ α(x).

hold [PT99]. Thus two states X,X ′ ∈ PX in the state space of the determinized
version ᾱ are interpreted as equivalent if there exists a coalgebra homomorphism
g ∈ Kℓ(P) with g#(X) = g#(X ′) (compare with Definition 2.3.17).

Now, we first give some example and later we summarize everything in a more
intuitive statement.

Example 2.3.35

In this example we will consider a coalgebra homomorphism in Kℓ(P) between
α on state space X = {x1, . . . , x7} and β on state space Y = {A,B,C} (see
Figure 2.17):

63

2. Mathematical Foundations

x1

x2

x3

a

b

x4

x5

x7

x6

a a

b

A

B

T

a

a

b

Figure 2.17: Two non-deterministic automata: x1 and x4 accept the same language
L = {a, ab}. The system β on the right is a minimization of α.

Next, we define a relation g : X → Y as follows:

(x1, A) ∈ g (x2, B) ∈ g (x3, T) ∈ g

(x4, A) ∈ g (x2, T) ∈ g (x5, T) ∈ g

(x6, B) ∈ g (x7, T) ∈ g

This relation g can be interpreted as a function g : x→ PY ∈ Set and since g#

satisfies the properties mentioned above, g is a coalgebra homomorphism. We
can validate the condition for g to be a coalgebra homomorphism for each subset
in PX but we just list the most interesting cases:

g#({x1}) = {A} : {A} a→ {B, T}

⇐⇒ {x1}
a→ {x2} with g#({x2}) = {B, T}

g#({x4}) = {A} : {A} a→ {B, T}

⇐⇒ {x4}
a→ {x5, x6} with g#({x5, x6}) = {B, T}

g#({x2}) = {B, T} : {B, T} b→ {T}

⇐⇒ {x2}
b→ {x3} with g#({x3}) = {T}

· · ·

Next, consider that g#({x1}) = {A} = g#({x4}) and therefore we derive the
language equivalence for x1, x4. Moreover, for x1

a→ x2 with g(x2) = {B, T} and
α(x4) = {(a, x5), (a, x6)} we observe that g(x2) with respect to a is present in the
image of Fg(α(x4)) (i.e. {(a, T)}, {(a,B)}) where Fg(a, x) = {(a, y) | y ∈ g(x)}.
Note, that the elements B, T are obtained through two different a-succesors of
x4 and not only by a single one. This is different for x1 where one a-successor
yields {(a,B), (a, T)} but since the non-determinism is treated as a side-effect,

64

2.3. Category Theory – Joy with Cats

this branching-behaviour is ignored in general by the coalgebra homomorphisms
in Kℓ(P) (cf. [Küp17]). Therefore, modelling an NDA within Kleisli enables that
behavioural equivalence coincides with language equivalence [PT99].

2.3.5 (Bi)fibrations and Indexed Categories

In this section we introduce contravariant functors. We want to emphasize that all
the definitions, examples and explanations are taken from [LR19; Bén85; Jac99] and
partly originate from the work by Alexander Grothendieck [Gro71; GR02].

Given a category C we consider a specific class of contravariant functors Cop → Cat
where Cat is the category of all small categories (and the class of morphisms is given
by the functors between these cats). Such a functor simply reverses the directions of
the morphisms.

Definition 2.3.36: Contravariant Functor
A contravariant functor F from C to D is simply a functor from the opposite
category Cop.

The motivation to study such functors lies in the nature of predicate liftings which
play a major role in logic and games (see Definition 3.2.9). These logical components
can be organized via a functor Setop Q̃- Cat [Jac10], where Q̃X is the poset
(PX,⊆) viewed as a category. In general, as observed by Jacobs [Jac10], predicate
logic on a category is given by an indexed category and predicate liftings are nothing
but (endo)morphisms of indexed categories [BK+20].

Definition 2.3.37: Indexed Categories [Jac10]

An indexed category is a contravariant functor Φ from C to Cat. In addition, a
morphism between two indexed categories Cop Φ- Cat and Dop Ψ- Cat is
a pair of a functor C G- D and a natural transformation Φ λ- Ψ ◦Gop.
We denote the application of Φ on an arrow f ∈ C as f∗ = Φf . We also
omit the use of superscript ‘op’ on functors by writing them as contravariant
functors. Moreover, we will use the phrases indexed morphism and predicate
lifting interchangeably.

Example 2.3.38

As an example of an indexed category, consider the (contravariant) powerset
functor Φ : Setop → Cat which maps a set X to the poset (PX,⊆).
Consider F = P over C = Set which describes the branching type of unlabelled

65

2. Mathematical Foundations

transition systems. A simple indexed morphism (P, λ) of type Φ λ- Φ ◦ Pop is
given by the natural transformation which assigns to each object X ∈ Set the
following morphism:

λX(U) = {U ′ ∈ PX | U ′ ⊆ U}

.
(It is well known that the above predicate lifting encodes the box modality 2

from logic [Jac10].)

Via the so-called Grothendieck construction one can obtain a fibration from an
indexed category. The crux of the matter here is: indexed categories or equivalently
fibrations provide a categorical framework for predicate liftings. As Jacobs explains
in [Jac10], the application of an indexed category on a state space X (i.e. ΦX) may
contain more algebraic structure. (See [Jac99] for a detailed discussion of the link
between type theory, logic, and fibrations.)

Before we introduce Grothendieck fibrations we need to understand the underlying
base of these specific functors. The goal is to create functors between fibres and
therefore the category has to admit enough cartesian morphisms:

Definition 2.3.39: P-cartesian [Jac99]

Given a functor P : E → C, an arrow g : E′ → E in E is P-cartesian over
u : I → J in C if Pg = u and every g′ : E′′ → E in E for which one has
Pg′ = u ◦ w for some w : PE′′ → I, uniquely determines an h : E′′ → E above
w with g ◦ h = g′ (see Figure 2.18).

E′ E

E′′

PE′ PE

PE′′

g

g′
h

Pg = u

w Pg′

Figure 2.18: A cartesian arrow g wrt. the functor P : E→ C.

And enough means that our functor is cartesian for certain morphisms (cf. [Gra66,
Definition 1.2, Definition 2.4]):

66

2.3. Category Theory – Joy with Cats

Definition 2.3.40: Fibration [Jac99]

A functor P : E→ C is a fibration if for each E ∈ E and u : I → PE ∈ C, there
is a cartesian morphism f : E′ → E in E above u.
Similarly, P is an opfibration if P : Eop → Cop is a fibration.

Definition 2.3.41: Bifibration [Jac99]

We call a functor P : E → C that is both fibration and an opfibration an
bifibration.

It is also known that fibrations, which are also bifibrations, satisfy a very specific
property.

Definition 2.3.42: Fibre [Jac99]

Let P : E→ C be a functor. For an object C ∈ C the fibre (or fibre category)
EC = P−1C over C is the category with:

1. The objects are given by X ∈ E with PX = C

2. The morphisms X → Y ∈ EC are the arrows f : X → Y ∈ E for which
Pf is the identity map on C ∈ C.

It is well known that a fibration is a bifibration iff each functor f∗ : EC → EC′ has a
left adjoint f! which we call the bifibration property.

Finally, we introduce the so-called Grothendieck construction as well as the reverse
transformation (cf. [Jac99, Section 1.4 and 1.10]):

C.1 From indexed category to fibration: Given an indexed category, i.e., a functor
Cop Φ- Cat, then the so-called category of elements (aka the Grothendieck
construction) E(Φ) is defined as follows. The category E(Φ) has pairs of
the form (C,U) for each C ∈ C and U ∈ Φ(C) as objects. The arrows
(f, p) : (C,U) → (C ′, U ′) of E(Φ) are pairs of maps C f- C ′ ∈ C and
U

p- Φf(U ′) ∈ ΦC. In particular, given a functor Cop Φ- Cat then the
projection functor E(Φ) π- C mapping (C,U) 7→ C (for each (C,U) ∈ E(Φ))
forms a fibration (analogous for the arrows).

C.2 From fibration to indexed category: Note, that for a given fibration P : E→ C
the fibres EC = P−1(C) depend contravariantly on C ∈ C. We require that the
fibration is equipped with a choice of Cartesian liftings as described in [Jac99].
Thus, we have a so-called substitution functor u∗ for a morphism u ∈ C between
the fibres induced by u.

67

2. Mathematical Foundations

Next, we obtain a contravariant functor Cop → Cat which maps each C ∈ C
to the category EC = P−1(C). For each f : C → C ′ ∈ C define f∗ : EC′ → EC

by mapping E ∈ EC′ to the domain of the unique lift of f with codomain E.

The indexed category given in Example 2.3.38 has the bifibration property given
by the nature of the fibres in ΦC, which are just the subsets of an underlying state
space C ∈ Setop. Next, we give an example of a well-known indexed category which
fails to satisfy the bifibration property.

Definition 2.3.43: Meas [JS09]

The category Meas has measurable spaces (X,ΣX) as objects. A measurable
space is a set X equipped with a σ-algebra ΣX .
Given two measurables spaces (X,ΣX) and (Y,ΣY), a measurable function
f : (X,ΣX)→ (Y,ΣY) is a function such that the preimage f−1(Y ′) is measurable
in (X,ΣX) whenever Y ′ ⊆ Y is measurable in (Y,ΣY).

Example 2.3.44

Following the construction of an indexed category [Jac10; PS78] we obtain
Measop Φ→ Cat as follows:

1. Objects: (X,ΣX) are mapped to the σ-algebra (ΣX ,⊆) equipped with an
order.

2. Morphisms: Any measurable function f : (X,ΣX)→ (Y,ΣY) is mapped to
f−1 : ΣY → ΣX .

Proof: We want to show that Φ is a functor and therefore we need to prove that the
identity functions idX : (X,ΣX)→ (X,ΣX) and reverse compositions are preserved:

1. For idX : (X,ΣX)→ (X,ΣX) with Φ(idX) : ΣX
id−1

X−→ ΣX we obtain the same
via idΦX : ΣX → ΣX since id−1

X (X ′) = X ′ for any X ′ ∈ ΣX .

2. For all measurable functions f : (X,ΣX)→ (Y,ΣY), g : (Y,ΣY)→ (Z,ΣZ) in
Meas we get

f−1 : ΣY → ΣX and g−1 : ΣZ → ΣY

Now, we reverse the direction for f−1 ◦ g−1 and get ΣZ → ΣY → ΣX which is
equal to Φ(g ◦ f) given by the application of Φ to ΣX

f→ ΣY
g→ ΣZ .

□

68

2.3. Category Theory – Joy with Cats

Example 2.3.45

Now, we demonstrate why Measop Φ→ Cat fails to admit the bifibration property.
Therefore, we consider the following measurable spaces:

• X = {x, y, z} with ΣX = {∅, X, {x}, {y, z}} and

• Y = {0, 1} with ΣY = {∅, Y }.

Clearly, X,Y are measurable spaces. Consider the function f such that f(x) =
0 = f(y) and f(z) = 1 where f is a measurable map. Unfortunately, a map
f! : ΣX → ΣY such that f!X

′ becomes measurable whenever X ′ is measurable
does not exist in general. The singleton set x is measurable in our example but

f!{x} = {0}

and {0} is a non-measurable set with respect to (Y,ΣY).

Example 2.3.45 shows that given an indexed category the left adjoint f! of f∗ is not
guaranteed and therefore one can not assume that in general the bifibration property
holds.

69

3

Behavioural Equivalence:
Games over Set

In concurrency theory the most frequently studied notion of behavioural equivalence
is bisimilarity which is also the finest notion of the spectrum in [Gla01]. The term
bisimulation first appeared when looking for answers to the following questions in the
field of modal logic: “when is the truth of a modal formula preserved when the model
changes?” or “which properties of models can modal logics express?” [San09]. This
chapter considers the notion of bisimulation via game-theoretical characterizations
based on coalgebraic modal logic.

3.1 Introduction

In the characterization of behavioural equivalences one encounters the following triad:
First, such equivalences can be described via bisimulation relations, where the largest
bisimulation (or bisimilarity) can be characterized as a greatest fixpoint. Second, a
modal logic provides us with bisimulation-invariant formulas and the aim is to prove
a Hennessy-Milner theorem which says that two states are behaviourally equivalent
if and only if they satisfy the same formulas [HM80]. A third, complementary
view is given by spoiler-duplicator games [Sti99]. Such games are useful both for
theoretical reasons, see for instance the role of games in the Van Benthem/Rosen
theorem [Ott04], or for didactical purposes, in particular for showing that two states
are not behaviourally equivalent. The game starts with two tokens on two states and
the spoiler tries to make a move that cannot be imitated by the duplicator. If the
duplicator is always able to match the move of the spoiler we can infer that the two
initial states are behaviourally equivalent. If the states are not equivalent, a strategy
for the spoiler can be derived from a distinguishing modal logic formula.

Such games are common for standard labelled transition systems, but have been
studied for other types of transition systems only to a lesser extent. For probabilistic
transition systems there are game characterizations in [DLT08; FKP17], where the
players can make moves to sets of states, rather than take a transition to a single
state. Furthermore, in [CD08] a general theory of games is introduced in order to

71

3. Behavioural Equivalence:
Games over Set

characterize process equivalences of the linear/branching time spectrum.
Moreover, there are many contexts in which it is useful to check whether two

system states are behaviourally equivalent respectively bisimilar. In this way one can
compare a system with its specification, replace a subsystem by another one that is
behaviourally equivalent or minimize a transition system (see also [MS19] for the
study of algebraic effects).

Two states are bisimilar if they are related by a bisimulation relation. But this
definition does not provide us with an immediate witness for non-bisimilarity, since
we would have to enumerate all relations including that particular pair of states and
show that they are not bisimulations. In games a proof of the non-bisimilarity of
two states is given by a winning strategy of the spoiler. In logic the Hennessy-Milner
theorem [HM85] guarantees for image-finite labelled transition systems that, given
two non-bisimilar states x, y, there exists a modal logic formula φ such that one of
the states satisfies φ and the other does not. The computation of such distinguishing
formulas is explained in [Cle90].

α : X → FX

?

Coalgebraic
Games

Coalgebraic
Modal Logics

Coalgebraic
Bisimulation

x ∼ y

Spoiler strategy?

Duplicator strategy? Hennessy-Milner theorem

Figure 3.1: The coalgebraic triad capturing coalgebraic bisimulation and modal logics
for α : X → FX over endofunctors F : Set→ Set, where F specifies the branching
type of a system α.

While the results and techniques above have been introduced for labelled transition
systems, we are here interested in the more general setting of coalgebras [Rut00],
which encompass various types of transition systems. The open questions studied in
this chapter are visualized in Figure 3.1 and the contributions are:

• Firstly, we work in the general framework of coalgebras [Rut00], which allows
to specify and uniformly reason about systems of different branching types (e.g.
non-deterministic, probabilistic or weighted), parameterized over a functor.

72

3.2. Foundations for the Classical Case

While behavioural equivalences [Sta09] and modal logics [Sch08; Pat03] have
been extensively studied in this setting, there are less contributions when it
comes to games.

• Secondly, we will concentrate on coalgebraic methods for explaining that two
given states in a transition system are not bisimilar. The idea is to provide a
witness in form of a modal logic formula for non-bisimilarity. Such a witness
can be used to explain (to the user) why an implementation does not conform
to a specification and give further insights for adjusting it.

Apart from the introduction, this chapter is divided into four sections, where
the first Section 3.2 introduces the necessary background information. The second
Section 3.3 presents a coalgebraic game related to modal logics, which we denote as
the classical case within this thesis. The second contribution is handled in the third
Section 3.4 and finally, we close this chapter with a summary and conclusion.

3.2 Foundations for the Classical Case

This elementary section serves as a short introduction into game characterizations and
category theory, where only the most relevant definitions are provided that specify
the framework for our generic game. For more background information regarding
the basics of category theory we refer to Section 2.3.

We study coalgebras in Set and therefore we introduce coalgebraic modal logic.
But first, we start with the following section, which briefly discusses the game
characterization of bisimulation and modal logics in the context of labelled transitions
systems (LTS).

3.2.1 The Triad for Labelled Transition Systems

Bisimulation for labelled transition systems (see Definition 2.2.8) can be specified
in terms of a two-player game. The spoiler (S) pursues to demonstrate the non-
bisimilarity of two states x, y, while the duplicator (D) tries to show the opposite.
To capture bisimulation, the rules of the game force the duplicator to mimic each
move of the spoiler [Sti99].

Definition 3.2.1: Game for LTS
The initial situation is given by a labelled transition system (X,Σ,→) and a
position (x, y) ∈ X ×X. (Note that x = y is allowed.) From a position (x, y),
the game play proceeds as follows:

73

3. Behavioural Equivalence:
Games over Set

• Step 1: S chooses one possible transition x
a→ x′ or y a→ y′.

• Step 2: D must mimic the move of S depending on the move by the
spoiler, i.e. y a→ y′ or x a→ x′.

• Step 3: The game continues with (x′, y′) in Step 1.

Indeed, the spoiler wins if the duplicator is not able to match his move in Step 2. On
the other side the duplicator wins, if the game goes on forever or a pair of terminating
(i.e. dead) states is reached. We omit the soundness and correctness proofs of the
game and refer to [Sti99].

Next, we want to introduce a modal logic known under the name Hennessy-Milner
logic.

Definition 3.2.2: Hennessy-Milner Logic (syntax)

A formula φ in Hennessy-Milner is inductively defined as follows:

φ ::= t | f | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | 2φ | 3φ

The interpretation of a formula is a characteristic function JφK : X → {0, 1} and
depends on the transition system (X,Σ,→). Characteristic functions can be also
interpreted as subsets ˆJφK ⊆ X and we sometimes use this representations inter-
changeable. We write x ⊨ φ in case x satisfies φ (i.e. x ∈ JφK). The formula t
is satisfied by all states, where f does not hold for any state. Conjunction and
disjunction work as usual. The semantics for 2 (box) and 3 (diamond) are evaluated
over an LTS as follows:

J2φK = {x ∈ X | ∀y (x→ y ⇒ y ∈ JφK)}

J3φK = {x ∈ X | ∃y (x→ y ∧ y ∈ JφK)}

A logic is sound, if two bisimilar states (x, y) (i.e x ∼ y) satisfy the same formulas.
A logic is complete, if for each state pair (x, y), where both states satisfy the same
formulas or, in other words, there exists no distinguishing formula φx,y with x |= φx,y

and y ̸|= φx,y, x ∼ y holds.

Theorem 3.2.3: Hennessy-Milner [HM85]

Let (X,Σ,→) be any image-finite (= finitely-branching) LTS and x, y ∈ X. Then
x ∼ y if and only if for every HM formula φ: x |= φ⇐⇒ y |= φ.

74

3.2. Foundations for the Classical Case

In case a logic is sound and complete, it is convenient to say, that the logic is
adequate and satisfies the Hennessy-Milner property [KL09]. We conclude that we
have a triad: Bisimulation, HM logic, and a spoiler-duplicator game.

Furthermore, we list some notations used within this chapter. Let R ⊆ X ×X be
an equivalence relation, where the set of all equivalence relations on X is given by
Eq(X). By E(R) we denote the set of all equivalence classes of R. Given Y ⊆ X, we
define the R-closure of Y as follows: [Y]R = {y ∈ X | ∃x ∈ Y (x, y) ∈ R}.

Besides, we will sometimes overload the notation and for instance write [p]R for
the R-closure of a predicate p. Furthermore we will write p1 ∩ p2 for the intersection
of two predicates.

3.2.2 Categorical Foundations for the Classical Case

We restrict our setting to the category Set, where the objects are sets denoted with
the class Ob(Set) of all sets and the class of morphisms consists of all functions
hom(C ,D) given for each pair of objects (C,D). Therefore, we assume an endo-
functor F : Set → Set, intuitively describing the branching type of the transition
system under consideration. For more information we refer to Chapter 2, where the
categorical basics are described in Section 2.3.

Since we are particularly interested in the behaviour of system states, we introduce
the following coalgebraical definition to capture behavioural equivalence over Set,
which is a special case of Definition 2.3.17. This definition depends on a function,
which maps states to the same entity if their transition structure characterizes the
same observable behaviour. Imagine you have some transition system α : X → FX

and two states have the same behaviour, then it is fine to merge them into one state
and by doing so one obtains another system β : Y → FY . From this, it follows, that
two states x, y ∈ X are behaviourally equivalent if another system over a state space
Y exists, such that both are mapped to the same state in Y :

Definition 3.2.4: Behavioural Equivalence(cf. [Kur00])

Two states x, y ∈ X are behaviourally equivalent (x ∼ y) if there exists a coalgebra
homomorphism f from α : X → FX to some coalgebra β : Y → FY (i.e., a
function f : X → Y with β ◦ f = Ff ◦ α) such that f(x) = f(y).

In addition, we assume that F preserves weak pullbacks, which means that behavioural
equivalence and coalgebraic bisimilarity coincide, and therefore we will use the two
terms interchangeably (see discussion on Theorem 2.3.21).

Furthermore we need to lift preorders under a functor F . To this end, we use the

75

3. Behavioural Equivalence:
Games over Set

lifting introduced in [BK11] (essentially the standard Barr extension of F [Bar70;
Trn80]), which guarantees that the lifted relation is again a preorder provided that F
preserves weak pullbacks:

Definition 3.2.5: Preorder Lifting

Let ≤ be a preorder on Y , i.e. ≤ ⊆ Y ×Y . We define the preorder ≤F⊆ FY ×FY
as follows: given t0, t1 ∈ FY , it holds that t0 ≤F t1 whenever there exists some
t ∈ F ≤ such that Fπi(t) = ti, where πi : ≤ → Y with i ∈ {0, 1} are the usual
projections.

Example 3.2.6

Actually, we are interested in lifting the order on 2 = {0, 1} given by ≤=
{(0, 0), (0, 1), (1, 1)}.
In the case of the distribution functor D (see Definition 3 of Example 2.3.5) we
have D2 ∼= [0, 1] with D2 = {f : 2→ [0, 1] | f(0) + f(1) = 1} and for each f ∈ D2
with f(1) = r we have f(0) = 1− r. And thus, ≤D corresponds to the order on
the reals: for any two reals r1, r2 with r1 ≤ r2 one can derive a t ∈ D ≤ such that
we get two functions Dπi(t) = fi with i ∈ {1, 2} and fi(1) = ri. But, for any pair
of functions f1, f2 ∈ D2 with f1(1) > f2(1) a compatible t ∈ F ≤ does not exist
since negative values are excluded in interval [0, 1].
For the powerset functor P we obtain the order {0} ≤P {0, 1} ≤P {1} where ∅
is only related to itself, so this corresponds to the Egli-Milner order (cf. [BK11,
Section 3.2]).
At this point, we specify how this works for LTS over the alphabet A = {a, b}.

∅ {(a, 0)}

{(a, 0), (a, 1)}

{(a, 1)}

{(b, 0)}

{(b, 0), (b, 1)}

{(b, 1)}

{(a, 0), (b, 0)}

{(a, 0), (a, 1), (b, 0)} {(a, 0), (b, 0), (b, 1)}

{(a, 1), (b, 1)}

{(a, 0), (a, 1), (b, 0), (b, 1)}{(a, 1), (b, 0)} {(a, 0), (b, 1)}

{(b, 0), (b, 1), (a, 1)} {(a, 0), (a, 1), (b, 1)}

Figure 3.2: Preorder lifting of {(0, 0), (0, 1), (1, 1)} with F2 = Pf ({a, b}×2) results
in the order ≤F for labelled transition systems over the label set A = {a, b}.

In Figure 3.2 the lifting of ≤ results in an order consisting of the union of four
disjoint partial orders: one for ∅ corresponding to the absence of any transition,
one for transitions restricted to a, analogue to that one for b-transitons and the

76

3.2. Foundations for the Classical Case

fourth models the possibility of both a- and b-transitons.

The next lemma focuses on the order ≤= {(0, 0), (0, 1), (1, 1)} and is a special
case of the results in [BK11].

Lemma 3.2.7
Consider our preorder ≤ over 2 = {0, 1}. Whenever a functor F preserves weak
pullbacks ≤F is transitive.

Proof: For arbitrary relations R ⊆ X × Y, S ⊆ Y ×Z we have RF ◦ SF = (R ◦ S)F

iff F preserves weak pullbacks [BK11] and with _F we denote the standard Barr
extension of F [Bar70; Trn80].

≤F◦≤F (≤ ◦ ≤)F = ≤F

t1 t2 t3
t1 t3

=

Figure 3.3: In case F preserves weak pullbacks the lifting ≤F is transitive.

Note, that ≤=≤ ◦ ≤ holds and therefore we get ≤F ◦ ≤F = (≤ ◦ ≤)F =≤F .
Assume (t1, t2), (t2, t3) ∈≤F and therefore (t1, t3) ∈≤F ◦ ≤F . Finally, we can
conclude that (t1, t3) ∈≤F since the composition of the lifted relations is equal to
the lifted relation composition (see Figure 3.3). □

Note that applying the functor is monotone with respect to the lifted order:

Lemma 3.2.8
Let (Y,≤) be an ordered set and let p1, p2 : X → Y be two functions. Then
p1 ≤ p2 implies Fp1 ≤F Fp2 (with both inequalities read pointwise).

Proof: We have two predicates p1 ≤ p2. Define g : X → ≤ as follows: g(x) =
(p1(x), p2(x)) ∈ ≤, which implies πi ◦ g = pi.

Let s ∈ FX and we have to show that Fp1(s) ≤F Fp2(s). For this, we require
the existence of some t ∈ F ≤ with Fπi(t) = Fpi(s) for i ∈ {1, 2}. Set t = Fg(s),
then it holds that Fπi(t) = Fπi(Fg(s)) = F (πi ◦ g)(s) = Fpi(s). □

Later we will see how the lifting of the order ≤ fits into our generic game. But to
define coalgebraic modal logics, we need the notion of predicate liftings (also called
modalities). A predicate lifting can be seen as a tool which enables us to analyze a
state after performing an α-transition [Pat04].

77

3. Behavioural Equivalence:
Games over Set

For the sake of completeness, we give here the more common definition of a
predicate lifting, but later we will switch to an alternative representation, which
better fits to our game characterization.

Definition 3.2.9: Predicate Lifting [Pat03; GS13]

A predicate lifting for a functor F is a natural transformation

λ : Q → Q ◦ F op

with Q denotes the contravariant powerset functor Q : Setop → Set (every set
X is mapped to PX and for each f : X → Y we have Qf : PY → PX with
Qf(B) = f−1[B]). Explicitly a predicate lifting assigns to each A ⊆ X a set
λX(A) ⊆ FX such that following diagram commutes for all f : X → Y :

QY Q(FY)

QX Q(FX)

f−1

λY

λX

(Ff)−1

Note that we sometimes omit to write F op when it is clear from the context.

Taking into account that each Y ⊆ X corresponds to a characteristic function,
we denote its predicate or characteristic function by χY : X → {0, 1}. Furthermore,
given a characteristic function χ : X → {0, 1}, its corresponding set is denoted χ̂ ⊆ X.

We now switch to so-called evaluation maps, where the one-to-one correspondence
between predicate liftings (as in Definition 3.2.9) and subsets of F2 is spelled out
in [Sch08].

Example 3.2.10

Given a set X and the set P2 for the (finite) powerset functor P we give a
concrete example for such a one-to-one correspondence.
Since |P2| = 4 we have 16 subsets of P2 and by [Sch08] we get 16 predicate
liftings. To see how a predicate lifting can be seen as a subset of P2 we consider
the following predicate lifing λ:

λ(X ′) = {Y | Y ⊆ X ′}

where X ′ ⊆ X. Obviously, this predicate lifting corresponds to the subset

78

3.2. Foundations for the Classical Case

{∅, {1}} ⊂ P2 since for the corresponding evaluation map ev : P2→ 2 we have
ev◦Fp(l) = 1 only if l ⊆ p̂. Moreover, this predicate lifting induces the 2 operator
of the Hennessy-Milner logic introduced in Definition 3.2.2.

As the branching type plays a major role in the whole story, it also makes sense to
apply the functor on p : X → 2 to derive Fp : FX → F2. Now, combining Fp(α(x))
where x ∈ X is a state of interest, we get an element in F2. This trivially results in
the fact, that we need to distinguish such elements and therefore consider so-called
evaluation maps, which specify subsets of F2 via characteristic functions ev : F2→ 2.

2

X FX

F2
?

α
p Fp

Figure 3.4: Given a coalgebra α : X → FX and a predicate p : X → 2 it appears
purposeful to characterize predicate liftings via evaluation maps ev : F2→ 2.

Thus, each predicate p : X → 2 is lifted to a predicate FX → 2 via ev ◦ Fp : FX → 2.
Since predicates will also play a significant role in the generic game rules we switch
from natural transformations to evaluation maps to obtain a uniform presentation of
the material.

In the next section we introduce an adequate and expressive coalgebraic logic
build on special sets of evaluation maps.

3.2.3 Coalgebraic Modal Logics for the Classical Case

In the scope of our framework a logic is adequate and complete (or has the Hennessy-
Milner property 2.2.8) if and only if there exists no formula which distinguishes two
behaviourally equivalent states. This means, that two states x, y ∈ X satisfy the
same formulas if and only if they are also behaviour equivalent, i.e. a coalgebra
homomorphism X → Y exists such that f(x) = f(y) holds.

For LTS, the Hennessy-Milner theorem requires a finitely branching system to
ensure that a non-bisimilar state pair (x, y) is distinguishable at least by one formula
φx,y of finite length, i.e x |= φx,y and y ̸|= φx,y.

Naturally, it follows that we restrict to a coalgebraic logic with formulas of bounded
conjunctions. More precisely, we want the size of the conjunctions to be big enough
with respect to the branching described by F . This size is derived from the so-called

79

3. Behavioural Equivalence:
Games over Set

accessible-property of a functor originating from the work by Worrel [Wor05] in terms
of behavioural equivalence [Pat04].

Definition 3.2.11: κ-accessible
A functor F : Set→ Set is κ-accessible if for all sets X and all x ∈ FX there
exists Z ⊆ X, |Z| < κ such that x ∈ FZ ⊆ FX [AGT10]. (Note that we use
the fact that Set-functors preserve injections f : A→ B whenever A ̸= ∅.) For
details and a more categorical treatment see [AR94; Pat04].

Intuitively Pattinson says, an endofunctor F on Set is κ-accessible if the application
of F on a set X depends on the action of F on subsets X ′ ⊆ X with cardinality less
than κ [Pat04].

Example 3.2.12

The Set functor Pf is ω- accessible.

Another necessary property satisfied by the modalities given in the Hennessy-
Milner logic is called separation.

Definition 3.2.13: Separation [Pat04]

A set Λ of evaluation maps is separating for a functor F : Set→ Set whenever
for all sets X and t0, t1 ∈ FX with t0 ̸= t1 there exists ev ∈ Λ and p : X → 2
such that ev(Fp(t0)) ̸= ev(Fp(t1)).

This means that every t ∈ FX is uniquely determined by the set {(ev, p) | ev ∈
Λ, p : X → 2, ev(Fp(t)) = 1}. Such a separating set of predicate liftings exists iff
(Fp : FX → F2)p : X→2 is jointly injective [Sch08].

Example 3.2.14

For LTS already one evaluation map induced by 2 or 3 forms a separating set of
predicate liftings.

Here we concentrate on unary predicate liftings: If one generalizes to polyadic
predicate liftings, separation can be shown for every accessible functor [Sch08].

Moreover, 2 and 3 are monotone maps ev : (F2,≤F) → (2,≤) (i.e. order-
preserving). The relation between monotone modalities and monotone predicate
liftings is already mentioned in [Sch08], where modalities induced from predicate
liftings are considered. We provide a similar result here, only additionally we

80

3.2. Foundations for the Classical Case

involve ≤F .

Proposition 3.2.15

Let ev : FV → V be an evaluation map, mapping to (V,≤). It corresponds
to a monotone predicate lifting (p : X → V) 7→ (ev ◦ Fp : FX → V) iff
ev : (FV,≤F)→ (V,≤) is monotone.

Proof:
(⇐) Assume that the predicate lifting is monotone, i.e., given two predicates p1 ≤ p2 it
holds that ev ◦Fp1 ≤ ev ◦Fp2. In order to show monotonicity of ev take v1, v2 ∈ FV
such that v1 ≤F v2. This means that there exists r ∈ F ≤ such that F (π1◦o)(r) = v1,
F (π2 ◦ o)(r) = v2, where o : ≤ → V × V is the embedding of the order into V × V .

Now consider π1 ◦ o, π2 ◦ o : ≤ → V . It holds that π1 ◦ o ≤ π2 ◦ o and with
monotonicity of the lifting we can conclude ev ◦ F (π1 ◦ o) ≤ ev ◦ F (π2 ◦ o).

Hence ev(v1) = ev(F (π1 ◦ o)(r)) ≤ ev(F (π2 ◦ o)(r)) = ev(v2), i.e., we have shown
that ev is monotone.
(⇒) Assume that ev is monotone and take p1, p2 : X → V such that p1 ≤ p2.

Hence Fp1(t) ≤F Fp2(t) by Lemma 3.2.8. Then we can conclude that ev(Fp1(t)) ≤
ev(Fp2(t)), using the monotonicity of ev. □

We require that the lifting of ≤ is anti-symmetric i.e. for t0, t1 ∈ F2 it holds
that t0 = t1 iff t0 ≤F t1 and t1 ≤F t0. In order to understand the relevance of this
assumption we consider the following Example 3.2.16:

Example 3.2.16

The transition system given in Figure 3.5 serves as an example for a functor,
where the lifted order is not anti-symmetric.
Let F = R0 × (R_

0)A
ω and x, y be two behaviourally different states. The state

x associates with the word w = ab the weight 2, but y assigns −2 to w. Note,
all states terminate with weight 1 and therefore this transitions are omitted in
the visual presentation. Recall, that for t ∈ F2 we denote with t2 the second
component of the tuple t and therefore t2(a) refers to the application of t2 to the
label a ∈ A.
Obviously, 2 and 7 are behaviourally equivalent and we consider the two values
s = Fp(α(x)), t = Fp(α(y)) for p̂ = {2, 7}, where p is a characteristic function
with p(2) = p(7) = 1 and p(z) = 0 for z ∈ X \ {2, 7}.
For simplicity we restrict to the a-transitions of s2 and t2, since x and y behave

81

3. Behavioural Equivalence:
Games over Set

the same for b, c no matter which predicate we use for the evaluation. We can also
ignore the termination behaviour, since all states terminate with weight 1. Thus,
we consider t ̸= s with s2(a) = [0→ −2, 1→ 2] and t2(a) = [0→ 2, 1→ −2],
where the b, c-behaviour is given by s2(l) = t2(l) = [0 → 0, 1 → 0] ∈ R2

0 for
l ∈ {b, c} and therefore we define m = [(0, 0) → 0, (0, 1) → 0, (1, 1) → 0]. We
observer that s ≤F t and t ≤F s are induced respectively by

(1, a 7→ [(0, 0)→ 2, (0, 1)→ −4, (1, 1)→ 2], b 7→ m, c 7→ m) ∈ F ≤

(1, a 7→ [(0, 0)→ −2, (0, 1)→ 4, (1, 1)→ −2], b 7→ m, c 7→ m) ∈ F ≤

x

1

2 3

4 5

a, 2 a,−2

b, 1 c, 1

y

6

7 8

9 10

a,−2 a, 2

b, 1 c, 1

Figure 3.5: The inequivalent behaviour of x and y can not be distinguished by
the lifted order ≤F

As a consequence, s, t ∈ F2 are not distinguishable by ≤F . Furthermore, a
separating set of predicate liftings could not be monotone, since x and y behave
different regarding 2 and 7, because x has an a-transition to state 2 with weight
2, where y has an a-transition to state 7 with weight −2. To distinguish α(x)
and α(y) we need a pair (ev, p) such that ev ◦ Fp(α(x)) ̸= ev ◦ Fp(α(y)). All
suitable options for such a p are given in the following list, where only the states
2, 3, 7, 8 play a role and we set p(z) = 0 for all other z ∈ X.
The remaining six predicates p : X → 2 which yield Fp(α(x)) = Fp(α(y)) disable
a separation via an evaluation map and are therefore not included in our list:

p̂ = {2} p̂ = {2, 7} p̂ = {2, 3, 7} p̂ = {2, 3, 8} p̂ = {8}

p̂ = {7} p̂ = {3, 8} p̂ = {2, 7, 8} p̂ = {3, 7, 8} p̂ = {3}

No matter which p we consider from the list above we get s = Fp(α(x)) ̸=
Fp(α(y)) = t and based on this we can define a separating evaluation map
ev : R0 × (R2

0)A
ω → 2, which distinguishes the two values s, t with ev(s) = 1 and

82

3.2. Foundations for the Classical Case

ev(t) = 0 or ev(s) = 0 and ev(t) = 1. But such an evaluation map ev can not
be monotone due to the fact that s ≤F t and t ≤F s hold. We can obtain such
a result for any p with s = Fp(α(x)) ̸= Fp(α(y)) = t since we can show that
s ≤F t and t ≤F s are each induced by some t ∈ F ≤.
As a consequence, the pair α(x), α(y) ∈ FX serves as a counterexample for the
existence of a monotone and separating predicate lifting ev for this functor: in
case ev is separating it violates the monotonicity due to the non-antisymmetry of
the lifted preorder ≤F .

De facto, this observation suggests that there are no monotone evaluation maps
ev : F2→ 2 in case the lifted order is not anti-symmetric.

Proposition 3.2.17

F has a separating set of monotone predicate liftings iff ≤F⊆ F2 × F2 is
anti-symmetric and (Fp : FX → F2)p : X→2 is jointly injective.

Proof:
(⇒) It follows directly from [Sch08] that {Fp : FX → F2}p : X→2 is jointly injective.

We now show that ≤F is anti-symmetric. Let t1, t2 ∈ F2 with t1 ≤F t2 ≤F t1

and t1 ≠ t2. Then there exists a monotone ev ∈ Λ and some p : 2 → 2 such that
ev ◦ Fp(t1) ̸= ev ◦ Fp(t2). We consider the following two cases:

• p is monotone: In this case Fp is also monotone, which can be shown as follows.
Assume that s1 ≤F s2, so there exists some s ∈ F ≤, such that Fπi(s) = si.
Now, since p is monotone, p×p can be restricted to p×p : ≤ → ≤. Furthermore
Fπi ◦ F (p× p)(s) = Fp ◦ Fπi(s) for i = 1, 2 and t′ = F (p× p)(s) ∈ F ≤ is a
witness for Fp(s1) ≤F Fp(s2). Now, since ev is also monotone, t1 ≤F t2 ≤F t1

implies ev ◦Fp(t1) ≤ ev ◦Fp(t2) ≤ ev ◦Fp(t1), hence ev ◦Fp(t1) = ev ◦Fp(t2),
which is a contradiction.

• p is not monotone: since p : 2 → 2, the only non-monotone such predicate
is p(0) = 1, p(1) = 0, which is antitone. Similar to above we can argue that
Fp is antitone as well and complete the argument. (Here p× p : ≤ → ≥ and
we choose s′ = F (sym ◦ (p × p))(s), where sym : 2 × 2 → 2 × 2 switches its
arguments.)

(⇐) We assume that ≤F is anti-symmetric and that there exists a separating set of
evaluation maps, i.e., {Fp : FX → F2}p : X→2 is jointly injective. Now let t1 ̸= t2

and t1, t2 ∈ F2. Since {Fp}p is jointly injective, there exists a predicate such that

83

3. Behavioural Equivalence:
Games over Set

Fp(t1) ̸= Fp(t2). Due to the antisymmetry of ≤F two cases can occur and we show
that in each case there exists a monotone evaluation map which separates the two:

• Fp(t1) ≰F Fp(t2): We define ev : F2→ 2 as follows:

ev(t) =

0 if t ≤F Fp(t2)

1 otherwise
(3.1)

Note that ev is monotone and that ev(Fp(t2)) = 0, ev(Fp(t1)) = 1.

• Fp(t2) ≰F Fp(t1): analogously.

□

We demonstrate the link between the HM-modalities 2, 3 and the lifted order ≤F

based on F ≤= Pf ({a, b} × {(0, 0), (0, 1), (1, 1)}) with FX = Pf ({a, b} ×X) in a
more graphical way (Figure 3.6). The monotonicity of the modalities is observable
in the corresponding cut through the elements F2, more precisely, the 2 and 3 sets
are upward-closed.

∅ {(a,0)}

{(a,0), (a,1)}

{(a,1)}

{(b,0)}

{(b,0), (b,1)}

{(b,1)}

{(a,0), (b,0)}

{(a,0), (a,1), (b,0)} {(a,0), (b,0), (b,1)}

{(a,1), (b,1)}

{(a,0), (a,1), (b,0), (b,1)}{(a,1), (b,0)} {(a,0), (b,1)}

{(b,0), (b,1), (a,1)} {(a,0), (a,1), (b,1)}

a

a

Figure 3.6: Set F2 = Pf ({a, b} × 2) with order ≤F (for labelled transition systems).
2a and 3a are given by all values above the drawn (dashed) lines.

Finally, we close this subsection by defining syntax and semantics of coalgebraic
modal languages:

Definition 3.2.18: Coalgebraic Modal Language (syntax) [Pat03]

Given a cardinal κ and a set Λ of evaluation maps ev : F2 → 2, we define a
coalgebraic modal language Lκ(Λ) via the grammar:

φ ::=
∧

Φ | ¬φ | [ev] where Φ ⊆ Lκ(Λ) with card(Φ) < κ and ev ∈ Λ.

Given a coalgebra α : X → FX and a formula φ, the semantics of such a formula is
given by a map JφKα : X → 2 defined along this lines:

84

3.3. Coalgebraic Games for the Classical Case

• J
∧
ΦKα =

⋂
φ∈ΦJφKα

• J¬φKα = X \ JφKα

• J[ev]φKα = ev ◦ F JφKα ◦ α

The last case describes the prefixing of a formula φ with a modality [ev]. For
simplicity we will often write JφK instead of JφKα. Furthermore for x ∈ X we write
x |= φ whenever JφKα(x) = 1. In addition, we will use derived operators such as tt
(empty conjunction), ff (¬tt) and

∨
(disjunction).

In [Pat03] Pattinson has already isolated the property of a separating set of
predicate liftings to ensure that logical and behavioural equivalence coincide, i.e.,
the Hennessy-Milner property holds with some further conditions on Λ. Besides,
the result has already been improved in [Sch08], where the proof works for polyadic
predicate liftings without additional assumptions on Λ and is closer to our setting.

Proposition 3.2.19: [Sch08; KM18]

The logic Lκ(Λ) is sound, that is given a coalgebra α : X → FX and x, y ∈ X,
x ∼ y implies that JφKα(x) = JφKα(y) for all formulas φ.
Whenever F is κ-accessible and Λ is separating for F , the logic is also expressive:
whenever JφKα(x) = JφKα(y) for all formulas φ we have that x ∼ y.

For completeness, we give a proof based on evaluation maps in the Appendix A.3.
Now, we have discussed two of the three coalgebraic criteria of the triad: be-

havioural equivalence and coalgebraic logic. Therefore, we can move to the third
part and present the coalgebraic game.

3.3 Coalgebraic Games for the Classical Case

This section presents an original contribution presented in this thesis: a coalgebraic
game is introduced, which fills the gap of the triad mentioned in the motivation of
this chapter.

First, the game itself is presented followed by a discussion about a variation of
the game characterization. And finally, we conclude with the connection between
the spoiler strategy and a distinguishing formula for two non-bisimilar states.

3.3.1 Coalgebraic Games

We will now present the rules for the behavioural equivalence game. At the beginning
of a game, there are two states x, y available for selection. The aim of the spoiler (S)

85

3. Behavioural Equivalence:
Games over Set

is to prove that x ̸∼ y, the duplicator (D) attempts to show the opposite.

Definition 3.3.1: Coalgebraic Game

• Initial situation: A coalgebra α : X → FX and two states x, y ∈ X.

• Step 1: S chooses s ∈ {x, y} and a predicate p1 : X → 2.

• Step 2: D takes t ∈ {x, y}\{s} if x ̸= y and t = s otherwise and has to
answer with a predicate p2 : X → 2 satisfying

Fp1(α(s)) ≤F Fp2(α(t))

• Step 3: S chooses pi with i ∈ {1, 2} and some state x′ ∈ X with pi(x′) = 1.

• Step 4: D chooses some state y′ ∈ X with pj(y′) = 1 where i ̸= j.

After one round the game continues in Step 1 with states x′ and y′. In case S chooses
i = 1 the game proceeds with (x′, y′) otherwise with (y′, x′). D wins the game if the
game continues forever or if S has no move at Step 3. In the other cases, i.e. D has
no move at Step 2 or Step 4, S wins.

In a sense such a game seems to mimic the evaluation of a modal formula, but
note that the chosen predicates do not have to be bisimulation-invariant, as opposed
to modal formulas.

Theorem 3.3.2
Assume that F preserves weak pullbacks and has a separating set of monotone
evaluation maps. Then x ∼ y iff D has a winning strategy for the initial
situation (x, y).

The proof of Theorem 3.3.2 splits into three parts. On the one hand, we need to
show that the relation

W = {(x, y) ∈ X ×X | there exists a winning strategy of D for (x, y)}

is an equivalence. Secondly, a part of the proof is to establish a winning strategy for D
whenever x ∼ y. And thirdly, a witness f : X → X/W (i.e. coalgebra homomorphism)
with f(x) = f(y) for each (x, y) ∈ W and a coalgebra β : X/W → F (X/W) have to
be constructed.

86

3.3. Coalgebraic Games for the Classical Case

Lemma 3.3.3
Given a coalgebra α : X → FX for an endofunctor F : Set→ Set, then

W = {(x, y) ∈ X ×X | there exists a winning strategy of D for (x, y)}

is an equivalence relation.

Proof:

• W is reflexive: (x, x) ∈ W for every x ∈ X.

Assume that S chooses x and p1, then D chooses x and p1 as well, for which
we clearly have Fp1(α(x)) ≤F Fp1(α(x)). Then the next game situation is
(x′, x′), for which we can continue this strategy forever.

• W is symmetric: (x, y) ∈ W implies (y, x) ∈ W.

If there is a winning strategy for (x, y) there must always also be a winning
strategy for (y, x), since S can choose either x or y.

• W is transitive: if (x, y), (y, z) ∈ W, then (x, z) ∈ W.

Assume that in Step 1 S chooses x and p1 (the case where S chooses y is
analogous, taking into account that W is symmetric). We know by (x, y) ∈ W
that D has an answer, hence he chooses p2, for which Fp1(α(x)) ≤F Fp2(α(y)).

If S were to make the choice of p2 and y, we know by (y, z) ∈ W that D has
an answering move, by choosing p3 such that Fp2(α(y)) ≤F Fp3(α(z)).

Hence D makes the choice of p3 in Step 2. Now we have that Fp1(α(x)) ≤F

Fp2(α(y)) ≤F Fp3(α(z)) and, by transitivity, Fp1(α(x)) ≤F Fp3(α(z)). (Tran-
sitivity holds by Lemma 3.2.7.)

Assume that in Step 3 S chooses p1, x′ with p1(x′) = 1. Again, by (x, y) ∈ W,
there is an answer of D who chooses y′ with p2(y′) = 1 and (x′, y′) ∈ W . From
(y, z) ∈ W we know that if S chooses p2, y′, there is an answer by D who
chooses z′ with p3(z′) = 1 and (y′, z′) ∈ W . This state z′ is hence finally chosen
by D in Step 4.

If instead in Step 3 S chooses p3, z′, the choice propagates in the other direction.

Since we now have (x′, y′), (y′, z′) ∈ W, we can continue this strategy for D
forever.

□

87

3. Behavioural Equivalence:
Games over Set

Before we formally give the second and third part of the proof, we will quickly
sketch a winning strategy for D when x ∼ y: In Step 1 S plays p1 which represents a
set of states. One good strategy for D in Step 2 is to close this set under behavioural
equivalence, i.e., to add all states which are behaviourally equivalent to a state in p1,
thus obtaining p2. It can be shown that Fp1(α(s)) ≤F Fp2(α(t)) always holds for
this choice. Now, if S chooses x′, p1 in Step 3, D simply takes x′ as well. On the
other hand, if S chooses x′, p2, then either x′ is already present in p1 or a state y′

with x′ ∼ y′. D simply chooses y′ and the game continues.
We now proceed with the soundness and completeness proof of Theorem 3.3.2.

Proof: (Theorem 3.3.2):
x ∼ y ⇒ D has winning strategy: We show that whenever x ∼ y, then D can always
answer the steps of S and we end up in a pair x′ ∼ y′, from which this strategy
continues.

Whenever x ∼ y, there exists a coalgebra β : Z → FZ and a coalgebra homomor-
phism f : X → Z such that f(x) = f(y).

We assume that S chooses state x (the other case is analogous) and a predicate
p1 : X → 2. D has now to react with a predicate p2. This is constructed by setting
p2(x) = 1 for x ∈ X whenever there exists x′ ∈ X such that f(x) = f(x′) and
p1(x′) = 1. In other words, we set p2 = p′

1 ◦ f , where p′
1 : Z → 2 is the least predicate

such that p′
1 ◦ f ≥ p1 (i.e., p′

1 ≤ p for all p satisfying p ◦ f ≥ p1).

2

X FX

Z FZ

F2f

α

β

Ff

p2

p′
1

Fp2

Fp′
1

Since p1 ≤ p2, we know by Lemma 3.2.8 that Fp1 ≤F Fp2 holds.
We obtain:

(Ff ◦ α)(x) = (β ◦ f)(x) = (β ◦ f)(y) = (Ff ◦ α)(y)

which implies

(Fp′
1 ◦ Ff ◦ α)(x) = (Fp′

1 ◦ Ff ◦ α)(y)

⇒ (Fp2 ◦ α)(x) = (Fp2 ◦ α)(y)

⇒ (Fp1 ◦ α)(x) ≤F (Fp2 ◦ α)(x) = (Fp2 ◦ α)(y)

S now chooses a predicate pi and a state x′ with the constraints described in
Step 3, i.e., pi(x′) = 1. (If S can not give such a predicate and state, D wins
automatically.)

88

3.3. Coalgebraic Games for the Classical Case

If S chooses p1 and x′, D can simply pick y′ = x′, since p2(y′) ≥ p1(x′) = 1. In
this case we end up in (x′, x′) with x′ ∼ x′.

If D chooses p2 and x′, by construction of p2 D can find a state y′ with f(x′) = f(y′)
and p1(y′) = 1. In this case x′ ∼ y′ holds.

In both cases the game can continue.

D has a winning strategy ⇒ x ∼ y: We already by Lemma 3.3.3 know that

W = {(x, y) ∈ X ×X | there exists a winning strategy of D for (x, y)}

is an equivalence. We define a function f : X → Y with Y = X/W and f(x) = [x]W .

X FX

Y FY

f

α

β

Ff

It suffices to show that β(f(x)) := Ff(α(x)) is well defined, since then we have a
coalgebra homomorphism that witnesses the behavioural equivalence of x, y. (Note
that f(x) = f(y), since both are contained in the same equivalence class.)

Assume that we have a winning strategy for (x, y) (i.e., (x, y) ∈ W) or in
other words f(x) = f(y), but Ff(α(x)) ̸= Ff(α(y)). Then we know, by the
assumption that the functor F has a separating set of predicate liftings (respec-
tively the equivalent condition in [Sch08]), that some p : Y → 2 exists such that
Fp(Ff(α(x))) ̸= Fp(Ff(α(y))).

We now show, by contradiction, that D does not have a winning strategy for (x, y):
S chooses p1 = p ◦ f and we obtain Fp1 ◦ α(x) ̸= Fp1 ◦ α(y), since Fp1 = Fp ◦ Ff .
Since the preorder ≤F on F2 is antisymmetric due to Proposition 3.2.17 at least one
of the following two overlapping cases will occur:

• Fp1 ◦ α(x) ≰F Fp1 ◦ α(y)

• Fp1 ◦ α(y) ≰F Fp1 ◦ α(x)

Here we only consider the first case, since for the second case the argument
is analogous. S picks x and D can not play p2 such that p2 ≤ p1, since in this
case we would get Fp2 ≤F Fp1. Combining this with the condition of Step 2 we
obtain (Fp1 ◦ α)(x) ≤F (Fp2 ◦ α)(y) ≤F (Fp1 ◦ α)(y) which, with transitivity, is a
contradiction to the first case above.

89

3. Behavioural Equivalence:
Games over Set

Hence p2 ≰ p1, which implies that some x′ ∈ X exists such that p2(x′) = 1 and
p1(x′) = 0. So S picks p2 and x′. D then picks some y′ ∈ X with p1(y′) = 1. If
(x′, y′) ∈ W it follows from the construction of p1 = p ◦ f that p1(x′) = p1(y′), but
this is again a contradiction to p1(x′) = 0. Hence (x′, y′) ̸∈ W and D does not have
a winning strategy. □

We now give an example that illustrates the differences between our generic game
and the classical bisimulation game for labelled transition systems [Sti99].

Example 3.3.4

Consider the transition system in Figure 3.7, which depicts a coalgebra α : X →
FX, where F = Pf (A×_) specifies finitely branching labelled transition systems.
Clearly x ≁ y.

x

1

3 4
a a

y

2

5

6 7 8 9

a

a b a b

Figure 3.7: Spoiler has a winning
strategy at (x, y).

First consider the classical game where one
possible winning strategy of the spoiler is as
follows: he moves x = 1 a→ 4, which must be
answered by the duplicator via y = 2 a→ 5.
Now the spoiler switches and makes a move
5 a→ 8, which can not be answered by the
duplicator.
In our case a corresponding game proceeds as
follows: the spoiler chooses x and p1 = χ{4}.
Now the duplicator takes y and can for instance answer with p2 = χ{5}, which
leads to

Fp1(α(x)) = {(a, 0), (a, 1)} ≤F {(a, 1)} = Fp2(α(y))

(Compare this with the visualization of the order ≤F on F2 in Figure 3.6.)
Regardless of how S and D choose states, the next game configuration is (4, 5).
Now the spoiler is not forced to switch, but can choose 4 and can play basically any
predicate p1, which leads to either Fp1(α(4)) = {(b, 1)} or Fp1(α(4)) = {(b, 0)}.
D has no answering move, since Fp2(α(5)) will always contain tuples with a and
b, which are not in ≤F -relation with the move of S (see also Figure 3.6).

This game is inspired by the game for labelled Markov processes in [DLT08],
where both players has to choose subsets of the state space. Therefore, we explain
the connection in more detail.

We start with a discussion about the motivation to use predicates within the
game and conclude with the comparison of both games.

90

3.3. Coalgebraic Games for the Classical Case

At the level of coalgebras execution results in an element α(x) ∈ FX. Thinking
of probabilistic systems as described in Example 3.3.5, a single transition loses
significance compared to one action in a labelled transition system.

Example 3.3.5

In Figure 3.8, both states x and y are initial states of systems with a probabilistic
branching defined by the functor F = (D_ + {•}){a,b}. In addition, both states
have the probability 1 to end in a state, which enables a b-transition with
probability 1, after executing an a-transition. Now assume, that one starts from
state 6 taking the a-transition with probability 1. Next, we require that this
move has to be imitated with a single a-transition from state 1.

x

1

2 3

4 5

a, 0.5 a, 0.5

b, 1 b, 1

y

6

7

8 9

a, 1

b, 0.5 b, 0.5

Figure 3.8: Two transition systems with the branching type characterized by the
functor F = (D_ + {•}){a,b}. The left state x has the same behaviour as the
state y to the right.

Obviously, this is not possible from state x and therefore we need to extend single
transitions to moves based on predicates (compare this with the moves in the
games over LTS given in Definition 3.2.1).

Therefore, in a generic game, a player chooses a predicate instead of a single
transition and we get Fp(α(x)) ∈ F2. This is why the representation of predicate
liftings as evaluation maps ev : F2→ 2 better fits into our setting.

Since this idea is inspired by a probabilistic game given in [DLT08], we want to
compare our generic approach with the so-called ε-bisimulation game.

Comparison to [DLT08]: Let h : A×X ×PX → [0, 1] be a labelled Markov
process, which means that for a ∈ A, x ∈ X, S 7→ h(a, x, S) is a sub-probability
measure. We simplify for explanatory purposes and assume that A is a singleton and
that h(a, x,X) is either 1 or 0 (either the probabilities sum up to 1 or to 0). Hence,

91

3. Behavioural Equivalence:
Games over Set

such a system corresponds to a coalgebra α : X → DX + 1 (i.e. 1 = {•}).
In particular, [DLT08] introduces spoiler-duplicator games for ε-bisimulation. In

the ε-bisimulation game the spoiler wants to disprove that the distance of two states
is smaller or equal than some threshold ε ≥ 0. Analogous to our game, the duplicator
wants to demonstrate the opposite.

To compare the games, we assume that ε = 0, which means that we have exactly
probabilistic bisimilarity as defined in [LS89] and in this case the rules of the game
are as follows: consider two states x ̸= y (we omit the trivial case x = y).

• Step 1: S chooses a state s ∈ {x, y}. S will play on s whereas D will play on
t ∈ {x, y} \ {s}. S chooses a label a ∈ A and a set E ⊆ X.

• Step 2: D chooses a set F ⊆ X, such that h(a, t, F) ≥ h(a, s, E).

• Step 3: S chooses a state x′ in E or F .

• Step 4: D chooses a state y′ in the set not chosen by S. In this way we obtain
one state in E and one state in F .

For the functor F = D_ + 1 both games are the same: for a non-terminating
state s, Fp1(α(s)) corresponds to h(a, s, E) whenever E is the set specified by p1.
Furthermore ≤F is in this case just the order on the reals (see Example 3.2.6). If
however, s is terminating, i.e. α(s) = •, we have Fp1(α(s)) = • and h(a, s, E) = 0 for
every E. Hence both games agree if both states are terminating or non-terminating.

If however x is terminating and y is not, it is necessary for S in the game of [DLT08]
to choose s = y and, for instance E = X, since D can not match this move. In our
game S can choose either x or y, since • is not related to any real number via ≤F

and the inequality can never be satisfied.
This can also be extended to functors of type (D_+1)L, where L represents a finite

set of labels or to sub-probability distributions. For sub-probability distributions,
the same phenomenon as above appears: whenever there are two states whose sub-
probability distributions do not sum up to the same value, S will always win in
Step 2, regardless of his choice, where in the game of [DLT08], S has to pick the
state with the larger value.

The branching type (D_ + 1)L permits only weights greater than or equal to
zero, where the functor F = (R0 × (R_

0)A
ω in Example 3.2.16 allows also negative

weights. As a result, the game fails to be complete, illustrated by the following
counterexample. Although x, y are not behaviourally equivalent, the duplicator can
mimic each move of the spoiler.

92

3.3. Coalgebraic Games for the Classical Case

Example 3.3.6: D wins for x ≁ y in case ≤F is not anti-symmetric

Again we consider a pair of non-bisimilar states x, y in a system of the branching
type F = R0 × (R_

0)A
ω and explain the connection between the game and the lifted

order ≤F , which is not anti-symmetric. (Note, the termination behaviour is the
same for every label and therefore omitted in the visual presentation.)

x

1

2 3

4 5

a, 2 a,−2

b, 1 c, 1

y

6

7 8

9 10

a,−2 a, 2

b, 1 c, 1

Figure 3.9: The inequivalent behaviour of x and y can not be distingusihed by
the lifted order ≤F and therefore the duplicator can win although x ≁ y.

Already in Example 3.2.16, we pointed out that the states x, y are not be-
haviourally equivalent.
Now, assume S chooses x and a predicate p1 which only includes state 2, D can
answer with p̂2 = {7} and obtains a valid move:
Considering the two values t1 = Fp1(α(x)), t2 = Fp2(α(y)), for simplicity we
consider only the a-label since x, y behave the same for b and c, we get π2(t1)(a) =
[0 → −2, 1 → 2] and π2(t2)(a) = [0 → 2, 1 → −2] and we have t1 ̸= t2, but
t1 ≤F t2 by [(0, 0)→ −2, (0, 1)→ 4, (1, 1)→ −2]. Thus, the condition in Step 2
of the game is satisfied. No matter what spoiler chooses in Step 3, the next round
proceeds with (2, 7).
Note, that for (2, 7) only the states 4, 9 play a major role and in case spoiler
chooses 2, {4} (7, {9}) the duplicator has a valid move 7, {9} (2, {4}) in Step 2.
Regardless of the moves in Steps 3 and 4 the last round is (4, 9). Since the spoiler
has no move at Step 1, the game terminates and the duplicator wins.
Note, in case S chooses (x, {3}),(y, {7}), or (y, {8}) for the initial pair (x, y) the
situation is analogous. Furthermore, a move such x, {2, 3} by S makes it even
easier for D since the a-value evaluates to [0 7→ 0, 1 7→ −2 + 2]. (Note, that
other moves for the spoiler do not play a significant role, because 4, 5, 9, 10 are
no successor states of state 1 or 6.)

93

3. Behavioural Equivalence:
Games over Set

One problem with the functor in the example above is that the lifted order is
not anti-symmetric. The second problem is, that the functor is not weak pullback
preserving and behaviour equivalence and F -bisimulation do not coincide (for further
details see Section 2.3.3).

In this context, it has to be mentioned that a small modification of the game rules
omits the preorder lifting and then weak pullback preservation is no longer necessary.
The evaluation maps (i.e. modalities) can be integrated directly into Step 2, the
game rule which forces the duplicator at least to mimic the move of the spoiler.

Moreover, this variation provides a small foretaste of the content presented in
Chapter 6, where the level of abstraction goes beyond Set. However, it does not
solve the problems presented in Example 3.3.6, because we still require Λ to be a
separating set of monotone predicate liftings.

Game variant: By looking at the proof of Theorem 3.3.2 it can be easily seen
that the game works as well if we replace the condition Fp1(α(s)) ≤F Fp2(α(t))
in Step 2 by ev(Fp1(α(s))) ≤ ev(Fp2(α(t))) for all ev ∈ Λ, provided that Λ is a
separating set of monotone evaluation maps. This variant is in some ways less
desirable, since we have to find such a set Λ (instead of simply requiring that it
exists), on the other hand in this case the proof does not require weak pullback
preservation, since we do not any more require transitivity of ≤F . This variant of
the game is conceptually quite close to the Λ-bisimulations studied in [GS13]. In
our notation, a relation S ⊆ X ×X is a Λ-bisimulation, if whenever xS y, then for
all ev ∈ Λ, p : X → 2, ev(Fp(α(x))) ≤ ev(Fq(α(y))), where q corresponds to the
image of p under S (and the same condition holds for S−1). Λ-bisimulation is sound
and complete for behavioural equivalence if F admits a separating set of monotone
predicate liftings, which coincides with our condition.

We have already explained how one can extract the winning strategy of the
duplicator from the bisimulation relation. In the next section, we show, that in the
case of two non-bisimilar states x ≁ y we can convert a modal logic formula φx,y

distinguishing x, y (i.e., x |= φ and y ̸|= φ) into a winning strategy for the spoiler.

3.3.2 The Coalgebraic Triad: Bisimulation, Modal Logics & Games

In bisimulation games the winning strategy for D can be derived from the bisimulation
or, in our case, from the map f that witnesses the behavioural equivalence of two
states x, y (see the description after Lemma 3.3.3).

Here we will show that the winning strategy for S can be derived from a modal

94

3.3. Coalgebraic Games for the Classical Case

formula φ which distinguishes x, y, i.e., x |= φ and y ̸|= φ. We assume that all
modalities are monotone (cf. Proposition 3.2.17).

The spoiler strategy is defined over the structure of φ:

• φ =
∧

Φ: in this case S picks a formula ψ ∈ Φ with y ̸|= ψ.

• φ = ¬ψ: in this case S takes ψ and reverses the roles of x, y.

• φ = [ev]ψ: in this case S chooses x and p1 = JψK in Step 1. After D has chosen
y and some predicate p2 in Step 2, we can observe that p2 ̸≤ JψK (see proof of
Theorem 3.3.7). Now in Step 3 S chooses p2 and a state y′ with p2(y′) = 1 and
y′ ̸|= ψ. Then D must choose JψK and a state x′ with x′ |= ψ in Step 4 and the
game continues with x′, y′ and ψ.

Theorem 3.3.7
Assume that α : X → FX is a coalgebra and F satisfies the requirements of
Theorem 3.3.2. Let φ be a formula that contains only monotone modalities and
let x |= φ and y ̸|= φ. Then the spoiler strategy described above is winning for S.

Proof: Each step described in the strategy yields a smaller formula by structural
induction and a pair of states which is distinguished by the formula. Hence the game
will eventually terminate.

We only have to consider the case φ = [ev]ψ in more detail and show (by
contradiction) that S can make a valid move in Step 3 by proving that the predicate
p2 chosen by D in Step 2 must satisfy p2 ̸≤ JψK.

Hence, assume that p2 ≤ JψK. From Lemma 3.2.8 and from the monotonicity of
ev it follows that

(ev ◦ Fp2 ◦ α)(y) ≤ (ev ◦ F JψK ◦ α)(y) = JφK(y).

Since y ̸|= φ the right-hand side, as well as the left-hand side of the inequality must be
0. On the other hand Fp1 ◦α(x) ≤F Fp2 ◦α(y) and hence, again due to monotonicity
of ev, we have

(ev ◦ F JψK ◦ α)(x) ≤ (ev ◦ Fp2 ◦ α)(y).

Since x |= φ the left-hand side of the inequality must be 1. But this is a contradiction,
because then the right-hand side has to be equal to 1 as well.

Hence p2 ̸≤ JψK, which means that there is a y′ ∈ X such that p2(y′) = 1 and
JψK(y′) = 0, i.e., y′ ̸|= ψ. □

95

3. Behavioural Equivalence:
Games over Set

Finally, we have completed the generic framework since we have filled the gap in
the triad. However, we did not yet show how to directly derive the winning strategy
of both players or how to construct a distinguishing formula φ (see Figure 3.10).

α : X→ FX

Spoiler
vs.

Duplicator
Games

Modal Logics

Bisimulation
x ∼ y

Spoiler strategy?

?

Duplicator strategy Hennessy-Milner theorem

Figure 3.10: The coalgebraic triad capturing coalgebraic bisimulation, modal logics
and games for weak pullback preserving endofunctors F : Set→ Set.

3.4 Explaining Non-Bisimilarity in a Coalgebraic Ap-
proach

The next contributions presented in this chapter focus on non-bisimilar state pairs
and two ways to explain the non-bisimilarity of such state pairs. Regarding the game
an algorithm which computes the winning strategy of the spoiler is introduced. In
addition, a generic technique to derive distinguishing formulas is described for the
logical view.

This results are inspired by the work over LTS in [Cle90], where the computation
of the greatest bisimulation relation serves as a base for the recursive construction
of distinguishing formulas. Therefore, this chapter includes the development of two
algorithms at the level of coalgebras and their composition.

Thus, the first Subsection 3.4.1 offers an overview over generic partition refinement
techniques. Afterwards, the contribution itself is discussed and a simple coalgebraic
modal logic is introduced. The modalities are given by cones over F2 and therefore
we call them cone modalities. Finally, this chapter concludes with the transformations
between cone-based modalities and more common modalities [KMS20b].

96

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

3.4.1 An Introduction into Coalgebraic Partition Refinement Algo-
rithms

As the name indicates, a partition refinement algorithm refines a partition. More
precisely, in our context we deal with partitions over state spaces, which consists of
blocks or classes and those blocks are divided into finer and disjoint entities. Before
we address concrete instantiations of such algorithms and study the details behind
the different runtime behaviours, we would like to start with the basic idea of such
algorithms.

Figure 3.11: Concept of partition refinement, where the coarsest partition is the blue
node including the class X, i.e. state space X. Towards the outside the classes get
finer and each new partition is illustrated by a different colour. In case a node is
filled with several colours, this indicates that the class remains the same for all these
partitions.(Illustration based on [Kot15a; Kot15b])

For a given coalgebra α : X → FX we start with a very coarse partition Π0 = {X}
including just one class illustrated by the blue node in Figure 3.11. The next partition
Π1 (orange) is obtained from the initial partition Π0 through a split of class X into
finer and disjoint classes. This principle repeats for the finer classes until a partition
is recognized as stable. One such criterion might be Πi = Πi+1, but this depends on
the details of the underlying splitting techniques.

Indeed, Section 2.2.2 already introduces the foundations behind all the different
partition refinement techniques [KS90; KK18; DM+17]. De facto, all the algorithms

97

3. Behavioural Equivalence:
Games over Set

compute the greatest fixpoint (νF) of a monotone function

F(R) : P(X ×X)→ P(X ×X)

The definitions and explanations of this introduction are based on [AIS12; KK18;
DM+17; Küp17] and partly originate from [KS90; PT87; Wor05].

To make life easier, we start with labelled transition systems. Given an LTS
(X,Σ,→) we refer to Section 2.2.2, where the monotone function F is defined.

A first idea to evaluate if a pair of states satisfies the conditions described by
F (see Equation 2.1), would be to compare the transition behaviour for every single
class. This approach is described in an algorithm by Kanellakis and Smolka [KS90]
and they already show that it suffices to work with the single classes given by the
previous partition to compute νF and thus obtain the greatest bisimulation (i.e.
bisimilarity) starting with X ×X.

Concerning the algorithm by Kanellakis and Smolka [KS90] for LTS, at the
beginning the procedure separates two states if one of them has at least one a-labelled
transition and the other state does not. Thus, at the beginning the states are classified
by their outgoing transitions. In case, all states coincide in the labels – either each
state has an a-transition for each a ∈ Σ or no state has a transition – the algorithm
terminates and all states are bisimilar. Otherwise, the partition Π0 is refined and
Π1 contains k classes with k > 1 (and k ≤ |X|). Here, the state space X acts as a
so-called splitter.

A class Ci is a splitter for a class Cj with i, j ∈ {0, . . . , k} in case there exists
some label a ∈ Σ, such that some states in Cj have a-transitions to Ci and others do
not. Thus, a class Cj is refined in the following way [AIS12]:

Cj,1 = {s | s ∈ Cj and s
a→ s′, for some s′ ∈ Ci}

Cj,2 = Cj \ Cj,1

In general a partition Πi gets refined to Πi+1 if at least one class C of Πi is splitted
into two classes by some class in {[x]Πi | x ∈ X}. In each iteration the algorithm
checks for each class and all labels whether it can be refined based on the current
partition (refinement check) and repeats this until no further refinements occur. The
algorithm has a polynomial runtime n ·m where n denotes the number of states and
m the number of transitions [AIS12].

In addition, an optimized algorithm with runtime m · logn works with the so-called
three-way-splitting published by Paige and Tarjan [PT87]. In this algorithm, the
authors work with two partitions Γ and Π, where one is coarser than the other. This

98

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

means that at least one class in Γ is the union of two or more classes in Π and the
first step is to choose such a class T ∈ Γ. The phenomenon of the three-way-splitting
is obtained through a refinement of the coarser partition Γ and the finer partition
Π. This splits are based on S ⊂ T with S ∈ Π (i.e. Γi+1 = Γi \ T ∪ {S, T \ S})
followed by two refinement checks of Π based on S, T \ S, where T is a compound
class (i.e. S ⊂ T) in the coarser partition which includes at least two classes of Π.
The most interesting aspect of this technique is how the logarithmic part of the time
performance is obtained. A class T ∈ Γ \Π is refined based on a class S in Π such
that |S| ≤ |T |

2 [AIS12]. However, as we are interested in the coalgebraic view of all
these things, we refer the interested reader to [PT87; AIS12] for further details.

We need to emphasize that there are two fundamental approaches capturing the
concepts described above. To compare the behaviour of two states, the first approach
allows you to work with single classes, while the second approach deals with single
classes in combination with a union of classes respecting compound classes.

To understand how the coalgebraic view is related with this two approaches we
consider two different coalgebraic partition refinement techniques.

The algorithms in [KK14; KK18; Küp17] are based on the final chain construction
(see Definition 2.3.22) to describe behavioural equivalence for coalgebras on concrete
categories. An improved version of a final-chain based partition refinement algorithm
for a wide range of endofunctors over Set is presented in [DM+17]. In the following
we would like to give you a short overview of the technical key points presented
in [KK18; DM+17].

First, we present the abstract version of a generic partition refinement, which
splits with respect to all classes at once (compared with the single-class concept
of Kanellakis and Smolka discussed previously). Afterwards we briefly explain the
termination and runtime behaviour using the example of weighted automata.

Recall the final chain construction from Section 2.3.3 given in Definition 2.3.22.
Figure 3.12 shows how the final chain enables to obtain partitions Πi based on the
i- step-behaviour in the following sense: the αi-morphisms induce classes which only
relate states with the same i-step-behaviour. The algorithm stops if an αj is reached
such that some morphism β : F j1→ F j+11 with β ◦αj = Fαj ◦α is reached [KK18].
An optimization of the version described in Figure 3.12 starts with α0 : X → 1 and
checks for each iteration i if an arrow ei of αi with αi = αi

e = mi ◦ ei for some
morphism mi exists. This means that the arrow ei is a more compact representative
of αi, i.e. it induces the same partition as αi. Therefore, the greatest fixpoint of the
sequence α0 . . . αi . . . in Figure 3.12 is determined based on a surjection ei : X → Yi

99

3. Behavioural Equivalence:
Games over Set

X

1 F 11 F i1 F i+11
. . .

α0
α1

! F i1

β

αi
αi+1 = Fαi ◦ α

Figure 3.12: Final chain equipped with a sequence αi : X → F i1 of morphisms.
The approximative algorithm terminates if a morphism β with β ◦ αi = Fαi ◦ α is
found [KK18].

derived from αi
e = Fei−1 ◦ α. Since such a compact representative ei can be used to

obtain the next morphism αi+1
e = Fei ◦ α. The algorithm terminates if ei ≤ αi+1

e , or
in other words, there exists a coalgebra β : F i1→ F (F i1) and therefore ei captures
enough information to provide statements about the behavioural equivalence of each
state pair (cf. [KK18]).

Given that, the current equivalence relation Ri ⊆ X ×X is represented by the
surjection ei. Therefore, we separate x, y whenever Fei(α(x)) ̸= Fei(α(y)), which
intuitively means that we split with respect to all equivalence classes at once.

Now we want to talk about the termination and runtime behaviour of this
algorithm, which become clearer if we use an example. First of all, working with
representatives ei instead of αi minimizes the number of arithmetic operations.

Concerning weighted automata in general language equivalence is not decidable,
therefore the runtime analysis in [KK18; KKM17] restricts to decidable cases, which
strongly depends on the underlying mathematical structure (more precisely the
semiring providing the weights for the transitions). In addition, the computations
behind ei are based on the solutions of linear systems of equations. So we conclude
that in the case of weighted automata the runtime depends on the semiring [Küp17;
KKM17].

The work presented in [DM+17; WD+20] lifts the idea by Paige and Tarjan to
the coalgebraic setting of categories which have coequalizers and some additional
requirements.

Just to give a rough idea, they combine the three-way-splitting based on two
partitions P,Q, where Q is coarser than P , with the constructions over the final
chain. The difference to a pure final chain algorithm lies in the filtering of the
information used for the next splitting given by the previously computed partitions.
More precisely, the information qi+1 : X → Ki+1 is given by a composition of two

100

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

morphisms, where one is given by X ↠ X/Pi (where ↠ denotes a coequalizer). The
second morphism ki+1 : X/Pi ↠ Ki+1 is determined by a selection procedure based
on the input Pi and Qi which respects compound classes (i.e. classes within the
coarser partition consisting at least of two classes of the finer partition).

The selection procedure depends on the concrete instantiation, where one example
is given by the smaller half strategy used in the algorithm by Paige and Tarjan [PT87].

Moreover, while there are no problems with the generalized version of the step,
which refines the coarser partition Qi into Qi+1, the computation of Pi+1 is based
on the kernel of the F -lifted pair of morphisms ⟨q̄i, qi+1⟩, where for each iteration i

the morphism q̄i represents a collection of the selection information obtained so far.
Formally this means that ker q̄i = Qi (for kernel see Example 2.3.20).

Under a certain requirement denoted with 2-zippability, the computation of
such F -lifted morphisms (i.e. ker F ⟨q̄i, qi+1⟩) can be optimized, which enables an
incremental implementation of Pi+1 [DM+17; WD+20]. (Note, 2-zippability is a
special case of m-zippability.)

Definition 3.4.1: m-zippability

A functor F is m-zippable if the map

F (A1 + · · ·+Am) ⟨F (f1),...,F (fm)⟩−−−−−−−−−−−→ F (A1 + 1)× · · · × F (Am + 1)

is injective for all sets A1, . . . , Am, where fi = idAi+ !: A1 + · · ·+Am → Ai + 1,
with ! : A1 + · · · + Ai−1 + Ai+1 + · · · + Am → 1, is the function mapping all
elements of Ai to themselves and all other elements to • (assuming that 1 = {•}).

The technical details of the algorithm and the selection procedure are quite
extensive [DM+17], so we just summarize here the key points:

1. The selection procedure respects compound blocks and the functor F is 2-zippable:
Necessary to enable an incremental computation of Pi+1, which means that this
partition is derived from Pi and some information qi+1, which is determined
based on X ↠ X/Pi.

2. The functor F admits a suitable refinement interface: Necessary to enable
efficient computations of the kernels where the coalgebra is encoded (i.e. a rep-
resentation format in the sense of a (labelled) graph depending on F) [DM+19].

Among some typical restrictions on the functor, both conditions above enable the
efficient coalgebraic partition refinement algorithm presented in [DM+17; WD+20],
which runs in time O((m+ n) logn) (where m denotes the number of edges based on

101

3. Behavioural Equivalence:
Games over Set

the representation). Furthermore, a standard final chain algorithm is transformed
into a compound class respecting one, which does not use all information from the
previous partition as the algorithms presented in [KK18].

Partition Refinement is not sufficient to derive a Winning Strategy for
the Spoiler Both algorithms described above compute behavioural equivalence
relations and can therefore be used to determine the splitting information. But if
we want to derive a winning strategy for the spoiler in our game or a distinguishing
formula, it is not enough to recognize the difference (i.e. non-equivalence) of the
behaviour (cf. [Section 5][WMS21]).

The next example serves as motivation to focus on the lifted ≤F during partition
refinement.

Example 3.4.2

The states (1, 2) in the LTS of Figure 3.13 are not bisimilar, because for all
a-transitions 2 enables an a-transition and a b-transition. This is however not
possible with state 1.
Therefore, the spoiler has a winning strategy for (1, 2) given by (1, {3}), since
Fp(α(1)) = {(a, 0), (a, 1)} ̸≤F {(a, 0)} = Fp(α(2)). In addition 3 is separated
from 4, 5 since the values {(a, 1)} and {(a, 1), (b, 1)} based on {6, 7, 8, 9} are not
comparable via the lifted order ≤F .

x

1

3 4
a a

y

2

5

6 7 8 9

a

a a b a b

Figure 3.13: Two non-bisimilar states x and y in an LTS.

Next, we will see, that partition refinement alone, does not provide enough
information to derive (1, {3}) or (2, {4, 5}) as suitable moves for the spoiler.
Assume that we are in a situation that X/Πi = {{6, 7, 8, 9}, {1, 2}, {3}, {4, 5}}
and Πi ⊆ X×X is the current partition derived by one of the previously described
partition refinement techniques. The next step would be to split (1, 2) ∈ Πi.
Now, an algorithm as the one by Kanellakis and Smolka or Paige and Tarjan

102

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

determines S = {3} as splitting information. For the latter, such an information
can be derived via the kernel computations as introduced previously.
However, the class {1, 2} is separated due to the information given by S since
state 1 has an a-successor in {3} but state 2 not. Therefore, expressed from a
coalgebraic point of view, we know that α(1) and α(2) behave differently with
respect to the characteristic function χS (or via a three-valued approach presented
in [DM+17]):

FχS(α(1)) = {(a, 0), (a, 1)} ≠ {(a, 0)} = FχS(α(2))

Finally, both algorithms proceed and result in the partition Π which leads to
X/Π = {{1}, {2}, {3}, {6, 7, 8, 9}, {4, 5}}. But to derive the winning strategy in
our game, one needs to be able to compare the elements derived from the splitting
information with respect to ≤F instead of =. More concretely, for LTS this means
that we need to recognize

FχS(α(1)) = {(a, 0), (a, 1)} ̸≤F {(a, 0)} = FχS(α(2))

If we want to generate a winning strategy for the spoiler working with the pure
final chain algorithm [KK18], we have to find out which class pc (or union of classes)
causes the difference, and therefore one would have to derive all classes (or union of
classes) and evaluate if Fpc(α(x)) ≤F Fpc(α(y)) or Fpc(α(y)) ≤F Fpc(α(x)) hold
for each predicate pc and each separated pair of states.

The approach by [DM+17] enables to save the splitting class or union of classes pc

on-the-fly, but it still remains open if Fpc(α(x)) ≤F Fpc(α(y)) or Fpc(α(y)) ≤F

Fpc(α(x)) holds and how a modality can be extracted on-the-fly.

Our game is already defined by comparing two values t1, t2 ∈ F2. Therefore, the
next section presents a coalgebraic partition refinement algorithm directly derived
from the game, which solves the previously mentioned problem. Moreover, we also
study the conditions under which such an algorithm admits a polynomial runtime
and compare this with the coalgebraic three way splitting algorithm in [DM+17].

Remember, that a spoiler strategy exists iff there is a distinguishing formula φx,y.
From Theorem 3.3.7 we know, that this formula can be transformed into a spoiler
strategy. After deriving a spoiler strategy, we want to show the opposite, how such a
winning strategy is used to construct a distinguishing formula.

103

3. Behavioural Equivalence:
Games over Set

3.4.2 Computation of Spoiler Winning Strategies

Since this is more practical, we fix X to be a finite set. To refresh the framework
conditions introduced in Section 3.2, we will give a short revision. We will fix a
coalgebra α : X → FX for a weak pullback preserving endofunctor F : Set→ Set.
Furthermore we assume that F has a separating set of monotone predicate liftings,
which implies that ≤F , the lifted order on 2, is anti-symmetric, hence a partial order.

We first present a simple but generic partition refinement algorithm to derive the
winning strategy for the spoiler (S) for a given coalgebra α : X → FX. The case of
the duplicator (D) is discussed in detail concerning Theorem 3.3.2.

In particular we consider the relationWα, which – as we will show — is the greatest
fixpoint of the following monotone function Fα : Eq(X) → Eq(X) on equivalence
relations:

Fα(R) = {(x, y) ∈ R | ∀P ∈ E(R) : FχP (α(x)) = FχP (α(y))}

Wα = {(x, y) ∈ X ×X | there exists a winning strategy of D for (x, y)}

In the following, we will prove that the greatest fixpoint of Fα (i.e. νFα) coincides
with Wα and hence gives us bisimilarity. Note that Fα splits classes with respect to
only a single equivalence class P as in [KS90]. This is done to avoid an exponential
runtime, since the condition within Fα can alternatively be defined based on all
possible unions over E(R). Hence we will need to impose extra requirements on the
functor, spelled out below, in order to obtain this result.

One direction of the proof deals with deriving a winning strategy for S for each
pair (x, y) /∈ νFα. In order to explicitly extract such a winning strategy for S – which
will also be important later when we construct the distinguishing formula – we will
slightly adapt the fixpoint iteration νFα.

Before we come to this, we formally define and explain the strategy of S. A
strategy for the spoiler is given by a pair of functions

I : X ×X → N0 ∪ {∞} and T : (X ×X)\νFα → X × P(X).

Here, I(x, y) denotes the first index where x, y are separated in the fixpoint iteration
of Fα. The second component T tells the spoiler what to play in Step 1. In particular
whenever T (x, y) = (x, P), S will play x and p1 = χP .
In the case I(x, y) < ∞ such a winning strategy for S can be computed during
fixpoint iteration, see Algorithm 3.1. Assume that the algorithm terminates after
n steps and returns Rn. It is easy to see that Rn coincides with νFα: as usual for
partition refinement, we start with the coarsest relation R0 = X × X. Since ≤F

104

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

Algorithm 3.1 Computation of νFα and the winning strategy of the spoiler
1: procedure Compute νFα and T, I for input α : X → FX

2: for all (x, y) ∈ X ×X do
3: I(x, y)←∞
4: end for
5: i← 0, R0 ← X ×X
6: repeat
7: i← i+ 1, Ri ← Ri−1

8: for all (x, y) ∈ Ri−1 do
9: for all P ∈ E(Ri−1) do

10: if FχP (α(x)) ≰F FχP (α(y)) then
11: T (x, y)← (x, P), I(x, y)← i, Ri ← Ri \ {(x, y)}
12: else
13: if FχP (α(y)) ≰F FχP (α(x)) then
14: T (x, y)← (y, P), I(x, y)← i, Ri ← Ri \ {(x, y)}
15: end if
16: end if
17: end for
18: end for
19: until Ri−1 = Ri

20: return Ri, T, I

21: end procedure

is, by assumption, anti-symmetric FχP (α(x)) ≤F FχP (α(y)) and FχP (α(x)) ≤F

FχP (α(y)) are equivalent to FχP (α(x)) = FχP (α(y)) and the algorithm removes a
pair (x, y) from the relation iff this condition does not hold.

Every relation Ri is finer than its predecessor Ri−1 and, since Fα preserves
equivalences, each is an equivalence relation. Since we are assuming a finite set X of
states, the algorithm will eventually terminate.

In addition, T (x, y) and I(x, y) are updated, where we distinguish whether
Fp(α(x)) ≰F Fp(α(y)) or the other inequality hold.

We will now show that Algorithm 3.1 indeed computes a winning strategy for the
spoiler.

105

3. Behavioural Equivalence:
Games over Set

Proposition 3.4.3

Assume that Rn = νFα, T, I have been computed by Algorithm 3.1. Furthermore
let (x, y) /∈ Rn, which means that I(x, y) <∞ and T (x, y) is defined. Then the
following constitutes a winning strategy for the spoiler:

• Let T (x, y) = (s, P1). Then in Step 1 S plays a predicate p1 = χP1 and
s ∈ {x, y}.

• Assume that in Step 2 D answers with a state t and a predicate p2 such
that Fp1(α(s)) ≤F Fp2(α(t)).

• Then, in Step 3 there exists a state y′ ∈ X such that p2(y′) = 1 and
I(x′, y′) < I(x, y) for all x′ ∈ X with p1(x′) = 1. S will hence select p2 and
this state y′.

• Next, in Step 4 D selects some x′ with p1(x′) = 1 and the game continues
with (x′, y′) /∈ Rn.

Proof: We have to show that whenever we reach Step 3 there always exists a state
y′ ∈ X such that p2(y′) = 1 and I(x′, y′) < I(x, y) for all x′ ∈ X with p1(x′) = 1.

Let us first observe that p2 ≰ p1. If this were the case, we would have Fp1(α(s)) ≤F

Fp2(α(t)) ≤F Fp1(α(t)). But {x, y} = {s, t} are separated at Step I(x, y) = i

precisely because this inequality does not hold for p1 which represents one of the
equivalence classes of Ri−1. Hence there exists an y′ ∈ X such that p2(y′) = 1 and
p1(y′) = 0.

Since the equivalence relations Ri are subsequently refined by the algorithm, p1

– being an equivalence class of Ri−1 – is a union of equivalence classes of Rn. So,
since y′ is not contained in P1 = p̂1, it is not in Ri−1-relation to any x′ ∈ P1, hence
I(x′, y′) ≤ i− 1 for all such x′.

Since the index I(x, y) decreases after every round of the game, D will eventually
not be able to find a suitable answer in Step 2 and will lose. □

Finally, we show that νFα coincides with Wα and therefore also with behavioural
equivalence ∼ (see [KM18]). For this purpose, we need one further requirement on
the functor:

Definition 3.4.4
Let F : Set → Set be an endofunctor on Set. We say that F is separable by
singletons for a set X if the following holds: for all t0 ̸= t1 with t0, t1 ∈ FX,

106

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

there exists p : X → 2 where p(x) = 1 for exactly one x ∈ X (i.e., p is a singleton)
and Fp(t0) ̸= Fp(t1). Moreover, F is separable by singletons if F is separable by
singletons for all sets X.

A wide range of functors as introduced in Chapter 2.3 are separable by singletons.

Example 3.4.5

We show separability by singletons for two functors which are already introduced
in Example 2.3.13. Let X be some non empty set.

1. Labelled transition systems with finitely branching given by the functor
F = Pf (A×_): Let t0, t1 ∈ Pf (A×X) with t0 ̸= t1 be given. Therefore,
at least for one a ∈ A there exists some x ∈ X such that either (a, x) ∈ t0
and (a, x) /∈ t1 or (a, x) /∈ t0 and (a, x) ∈ t1.

Next, we define a predicate p : X → 2 with p(x) = 1 and p(x′) = 0 for
x′ ∈ X \ {x}. For the case (a, x) ∈ t0 and (a, x) /∈ t1 (the other case is
analogous) we get Fp(t0) ̸= Fp(t1) since Fp(t0) includes (a, 1) and Fp(t1)
not.

2. Probabilistic systems with termination (and finite support) given by the
functor F = (D_ + {•})A: Let t0, t1 ∈ (DX + {•})A with t0 ̸= t1 be given.
Therefore, at least for one a ∈ A we have t0(a) ̸= t1(a) and we have to
distinguish two cases:

• t0(a) = • and t1(a) ̸= •: Since t1(a) ∈ DX at least one x ∈ X exists
such that t1(a)(x) > 0 and we define a predicate p : X → 2 with
p(x) = 1 and p(x′) = 0 for x′ ∈ X \{x}. Thus, we get Fp(t0) ̸= Fp(t1)
since Fp(t0)(a) = • and Fp(t1)(a) ∈ D2 with Fp(t1)(a)(1) > 0.

(The case t0(a) ̸= • and t1(a) = • can be shown analogous.)

• t0(a) ̸= • and t1(a) ̸= •: Since t0(a) ̸= t1(a) for some a ∈ A we have at
least one x ∈ X such that t0(a)(x) > t1(a)(x) or t0(a)(x) < t1(a)(x).
The proof works analogous for both cases, so we just consider the
first one. Again, we define a predicate p : X → 2 with p(x) = 1 and
p(x′) = 0 for x′ ∈ X \ {x}. Next, we obtain Fp(t0)(a) ∈ D2 such that
Fp(t0)(a)(1) > Fp(t1)(a)(1).

Besides, it is obvious that separability by singletons implies the existence of a
separable set of predicate liftings, however the reverse implication does not hold as

107

3. Behavioural Equivalence:
Games over Set

the following example shows.

Example 3.4.6

A functor that does not have this property, but does have a separating set of
predicate liftings, is the monotone neighbourhood functor M with

MX = {Y ∈ QQX | Y upwards-closed} (see e.g. [DM+18]),

where Q is the contravariant powerset functor.
Consider X = {a, b, c, d} and two elements t0, t1 ∈MX where

t0 = ↑{{a, b}, {c, d}}, t1 = ↑{{a, b, c}, {a, b, d}, {c, d}

That is, the only difference is that t0 contains the two-element set {a, b} and t1

does not. For any singleton predicate p the image of Qp : P2 → PX does not
contain a two-element set, henceMp(t0) =Mp(t1) – since they contain the same
sets of sizes different from two – and t0, t1 cannot be distinguished.

We are now ready to prove the following theorem.

Theorem 3.4.7
Let α : X → FX be a coalgebra where F is separable by singletons. Then
νFα = Wα, i.e., νFα contains exactly the pairs (x, y) ∈ X ×X for which the
duplicator has a winning strategy.

Proof:

“⊆” Assume that (x, y) ∈ νFα = Rn. We show that x ∼ y and with [KM18] it follows
that (x, y) ∈ Wα. We do this by constructing a coalgebra homomorphism f

with f(x) = f(y).

Let Y = E(Rn), the set of equivalence classes of Rn and we define f : X → Y ,
f(x) = [x]Rn . In order to show that f is a coalgebra homomorphism, we have
to construct a coalgebra β : Y → FY such that β ◦ f = Ff ◦ α. We define
β([x]Rn) = Ff(α(x)) and it suffices to show that β is well-defined.

So let (x, y) ∈ Rn and assume by contradiction that t0 = Ff(α(x)) ̸=
Ff(α(y)) = t1.

Then, since F is separable by singletons, we have a singleton predicate p

with Fp(t0) ̸= Fp(t1). By expanding the definition we get F (p ◦ f)(α(x))̸=
F (p ◦ f)(α(y)). By construction p ◦ f = χP , where P is an equivalence class

108

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

of Rn. This is a contradiction, since Fα(Rn−1) = Rn = Rn−1, which indicates
that there can not be such a P .

“⊇” Whenever (x, y) /∈ νFα = Rn, we have shown in Proposition 3.4.3 that the
spoiler has a winning strategy, which implies (x, y) /∈ Wα. Hence Wα ⊆ νFα.

□

Before we proceed to compare Algorithm 3.1 with the results in [DM+17], we
first demonstrate the construction of a winning strategy for the spoiler over a simple
example.

Example 3.4.8

We come back to Example 3.3.4 and explain the execution of Algorithm 3.1. In
the first iteration we only have to consider one predicate χX and for all separated
pairs of states (s, t) we set I(s, t) = 1 where the second component of T (s, t) is X.

x

1

3 4
a a

y

2

5

6 7 8 9

a

a b a b

Figure 3.14: Three partition refinement steps starting from the blue partition
Π0 = {X} followed by Π1. The refinement terminates because of Π2 = Π3. A
value v ∈ F2 (e.g. {(a, 1), (b, 1)}) written next to the branch in colour i (e.g.
blue) indicates that only the states within the ball (e.g. {5}) according to that
branch satisfy this value for a class (e.g. X) included in the i-coloured partition.

Therefore, in the first iteration, the states are simply divided into equivalence
classes according to their outgoing transitions. More concretely, we obtain
the separation of {1, 2, 3} (with value {(a, 1)}) from {4} (with value {(b, 1)}),
{5} (with value {(a, 1), (b, 1)} and {6, 7, 8, 9} (with value ∅) as illustrated in
Figure 3.14.
In the second iteration the predicate χ{4} is employed to separate {1} (with

109

3. Behavioural Equivalence:
Games over Set

value {(a, 0), (a, 1)}) from {2} (with value {(a, 0)}) and we get I(1, 2) = 2 with
T (1, 2) = (1, {4}), which also determines the strategy of the spoiler explained
earlier. Similarly {3} can be separated from both {1} and {2} with the predicate
χ{6,7,8,9}. The other three classes obtained during the first iteration step do not
change from then on.

The notion of separability by singletons is needed because the partition refinement
algorithm we are using separates two states based on a single equivalence class of their
successors, whereas other partition refinement algorithms (e.g. [KK18]) consider all
equivalence classes. As shown in Example 3.4.6, this is indeed a restriction, however
such additional assumptions seem necessary if we want to adapt efficient bisimulation
checking algorithms such as the ones by Kanellakis/Smolka [KS90] or Paige/Tarjan
[PT87] to the coalgebraic setting. In fact, the Paige/Tarjan algorithm already has a
coalgebraic version [DM+17] which operates under the assumption that the functor
is zippable. Here we show that the related notion of m-zippability is very similar to
separability by singletons. The zippability of [DM+17] is in fact 2-zippability, which
is strictly weaker than 3-zippability [Wiß]. Note, that the sufficiency of 2-zippability
results from the basic idea in [DM+17] to work in one step with a coarser and a finer
partition.

Lemma 3.4.9
Assume that F : Set→ Set is a functor preserving injections. If F is separable
by singletons, then F is m-zippable for all m. Conversely, if F is m-zippable,
then F is separable by singletons for all sets X with |X| ≤ m.

Proof:

• Suppose that F is separable by singletons. We need to show that

F (A1 + · · ·+Am) ⟨F (f1),...,F (fm)⟩−−−−−−−−−−−→ F (A1 + 1)× · · · × F (Am + 1)

is injective. Hence let t0, t1 ∈ F (A1 + · · ·+Am) with

⟨F (f1), . . . , F (fm)⟩(t0) = ⟨F (f1), . . . , F (fm)⟩(t1)

be given. The situation is depicted in Figure 3.15 below.

Now let xi ∈ Ai and consider the singleton predicate χ{xi} : A1 + · · ·+Am → 2,
which decomposes as χ{xi} = hxi ◦fi where hxi : Ai +1→ 2 is the characteristic
function of xi on Ai + 1 (see Figure 3.16 below).

110

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

F (A1 + · · ·+Am)

∏
i∈{1,...,m}

F (Ai + 1)

F (A1 + 1) F (Am + 1). . .

⟨F (f1), . . . , F (fm)⟩
Ff1 Ffm

π1 πm

Figure 3.15

A1 + · · ·+Am Ai + 1

2

fi

hxiχ{xi}

Figure 3.16

Now we can proceed as follows:

πi(⟨F (f1), . . . , F (fm)⟩(t0)) = πi(⟨F (f1), . . . , F (fm)⟩(t1))

⇒ F (fi)(t0) = F (fi)(t1)

⇒ Fhxi(F (fi)(t0)) = Fhxi(F (fi)(t1))

⇒ Fχ{xi}(t0) = Fχ{xi}(t1)

Since this holds for all xi in A1 + · · ·+Am, and F is separable by singletons,
we can conclude that t0 = t1.

• We first observe that every functor that is m-zippable is also m′-zippable for
m′ ≤ m (just set Ai = ∅ for some i). Hence it is sufficient to prove that
whenever F is m-zippable, then it is separable by singletons for all sets X with
|X| = m. So we can assume without loss of generality that X = {x1, . . . , xm}.

We set Ai = {xi} and know from the premise that

F (A1 + · · ·+Am) ⟨F (f1),...,F (fm)⟩−−−−−−−−−−−→ F (A1 + 1)× · · · × F (Am + 1)

is injective (see Figure 3.15).

Let t0, t1 ∈ FX and t0 ≠ t1 be given. Due to the injectivity of the map
above, we know that there exists an index i such that Ffi(t0) ̸= Ffi(t1). Since
Ai + 1 ∼= 2, every fi is itself a singleton predicate and hence we witness the
inequality of t0, t1 via a singleton.

□

Runtime Analysis

We assume that X is finite and that the inequalities in Algorithm 3.1 (with respect
to ≤F) are decidable in polynomial time. Then our algorithm terminates and has
polynomial runtime.

111

3. Behavioural Equivalence:
Games over Set

In fact, if |X| = n, the algorithm runs through at most n iterations, since there
can be at most n splits of equivalence classes. In each iteration we consider up to n2

pairs of states, and in order to decide whether a pair can be separated, we have to
consider up to n equivalence classes, which results in O(n4) steps (not counting the
steps required to decide the inequalities).

For a finite label set A, the inequalities are decidable in linear time for the functors
in our examples (F = Pf (A × _) and F = (D_ + 1)A). We expect that we can
exploit optimizations based on [KS90; PT87]. In particular one could incorporate
the generalization of the Paige-Tarjan algorithm to the coalgebraic setting [DM+17]
which is presented in [WMS21].

To conclude, in general, the game yields a generic partition refinement algorithm,
but to admit a polynomial runtime, we need to restrict to m-zippable functors. At the
same time, the algorithm solves our main goal, namely to derive for all non-bisimilar
state pairs the spoiler’s winning strategies coalgebraically. To our knowledge, this is
a new contribution to the field of coalgebraic partition refinement algorithms. The
next section discusses how these strategies can be transformed into distinguishing
formulas.

3.4.3 From Winning Strategies to Distinguishing Formulas

Using modal logic formulas, one can define the specifications a system has to satisfy.
Therefore, a formula that indicates that an implementation x differs from the
specification y serves as a witness for this inconsistency.

Example 3.4.10

Recall Example 2.2.2 where Iy represents a specification and Ix an implementation.
The formula φ = 2register(3paytt ∧ 3addHotel3paytt) distinguishes Ix, Iy since
Iy ⊨ φ and Ix ⊭ φ.

Next we illustrate how to derive a distinguishing modal logic formula from the
winning strategy of S computed by Algorithm 3.1. The other direction (obtaining the
winning strategy from a distinguishing formula) has been covered in Theorem 3.3.7.

We focus on an on-the-fly extraction of relevant modalities, to our knowledge a
new contribution, and discuss the connection to other – given – sets of separating
predicate liftings.

One way of enabling the construction of formulas is to specify the separating set of
predicate liftings Λ in advance. But this set might be infinite and hard to represent.

112

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

Instead here we generate the modalities while constructing the formula. We focus in
particular on so-called cone modalities: given v ∈ F2 we take the upward-closure of
v as a modality.

We also explain how logical formulas with cone modalities can be translated into
other separating sets of modalities.

Definition 3.4.11: Cone Modalities
Let v ∈ F2. A cone modality [↑ v] is given by the following evaluation map
↑v : F2→ 2:

↑v(u) = ev(u) =

1, if v ≤F u

0, otherwise

F2 v

Figure 3.17: Cone of
value v ∈ F2.

Obviously these evaluation maps yield a separating set of predicate liftings (provided
that the functor has such a set): if v0 ̸= v1 (for v0, v1 ∈ F2), either v0 ≰F v1 or
v1 ≰F v0, since we require that the lifted order is anti-symmetric on F2. In the
first case ↑v0(v0) = 1 and ↑v0(v1) = 0, in the second case ↑v1 is the distinguishing
evaluation map.

Example 3.4.12

We discuss modalities respectively evaluation maps in more detail for the functor
F = Pf (A×_) (see also Example 3.3.4). In our example A = {a, b}. The set F2
with order ≤F is depicted as a Hasse diagram in Figure 3.18.

∅ {(a,0)}

{(a,0), (a,1)}

{(a,1)}

{(b,0)}

{(b,0), (b,1)}

{(b,1)}

{(a,0), (b,0)}

{(a,0), (a,1), (b,0)} {(a,0), (b,0), (b,1)}

{(a,1), (b,1)}

{(a,0), (a,1), (b,0), (b,1)}{(a,1), (b,0)} {(a,0), (b,1)}

{(b,0), (b,1), (a,1)} {(a,0), (a,1), (b,1)}

a

a

Figure 3.18: Set F2 = Pf ({a, b} × 2) with order ≤F (for labelled transition
systems). 2a and 3a are given by all values above the drawn (dashed) lines.

113

3. Behavioural Equivalence:
Games over Set

For every element there is a cone modality, 16 modalities in total. It is known
from the Hennessy-Milner theorem [HM85] that two modalities are enough: either
2a,2b (box modalities) or 3a,3b (diamond modalities), where for v ∈ F2:

2a(v) =

1 if v ∩ {(a, 0)} = ∅

0 otherwise
3a(v) =

1 if (a, 1) ∈ v

0 otherwise

In Figure 3.18 2a respectively 3a are represented by the elements above the two
lines (solid respectively dashed).

Example 3.4.13

As a second example we discuss the functor F = (D_+1)A, specifying probabilistic
transition systems. The singleton set 1 = {•} denotes termination. Again we set
A = {a, b}.
Note that since D2 is isomorphic to the interval [0, 1], we can simply represent
any distribution d : 2→ [0, 1] by d(1). Hence F2 ∼= ([0, 1] + 1)A.

[a 7→ •, b 7→ •] [a 7→ 0, b 7→ •]

...

[a 7→ 1, b 7→ •]

[a 7→ •, b 7→ 0]

...

[a 7→ •, b 7→ 1]

[a 7→ 0, b 7→ 0]

.
.

. .
. . . .

[a 7→ 1, b 7→ 1]

Figure 3.19: F2 ∼= ([0, 1]+1)A with order≤F (for probabilistic transition systems).

The partial order is componentwise and is depicted in Figure 3.19: it decomposes
into four disjoint partial orders, depending on whether both a, b, neither or one of
them is mapped to •. The right-hand part of this partial order consists of function
[0, 1]A with the pointwise order. We will also abbreviate a map [a 7→ p, b 7→ q] by
⟨ap, bq⟩.

We will now show how a winning strategy of S can be transformed into a distin-
guishing formula, based on cone modalities, including some examples.

The basic idea behind the construction in Definition 3.4.14 is the following:
Let (x, y) be a pair of states separated during iteration i of the partition refine-
ment algorithm (Algorithm 3.1). This means that we have the following situation:
FχP (α(x)) ≰F FχP (α(y)) (or vice versa) for some equivalence class P of Ri−1.
Based on v = FχP (α(x)) we define a cone modality ev = ↑ v. Now, if we can

114

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

characterize P by some formula ψ, i.e., JψK = χP (we will later show that this is
always possible), we can define the formula φ = [ev]ψ. Then it holds that:

JφK(x) = ev(F JψK(α(x))) = ↑v(FχP (α(x))) = 1

JφK(y) = ev(F JψK(α(y))) = ↑v(FχP (α(y))) = 0

That is we have x |= φ and y ̸|= φ, which means that we have constructed a
distinguishing formula for x, y.

First, we describe how a winning strategy for the spoiler for a pair (x, y) is
converted into a formula and then prove that this formula distinguishes x, y.

Definition 3.4.14
Let x ≁ y (equivalently (x, y) /∈ Rn) and let (T, I) be the winning strategy for
the spoiler computed by Algorithm 3.1. We construct a formula φx,y as follows:
assume that T (x, y) = (s, P) where s = x. Then set v = FχP (α(x)), ev = ↑v
and define φx,y = [ev]φ, where φ is constructed in the following way:

• I(x, y) = 1: φ = tt

• I(x, y) > 1: φ =
∨

x′∈P

(∧
y′∈ X\P

φx′,y′
)

Whenever we have s = y we instead define v = FχP (α(y)) and φx,y = ¬[ev]φ.

This encoding is well-defined, because it always holds that I(x′, y′) < I(x, y) (since
P is an equivalence class of Ri−1 where i = I(x, y)).

Proposition 3.4.15

Let α : X → FX be a coalgebra and assume that we have computed Rn, T, I

with Algorithm 3.1. Then, given (x, y) /∈ Rn, the construction in Definition 3.4.14
yields a formula φx,y ∈ Lκ(Λ) such that x ⊨ φx,y and y ⊭ φx,y.

Proof: We prove this by induction over i = I(x, y):

i = 1 : x, y have been separated at Step 1, since FχX(α(x)) ≰F FχX(α(x)), where
T (x, y) = (x,X) (or vice versa), because X is the only equivalence class so far.
Note also that φ = tt and JttK = X.

We set v = FχX(α(x)), ev =↑v and we have

Jφx,yK(x) = ev(F JφK(α(x))) = ev(FχX(α(x))) = ev(v) = 1

Jφx,yK(y) = ev(F JφK(α(y))) = ev(FχX(α(y))) = 0

115

3. Behavioural Equivalence:
Games over Set

Hence x |= φx,y and y ̸|= φx,y.

In the case where T (x, y) = (y,X), we have v = FχX(α(y)), ev =↑v and we
obtain

J[ev]φK(x) = ev(F JφK(α(x))) = ev(FχX(α(x))) = 0

J[ev]φK(y) = ev(F JφK(α(y))) = ev(FχX(α(y))) = ev(v) = 1

Hence again x |= φx,y and y ̸|= φx,y.

i→ i+ 1 : Due to the induction hypothesis we can assume that the φx′,y′ are distin-
guishing formulas for (x′, y′) with I(x′, y′) < i+ 1.

First, we show that JφK = P .

• Let z ∈ P . Then there exists an x′ ∈ P (namely x′ = z) such that
z |= φx′,y′ for all y′ /∈ P . Furthermore, by construction of φx′,y′ it
holds that y′ ̸|= φx′,y′ . This means that z |=

∧
y′∈X\P φx′,y′ and also

z |=
∨

x′∈P

∧
y′∈X\P φx′,y′ = φ.

• Let z /∈ P . Then for every x′ ∈ P there exists an y′ /∈ P (namely y′ = z)
such that z ̸|= φx′,y′ . Hence z ̸|=

∧
y′∈X\P φx′,y′ . Since this is true for

every such x′ we also have z ̸|=
∨

x′∈P

∧
y′∈X\P φx′,y′ = φ.

Assume that T (x, y) = (x, P) (the case T (x, y) = (y, P) can be handled
analogously as for i = 1). Hence we know that FχP (α(x)) ≰F FχP (α(y)).

We set v = FχP (α(x)), ev =↑v and we have

Jφx,yK(x) = ev(F JφK(α(x))) = ev(FχP (α(x))) = ev(v) = 1

Jφx,yK(y) = ev(F JφK(α(y))) = ev(FχP (α(y))) = 0

Hence x |= φx,y and y ̸|= φx,y.

□

We next present an optimization of the construction in Definition 3.4.14, inspired
by [Cle90]. In the case I(x, y) > 1 one can pick an arbitrary x′ ∈ P and keep only one
element of the disjunction. In order to show that this simplification is permissible,
we need the following lemma.

Lemma 3.4.16
Given two states (x, y) /∈ Rn and a distinguishing formula φx,y based on Defini-
tion 3.4.14. Let (x′, y′) be given such that I(x′, y′) > I(x, y). Then x′ ⊨ φx,y if

116

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

and only if y′ ⊨ φx,y.

Proof: We have to distinguish two different cases for I(x′, y′)

I(x′, y′) = 1: this can not be true since we require I(x′, y′) > I(x, y) ≥ 1.

I(x′, y′) > 1: For any (x, y) with I(x, y) < I(x′, y′) we have x ⊨ φx,y and y ⊭ φx,y

where φx,y = [ev]φ, ev = ↑FχP (α(x)) and T (x, y) = (x, P) (the case T (x, y) =
(y, P) is analogous). Furthermore, the semantics of φ is JφK = χP (for details
we refer to the proof of Proposition 3.4.15). Now, assume without loss of
generality that the following holds

1 = Jφx,yK(x′) = ev(FχP (α(x′))) 0 = Jφx,yK(y′) = ev(FχP (α(y′)))

Due to Proposition 3.2.17 ev is monotone. Therefore, the above assumption
implies FχP (α(x′)) ≰F FχP (α(y′)). But this yields a contradiction, since then
x′, y′ would have been separated in a Step i ≤ I(x, y) < I(x′, y′).

□

Now we can show that we can replace the formula φ from Definition 3.4.14 by a
simpler formula φ′.

Lemma 3.4.17
Let (x, y) /∈ Ri and let P be an equivalence class of Ri−1. Furthermore let

φ′ =
∧

y′∈ X\P

φx′,y′

for some x′ ∈ P . Then Jφ′K = χP .

Proof: Clearly Jφ′K ≤ JφK = χP .
We now have to show that the other inequality holds as well, so let z ∈ P .

Furthermore let y′ be arbitrary such that y′ /∈ P . Since z, x′ ∈ P and y′ /∈ P ,
where P is an equivalence class, we know that I(z, x′) > I(x′, y′) (possibly even
I(z, x′) = ∞). Hence, by Lemma 3.4.16 we have that z |= φx′,y′ if and only if
x′ |= φx′,y′ . And since the latter holds, we have z |= φx′,y′ .

Hence z |=
∧

y′∈X\P φx′,y′ = φ′. In summary, we get χP ≤ Jφ′K. □

Finally, we can simplify our construction described in Definition 3.4.14 to only
one inner conjunction.

117

3. Behavioural Equivalence:
Games over Set

Corollary 3.4.18

We use the construction of φx,y as described in Definition 3.4.14 with the only
modification that for I(x, y) > 1 the formula φ is replaced by

φ′ =
∧

y′∈ X\P

φx′,y′

for some x′ ∈ P . Then this yields a formula φx,y such that x ⊨ φx,y and y ⊭ φx,y.

A further optimization takes only one representative y′ from every equivalence class
different from P .

We now explore two slightly more complex examples to demonstrate Corol-
lary 3.4.18 , where the second example also refers to Corollary A.3.1.

Example 3.4.19

Take the coalgebra for the functor F = (D_ + 1)A depicted in Figure 3.20. Note
that A = {a, b} and X = {1, . . . , 5}. We have for instance α(3) = [a 7→ δ3, b 7→ •]
where δ3 is the Dirac distribution. This is visualized by drawing an arrow labelled
a, 1 from 3 to 3 and omitting b-labelled arrows.

1

3 4

b, 0.8
a, 0.7

a, 1

a, 0.3

2

5

a, 0.7

a, 1

b, 1

a, 0.3

b, 0.2
b, 0.2

b, 0.8

Figure 3.20: Probabilistic transition system: Three partition refinement steps
starting from the blue partition Π0 = {X} followed by Π1. The refinement
terminates because of Π2 = Π3.

We explain only selected steps of the construction: in the first step the par-
tition refinement algorithm (Algorithm 3.1) separates 1 from 3 (among other
separations), where the spoiler strategy is given by T (1, 3) = (1, X). In order to
obtain a distinguishing formula we determine v = FχX(α(1)) = ⟨a1, b1⟩ (using
the abbreviations explained in Example 3.4.13) and obtain φ1,3 = [↑⟨a1, b1⟩]tt. In
fact, this formula also distinguishes 1 from 4, hence φ1,3 = φ1,4. If, on the other

118

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

hand, we would like to distinguish 3, 4, we would obtain φ3,4 = [↑⟨a1, b•⟩]tt.
After the first iteration, we obtain the partition {1, 2, 5}, {3}, {4}. Now we
consider states 1, 2 which can be separated by playing T (2, 1) = (2, {1, 2, 5}),
since 5 behaves differently from 3. Again we compute v = FχP (α(2)) = ⟨a1, b0.8⟩
(for P = {1, 2, 5}) and obtain φ2,1 = [↑⟨a1, b0.8⟩](φ1,3 ∧ φ1,4). Here we picked 1
as the representative of its equivalence class.
In summary we obtain φ2,1 = [↑⟨a1, b0.8⟩][↑⟨a1, b1⟩]tt that is satisfied by 2, but
not by 1.

Example 3.4.20

We will now give an example where conjunction is required to obtain the distin-
guishing formula. We work with a coalgebra for the functor F = Pf (A×_), which
is depicted in Figure 3.21. Note that A = {a, b, c, d, e, f} and X = {1, . . . , 9}.

1 2

34 5

6 7 8 9

aa a

bbb
b
b

b
b

b

e c d f

Figure 3.21: For the non-deterministic labelled transition system three partition
refinement steps are necessary to obtain the distinguishing formula φ1,2.

We explain only selected steps: in the first step the partition refinement separates
6 from 7 (among other separations), where the spoiler strategy is given by
T (6, 7) = (6, X). As explained above we determine v = FχX(α(6)) = {(e, 1)}
and obtain φ6,7 = [↑{(e, 1)}]tt. In fact, this formula also distinguishes 6 from all
other states, so we denote it by φ6,∗.
Next, we consider states 3, 4, where the possible moves of 3 are a strict subset
of the moves of 4. Hence the spoiler strategy is T (3, 4) = (4, {6}), i.e., the
spoiler has to move to state 6 that is not reachable from 3. Again we compute
v = FχP (α(4)) = {(b, 1), (b, 0)} (for P = {6}) and obtain:

φ3,4 = ¬[↑{(b, 1), (b, 0)}]φ6,∗

Note that this time we have to use negation, since the spoiler moves from the

119

3. Behavioural Equivalence:
Games over Set

second state in the pair.
Finally we regard states 1, 2 where the spoiler strategy is T (1, 2) = (1, {3}). We
compute v = FχP (α(1)) = {(a, 1)} (for P = {3}) and derive:

φ1,2 = [↑{(a, 1)}]
(∧

x∈{1,2,4,...,9}
φ3,x

)
In fact, here it is sufficient to consider x = 4 and x = 5, resulting in the following
distinguishing formula:

[↑{(a, 1)}]
(
¬[↑{(b, 0), (b, 1)}][↑{(e, 1)}]tt ∧ ¬[↑{(b, 0), (b, 1)}][↑{(f, 1)}]tt

)
.

Note, that for the conjunction of φ1,2 it suffices to work with {4, 5, 3} \ {3} instead
of X \ {3} (see Corollary A.3.1).

Regarding the two examples above, it seems that cone modalities capture similar
intuitions as the standard modalities. Therefore, we analyze how the evaluation
maps for cone modalities can be transformed into other modalities.

3.4.4 Recoding Modalities

Finally, we will show under which conditions one can encode cone modalities into
generic modalities, given by a separating set of predicate liftings Λ, not necessarily
monotone. We first need the notion of strong separation.

Definition 3.4.21
Let Λ be a separating set of predicate liftings of the form ev : F2→ 2. We call Λ
strongly separating if for every t0 ̸= t1 with t0, t1 ∈ F2 there exists ev ∈ Λ such
that ev(t0) ̸= ev(t1).

We can generate a set of strongly separating predicate liftings from every separating
set of predicate liftings.

Lemma 3.4.22
Let Λ be a separating set of predicate liftings. Furthermore we denote the four
functions on 2 by id2, one (constant 1-function), zero (constant 0-function) and
neg (neg(0) = 1, neg(1) = 0).
Then

Λ′ = {ev = ev ◦ F id2, ev ◦ Fone, ev ◦ F zero, ev ◦ Fneg | ev ∈ Λ}

is a set of strongly separating predicate liftings.

120

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

Furthermore for every formula φ we have that

[ev ◦ Fone]φ ≡ [ev]tt [ev ◦ F zero]φ ≡ [ev]ff [ev ◦ Fneg]φ ≡ [ev](¬φ)

Proof:
Let t0, t1 ∈ F2 with t0 ̸= t1. According to the definition of separation there must

be a predicate p : 2→ 2 such that ev(Fp(t0)) ̸= ev(Fp(t1)). Since there are only four
such functions, p must be one of id2, one, zero, neg and we immediately obtain that
Λ′ is strongly separating.

In addition we have that, given a coalgebra α : X → FX:

J[ev ◦ Fone]φK = ev ◦ Fone ◦ F JφK ◦ α = ev ◦ F (one ◦ JφK) ◦ α

= ev ◦ F JttK ◦ α = J[ev]ttK

J[ev ◦ F zero]φK = ev ◦ F zero ◦ F JφK ◦ α = ev ◦ F (zero ◦ JφK) ◦ α

= ev ◦ F Jff K ◦ α = J[ev]ff K

J[ev ◦ Fneg]φK = ev ◦ Fneg ◦ F JφK ◦ α = ev ◦ F (neg ◦ JφK) ◦ α

= ev ◦ F J¬φK ◦ α = J[ev]¬φK

□

This means that we can still express the new modalities with the previous ones. Λ′

is just an auxiliary construct that helps us to state the following proposition. The
construction of Λ′ from Λ was already considered in [Sch08, Definition 24], where it
is called closure.

Proposition 3.4.23

Suppose that F2 is finite, and let Λ be a strongly separating set of predicate
liftings. Moreover, let v ∈ F2, and let φ be a formula. For u ∈ F2, we write
Λu = {ev ∈ Λ | ev(u) = 1}. Then

[↑v]φ ≡
∨

v≤F u

(∧
ev∈Λu

[ev]φ ∧
∧

ev /∈Λu

¬[ev]φ
)
.

Proof:
First observe that since Λ is strongly separating, every u ∈ F2 is characterized

uniquely by Λu.
Let α : X → FX be a coalgebra. We set ψu =

∧
ev∈Λu

[ev]φ ∧
∧

ev /∈Λu
¬[ev]φ and

we first show that
x |= ψu ⇐⇒ u = F JφK(α(x))

121

3. Behavioural Equivalence:
Games over Set

⇒: Assume that x |= ψu. This means that for every ev ∈ Λu we have that
ev(F JφK(α(x))) = 1 and for every ev /∈ Λu we have that ev(F JφK(α(x))) = 0.
This means that u and F JφK(α(x)) are both characterized by Λu and from the
strong separation property it follows that they are equal, i.e., u = F JφK(α(x)).

⇐: Assume that u = F JφK(α(x)). Then for every ev ∈ Λu we have that J[ev]φK(x) =
ev(F JφK(α(x))) = ev(u) = 1. For every ev /∈ Λu we obtain J[ev]φK(x) = 0.
Everything combined, we have JψuK(x) = 1 and hence x |= ψu.

We can conclude the proof by observing that

x |= [↑v]φ ⇐⇒ v ≤F F JφK(α(x)) ⇐⇒ ∃u :
(
v ≤F u ∧ u = F JφK(α(x))

)
⇐⇒ ∃u :

(
v ≤F u ∧ x |= ψu

)
⇐⇒ x |=

∨
v≤F u

ψu

□

By performing this encoding inductively, we can transform a formula with cone
modalities into a formula with modalities in Λ. The encoding preserves negation and
conjunction, only the modalities are transformed.

Example 3.4.24

We come back to labelled transition systems and the functor F = Pf (A×_) with
A = {a, b}. In this case the set {2a,2b,3a,3b} of predicate liftings is strongly
separating.
Now let v = {(a, 0), (b, 1)} ∈ Pf (A × 2) and we show how to encode the corre-
sponding cone modality using only box and diamond:

[↑v]φ ≡ (¬2aφ ∧2bφ ∧ ¬3aφ ∧3bφ) ∨ (¬2aφ ∧2bφ ∧3aφ ∧3bφ)

∨ (2aφ ∧2bφ ∧3aφ ∧3bφ)

The first term describes {(a, 0), (b, 1)}, the second {(a, 0), (a, 1), (b, 1)} and the
third {(a, 1), (b, 1)}.

Given a cone modality [↑ v] with v ∈ F2 the size of the formula depends on the
number of disjunctions (i.e. |{u ∈ F2 | v ≤F u}|) and the size of each conjunction is
determined by the size of Λ. Note that we cannot directly generalize Proposition 3.4.23
to the case where F2 is infinite. The reason for this is that the disjunction over
all u ∈ F2 such that v ≤F u might violate the cardinality constraints of the logic.
Hence we will consider an alternative, where the re-coding works only under certain
assumptions. We will start with the following example.

122

3.4. Explaining Non-Bisimilarity in a Coalgebraic Approach

Example 3.4.25

Consider the functor F = (D_ + 1)A (see also Example 3.4.13) and the corre-
sponding (countable) separating set of (monotone) predicate liftings

Λ = {ev(a,q) : F2→ 2 | a ∈ A, q ∈ [0, 1] ∩ Q0} ∪ {ev(a,•) | a ∈ A}

where ev(a,q)(v) = 1 if v(a) ∈ R0 and v(a) ≥ q and ev(a,•) = 1 if v(a) = •. Here,
a modality [ev(a,q)] indicates that the probability of making an a-transition is
greater than or equal to q, and a modality [ev(a,•)] tells us that we terminate
with a.
The disjunction

∨
v≤F u in the construction of [↑v]φ in Proposition 3.4.23 is in

general uncountable and may hence fail to satisfy the cardinality constraints of
the logic.

However, we can exploit certain properties of this set of predicate liftings, in order
to re-code modalities.

Lemma 3.4.26

Let F be the functor with F = (D_ + 1)A and let Λ be the separating set of
predicate liftings from Example 3.4.25. Furthermore let v ∈ F2. Then it holds
that:

↑v =
⋂

ev∈Λ,ev(v)=1
êv

Proof:

“⊆” Let u ∈ F2 with u ∈↑ v, i.e., v ≤F u. Whenever ev(v) = 1 we also have
ev(u) = 1 due to the monotonicity of the predicate liftings (cf. Proposi-
tion 3.2.15) and hence u ∈ êv. Since this holds for all such ev, we can
conclude that u ∈

⋂
ev∈Λ,ev(v)=1 êv.

“⊇” Now suppose by contradiction that we have u ∈ F2 with v ≰F u and
u ∈

⋂
ev∈Λ,ev(v)=1

êv.

There are three cases which may cause v ≰F u, in particular they are distin-
guished by a specific a ∈ A:

• v(a), u(a) ∈ R0, but v(a) ≰ u(a), which implies u(a) < v(a). However,
there exists q ∈ [0, 1]∩Q0 with u(a) < q ≤ v(a) and for the corresponding

123

3. Behavioural Equivalence:
Games over Set

modality ev(a,q) ∈ Λ we have ev(a,q)(u) = 0, ev(a,q)(v) = 1 and hence
u ̸∈

⋂
ev∈Λ,ev(v)=1

êv.

• v(a) ∈ R0, u(a) = •: Now take any q ∈ [0, 1] ∩ Q0 with q ≤ v(a). We use
the modality ev(a,q), for which we have ev(a,q)(u) = 0, ev(a,q)(v) = 1 and
the proof proceeds as before.

• v(a) = •, u(a) ∈ R0: Now we take the modality ev(a,•), for which we have
ev(a,•)(u) = 0, ev(a,•)(v) = 1 and again the proof proceeds as before.

□

Note that this property does not hold for the 2 and 3 modalities for the functor
F = Pf (A × _). This can be seen via Figure 3.18, where the upward closure of
{(b, 0)} contains three elements. However, {(b, 0)} is only contained in the modality
2a (and no other modality), which does not coincide with the upward-closure of
{(b, 0)}.

Next we show the following proposition, which gives us a recipe for transforming
cone modalities that satisfy the properties of Lemma 3.4.26 into the given modalities.

Proposition 3.4.27

Given a set Λ′ ⊆ Λ of predicate liftings we have

[
⋂

ev∈Λ′

ev]φ ≡
∧

ev∈Λ′

[ev]φ.

Proof:

“⊆” Let x ⊨ [
⋂

ev∈Λ′ ev]φ, which implies that (
⋂

ev∈Λ′ ev)(F JφK(α(x))) = 1. From
this we conclude that ev(F JφK(α(x))) = 1 for all ev ∈ Λ′, x |= [ev]φ. And
finally we have x |=

∧
ev∈Λ′ [ev]φ.

“⊇” Let x ⊨
∧

ev∈Λ′ [ev]φ, which means that x ⊨ [ev]φ for all ev ∈ Λ′. This implies
that ev(F JφK(α(x))) = 1. Hence we obtain (

⋂
ev∈Λ′ ev)(F JφK(α(x))) = 1 and

finally x ⊨ [
⋂

ev∈Λ′ ev]φ.

□

Note that this construction might again violate the cardinality constraints of
the logic. In particular, for the probabilistic case (Example 3.4.13) we have finite
formulas, but countably many modalities. However, if we assume that the set of
labels A is finite and restrict the coefficients in the coalgebra to rational numbers,

124

3.5. Conclusion and Discussion

every cone modality can be represented as the intersection of only finitely many
minimal given modalities and so the encoding preserves finiteness.

3.5 Conclusion and Discussion

At the beginning of this chapter, we noted that, in contrast to labelled transition
systems, there was no game-based view in the sense of predicate liftings, which forms
the base for coalgebraic modal logic. In summary, the contribution of our work rests
on two areas:

▷ First of all, we present a coalgebraic game characterization for bisimulation. Our
contribution generalizes the games of [DLT08; Sti99] and allows us to derive the
corresponding game for each branching type defined by a weak pullback preserving
functor over the category Set. In addition, the game is strongly linked to the existence
of monotone and separating modalities, which are implied by an anti-symmetric
lifted order ≤F . It is quite natural to consider monotone modalities as they are
widely used in most common case studies [LS89; BRS08].

▷ Secondly, we give concrete recipes for explaining non-bisimilarity in a coalgebraic
setting. This involves the computation of the spoiler winning strategies based on a
partition refinement algorithm as well as the generation of distinguishing formulas
according to the ideas of [Cle90]. Therefore, we defined so-called cone modalities to
avoid the specification of a separating set of monotone predicate liftings. Additionally,
we provide encoding techniques into the corresponding standard modalities.

Regarding the first item, we are mainly aware of the work by Baltag [Bal00], which
describes a coalgebraic game based on the bisimulation relation, which differs from
the games studied in this paper and is associated with another variant of logic, namely
Moss’ coalgebraic logics [Mos99]. A variant of Baltag’s game was used in [Kup07]
for terminal sequence induction via games. Moreover, we are aware of games from a
fibrational perspective in [KK+19] which is linked to our results about coalgebraic
metric games [KM18] presented in Chapter 5. (There are more contributions on
evaluation games which describe the evaluation of a modal formula on a transition
system, see for instance [FLV10].) Incidentally, we expect that the bisimulation game
can be extended to polyadic predicate liftings.

To our knowledge, a generic way that automatically derives explanations for
non-bisimilar state pairs is new. The difference between a coalgebraic partition
refinement algorithm [PT87; DM+17] that lifts the idea of Paige/Tarjan [PT87] to
coalgebras is already discussed detailed in Section 3.4.1. The main difference results

125

3. Behavioural Equivalence:
Games over Set

from the so-called three way splitting, which selects equivalence classes for splitting
in a clever way. Our results obtained from the game-based partition refinement
algorithm point to the fact that a combination of our techniques to derive significant
modalities with the three way splitting will improve the polynomial runtime behaviour
and slacken the requirements (cf. [WMS21]).

For the generation of distinguishing formulas an option would be to fix the
modalities a priori and to use them in the game, similar to the notion of λ-bisimulation
[GS13; KM18]. However, there might be infinitely many modalities and the partition
refinement algorithm can not iterate over all of them. A possible solution would be to
find a way to check the conditions symbolically in order to obtain suitable modalities.
Furthermore, we present optimization techniques wrt. the size of the distinguishing
formula (cf. Appendix A.3.1) and we would like to compare our coalgebraic results
with Cleaveland’s definition of a minimal formula [Cle90].

Of course we are also interested in whether we can lift the extra assumptions that
were necessary in order to re-code modalities in Section 3.4.4.

An interesting further idea is to translate the coalgebra into multi-neighbourhood
frames [Han03; KW99], based on the predicate liftings, and to derive a λ-bisimulation
game as in [KM18; GS13] from there. (The λ-bisimulation game does not require
weak pullback preservation and extends the class of admissible functors, but requires
us to fix the modalities rather than generate them.) One could go on and translate
these multi-neighbourhood frames into Kripke frames, but this step unfortunately
does not preserve bisimilarity.

126

4

Tools and Case Studies

The game and the generation of the distinguishing formulas introduced in Chapter 3
have been implemented in a tool called T-Beg. A second tool referred to as Paws
(Program for the Analysis of Weighted Systems) has been mainly developed during
my master thesis together with Sebastian Küpper, which primarily supports a fixed
type of a weighted functor, where the user can change the semiring. The work
presented in [KKM17] relies on the further development of Paws, including several
extensive runtime tests.

Section 4.1 starts with a short introduction to T-Beg. The software design of
the tool is presented in Section 4.1.1 and an interface which refers to the idea to
represent transition systems of branching type F (i.e functors) via F -coalgebras is
described in Section 4.1.2.

4.1 T-BEG: A Generic Tool for Games and the Con-
struction of Distinguishing Formulas

A tool for playing bisimulation games is useful for teaching, for illustrating examples
in talks, for case studies and in general for interaction with the user. There are already
available tools, providing visual feedback to help the user understand why two states
are (not) bisimilar, such as The Bisimulation Game Game1 or Bisimulation
Games Tools2 (see [FKW17]). These games are designed for labelled transition
systems and [FKW17] also covers branching bisimulation.

Our tool T-Beg goes beyond labelled transition system and allows to treat
coalgebras in general (under the restrictions that we impose), that is, we exploit the
categorical view to create a generic tool. As shown earlier in Sections 3.4.2 and 3.4.3,
the coalgebraic game defined in Definition 3.3.1 provides us with a generic algorithm
to compute the winning strategies and distinguishing formulas.

The user can either take on the role of the spoiler or of the duplicator, playing on
some coalgebra against the computer. The tool computes the winning strategy (if

1http://www.brics.dk/bisim/
2https://www.jeroenkeiren.nl/2017/02/23/on-games-and-simulations.html

127

4. Tools and Case Studies

any) and follows this winning strategy if possible. We have also implemented the
construction of the distinguishing formula for two non-bisimilar states.

The genericity over the functor is in practice achieved as follows: The user either
selects an existing functor F (e.g. the running examples of [KMS20b]), or implements
his/her own functor by providing the code of one class with nine methods (explained
below). Everything else, such as embedding the functor into the game and the
visualization are automatically handled by T-Beg.

Then, he/she enters or loads a coalgebra α : X → FX (with X finite), stored as
csv (comma separated value) file. Now the user can switch to the game view and
start the game by choosing one of the two roles (spoiler or duplicator) and selecting
a pair of states (x, y), based on the visual graph representation.

Figure 4.1: Screenshot of the graphical user interface with a game being played.

Next, the computer takes over the remaining role and the game starts: In the
game overview, the user is guided through the steps by using two colors to indicate
whether it is spoiler’s (violet) or duplicator’s (cyan) turn (see Figure 4.1).

In the case of two non-bisimular states, the tool will display a distinguishing
formula at the end of the game.

4.1.1 Design

We now give an overview over the design and the relevant methods within the tool.
We will also explain what has to be done in order to integrate a new functor.

128

4.1. T-BEG: A Generic Tool for Behavioural Equivalence Games

T-Beg is a Windows tool offering a complete graphical interface, developed in
Microsoft’s Visual Studio using C#, especially Generics. It uses a graph library3,
which in turn provides a GraphEditor that allows for storing graphs as MSAGL files
or as png and jpg files.

The program is divided into five components: Model, View, Controller, Game
and Functor. We have chosen MVC (Model View Controller) as a modular pattern,
so modules can be exchanged. Here we have several Model⟨T ⟩ managed by the
Controller , where the functor in the sense of a Functor class, which always implements
the Functor Interface, is indicated by the parameter ⟨T ⟩.

While the tool supports more general functors, there is specific support for functors
F with F = V G(−) where V specifies a semiring and G preserves finite sets. That is,
F describes the branching type of a weighted transition system, where for instance
G = A× (_) + 1 (introducing finitely many labels and termination). Coalgebras are
of the form X → V GX or – via currying – of the form X ×GX → V , which means
that they can be represented by X×GX-matrices (matrices with index sets X, GX).
In the implementation V is the generic data type of the matrix entries. In the case
of the powerset functor we simply have V = 2 and G = ID.

If the branching type of the system can not simply be modelled as a matrix,
there is an optional field that can be used to specify the system, since Model⟨T ⟩
calls the user-implemented method to initialize the F -coalgebra instance. The
implementation of Algorithm 3.1 can be found in Game⟨T, V ⟩, representing the core
of the tool’s architecture, whose correctness is only guaranteed for functors that meet
our requirements, such as the functors used in the paper [KMS20b].

4.1.2 Functor Interface

As mentioned previously, the user has to provide nine methods in order to implement
the functor in the context of T-Beg: two are needed for the computation, two for
rendering the coalgebra as a graph, one for creating modal formulas, another two for
loading and saving, and two more for customizing the visual matrix representation.

We would like to emphasize here that the user is free to formally implement the
functor in the sense of the categorical definition as long as the nine methods needed
for the game are provided. In particular, we do not need the application of the
functor to arrows since we only need to lift predicates p : X → 2.

Within MyFunctor , which implements the interface Functor⟨F ,V ⟩, the user
defines the data structure F for the branching type of the transition system (e.g.,

3https://www.nuget.org/packages/Microsoft.Msagl.GraphViewerGDI

129

4. Tools and Case Studies

a list or bit vector for the powerset functor, or the corresponding function type in
the case of the distribution functor). Further, the user specifies the type V that is
needed to define the entries of X ×GX (e.g. a double value for a weight or 0, 1 to
indicate the existence of a transition).

Then the following nine methods have to be provided:

Matrix⟨F ,V ⟩InitMatrix(. . .): This method initializes the transition system with the
string-based input of the user. The information about the states and the
alphabet is provided via an input mask in the form of a matrix.

bool CheckDuplicatorsConditionStep2 (. . .): given two states x, y and two predicates
p1, p2, this method checks whether

Fp1(α(x)) ≤F Fp2(α(y)).

This method is used when playing the game (in Step 2) and in the partition
refinement algorithm (Algorithm 3.1) for the case p1 = p2.

TSToGraph(. . .): This method handles the implementation of the graph-based
visualization of the transition system. For weighted systems the user can rely
on the default implementation included within the Model. In this case, arrows
between states and their labels are generated automatically.

GraphToTS(. . .): This method is used for the other direction, i.e. to derive the
transition system from a directed graph given by Graph.

string GetModalityToString(. . .): This method is essential for the automatic gen-
eration of the modal logical formulas distinguishing two non-bisimilar states
as described in Definition 3.4.14. In each call, the cone modality that results
from FχP (α(s)) with T (x, y) = (s, P) is converted into a string.

SaveTransitionSystem(. . .): In order to store a transition system in a csv file.

LoadTransitionSystem(. . .): In order to load a transition system from a csv file.

GetRowHeadings(. . .): T-Beg can visualize a transition system α : X → FX as a
X ×GX matrix within a DataGrid. For this purpose, the user needs to specify
how the RowHeaders can be generated automatically.

ReturnRowCount(. . .): This method returns the number of rows of the matrix
representing the coalgebra.

130

4.2. Case Study on Mealy Machines

4.2 Case Study on Mealy Machines

Most of the state-based models used for explanations of the theories presented in
this thesis are rather abstract in nature (see Examples in Section 2.2.1). This is due
to the fact, that transition systems derived from real implementations are highly
complex and therefore usually less demonstrative. (We refer to [DI02] which covers
the translation of C-programs into LTS and the modeling of Java-programs is treated
in [DH+01].)

Nevertheless, in order to build a bridge to the practical world we reconsider
Mealy machines (see Definition 2.2.6). As already discussed in Section 2.2.1, Mealy
machines are commonly used for the design of logical circuits and therefore the
automatic generation of Mealy machines from given specifications is of particular
interest. A logic which enables such a synthesis procedure is presented in [BRS08]
and consists of a coalgebraic modal fragment introduced in Chapter 3 extended
by the fixpoint operator ν. This extension suffices to formulate the behavior of a
state via a finite formula, which additionally can be converted into a Mealy machine
satisfying this specific formula. The transition system obtained through this process
is not necessarily minimal and therefore bisimulation offers a useful technique to
optimize the synthesis outcome [BRS08].

In order to exemplify the connection to our theory introduced in Chapter 3, we
consider sequence detection as a concrete application, which plays a significant role in
digital communication channels where bit sequences are used to identify the beginning
and ending of messages [KRM17]. Another interesting scenario with pattern search
involving Mealy machines with the input alphabet Σ = {T,A,G,C} is used for the
analysis of DNA sequences [MK16].

Since automatically generated and manually obtained models may not be minimal,
our game-theoretical approach developed within T-Beg is not only suitable for
recognizing all bisimilar state pairs; at the same time, T-Beg offers an intuitive
explanation for non-bisimilar states.

Therefore, we design a simple sequence detector (extending Example 2.2.7) and
apply our game to verify if our model is minimal (i.e., all distinct states are non-
bisimilar).

The non-overlapping Mealy machine M = ({x0, . . . , x5}, {0 , 1}, {0 , 1}, x0, δ) in
Figure 4.2 outputs 1 in case it detects the pattern 101 or 000 (see Example 2.3.13
for the details of the coalgebraic view, where we also ignore the initial state). Non-
overlapping simply means that only the first occurrence of the pattern 101 is identified

131

4. Tools and Case Studies

x0 x1x2

x3

x5

x4

1/00/0

0/0

1/0

1/00/1
0/0

1/1

0/0

1/0
0/1

1/0

Figure 4.2: A simple sequence detector identifying 101 and 000 (with non-overlapping)
and initial state x0.

in 10101, where overlapping allows to reuse the last bit of a successful detection and
an overlapping model would detect 101 two times.

To play our game we need to introduce the lifted order ≤F for F = (Σ×_)Γ with
Σ = Γ = {0 , 1}. Recall, that t1 ≤F t2 with t1, t2 ∈ ({0 , 1} × {0, 1}){0 ,1} if there
exists a t ∈ ({0 , 1} × {(0, 0), (0, 1), (1, 1)}){0 ,1} such that Fπi(t) = ti for i ∈ {1, 2}
and πi are the usual projections πi : {(0, 0), (0, 1), (1, 1)} → {0, 1}.

The transitive partial order over ({0 , 1} × {0, 1}){0 ,1} indicated by Figure 4.3
shows that the output behaviour has to be equal i.e. π′

1(t1(i)) = π′
1(t2(i)) for each

input i ∈ Σ where π′
1 : {0 , 1} × {0, 1} → {0 , 1} maps to the first component. In

addition, we have π′
2 : {0 , 1} × {0, 1} → {0, 1} which maps to the second component

and π′
2(t1(i)) ≤ π′

2(t2(i)) has to hold. Therefore, one can easily prove that the lifted
order is anti-symmetric.

({0 , 1} × {(0, 0), (0, 1), (1, 1)}){0 ,1}

≤F({0 , 1} × {0, 1}){0 ,1} ({0 , 1} × {0, 1}){0 ,1}

Fπ2Fπ1

Figure 4.3: The preorder lifting yields a transitive order since the functor is weak-
pullback preserving.

Corollary 4.2.1

The preorder lifting ≤F for F = (Σ×_)Σ yields an anti-symmetric partial order.

Proof: Reflexivity is given by the definition of the lifting [BK11] and transitivity is

132

4.2. Case Study on Mealy Machines

implied by weak-pullback preservation of F [BK11]. We prove the anti-symmetry
of ≤F via contradiction. Given t1, t2 ∈ ({0 , 1} × {0, 1}){0 ,1} with t1 ≤F t2 and
t2 ≤F t1. Assume that t1 ̸= t2 holds which implies that t1, t2 should differ in the
second component since the lifting shown in Figure 4.3 requires that the output
behaviour is equal for each input symbol. Therefore and by the fact that we just
consider the output values 0, 1, either π′

2(t1(i)) < π′
2(t2(i)) or π′

2(t2(i)) < π′
2(t1(i))

holds for some input i ∈ {0 , 1}. The proof works analogously for both cases and we
consider the first case:

π′
2(t1(i)) = 0 < 1 = π′

2(t2(i))

which yields a contradiction to t2 ≤F t1 since (1, 0) /∈ ≤. □

Therefore, we get cone modalities (see Section 3.4.3) which address the output
behaviour and the successor state reached after consuming an input i. Intuitively,
non-bisimilar states are distinguishable by their output behavior for at least one
input word.

By Corollary 4.2.1 and Proposition 3.2.17 we are now ready to play the game
and the initial pair is (x3, x5) where ⇝ denotes the evaluation of Fp(α(x)) for
x, p where p : X → {0, 1} is a predicate. We write [(_,_), (_,_)] for an element
Fp(α(x)) = t ∈ ({0 , 1} × {0, 1}){0 ,1} where the first component of [(_,_), (_,_)]
corresponds to the input 0 and the second to the input 1.

The first component of ({0 , 1} × {0, 1}) denotes the output and the second one
indicates if the successor state is captured by p.

Note, that besides the states x0, x1 no state has an impact on the value Fp(α(x3))
and the game proceeds as follows:

(x3, x5) x3, {x0, x1}⇝ [(1, 1), (0, 1)], x5
S

Next, starting from x5, D has to provide at least the value [(1, 1), (0, 1)] where
the smallest set satisfying this is given by {x0, x1}:

x5, [(1, 1), (0, 1)] x5, {x0, x1}⇝ [(1, 1), (0, 1)]D

Obviously, D can now choose the same states as S and therefore the game will
never terminate, assuming that D follows her winning strategy implied by bisimilar
state pairs.

Summarizing, due to the existence of a winning strategy for D, a merge of x3, x5

results in a simplification of the model in Figure 4.2.

133

4. Tools and Case Studies

In case two state are non-bisimilar, the winning strategy of S corresponds to an
input sequence. Consider for example (x0, x1) which produce different outputs for
the word 01. Due to Algorithm 3.1 the states x2 and x4 will be separated in the
first iteration since they differ in their outputs for input 1. Based on that separation,
x0 and x1 will be classified as non-bisimilar in the next iteration, since x2 is the
0-successor of x0 while x1 has x4 as 0-successor.

4.3 Conclusion

The didactical benefits of a tool such as T-Beg are discussed in the previous section
and demonstrated via several examples in Chapter 3.

At this point, we want to emphasize that the coalgebraic framework facilitates the
architecture design. The fact that our Algorithm 3.1 expects only two parameters,
namely a functor F and a concrete instance of type X → FX, already points to
the encapsulation of the algorithm in its own class and a separate interface for the
functors. Based on this observation, we used the namespace Generic of the .NET
environment to develop a generic MVC. The modularity implied by such a generic
approach also simplified the testing and debugging phase4. Optimizations of the
polynomial runtime behaviour are already mentioned in Section 3.5 and we refer to
the work presented in [WD+20].

The implementation costs arising on the user side can be improved by employing a
separate module called CoPaR that automatically generates functors (see [DM+19]).
But it is not clear whether the lifting of the preorder can be obtained automatically.
Given two functors F,G such that ≤F ,≤G are partial orders. According to the
results for the neighborhood functor presented in Appendix A.1 the question arises
whether the composition F ◦G always implies that ≤F ◦G is a partial order too.

Furthermore, in [KKM17] we introduced Paws, a tool to analyse the behaviour
of weighted automata and conditional transition systems. At its core, Paws is based
on a generic implementation of the coalgebraic partition refinement algorithms for
language equivalence in case of weighted automata and bisimulation for conditional
transition systems [Küp17]. The architecture of Paws allows to use arbitrary user-
defined semirings. New semirings can be generated during run-time and the user can
rely on numerous automatisms to create new semiring structures for Paws.

Nevertheless, a combination of the work in [DM+19] (including CoPaR) and
Paws [KKM17] featuring T-Beg would result in a powerful coalgebraic tool framework.

4A tutorial, small demo and testing report are available on the T-Beg website at
https://www.uni-due.de/theoinf/research/tools_tbeg.php.

134

5

Behavioural Distances:
Modal Logic and Games over Set

The second dimension of the triple bisimulation, logics and games is to move from
a qualitative to a quantitative notion of behavioural equivalence and to provide
logical and game-theoretical semantics in a quantitative manner (compare Figure 3.1
with Figure 5.1). That is, we refrain from classifying systems as either equivalent
or non-equivalent, which is often too strict, but rather measure their behavioural
distance. This makes sense in probabilistic systems, systems with time or real-valued
output.

Behavioural
distances
dα(x, y) ≤ ε

Real valued
modal logics

∀φ
de(JφK(x), JφK(y))

≤ ε

Spoiler-Duplicator
Game

for x, y, ε

Hennessy-Milner theoremDuplicator Strategy

Spoiler strategy

Figure 5.1: The quantitative coalgebraic triad of behavioural distance dα, games, and
modal logics for α : X → FX over endofunctors F : Set→ Set, where F specifies
the branching type of a system α. (The red coloring and the dashed circles indicate
the open research questions.)

5.1 Introduction

In practice it is often only possible to get implementations that are (very) close to
their specifications but not exactly the same. Therefore, it is necessary to move from

135

5. Behavioural Distances:
Modal Logic and Games over Set

a qualitative to a quantitative notion of behavioural equivalence [DLT08; AFS09].

For instance, consider the response property in reactive systems, where systems
are preferred that handle requests quickly and guarantee a large ratio of served
to unserved requests [CHR10]. Given a specification s, which requires a response
time of 5 seconds and two implementations i1, i2, we might obtain the result, that
the running time of i1 differs from the specification by 10 seconds, but i2 differs by
20 seconds. Behavioural equivalence identifies (s, i1) and (s, i2) as non-equivalent,
which is often too strict. Obviously, i1 is closer to s compared to i2 and therefore it
is more appropriate to measure behavioural distance than working with behavioural
equivalence.

Such an approach makes sense in probabilistic systems, systems with time or
real-valued output. Therefore, quantitative notions are for instance useful in the area
of conformance testing [KM15] and differential privacy [CG+14; CCP18; Dwo06].
On the other hand, two states are behaviourally equivalent in the classical sense if
and only if they have distance 0.

Behavioural metrics have been studied in different variants, for instance in proba-
bilistic settings [Des99; DG+04; CGT16] as well as in the setting of metric transition
systems [AFS09; FLT11], which are non-deterministic transition systems with quanti-
tative information. The groundwork for the treatment of coalgebras in metric spaces
was laid by Turi and Rutten [TR98].

Due to the fact, that in the quantitative context the state space of an underlying
system is equipped with a (pseudo-)metric, the work in [BB+14; BB+18] shows how
to characterize behavioural metrics in coalgebras by studying various possibilities
to lift functors from Set to the category of (pseudo-)metric spaces. Different from
[TR98; BW05] we do not assume that the coalgebra is given a priori in the category
of pseudometric spaces, that is we have to first choose a lifting of the behaviour
functor in order to specify the behavioural metric. But such liftings are not unique as
illustrated by the product bifunctor F (X,Y) = X×Y since there are several suitable
liftings: we can e.g. use the maximum or the sum metric. While the maximum
metric is canonically induced by the categorical product, the sum metric is also fairly
natural.

In particular [BB+14; BB+18] introduces the Kantorovich and the Wasserstein
liftings, which generalize well-known liftings for the probabilistic case and also capture
the Hausdorff metric. Here we use the Kantorovich lifting, since this lifting integrates
better with coalgebraic logic. Our results are parameterized over the lifting, in
particular the behavioural metrics, the game and the logics are dependent on a set Γ

136

5.1. Introduction

of evaluation functions.
In the metric setting it is natural to generalize from classical two-valued logics

to real-valued modal logics and to state a corresponding Hennessy-Milner theorem
that compares the behavioural distance of two states with the logical distance, i.e.,
the supremum of the differences of values, obtained by the evaluation of all formulas.
Such a Hennessy-Milner theorem for probabilistic transition systems was shown in
[DG+04] and also studied in a coalgebraic setting [BW05; BW06]. Similar results
were obtained in [WS+18a] for fuzzy logics, on the way to proving a van Benthem
theorem. Fuzzy logics were also studied in [SP11] in a general coalgebraic setting,
but without stating a Hennessy-Milner theorem.

Again, work on games is scarce: [DLT08] presents a game (see Section 3.3.1)
which characterizes behavioural distances, but pairs it with a classical logic. Games
derived from a categorical framework are presented in [KK+19] where a fibrational
approach is partly inspired by the work presented in this chapter. Moreover, the
authors introduce a way that captures common bisimilarity notions and games, but
do not incorporate modal logics.
The contributions in this chapter are [KM17a]:

• We extend the Kantorovich lifting in [BB+14; BB+18] to a set Γ of evaluation
maps.

• We present a real-valued coalgebraic modal logic and give a Hennessy-Milner
theorem for the general coalgebraic setting as a new contribution. Our proof
strategy follows the one for the probabilistic case in [BW05]. We need several
concepts from real analysis, such as non-expansiveness and total boundedness
in order to show that the behavioural distance (characterized via a fixpoint)
and the logical distance coincide.

• Furthermore we give a game characterization of this behavioural metric in a
game where we aim to show that dα(x, y) ≤ ε, i.e., the behavioural distance of
two states x, y is bounded by ε.

• Furthermore, we work out the strategies for the duplicator and spoiler: while
the strategy of the duplicator is based on the knowledge of the behavioural
metric, the strategy of the spoiler can be derived from a logical formula that
distinguishes both states. Therefore, we conclude by explaining how the strategy
for the spoiler can be derived from a logical formula distinguishing two states.

The chapter is organized as follows: the development in the metric case is more
complex, but in several respects mimics the classical case. Hence, in order to

137

5. Behavioural Distances:
Modal Logic and Games over Set

emphasize the similarities, we will use the same structure as in Chapter 3. After
this introduction (Section 5.1) we start with foundations (Section 5.2), followed
by the introduction of modal logics and the proof of the Hennessy-Milner theorem
in Section 5.3. In Section 5.4 we will introduce the game with a proof of its
soundness and completeness. Finally we will show how the strategy for the spoiler
can be derived from a logical formula. In the end we wrap everything up in the
conclusion (Section 5.5).

5.2 Foundations

For the beginning we restrict to the same setting as in Chapter 3, where a system
is given by a coalgebra α : X → FX in Set. For further details regarding category
theory we refer to Section 2.3.

Note that this chapter contains several results which are new with respect
to [BB+18], in particular the extension of the Kantorovich lifting to several evaluation
maps and Propositions 5.2.19, 5.2.20, 5.2.22, 5.2.23 and 5.2.26.

In the classical case discussed in Chapter 3, we consider behavioural equivalence
characterized by relations over X ×X. Such relations can be interpreted as functions
of type X × X → {0, 1}, where (x, y) 7→ 1 means that states x, y have the same
observable behaviour, and otherwise a state pair is recognized as non-equivalent.

To talk about distances, we consider functions of type X ×X → R0 (0 ∈ R0) and
assume that ⊤ is an element of R0, it denotes the upper bound of our distances.
Dual to Chapter 3, (x, y) 7→ 0 means that the distance of x and y is zero, i.e. they
are behavioural equivalent. A value v > 0 indicates how similar the behaviour of x
and y is, whereby a value closer to ⊤ signifies that two states behave very differently.
Such functions are given by the standard notion of a pseudometric space.

Definition 5.2.1: Pseudometric, Pseudometric Space

Let X be a set and d : X × X → [0,⊤] a real-valued function, we call d a
pseudometric if it satisfies

1. Reflexivity: d(x, x) = 0 (d is a metric if in addition d(x, y) = 0 implies
x = y.)

2. Symmetry: d(x, y) = d(y, x)

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ X. If d satisfies only Condition 1 and 3, it is a directed

138

5.2. Foundations

pseudometric.
A (directed) pseudometric space is a pair (X, d) where X is a set and d is a
(directed) pseudometric on X.

Example 5.2.2

We will consider the following (directed) metrics on [0,⊤]: the metric given by
the Euclidean distance de : [0,⊤] × [0,⊤] → [0,⊤] with de(a, b) = |a − b| and
the directed metric defined by truncated subtraction with d⊖(a, b) = a ⊖ b =
max{a− b, 0}. Note that de(a, b) = max{d⊖(a, b), d⊖(b, a)}.

Maps between pseudometric spaces are given by non-expansive functions, which
guarantee that mapping two elements either preserves or decreases their distance.
Functions that decrease and do not increase the distances play an important role
in transportation theory [Vil09], but the intuition can also be transferred to system
behaviour analysis [BB+18; Ker16].

Definition 5.2.3: Non-expansive Function

Let (X, dX), (Y, dY) be pseudometric spaces. A function f : X → Y is called
non-expansive if dX(x, y) ≥ dY (f(x), f(y)) for all x, y ∈ X. In this case we write
f : (X, dX) 1−→ (Y, dY).

On some occasions we need to transform an arbitrary function into a non-expansive
function, which can be done as follows.

Lemma 5.2.4
Let d be a pseudometric on X and let f : X → [0,⊤] be any function. Then we
define a non-expansive function h : (X, d)→ ([0,⊤], de) via h(z) = sup{f(u)−
d(u, z) | u ∈ X} which satisfies f ≤ h.
Analogously we define the function g : (X, d)→ ([0,⊤], de) via g(z) = inf{f(u) +
d(u, z) | u ∈ X} which is non-expansive and satisfies g ≤ f .

Proof: The first obvious fact is that, f ≤ h holds, since f(z) = f(z) − d(z, z) ≤
sup{f(u)− d(u, z) | u ∈ X} = h(z).

Next, we show that h is non-expansive. Let z, z′ ∈ X. Due to the definition of h
there exists for all δ > 0 a u ∈ X with h(z) ≤ f(u)−d(u, z) + δ and f(u)−d(u, z′) ≤
h(z′). Combined, we have

h(z)− h(z′) ≤ (f(u)− d(u, z) + δ)− f(u) + d(u, z′) = d(u, z′)− d(u, z) + δ.

139

5. Behavioural Distances:
Modal Logic and Games over Set

Since this holds for every δ > 0 we have h(z)− h(z′) ≤ d(u, z′)− d(u, z). Due to the
triangle inequality d(u, z′) ≤ d(u, z) + d(z, z′), hence

h(z)− h(z′) ≤ d(u, z′)− d(u, z) ≤ d(z, z′).

Analogously, we can show h(z′) − h(z) ≤ d(z′, z) = d(z′, z) (due to symmetry),
hence de(h(z), h(z′)) ≤ d(z, z′), which means that h is non-expansive.

For the function g the proof is analogous. □

Next, we want to explain, how the lifting of the behaviour functor enables the
construction of a pseudometric d↑ over the set FX from a behavioural pseudometric
d over the state space X for a given coalgebra α : X → FX.

To better understand the categorical view on such lifting techniques presented
in [BB+14; BB+18] and supplemented by the work in this thesis, we first explore
this concept on two concrete examples. Moreover, these two transition systems serve
as our running motivation for quantitative system analysis. Therefore, the next
subsection introduces the background information of two different branching-types:
metric transition systems (MTS) and probabilistic systems (PB).

5.2.1 Two Quantitative Models

There are many quantitative application scenarios when it comes to the development
and implementation of software systems. Software itself exhibits a rather discrete
behaviour based on events, inputs or outputs. In contrast to this, several processes in
the environment show continuous behaviour. It is not uncommon that components
with continuous behaviour interact with discrete systems. For instance embedded sys-
tems are present everywhere: in electrical, mechanical or chemical systems [CRH02].
Such systems are called hybrid systems or cyber-physical systems [KM15].

+

t

f(t)

Figure 5.2: Combining discrete systems with continuous systems [CRH02].

140

5.2. Foundations

Moreover, quantitative systems often deal with costs, which are in the context
of software systems energy costs, processor costs (power and time) or memory
costs [BF16; BHR14; AFS04]. Such phenomena (costs, rewards, or other observations
with respect to hybrid systems) are captured by a set of continuous variables, where
a continuous variable can take on uncountably many values.

In the literature one finds a lot of theoretical models that are expressive enough
to capture continuous behaviour. For the interested reader we refer to (priced)
timed automata (PTA) [BF16] or hybrid labelled transition systems (HLTS) [KM15].
Moreover, one should notice, that some of the models enable discrete-time samplings
of continuous systems, where so-called propositions are real-valued discrete snapshots
of continuous variables [AFS04].

There is no doubt that verifying such systems is of particular interest. One
technique is known under the term of conformance-testing, where test cases are
generated from models to verify how good an implementation approximates a spec-
ification [KM15]. As already indicated, there are several ways to model hybrid
systems, and by the work in [KM15] we know, that some of them (e.g. HLTS) can
be transformed into metric transition systems (MTS).

At this point, we want to introduce the notion of MTS presented in [AFS04],
where we omit a set of labels compared to the version given in [KM15]. MTS offer a
rather high level of abstraction and therefore the following model mainly serves as
an illustrative example. A scenario of a real world application modelled via an MTS
can be found in [GZ12].

We denote with Σ = {r1, · · · , rn} a finite set of propositions and each r ∈ Σ
is associated with a pseudometric space (Mr, dr). Besides, we must have a finite
⊤ ∈]0,∞[such that dr : M2

r → [0,⊤] for all r ∈ Σ. A valuation of Σ is a function
v : Σ →

⋃
r∈ΣMr. For each proposition r ∈ Σ the observation v(r) is given by a

value in Mr. We denote the set of all these valuations by U [Σ] [AFS09].

Definition 5.2.5: Metric Transitions System (MTS)

A metric transition system is a quadruple M = (S, τ,Σ, [·]), where S is a set of
states, τ ⊆ S × S is a transition relation, and Σ is a finite set of propositions.
Besides, every state s is assigned a valuation [s] ∈ U [Σ] given by the function
[·] : S → U [Σ]. We define τ(s) := {s′ ∈ S | (s, s′) ∈ τ}.

Now, one can compute the distance d(s, t) between two states s, t ∈ S based on
the so-called Hausdorff-Distance [AFS09].

141

5. Behavioural Distances:
Modal Logic and Games over Set

Definition 5.2.6: Hausdorff Metric
We lift a metric space (X, d) to (PfX, d

′) : for X1, X2 ⊆ X as follows:

dH(X1, X2) = max{max
x∈X1

min
y∈X2

d(x, y),max
y∈X2

min
x∈X1

d(y, x)}

It has already been observed that the Hausdorff metric is a monotone lifting and
additionally the space of pseudometrics forms a complete lattice [BB+18]. Therefore
and based on the Knaster-Tarski theorem, the distance d : S × S → X between two
states in a MTS is obtained via the least fixpoint of the following fixpoint equation

d(x, y) = max{pd([x], [y]), dH(τ(x), τ(y))}

where pd([x], [y]) = |[x]−[y]| for |Σ| = 1. For the general case |Σ| > 1 we get the follow-
ing propositional distance pd : U [Σ]2 → [0,⊤] for all valuations u, v ∈ U [Σ]2 [AFS09,
Definition 10]:

pd(u, v) = max
r∈Σ

dr(u(r), v(r))

Next, given the sets of successors X1, X2 respectively of x and y, the distance is
derived in such a way that for each element sx ∈ X1 and sy ∈ X2 take the closest
element y′ ∈ X2 and x′ ∈ X1 and measure the distances d(sx, y

′), d(sy, x
′). Finally,

take the maximum of all such distances.

Example 5.2.7

Figure 5.3 shows a metric system M = (S, τ,Σ, [·]) where Σ is a singleton
representing some quantitative proposition. We explain the calculation of the
distance d(s, t) between the states s, t ∈ S.

s t

1 0

30.4 4 0.7

2 0

50.5 6 1

Figure 5.3: Each of the states is equipped with a value that represents a quanti-
tative observation [AFS09].

Therefore, we consider the sets of successor states X1 = τ(s) = {3, 4} and
X2 = τ(t) = {5, 6}. Note, that all these elements have no successor states and
are distinguished only by their values [·].
According to Definition 5.2.6 we take for each element x ∈ X1 the closest

142

5.2. Foundations

element y ∈ X2 and determinine the maximum. For an x ∈ X1 the closest
element is computed based on the distance d(x, y) for each y ∈ X2, where
d(x, y) = max{dr([x], [y]), dH(τ(x), τ(y))}.
Analogously, we take for each element y ∈ X2 the closest element x ∈ X1 and
again determinine the maximum. Finally, we take the maximum of the two
maxima.
Thus, we get d(s, t) = max{dr(0, 0), dH({3, 4}, {5, 6})} = max{0, 0.3} = 0.3 with
dH({3, 4}, {5, 6}) = max{max{0.2, 0.1},max{0.1, 0.3}} = max{0.2, 0.3}.

Next, we motivate a quantitative view on probabilistic systems (see Definition 2.2.4)
compared to probabilistic bisimulation (see Definition 2.2.10). Naturally, probabilistic
branching enables a more appropriate analysis of system behaviour. Therefore
we proceed with probabilistic systems already introduced in Section 2, but for
simplification we restrict to systems without labels.

Here, we want to underline that bisimulation is an extremely strict concept.
Especially when you consider that a transition can fail as it happens in server based
applications, which handle an enormous number of requests daily [CHR10].

To integrate these specific problems into the design of an application, a specification
requires that a system handles such exceptions with a probability of 100%. Now, a
valid implementation behaves in a stable way in 98% of the exceptions. Obviously,
bisimulation classifies an unsuitable solution (handling only 70% of the exceptions)
in the same way as the first version.

Example 5.2.8

Assume, that the systems given in Figure 5.4 represent a subsystem in some larger
system. Each transition is equipped with a probability modelling the exception
handling rate.
The states Es, E1, E2 are reached if an exception occurs. The states F1, F2

represent the failure states, reached in case an exception is not handled. Otherwise
the states Hs, H1, H2 indicate that an exception is handled by the system.

143

5. Behavioural Distances:
Modal Logic and Games over Set

s

Es

Hs

1.0

i1

E1

F1 H1

0.02 0.98

1

1.0

i1

E2

F2 H2

0.2 0.8

1

Figure 5.4: A probabilistic system with termination, where d(s, i1) = 0.02 ̸= 0
and d(s, i2) = 0.20 ̸= 0 (cf. [Hop20]).

In general measuring the distance of two states in a probabilistic system instead
of expecting the states to admit equivalent behaviour seems to be more adequate.

Example 5.2.9

Each transition in Figure 5.5 is equipped with a probability to provide quantitative
transition information.
The tolerance threshold for the behaviour of the state pair (1, 2) is described
by ε ∈ [0, 1]. Assume, that ε is a tiny value, then state 2 has a slightly greater
probability to end up in a terminal state than state 1.

x

1

3 4 5

1
2

1
41

4

1

y

2

6 7

1
2 − ε

1
2 + ε

1

Figure 5.5: A probabilistic system with termination, where d(x, y) = ε (inspired
by [BW06]).

As shown in Example 5.2.9 the distance of two states depends on the probabilities
of the transitions. Therefore, we proceed with the computation of the distance
between two probability distributions px, py on a metric space to obtain the distance
between two states in a probabilistic system (i.e. lifting the distance to probability
distributions). Note, that ⊤ = 1 determines the distance between a terminating state
and a non-terminating state.

144

5.2. Foundations

Definition 5.2.10: Probabilistic Distance[BW06]

Compute the smallest fixed-point of

d(x, y) =


1 if x ∈ T, y /∈ T or x /∈ T, y ∈ T

0 if x ∈ T, y ∈ T

dP (px, py) otherwise

The distance dP between two probability distributions is given by the so-called
Kantorovich lifting [Ver06; Vil09]:

Definition 5.2.11: Kantorovich Lifting for Probability Distributions

Let p, q : X → [0, 1] be two probability distributions and d : X ×X → [0, 1] a
metric. We lift d to the space of probability distributions on X as follows:
d↑(p, q) = sup{|

∑
x∈X f(x) · p(x)−

∑
x∈X f(x) · q(x)| | f : (X, d) 1−→ ([0, 1], de)}

To summarize this section, two different models and their corresponding methods
to lift a metric have been discussed. The next section presents a generalized view on
how to lift metrics taken from [BB+18; Ker16].

5.2.2 Behavioural Distance Coalgebraically

From the previous section it can be deduced, that given a transition system α : X →
FX ∈ Set, the behavioural distance d : X × X → [0, 1] over the state space X
strongly depends on the distance between α(x) and α(y) for two given states x, y.
Thus, given an endofunctor F on Set, our goal is to define a pseudometric over X
based on a pseudometric over FX.

Therefore, the next pages introduce a coalgebraic view on lifting techniques for
metrics and most of the definitions and results are taken from [BB+18; Ker16].

Since our objects of interest are pseudometric spaces, we start by introducing a
suitable category:

Definition 5.2.12: Category of Pseudometric Spaces

Let ⊤ ∈]0,∞] be a fixed maximal element. The category PMet has as objects
all pseudometric spaces whose pseudometrics have codomain [0,⊤]. The arrows
are the non-expansive functions between these spaces. The identities are the
(isometric) identity functions and composition of arrows is function composition.

We will now define the Kantorovich lifting for Set-functors, introduced in [BB+14;

145

5. Behavioural Distances:
Modal Logic and Games over Set

Ker16]. Given a functor F we lift it to a functor F̄ : PMet→ PMet such that UF =
F̄U , where U : PMet→ Set is the forgetful functor, discarding the pseudometric.
The Kantorovich lifting is parameterized over a finite set Γ of evaluation maps
γ : F [0,⊤] → [0,⊤], the analogue to the evaluation maps for modalities in the
classical case. This is an extension of the lifting in which only a single evaluation
map is considered [BB+14]. The new version allows to generalize the liftings
introduced earlier and to capture additional examples, without going via the somewhat
cumbersome multifunctor lifting described in [BB+14].

Definition 5.2.13: Kantorovich Lifting

Let F be an endofunctor on Set and let Γ be a finite set of evaluation maps
γ : F [0,⊤]→ [0,⊤]. For every pseudometric space (X, d) the Kantorovich pseu-
dometric on FX is the function d↑Γ : FX × FX → [0,⊤], where for t1, t2 ∈ FX:

d↑Γ(t1, t2) := sup{de(γ(Ff(t1)), γ(Ff(t2))) | f : (X, d) 1−→ ([0,⊤], de), γ ∈ Γ}

We define F̄Γ(X, d) = (FX, d↑Γ) on objects, while F̄Γ is the identity on arrows.

We will abbreviate F̃γf = γ ◦ Ff . Note that F̃γ is a functor on the slice category
Set/[0,⊤], which lifts real-valued predicates p : X → [0,⊤] to real-valued predicates
F̃γp : FX → [0,⊤].

It still has to be shown that F̄ is well-defined. The proofs are a straighforward
adaptation of the proofs in [BB+14].

Lemma 5.2.14
The Kantorovich lifting for pseudometrics (Definition 5.2.13) is well-defined,
in particular it preserves pseudometrics and maps non-expansive functions to
non-expansive functions.

Proof: F̄ preserves identities and composition of arrows, since F does. Hence we
only have to show the following.

Preservation of pseudometrics: we show that reflexivity and triangle inequality
are preserved. Assume that t, t1, t2, t3 ∈ FX and let d : X × X → [0,⊤] be a
pseudometric.

• Reflexivity holds since de is reflexive:

d↑Γ(t, t) = sup{de(F̃γf(t), F̃γf(t)) | f : (X, d) 1−→ ([0,⊤], de), γ ∈ Γ} = 0

146

5.2. Foundations

• Symmetry holds since de is symmetric:

d↑Γ(t1, t2) = sup{de(F̃γf(t1), F̃γf(t2)) | f : (X, d) 1−→ ([0,⊤], de), γ ∈ Γ}

= sup{de(F̃γf(t2), F̃γf(t1)) | f : (X, d) 1−→ ([0,⊤], de), γ ∈ Γ}

= d↑Γ(t2, t1)

• Triangle inequality: since de is a pseudometric it satisfies the triangle inequality,
in particular:

de(F̃γf(t1), F̃γf(t3)) ≤ de(F̃γf(t1), F̃γf(t2)) + de(F̃γf(t2), F̃γf(t3))

for all f : (X, d) 1−→ ([0,⊤], de). Therefore we take the supremum on both sides
and obtain

d↑Γ(t1, t3) = sup
f,γ

de(F̃γf(t1), F̃γf(t3))

≤ sup
f,γ

(
de(F̃γf(t1), F̃γf(t2)) + de(F̃γf(t2), F̃γf(t3))

)
≤ sup

f,γ
de(F̃γf(t1), F̃γf(t2)) + sup

f,γ
de(F̃γf(t2), F̃γf(t3))

= d↑Γ(t1, t2) + d↑Γ(t2, t3).

Non-expansive functions: F̄γ preserves non-expansive functions:
Let f : (X, dX) 1−→ (Y, dY) be non-expansive and t1, t2 ∈ FX, then

d↑Γ
Y

(
Ff(t1), Ff(t2)

)
= sup

γ∈Γ
sup

g : (Y,dY) 1−→([0,⊤],de)

de

(
F̃γ(g ◦ f)(t1), F̃γ(g ◦ f)(t2)

)
≤ sup

γ∈Γ
sup

h : (X,dX) 1−→([0,⊤],de)

de

(
F̃γ(h)(t1), F̃γ(h)(t2)

)
= d↑Γ

X (t1, t2)

due to the fact that since both f and g are non-expansive, also their composition
(g ◦ f) : (X, dX) 1−→ ([0,⊤], de) is non-expansive.

□

Example 5.2.15

In this example we want to study the difference between the extended Kantorovich
lifting d↑Γ in Definition 5.2.13 with the parametrization over Γ and the version
d↑F based on a single evaluation map introduced in [BB+14].
Therefore, we consider the input functor I = _A for a finite set A. This functor

147

5. Behavioural Distances:
Modal Logic and Games over Set

maps a set X to XA (i.e. the set of all functions A → X) and a function
f : X → Y to fA : XA → Y A with fA(g) = f ◦ g.
Furthermore, we consider the following metric dm : XA ×XA → [0, 1] where the
distance of two functions g, h ∈ XA is measured as follows:

dm(g, h) = max
a∈A

d(g(a), h(a))

for a given pseudometric space (X, d) with d : X ×X → [0, 1].
In [Ker16] it is shown, that dm can not be characterized by the Kantorovich lifting
d↑F . Here we show, that the Kantorovich lifing parametrized over Γ enables this.
Therefore, we define Γ = {γa | a ∈ A} with γa : [0, 1]A → [0, 1] and γa(g) = g(a)
where g ∈ [0, 1]A.
Given g ̸= h (with g, h ∈ XA) there must exist at least one a ∈ A such that
g(a) ̸= h(a). Assume, that the distance dm(g, h) is based on some ai ∈ A such
that dm(g, h) = d(g(ai), h(ai)) with xi = g(ai) ̸= yi = h(ai) and d(g(a), h(a)) ≤
d(g(ai), h(ai)) for all a ∈ A and d(g(ai), h(ai)) > 0. (The case where dm(g, h) = 0
is trivial.)
Next, we need to show, that there exists a non-expansive function
(X, d)→ ([0, 1], de) witnessing that d↑Γ(g, h) = d(xi, yi). Note, that a non-
expansive function which yields |γa ◦ fA(g) − γa ◦ fA(h)| > d(xi, yi) for some
γa ∈ Γ can not exist:
Assume there is some function u : X → [0, 1] such that for some γa ∈ Γ we have
that |u(g(a))− u(h(a))| = |u(xj)− u(yj)| > d(xi, yi) where g(a) = xj , h(a) = yj

holds. But, this is a contradiction to

|u(xj)− u(yj)| ≤ d(xj , yj) ≤ d(xi, yi) = max
a∈A

d(g(a), h(a))

We define a function f : X → [0, 1] as a witness for d↑Γ(g, h) = d(xi, yi) as follows:

f(z) = d(z, yi)

First of all, we show that f yields |γai(Ff(g))− γai(Ff(h))| = d(xi, yi):

γai(Ff(g)) = f(g(ai)) = f(xi) = d(xi, yi)

γai(Ff(h)) = f(h(ai)) = f(yi) = 0

That f is non-expansive can be derived from [BB+18, Lemma 3.9].

148

5.2. Foundations

As a sanity check we observe that all evaluation maps γ ∈ Γ are non-expansive
for the Kantorovich lifting of de. In fact, the Kantorovich lifting is the least lift-
ing that makes the evaluation maps non-expansive. This also means that a non-
expansive function f : (X, d) 1−→ ([0, 1], de) is always mapped to a non-expansive
F̃γf : (FX, d↑Γ) 1−→ ([0, 1], de).

Lemma 5.2.16
Let Γ be a set of evaluation maps. Every evaluation map γ ∈ Γ is non-expansive
for the Kantorovich lifting, i.e. γ : (F [0,⊤], d↑Γ

e) 1−→ ([0,⊤], de).

Proof: We have

d↑Γ
e (t1, t2) = sup{de(F̃γf(t1), F̃γf(t2)) | f : (X, d) 1−→ ([0,⊤], de), γ ∈ Γ}

and we substitute the identity function id for f . Thus we obtain the following
inequality d↑Γ

e (t1, t2) ≥ de(F̃γid(t1), F̃γid(t2)) = de(γ(t1), γ(t2)), because F̃γid =
γ ◦ Fid = γ. □

For the following definitions we need the supremum metric on functions, since we
will be working with functions between pseudometric spaces more often. Especially,
we need a way to relate the distance between the lifted versions of two pseudometrics
with the distance of the original two pseudometrics.

Definition 5.2.17: Supremum Metric

Let (Y, d) be a pseudometric space. Then the set of all functions f : X → Y is
equipped with a pseudometric d∞, the supremum metric, defined as

d∞(f, g) = sup
x∈X

d(f(x), g(x)) for f, g : X → Y.

We consider the following restrictions on evaluation maps respectively predicate
liftings, which are needed in order to prove the results.

Definition 5.2.18: Properties of Evaluation Maps

Let γ : F [0,⊤]→ [0,⊤] be an evaluation map for a functor F : Set→ Set.

• The predicate lifting F̃γ induced by γ is non-expansive with respect
to the supremum metric whenever d∞

e (F̃γf, F̃γg) ≤ d∞
e (f, g) for all

f, g : X → [0,⊤] and the same holds if we replace de by d⊖.

• The predicate lifting F̃γ is contractive with respect to the supremum metric
whenever d∞

e (F̃γf, F̃γg) ≤ c · d∞
e (f, g) for some c with 0 < c < 1.

149

5. Behavioural Distances:
Modal Logic and Games over Set

• The predicate lifting F̃γ is ω-continuous, whenever for an ascending chain of
functions fi (with fi ≤ fi+1) we have that F̃γ(supi<ω fi) = supi<ω(F̃γfi).

The first property results from the fact, that the distance d∞
e (f, g) between two

functions f, g : X → [0,⊤] given by the supremum metric serves as an upper bound
for the distance of the lifted functions d∞

e (F̃γf, F̃γg). Behind this lies the idea, that
the evaluation maps can not increase the distance after lifting.

The second item includes only the contractive version of an upper bound with
respect to the supremum metric. A non-expansive map is just a special version of a
contractive map, where the so-called Lipschitz constant c is set to 1.

The third requirement is simply, that the supremum is preserved by F̃ . Such
restrictions with respect to the supremum are not unusual in the field of computer
science or as soon as it comes to approximation. (A similar property is known under
the term Scott-continuity from domain theory.)

It can be shown that the first property is equivalent to a property of the lifted
functor, called local non-expansiveness, studied in [TR98]. Besides, every locally
non-expansive functor on the category of complete metric spaces can be transformed
into a locally contractive one and such endofunctors have a unique fixpoint [TR98,
Theorem 7.2].

Proposition 5.2.19: Local Non-expansiveness

Let Γ be a set of evaluation maps and let F̄ be the Kantorovich lifting of a
functor F via Γ. It holds that

(dF
Y)∞(F̄ f, F̄ g) ≤ (dY)∞(f, g)

for all non-expansive functions f, g : (X, dX) → (Y, dY) (where F̄ (Y, dY) =
(FY, dF

Y)) if and only if

d∞
e (F̃γf, F̃γg) ≤ d∞

e (f, g)

for all non-expansive functions f, g : (X, dX)→ ([0,⊤], de) and all γ ∈ Γ.

Proof:

“⇒” Let t ∈ FX. By choosing the non-expansive identity function in the Kan-
torovich lifting we obtain d∞

e (F̃γf(t), F̃γg(t)) = d∞
e (F̃γid(Ff(t)), F̃γid(Fg(t))) ≤

d↑Γ
e (Ff(t), Fg(t)) ≤ d∞

e (f, g). Note that in this setting dY = de and dF
Y = d↑Γ

e .

150

5.2. Foundations

“⇐” Let again t ∈ FX.

(dF
Y)∞(F̄ f(t), F̄ g(t))

= (dY)↑Γ(Ff(t), Fg(t))

= sup{de(F̃γh(Ff(t)), F̃γh(Fg(t))) | h : (Y, dY) 1−→ ([0,⊤], de), γ ∈ Γ}

= sup{de(F̃γ(h ◦ f)(t), F̃γ(h ◦ g)(t)) | h : (Y, dY) 1−→ ([0,⊤], de), γ ∈ Γ}

We know that de(F̃γ(h ◦ f)(t), F̃γ(h ◦ g)(t)) ≤ d∞
e (h ◦ f, h ◦ g) and it is left to show

that d∞
e (h ◦ f, h ◦ g) ≤ (dY)∞(f, g) for every such h. So let x ∈ X and we obtain

de(h(f(x)), h(g(x))) ≤ dY (f(x), g(x)) since h is non-expansive. Taking the supremum
on both sides we obtain the desired result. □

Assumption: In the following we will always assume the first property in Defini-
tion 5.2.18 for every evaluation map γ, i.e., the predicate lifting F̃γ is non-expansive
with respect to the supremum metric.

Under this assumption it can be shown that the Kantorovich lifting itself is non-
expansive (respectively contractive). This time the distance of two pseudometrics
given by the supremum metric serves as an upper bound for the distance between
the Kantorovich-lifted pseudometrics.

Proposition 5.2.20

Let Γ be a set of evaluation maps and let d1, d2 : X × X → [0,⊤] be two
pseudometrics. Then d∞

e (d↑Γ
1 , d↑Γ

2) ≤ d∞
e (d1, d2), that is, the Kantorovich lifting

of metrics is non-expansive for the supremum metric.
If, in addition, every predicate lifting F̃γ for γ ∈ Γ is contractive (cf. Defini-
tion 5.2.18), we have that d∞

e (d↑Γ
1 , d↑Γ

2) ≤ c ·d∞
e (d1, d2) for some c with 0 < c < 1,

that is, the Kantorovich lifting of metrics is contractive.

Proof: We set δ = d∞
e (d1, d2). Let f be a function which is non-expansive for d1

and de, i.e., f : (X, d1) 1−→ ([0,⊤], de). We define another function h : X → [0,⊤] via
h(z) = sup{f(u)− d2(u, z) | u ∈ X} as in Lemma 5.2.4. We know that f ≤ h and

151

5. Behavioural Distances:
Modal Logic and Games over Set

f : (X, d2) 1−→ ([0,⊤], de). Now define g = h− δ
2 . We have for every z ∈ X:

f(z)− g(z) = f(z)− h(z) + δ

2 ≤
δ

2

g(z)− f(z) = h(z)− δ

2 − f(z) = sup{f(u)− d2(u, z) | u ∈ X} − δ

2 − f(z)

= sup{f(u)− f(z)− d2(u, z) | u ∈ X} − δ

2

≤ sup{d1(u, z)− d2(u, z) | u ∈ X} − δ

2

≤ δ − δ

2 = δ

2

Hence d∞
e (f, g) ≤ δ

2 . Non-expansiveness of the predicate lifting with respect to the
supremum metric (cf. Definition 5.2.18) and g < h implies de(F̃γf(t), F̃γh(t)) ≤ δ

2

for all t ∈ FX.
Given t1, t2 ∈ FX we can infer with the triangle inequality:

de(F̃γf(t1), F̃γf(t2))

≤ de(F̃γf(t1), F̃γh(t1)) + de(F̃γh(t1), F̃γh(t2)) + de(F̃γh(t2), F̃γf(t2))

≤ de(F̃γh(t1), F̃γh(t2)) + δ

Finally:

d↑Γ
1 (t1, t2)

= sup{de(F̃γf(t1), F̃γf(t2)) | f : (X, d1) 1−→ ([0,⊤], de), γ ∈ Γ}

= sup{de(F̃γf(t1), F̃γf(t2)) | f : (X, d1) 1−→ ([0,⊤], de), γ ∈ Γ,

d∞
e (f, g) ≤ δ

2 for some g : (X, d2) 1−→ ([0,⊤], de)}

≤ sup{de(F̃γg(t1), F̃γg(t2)) + δ | g : (X, d2) 1−→ ([0,⊤], de), γ ∈ Γ}

= sup{de(F̃γg(t1), F̃γg(t2)) | g : (X, d2) 1−→ ([0,⊤], de), γ ∈ Γ}+ δ

= d↑Γ
2 (t1, t2) + δ

Analogously we can show that d↑Γ
2 (t1, t2) ≤ d↑Γ

1 (t1, t2) + δ and this implies

d∞
e (d↑Γ

1 , d↑Γ
2) ≤ δ.

In the contractive case the proof is analogous. □

We will now see that for the functors studied in this chapter, we have evaluation
maps that satisfy the required conditions. To prove this, we first list some properties
of our underlying pseudometrics.

152

5.2. Foundations

Lemma 5.2.21
For all a, b, ai, bi, q ∈ [0,⊤] it holds that

1. de(a⊖ q, b⊖ q) ≤ de(a, b).

2. de(supi∈I ai, supi∈I bi) ≤ supi∈I de(ai, bi).

3. de(inf i∈I ai, infi∈I bi) ≤ infi∈I de(ai, bi).

4. d⊖(supi∈I ai, supi∈I bi) ≤ supi∈I d⊖(ai, bi).

Proof:

1. For de(a ⊖ q, b ⊖ q) = |max(a − q, 0) −max(b − q, 0)| we have to distinguish
four cases:

(a) max(a− q, 0) = max(b− q, 0) = 0: |0− 0| ≤ de(a, b)

(b) max(a− q, 0) = a− q and max(b− q, 0) = 0:

= |a− q − 0|

≤ |a− q − (b− q)| (b− q) ≤ 0

≤ |a− q − b+ q|

= de(a, b)

(c) Similarly to (1b) for max(a− q, 0) = 0 and max(b− q, 0) = b− q.

(d) max(a− q, 0) = a− q and max(b− q, 0) = b− q

|a− q − (b− q)| (b− q) > 0

= |a− q − b+ q|

= de(a, b)

2. For de(supi∈I ai, supi∈I bi) ≤ supi∈I de(ai, bi): Here, we set A = supi∈I ai and
B = supi∈I bi. Next, we consider three cases:

(a) A = B: Obviously, de(A,B) = 0 ≤ supi∈I de(ai, bi)

(b) A < B: We know, that for all δ > 0 there exists some bi such that
B ≤ bi + δ and each ai ≤ A:

B −A ≤ bi + δ − ai

= bi − ai + δ

And since, this holds for all δ > 0 we conclude B −A ≤ supi∈I de(ai, bi).

153

5. Behavioural Distances:
Modal Logic and Games over Set

(c) B < A: We know, that for all δ > 0 there exists some ai such that
A ≤ ai + δ and each bi ≤ B:

A−B ≤ ai + δ − bi

= ai − bi + δ

And since, this holds for all δ > 0 we conclude A−B ≤ supi∈I de(ai, bi).

The proofs for 3 and 4 can be derived similarly.

□

Proposition 5.2.22

The following evaluation maps induce predicate liftings which are non-expansive
with respect to the supremum metric and ω-continuous.

• The evaluation map γP for the (finite or general) powerset functor P with
γ : P[0,⊤]→ [0,⊤] where γP(R) = supR.

• The evaluation map γD for the (finitely or countably supported) proba-
bility distribution functor D (for its definition see Example 2.3.5) with
γD : D[0, 1] → [0, 1] where γD(p) =

∑
r∈[0,1] r · p(r). Note that γD corre-

sponds to the expectation of the identity random variable.

• The evaluation map γM for the constant functor MX = [0,⊤] with
γM : [0,⊤]→ [0,⊤] and γM(r) = r.

• The evaluation map γS for the constant functor SX = 1 = {•} with
γS : 1→ [0,⊤] and γS(r) = ⊤.

• The evaluation maps γI for the input functor IX = XA defined in Exam-
ple 5.2.15 with γa : [0, 1]A → [0, 1] and γa(g) = g(a) for g ∈ [0, 1]A.

Proof: In the following let f, g : X → [0,⊤].

• Observe that P̃γP (f) : PX → [0,⊤] satisfies P̃γP (f)(Z) = sup f [Z] where
Z ⊆ X.

We have

de(P̃γP (f)(Z), P̃γP (g)(Z)) = | sup f [Z]− sup g[Z]| ≤ sup
z∈Z
|f(z)− g(z)|

≤ sup
x∈X
|f(x)− f(y)| = d∞

e (f, g)

154

5.2. Foundations

(cf. Lemma 5.2.21(2)). The same holds with Lemma 5.2.21(4) if we replace de

by d⊖ and this implies non-expansiveness.

Furthermore we obtain ω-continuity via

P̃γP (sup
i<ω

fi)(Z) = sup(sup
i<ω

fi)[Z] = sup
z∈Z

sup
i<ω

fi(z) = sup
i<ω

sup
z∈Z

fi(z)

= sup
i<ω

fi[Z]

= P̃γP (fi)(Z).

• Observe that D̃γD(f) : DX → [0, 1] satisfies D̃γD(f)(p) =
∑

x∈X f(x) · p(x)
where p ∈ DX is a probability distribution on X.

We have de(D̃γD (f)(p), D̃γD (g)(p)) = |
∑

x∈X f(x) · p(x)−
∑

x∈X g(x) · p(x)| ≤∑
x∈X p(x) · |f(x) − g(x)| ≤ 1 · d∞

e (f, g). The same holds if we replace de by
d⊖ and this implies non-expansiveness.

Furthermore we obtain ω-continuity via

D̃γD (sup
i<ω

fi)(x) =
∑
x∈X

(sup
i<ω

fi)(x) · p(x)

= sup
i<ω

∑
x∈X

fi(x) · p(x)

For the last equality we have to exchange the sum and the supremum, for
which we use the fact that

∑
x∈X

f(x) = sup
X′⊆X

X′ finite

∑
x∈X′

f(x).

• Observe that M̃γM(f) : [0,⊤]→ [0,⊤] satisfies M̃γM(f)(r) = r. Hence M̃γM

maps every function to the identity, which is clearly non-expansive and ω-
continuous.

• Observe that S̃γS (f) : {•} → [0,⊤] satisfies S̃γS (f)(•) = ⊤. Hence S̃γS maps
every function to the constant ⊤-function, which is again clearly non-expansive
and ω-continuous.

• Observe that Ĩγa(f) : XA → [0,⊤] satisfies Ĩγa(f)(h) = fA(h)(a) = f(h(a)).
We have |f(h(a))− g(h(a))| ≤ d∞

e (f, g) since h(a) ∈ X.

155

5. Behavioural Distances:
Modal Logic and Games over Set

Furthermore for each γa ∈ Γ we have Ĩγaf = f(h(a)) with h ∈ XA and therefore
we obtain ω-continuity, since fi ≤ fi+1 ≤ · · · ≤ supi<ω fi implies

Ĩγafi(h) = fi(h(a)) ≤ fi+1(h(a)) = Ĩγafi+1(h)

≤ Ĩγa(sup
i<ω

fi)(h) = (sup
i<ω

fi)(h(a))

for all h ∈ XA and therefore

sup
i<ω

(Iγafi(h)) = sup
i<ω

(fi(h(a))) = (sup
i<ω

fi)(h(a)) = Ĩγa(sup
i<ω

fi)(h).

□

As shown in [BB+14] the evaluation map γP induces the Hausdorff lifting on
metrics and the evaluation map γD the classical Kantorovich lifting for probability
distributions [Vil09] introduced in the previous section.

Contractivity can be typically obtained by using a predicate lifting which is
non-expansive and multiplying with a discount factor 0 < c < 1, for instance by
using γP(R) = c · supR in the first item of Proposition 5.2.22 above.

It can be shown that the properties of evaluation maps are preserved under various
forms of composition.

Proposition 5.2.23: Composition of Evaluation Maps

The following constructions on evaluation maps preserve non-expansiveness for
the supremum metric and ω-continuity for the induced predicate liftings. Let
γF : F [0,⊤]→ [0,⊤], γG : G[0,⊤]→ [0,⊤] be evaluation maps for functors F,G.

• γ : F [0,⊤]×G[0,⊤]→ [0,⊤] with γ = γF ◦ π1, as an evaluation map for
F ×G.

• γ : F [0,⊤] +G[0,⊤]→ [0,⊤] with γ(t) = γF (t) if t ∈ F [0,⊤] and γ(t) = 0
otherwise, as an evaluation map for F +G.

• γ : FG[0,⊤]→ [0,⊤] with γ = γF ◦ FγG, as an evaluation map for FG.

Proof: In the following let f, g : X → [0,⊤].

• Note that ˜(F ×G)γ(f) = F̃γF (f) ◦ π1.

Hence we obtain non-expansiveness via the supremum metric with

d∞
e (˜(F ×G)γ(f), ˜(F ×G)γ(g)) = d∞

e (F̃γF (f) ◦ π1, F̃γF (g) ◦ π1)

= d∞
e (F̃γF (f), F̃γF (g)) ≤ d∞

e (f, g).

156

5.2. Foundations

The same holds if we replace de by d⊖. Furthermore ω-continuity can be shown
as follows:

˜(F ×G)γ(sup
i<ω

fi) = F̃γF (sup
i<ω

fi) ◦ π1

= sup
i<ω

F̃γF (fi) ◦ π1 = sup
i<ω

˜(F ×G)γ(fi).

• Note that ˜(F +G)γ(f)(t) = F̃γF (f)(t) if t ∈ FX and ˜(F +G)γ(f)(t) = 0 if
t ∈ GX. Hence we can deduce non-expansiveness via the supremum metric by
observing that de(˜(F ×G)γ(f)(t), ˜(F ×G)γ(g)(t)) is either

de(F̃γF (f)(t), F̃γF (g)(t)) ≤ d∞
e (f, g),

if t ∈ FX, or the value equals 0, if t ∈ GX. The same holds if we replace de

by d⊖.

Furthermore ω-continuity can be shown as follows: whenever t ∈ FX we have

˜(F +G)γ(sup
i<ω

fi))(t) = F̃γF (sup
i<ω

fi)(t) = (sup
i<ω

F̃γF (fi))(t)

= (sup
i<ω

˜(F +G)γ(fi))(t).

And if t ∈ GX both values are equal to 0.

• Note that we have

F̃Gγ(f) = γ ◦ FGf = γF ◦ FγG ◦ FGf = γF ◦ F (γG ◦Gf) = F̃γF (G̃γG(f)).

Hence we obtain non-expansiveness via the supremum metric via

d∞
e (F̃Gγ(f), F̃Gγ(g)) = d∞

e (F̃γF (G̃γG(f)), F̃γF (G̃γG(g)))

≤ d∞
e (G̃γG(f), G̃γG(g))

≤ d∞
e (f, g).

The same holds if we replace de by d⊖. Furthermore it is easy to show
ω-continuity:

F̃Gγ(sup
i<ω

fi) = F̃γF (G̃γG(sup
i<ω

fi)) = F̃γF (sup
i<ω

G̃γG(fi))

= sup
i<ω

F̃γF (G̃γG(fi)) = sup
i<ω

F̃Gγ(fi).

□

157

5. Behavioural Distances:
Modal Logic and Games over Set

Now we can define behavioural distance on a coalgebra, using the Kantorovich
lifting. Note that the behavioural distance is parameterized over Γ, since, if we are
given a coalgebra in Set, the notion of behaviour in the metric case is dependent on
the chosen functor lifting.

Definition 5.2.24: Behavioural Distance
Let the coalgebra α : X → FX and a set of evaluation maps Γ for F be given.
We define the pseudometric dα : X ×X → [0,⊤] as the smallest fixpoint of

dα = d↑Γ
α ◦ (α× α)

Note that every lifting of metrics is necessarily monotone (since it turns the
identity into a non-expansive function, cf. [BB+14]). Since in addition the space of
pseudometrics forms a complete lattice (where sup is taken pointwise), the smallest
fixpoint exists by Knaster-Tarski.

It has been shown in [BB+18] that whenever the Kantorovich lifting preserves
metrics (which is the case for our examples) and the final chain converges, then dα

characterizes behavioural equivalence, i.e., dα(x, y) = 0 iff x ∼ y.

Example 5.2.25

Using the building blocks introduced above we consider the following coalgebras
with their corresponding behavioural metrics, generalizing notions from the
literature. In both cases we are interested in the smallest fixpoint.

• Metric transition systems [AFS09]: FX = [0,⊤] × PX with two eval-
uation maps γi : [0,⊤] × P[0,⊤] → [0,⊤], i ∈ {1, 2} with γ1(r,R) = r,
γ2(r,R) = supR.

This gives us the following fixpoint equation, where dH is the Hausdorff
lifting of a metric d. Let α(x) = (rx, Sx), α(y) = (ry, Sy), then

d(x, y) = max{|rx − ry|, dH(Sx, Sy)}

Analogously to the argumentation in Example 5.2.15 it suffices to find one
non-expansive function as a witness that |γ2 ◦Ff(α(x))− γ2 ◦Ff(α(y))| =
dH(Sx, Sy). This function is already defined in [Ker16] but for completeness
we introduce it here once again:

f(x) = min
x2∈Sy

d(x, x2)

158

5.2. Foundations

In addition we know from [Ker16] that no non-expansive function exists,
which increases the distance based on γ2, since the Wasserstein lifting serves
here as an upper bound for the Kantorovich lifting. Regarding γ1 the
definition of f has no impact since Ff(r, S) is mapped to (r, f [S]) ∈ F [0, 1]
and therefore the max is taken over the values given by |rx − ry| and
dH(Sx, Sy).

• Probabilistic transition systems: GX = DX + 1 with two evaluation maps
γ̄D, γ• : D[0, 1] + 1→ [0, 1] with γ̄D(p) = γD(p), γ•(p) = 0 where p ∈ D[0, 1],
γ̄D(•) = 0, γ•(•) = 1.

This gives us the following fixpoint equation, where dK is the (probabilistic)
Kantorovich lifting of a metric d. Let T = {x | α(x) = •} and let px =
α(x) ̸= •.

d(x, y) =


1 if x ∈ T, y /∈ T or x /∈ T, y ∈ T
0 if x, y ∈ T
dK(px, py) otherwise

Some of the results on (real-valued) modal logics in Section 5.3 will require that
the fixpoint iteration terminates in ω steps. This is related to the fact that the
original Hennessy-Milner theorem requires finite branching.

Proposition 5.2.26

Let Γ be a set of evaluation maps and let α : X → FX be a coalgebra. We
define an ascending sequence of metrics di : X ×X → [0,⊤] as follows: d0 is the
constant 0-function and di+1 = d↑Γ

i ◦ α× α. Furthermore dω = supi<ω di.

• If for all evaluation maps γ ∈ Γ the induced predicate liftings are
ω-continuous (see Definition 5.2.18) and F is ω-accessible, the fixpoint
dα equals dω.

• If for all evaluation maps γ ∈ Γ the induced predicate liftings are contractive
with respect to the supremum metric (see Definition 5.2.18), the fixpoint
dα equals dω.

Proof: First note that dω as the pointwise supremum of pseudometrics, is again a
pseudometric.

• We assume that every F̃γ is ω-continuous and F is ω-accessible. Obviously

159

5. Behavioural Distances:
Modal Logic and Games over Set

dω ≤ dα because dω = supi<ω di ≤ dα. Next, we need to show dα ≤ dω. Since
dα is the smallest fixpoint of dα = d↑Γ

α ◦ (α× α) we need to show, that dω is a
prefix point. Given x, y ∈ FX, we have to prove that:

d↑Γ
ω (α(x), α(y))

= sup{de(F̃γf(α(x)), F̃γf(α(y))) | f : (X, dω) 1−→ ([0,⊤], de), γ ∈ Γ}

≤ dω(x, y)

So we have to show that de(F̃γf(α(x)), F̃γf(α(y)) ≤ dω(x, y) for every non-
expansive function f : (X, dω) 1−→ ([0,⊤], de).

Since F is ω-accessible, there is a finite set Z ⊆ X with α(x), α(y) ∈ FZ. We
can assume that Z is non-empty. Now define g : X → [0,⊤] as g(z) = f(z) if
z ∈ Z and g(z) = ⊤ otherwise. Note that Ff and Fg agree on α(x), α(y).

We approximate the function g on Z with an ascending chain of functions
g0 ≤ g1 ≤ g2 ≤ . . . with gi : (Z, di) 1−→ ([0,⊤], de), i.e., each gi is non-expansive
for di. We define gi(z) = inf{g(u) + di(u, z) | u ∈ X} as in Lemma 5.2.4, which
means that gi ≤ g and every gi is non-expansive as desired. Since di ≤ di+1 it
also follows that gi ≤ gi+1.

Since g(u) = ⊤ if u ̸∈ Z, we know that for z ∈ Z the infimum is reached for
u ∈ Z and hence gi(z) = inf{g(u) + di(u, z) | u ∈ Z}. Furthermore whenever
z ∈ Z

g(z)− gi(z) = g(z)− inf{g(u) + di(u, z) | u ∈ Z}

= sup{g(z)− g(u)− di(u, z) | u ∈ Z}

= sup{f(z)− f(u)− di(u, z) | u ∈ Z}

≤ sup{dω(u, z)− di(u, z) | u ∈ Z}

Since Z is finite this value converges to 0 when i approaches ω and hence
supi<ω gi(z) = g(z) whenever z ∈ Z. This means that supi<ω gi, g agree on
α(x), α(y) ∈ FZ.

160

5.2. Foundations

Hence, using the fact that F̃γ is ω-continuous and Lemma 5.2.21(2):

de(F̃γf(α(x)), F̃γf(α(y)) = de(F̃γg(α(x)), F̃γg(α(y)))

= de(F̃γ(sup
i<ω

gi)(α(x)), F̃γ(sup
i<ω

gi)(α(y)))

= de(sup
i<ω

F̃γgi(α(x)), sup
i<ω

F̃γgi(α(y)))

≤ sup
i<ω

de(F̃γgi(α(x)), F̃γgi(α(y)))

≤ sup
i<ω

d↑Γ
i (α(x), α(y))

= sup
i<ω

di+1(α(x), α(y))

= dω(x, y)

The inequality is due to the fact that non-expansiveness of gi for di implies
non-expansiveness of F̃γ(gi) for d↑Γ

i .

• We assume that every F̃γ is contractive with respect to the supremum metric
(for some constant c). Due to Proposition 5.2.20 we have that for two metrics
d1, d2 : X ×X → [0,⊤] it holds that

d∞
e (d↑Γ

1 , d↑Γ
2) ≤ c · d∞

e (d1, d2)

where 0 < c < 1.

Note that ⊤ ̸=∞, which means that the set of all such real-valued bounded
functions forms a complete metric space with respect to the supremum metric.
Hence we obtain the fixpoint in ω steps via the Banach fixpoint theorem.

□

Hence, if we are working with the finite powerset functor or the finitely supported
distribution functor, the first case applies, whereas in the case of contractiveness,
these restrictions are unnecessary (compare this with the result of [TR98] which
guarantees the existence of a final coalgebra for a class of locally contractive functors).

To close this section we summarize, that behavioural distance dα via the Kan-
torovich lifting given in Definition 5.2.13 characterizes behaviour equivalence under
the restrictions in Definition 5.2.18 and whenever the Kantorovich lifting preserves
metrics.

Having laid the foundation for our evaluation maps we proceed in the next section
with the work on modal logics and concentrate on a quantitative Hennessy-Milner
theorem as illustrated in Figure 5.6.

161

5. Behavioural Distances:
Modal Logic and Games over Set

Behavioural
distances
dα(x, y) ≤ ε

Real valued
modal logics

∀φ
de(JφK(x), JφK(y))

≤ ε

Hennessy-Milner Theorem ?

Figure 5.6: A quantitative version of the Hennessy-Milner theorem

5.3 Modal Logics for the Metric Case

We now define a coalgebraic modal logicM(Γ), which is inspired by [BW05]. Assume
that Γ is a set of real-valued evaluation maps.

Definition 5.3.1: Coalgebraic Modal Logic (syntax)

Given a set Γ of real-valued evaluation maps. The syntax of the logic is defined
by the following grammar:

φ ::= ⊤ | [γ]ψ | min(ψ,ψ′) | ¬ψ | ψ ⊖ q

where γ ∈ Γ.

Given a coalgebra α : X → FX and a formula φ, the semantics of such a formula is
given by a real-valued predicate JφKα : X → [0,⊤], defined inductively, where γ ∈ Γ,
q ∈ Q0 ∩ [0,⊤]:

J⊤Kα := λx.⊤ J[γ]ψKα := γ ◦ F JψKα ◦ α

Jmin(ψ,ψ′)Kα := min{JψKα, Jψ′Kα} J¬ψKα := ⊤− JψKα

Jψ ⊖ qKα := JψKα ⊖ q

Again we will occasionally omit the subscript α and an overview of the modal
depth md(φ) is given in Table 5.1.

φ: ⊤ [γ]ψ min(ψ,ψ′) ¬ψ ψ ⊖ q
md(φ): 0 md(ψ) + 1 max{md(ψ),md(ψ′)} md(ψ) md(ψ)

Table 5.1: Overview of the modal logic formula and their modal depths md(φ).

Note that, given a state x and a logical formula φ, we do not just obtain a true
value (true, false) dependent on whether x satisfies the formula or not. Instead we
obtain a value in the interval [0, 1] that measures the degree or weight according to
which x satisfies φ.

162

5.3. Modal Logics for the Metric Case

Definition 5.3.2: Logical Distance

Let α : X → FX be a coalgebra and let x, y ∈ X. We define the logical distance
of x, y as

dL
α(x, y) = sup{de(JφKα(x), JφKα(y)) | φ ∈M(Γ)}.

We also define the logical distance up to modal depth i.

dL
i (x, y) = sup{de(JφKα(x), JφKα(y)) | φ ∈M(Γ),md(φ) ≤ i}.

Example 5.3.3

We are considering probabilistic transition systems with evaluation maps as
defined in Example 5.2.9.
The formula φ = [γ̄D][γ•]⊤ distinguishes the states x, y in Figure 5.5. The formula
ψ = [γ•]⊤ evaluates to a predicate JψK that assigns 1 to terminating states and
0 to non-terminating states. Now x makes a transition to a terminating state
with probability 1

2 , which means that JφK(x) = γ̄D(DJψK(α(x))) = 1
2 . Similarly

JφK(y) = 1
2 + ε. Hence dL

α(x, y) ≥ de(JφK(x), JφK(y)) = ε. (In fact, the logical
distance equals ε.)

We will now show that the logical distance dL
α and the behavioural distance dα

coincide, i.e. a quantitative version of the Hennessy-Milner theorem, by generalizing
the proof from [BW05]. Note that in some respects we simplify with respect to [BW05]
by not working in Meas, the category of measurable spaces, but in a discrete setting.
On the other hand, we generalize by considering arbitrary Set-endofunctors.

Theorem 5.3.4
Let di be the sequence of pseudometrics from Proposition 5.2.26. Then:

1. For every i ∈ N0 d
L
i ≤ di.

2. For every φ with md(φ) ≤ i we have non-expansiveness:

JφK : (X, di)→ ([0,⊤], de)

3. dL
α ≤ dα.

Proof:

• We prove (1) and (2) jointly by induction on i.

– i = 0: It is easy to see that for every φ with md(φ) = 0 the function JφK is

163

5. Behavioural Distances:
Modal Logic and Games over Set

constant. Due to this dL
0 (x, y) = sup{de(JφK(x), JφK(y)) | md(φ) = 0} =

0 ≤ d0(x, y). All constant functions are non-expansive for d0.

– i → i + 1: We first show that for every φ with md(φ) ≤ i + 1 that
JφK : (X, di+1) 1−→ ([0,⊤], de) is non-expansive by structural induction
on φ.

∗ φ = ⊤: This case can not occur for md(φ) > 0.

∗ φ = [γ]ψ: Here md(ψ) ≤ i and J[γ]ψK = γ ◦ F JψK ◦ α, where we have
a composition of non-expansive functions:

· The evaluation map γ : (F [0,⊤], d↑Γ
e) 1−→ ([0,⊤], de) is non-expansive

by Lemma 5.2.16.

· JψK : (X, di) 1−→ ([0, 1], de) is non-expansive by the outer induction
hypothesis and, since the lifting preserves non-expansive functions,
F JψK : (FX, d↑Γ

i) 1−→ (F [0, 1], d↑Γ
e).

· By definition di+1 = d↑Γ
i ◦(α×α), hence α : (X, di+1) 1−→ (FX, d↑Γ

i)
(it is even an isometry).

∗ φ = min(ψ,ψ′): We know that md(ψ),md(ψ′) ≤ md(φ) ≤ i + 1.
The inner induction hypothesis implies that JψK, Jψ′K are both non-
expansive for di+1. Using Lemma 5.2.21(3) we know that for all
x, y ∈ X

de(JφK(x), JφK(y))

= de(min{JψK(x), Jψ′K(x)},min{JψK(y), Jψ′K(y)})

≤ max{de(JψK(x), JψK(y)), de(Jψ′K(x), Jψ′K(y))} ≤ di+1(x, y)

∗ φ(x) = ¬ψ(x): We know that md(ψ) = md(φ) ≤ i + 1. The inner
induction hypothesis implies that JψK is non-expansive for di+1. For
x, y ∈ X we obtain

de(JφK(x), JφK(y))

= de(J⊤− ψK(x), J⊤− ψK(y)) = |⊤ − JψK(x)− (⊤− JψK(y))|

= |JψK(y)− JψK(x)| = de(JψK(x), JψK(y)) ≤ di+1(x, y)

∗ φ(x) = ψ ⊖ q: We know that md(ψ) = md(φ) ≤ i + 1. The inner
induction hypothesis implies that JψK is non-expansive for di. For all
x, y ∈ X we know by Lemma 5.2.21(1) that

de(JφK(x), JφK(y)) = de(JψK(x)⊖ q, JψK(y)⊖ q)

≤ de(JψK(x), JψK(y)) ≤ di+1(x, y)

164

5.3. Modal Logics for the Metric Case

Thus, we conclude by the non-expansiveness of all formulas φ with
md(φ) ≤ i that dL

i (x, y) = sup{de(JφK(x), JφK(y) | md(φ) ≤ i} ≤ di(x, y).

• (3) follows directly from (1) by taking the supremum on both sides and observing
that dα ≥ supi<ω di.

□

Note that from Theorem 5.3.4 it also follows that for every formula φ the function
JφK is non-expansive. Non-expansiveness is analogous to bisimulation-invariance that
holds for formulas in a classical logic. In particular, in the classical case if x ∼ y,
then JφK(x) = JφK(y) for every φ, in other words JφK is non-expansive for the discrete
metric d.

The other inequality (dL
α ≥ dα) is more difficult to prove: we will first show that

each di is totally bounded and then show that each non-expansive function can be
approximated at each pair of points by a modal formula. Since modal formulas are
closed under min and max, this enables us to use a variant of a lemma from [Ash72]
to prove that the formulas form a dense subset of all non-expansive functions. In
order to achieve the approximation, we need all operators of the logic.

We first have to recall some definitions from real-valued analysis. The first
definition allows to cover a possibly infinite metric space by a finite number of
so-called ε-balls.

Definition 5.3.5: Total Boundedness
A pseudometric space (X, d) is totally bounded iff for every ε > 0 there exist
finitely many elements x1, . . . , xn ∈ X such that X =

⋃n
i=1 Bε(xi) where Bε(xi) =

{z ∈ X | d(z, xi) ≤ ε} denotes the ε-ball around xi.

Our first result is to show that the lifting preserves total boundedness, by adapting
a proof from [WS+18a] from a specific functor to arbitrary functors.

Proposition 5.3.6

Let (X, d) be a totally bounded pseudometric space, then (FX, d↑Γ) is totally
bounded as well.

Proof: We denote the set of all non-expansive functions f : (X, d) 1−→ ([0,⊤], de)
with F . We know from [WS+18a, Lemma 5.6] that if (X, d) is a totally bounded
space, then F is also totally bounded with respect to the supremum metric d∞

e . This
is a variation of the Arzelà-Ascoli theorem.1 Due to this for all ε > 0 there exists

1Actually this lemma is stated for ⊤ = 1, but the proof can be straightforwardly adapted.

165

5. Behavioural Distances:
Modal Logic and Games over Set

a finite set {f1, . . . , fn} with fi ∈ F such that for all f ∈ F we have one fi with
d∞

e (f, fi) ≤ ε. Given a fixed ε, we denote the function fi corresponding to f by f̂ .
Furthermore, since the predicate lifting is non-expansive with respect to the supre-

mum metric (cf. Definition 5.2.18), we know that for all t ∈ FX de(F̃γf(t), F̃γ f̂(t)) ≤
ε. And we have, using the triangle inequality,

d↑Γ(t1, t2) = sup{de(F̃γf(t1), F̃γf(t2)) | f ∈ F , γ ∈ Γ}

≤ sup{de(F̃γf(t1), F̃γ f̂(t1)) + de(F̃γ f̂(t1), F̃γ f̂(t2))

+ de(F̃γ f̂(t2), F̃γf(t2)) | f ∈ F , γ ∈ Γ}

≤ sup{de(F̃γ f̂(t1), F̃γ f̂(t2)) | f ∈ F , γ ∈ Γ}+ 2 · ε

= sup{de(F̃γfi(t1), F̃γfi(t2)) | i ∈ {1, . . . , n}}+ 2 · ε

By assumption Γ is finite and we assume Γ = {γ1, . . . , γk}. Now we define g : FX → [0,⊤]k·n

with
g(t) = (F̃γ1f1(t), . . . , F̃γ1fn(t), . . . , F̃γk

f1(t), . . . , F̃γk
fn(t)).

Since [0,⊤]k·n is compact under the supremum metric there exists finitely many
u1, . . . , um ∈ [0,⊤]k·n such that

⋃m
i=1Bε(ui) = [0,⊤]k·n. The preimages of all balls

cover FX and each preimage g−1(Bε(ui)) has a diameter at most 4 · ε: For s1, s2 ∈
g−1(Bε(ui)) it holds that:

d↑Γ(s1, s2) ≤ 2 · ε+ sup
i∈{1,...,n},γ∈Γ

{de(F̃γfi(s1), F̃γfi(s2))}

= 2 · ε+ d∞
e (g(s1), g(s2))

≤ 2 · ε+ d∞
e (g(s1), ui) + d∞

e (ui, g(s2))

≤ 2 · ε+ 2 · ε

Hence, given a δ > 0 we can set ε = δ
4 and obtain balls g−1(Bε(ui)) of diameter at

most δ, which cover FX. □

Using this result it can be shown that every pseudometric in the ascending chain
from Proposition 5.2.26 (apart from dω) is totally bounded.

Proposition 5.3.7

Let di be the sequence of pseudometrics from Proposition 5.2.26. Then every
(X, di) is a totally bounded pseudometric space.

Proof: We proceed by induction on i and start with the trivial (constant) pseudomet-
ric d0, hence(X, d0) is a totally bounded pseudometric space, since d0(x, y) = 0 < ε

for all ε > 0.

166

5.3. Modal Logics for the Metric Case

For (X, di+1) we know from the induction hypothesis and by Proposition 5.3.6
that (FX, d↑Γ

i) is totally bounded. So, for every ε > 0, there exist t1, · · · , tn ∈ FX
such that FX =

⋃n
i=1B ε

2
(ti), which implies X =

⋃n
i=1 α

−1(B ε
2
(ti)). Let x, y ∈

α−1(B ε
2
(ti)). Then x, y have at most distance ε: di+1(x, y) = d↑Γ

i (α(x), α(y)) ≤
d↑Γ

i (α(x), ti) + d↑Γ
i (ti, α(y)) ≤ ε. □

Since total boundedness is not preserved by taking a supremum, dω is not nec-
essarily totally bounded and we can not iterate the argument. This is one of the
reasons for requiring that the fixpoint is reached in ω steps in Theorem 5.3.9 below.

In the next step we show that the formulas are dense in the non-expansive
functions.

Proposition 5.3.8

{JφK : X → [0, 1] | md(φ) ≤ i} is dense (wrt. the supremum metric) in
{f : (X, dL

i) 1−→ ([0,⊤], de)}.

Proof: We have to show that for every ε > 0 and every non-expansive function
f : (X, dL

i) 1−→ ([0,⊤], de), there exists a formula φ with md(φ) ≤ i and d∞
e (f, JφK) ≤ ε.

From Proposition 5.3.7 we know that (X, di) is totally bounded and since dL
i ≤ di

(Theorem 5.3.4) we can infer that (X, dL
i) is also totally bounded (since Bdi

ε (x) =
{z ∈ X | di(z, x) ≤ ε} ⊆ {z ∈ X | dL

i (z, x) ≤ ε} = B
dL

i
ε (x)).

We use the following result from [WS+18a, Lemma 5.8], which is a variation of a
lemma by Ash [Ash72, Lemma A.7.2], adapted from compact spaces and continuous
functions to totally bounded spaces and non-expansive functions. (Actually this
lemma is stated for ⊤ = 1, but the proof can be straightforwardly adapted.)

Let (X, d) be a totally bounded pseudometric space and let G be a
subset of F = {f : (X, d) 1−→ ([0,⊤], de) such that f1, f2 ∈ G implies
min{f1, f2},max{f1, f2} ∈ G. If each f ∈ F can be approximated at each
pair of points by functions in G, then G is dense in F (wrt. d∞

e).

Here d = dL
i and G is the set of functions JφK, where md(φ) ≤ i. Since min and ¬

are operators of the logic and neither increases the modal depth, G is clearly closed
under max and min.

Now let f : (X, d) 1−→ ([0,⊤], de), δ > 0 and x, y ∈ X. We have to show that there
exists a modal formula φ (with modal depth at most i) that approximates f at these
points. That is de(f(x), JφK(x)) ≤ δ and de(f(y), JφK(y)) ≤ δ.

We concentrate on the case f(x) ≥ f(y), the other case is analogous.

∆ := f(x)− f(y) ≤ dL
i (x, y) = sup{de(JφK(x), JφK(y)) | md(φ) ≤ i}

167

5. Behavioural Distances:
Modal Logic and Games over Set

Then there exists a formula ψ with md(ψ) ≤ i such that ∆ − δ ≤ JψK(x) − JψK(y)
(whenever we find ψ with ∆− δ ≤ JψK(y)− JψK(x) we use negation). We can assume
that JψK(y) ≤ JψK(x).

Whenever JψK(y) ≥ f(y) we set φ = min(ψ ⊖ r, s) with r, s ∈ Q0 ∩ [0,⊤] chosen
as follows:

r ∈ [JψK(y)− f(y)− δ, JψK(y)− f(y)]

s ∈ [f(x), f(x) + δ]

Since the depth of a formula only increases with the modality operator, it holds
that md(φ) ≤ i.

0 f(y) f(x)

+δ

⊤

0 JψK(y)− f(y)

−δ

JψK(y) JψK(x) ⊤

s

r

Figure 5.7: The values s and r with their corresponding intervals.

We show that φ is the required formula. First note that r ≤ JψK(y) ≤ JψK(x) and
f(y) ≤ f(x) ≤ s as illustrated in Figure 5.7.

JφK(y)− f(y) = min{JψK(y)− r, s} − f(y)

= min{JψK(y)− f(y)− r︸ ︷︷ ︸
≤δ

, s− f(y)} ≤ δ

f(y)− JφK(y) = f(y)−min{JψK(y)− r, s}

= max{f(y)− JψK(y) + r︸ ︷︷ ︸
≤0

, f(y)− s︸ ︷︷ ︸
≤0

} ≤ δ

JφK(x)− f(x) = min{JψK(x)− r, s} − f(x)

= min{JψK(x)− f(x)− r, s− f(x)︸ ︷︷ ︸
≤δ

} ≤ δ

f(x)− JφK(x) = f(x)−min{JψK(x)− r, s}

= max{f(x)− JψK(x) + r︸ ︷︷ ︸
≤δ

, f(x)− s︸ ︷︷ ︸
≤0

} ≤ δ

168

5.3. Modal Logics for the Metric Case

f(x)− JψK(x) + r ≤ δ holds since JψK(x)− JψK(y) ≥ ∆− δ = f(x)− f(y)− δ. Then
f(x)− JψK(x) + r ≤ f(y)− JψK(y) + δ + JψK(y)− f(y) = δ.

Whenever JψK(y) ≤ f(y) we define φ = min(ψ ⊕ r, s) where r ∈ [f(y)− JψK(y)−
δ, f(y)− JψK(y)] and s is chosen as above. Note that ⊕ with a⊕ b = min{a+ b,⊤}
is not an operator of the logic, but it can be simulated by ¬(¬a⊖ b). □

Finally we can show under which conditions the inequality dα ≤ dL
α holds.

Theorem 5.3.9

If the fixpoint dα is reached in ω steps, it holds that dα ≤ dL
α.

Proof: We will show that dL is a prefixpoint of the equation d = d↑Γ ◦ (α×α). Since
the fixpoint dα is reached in ω steps (i.e., dα = supi<ω di) it suffices to show di ≤ dL

i

by induction on i:

• i = 0: The inequality is clearly satisfied since d0 = 0.

• i→ i+1: Let x, y ∈ X. We first observe that for every ε > 0 and f : (X, dL
i) 1−→

([0,⊤], de) there exists a modal formula ψ with md(ψ) ≤ i and d∞
e (f, JψK) ≤ ε

(cf. Proposition 5.3.8). With the triangle inequality we have

de(F̃γf(α(x)), F̃γf(α(y)))

≤ de(F̃γf(α(x)), F̃γJψK(α(x))) + de(F̃γJψK(α(x)), F̃γJψK(α(y)))

+de(F̃γJψK(α(y)), F̃γf(α(y)))

Non-expansiveness of the predicate lifting with respect to the supremum metric
(cf. Definition 5.2.18) implies that de(F̃γf(α(x)), F̃γJψK(α(x))) ≤ ε, analogously
de(F̃γJψK(α(y)), F̃γf(α(y))) ≤ ε. Combined we obtain

de(F̃γf(α(x)), F̃γf(α(y))) ≤ de(F̃γJψK(α(x)), F̃γJψK(α(y))) + 2 · ε.

This means that

sup{de(F̃γf(α(x)), F̃γf(α(y))) | f : (X, dL
i) 1−→ ([0,⊤], de), γ ∈ Γ}

≤ sup{de(F̃γJψK(α(x)), F̃γJψK(α(y))) | md(ψ) ≤ i, γ ∈ Γ}+ 2 · ε

169

5. Behavioural Distances:
Modal Logic and Games over Set

and since this holds for every ε > 0, the two suprema are equal.

di+1(x, y)

= sup{de(F̃γf(α(x)), F̃γf(α(y))) | f : (X, di) 1−→ ([0,⊤], de), γ ∈ Γ}

(by the induction hypothesis di ≤ dL
i)

≤ sup{de(F̃γf(α(x)), F̃γf(α(y))) | f : (X, dL
i) 1−→ ([0,⊤], de), γ ∈ Γ}

= sup{de(F̃γJψK(α(x)), F̃γJψK(α(y))) | md(ψ) ≤ i, γ ∈ Γ}

= sup{de(J[γ]ψK(x), J[γ]ψK(y)) | md(ψ) ≤ i, γ ∈ Γ}

≤ sup{de(JφK(x), JφK(y))) | md(φ) ≤ i+ 1}

= dL
i+1(x, y)

□

Demonstrating under which conditions both directions dL
α ≤ dα and dα ≤ dL

α hold,
where the preservation of totally boundedness via lifting plays a central role, we
established a quantitative Hennessy-Milner theorem as illustrated in Figure 5.8.

Behavioural
distances
dα(x, y) ≤ ε

Real valued
modal logics

∀φ
de(JφK(x), JφK(y))

≤ ε

Hennessy-Milner Theorem

Figure 5.8: Based upon Section 5.2.2 (i.e. the requirements for the modalities from
Definition 5.2.18) and due to Propositions 5.3.7 & 5.3.8 inspired by Ash’s lemma
[Ash72] we have dα = dL

α.

Finally, in the next section we move to the third point of our agenda: the game
theoretical view on behavioural distance.

5.4 Behavioural Distance Games over Set

We will now present the two-player game characterizing the behavioural distance
between two states. As described in Section 3.3, in the classical case, the spoiler
choses an arbitrary characteristic function over the state set X and the aim of the
duplicator is to show that two states are bisimilar (i.e. their behavioural distance
is zero). In a quantitative version of the game the moves are given by real-valued
functions over X.

170

5.4. Behavioural Distance Games over Set

5.4.1 Formulation of the Game

The roles of S and D are similar to those in the classical game (see Section 3.3),
where D wants to defend the statement that the distance of two states x, y ∈ X in a
coalgebra α is bounded by ε ∈ [0,⊤], i.e., dα(x, y) ≤ ε while S wants to disprove this
claim.

• Initial situation: Given a coalgebra α : X → FX, we start with (x, y, ε)
where x, y ∈ X and ε ∈ [0,⊤].

• Step 1: S chooses s ∈ {x, y} and a real-valued predicate p1 : X → [0,⊤].

• Step 2: D takes t ∈ {x, y}\{s} if x ≠ y and t = s otherwise. In addition, D
has to answer with a predicate p2 : X → [0,⊤], which satisfies

d⊖(F̃γp1(α(s)), F̃γp2(α(t))) ≤ ε for all γ ∈ Γ.

• Step 3: S chooses pi with i ∈ {1, 2} and some state x′ ∈ X.

• Step 4: D chooses some state y′ ∈ X with pi(x′) ≤ pj(y′) where j ̸= i

• Next round: (x′, y′, ε′) with ε′ = pj(y′)− pi(x′).

After one round the game continues with the initial step, but now D tries to show
that dα(x′, y′) ≤ ε′. D wins if the game continues forever. In the other case, e.g., D
has no move at Step 2 or Step 4, S wins. Note that the usage of the directed metric
allows D to do more.

The game distance of two states is defined as follows.

Definition 5.4.1: Game distance
Let α : X → FX be a coalgebra and let x, y ∈ X. We define the game distance
of x, y as

dG
α (x, y) = inf{ε | D has a winning strategy for (x, y, ε)}.

We now prove that the behavioural distance and the game distance coincide. We
first show that dG

α is indeed a pseudometric.

Proposition 5.4.2

The game distance dG
α is a pseudometric.

171

5. Behavioural Distances:
Modal Logic and Games over Set

Proof: Here we need to review the three conditions of a pseudometric. Assume that
x, y, z ∈ X.

1. Reflexivity: we show that there is a strategy for D for (x, x, 0) and hence
dG

α (x, x) = 0.

Assume that S chooses x and some p1, then D answers with p2 = p1 and also
chooses x. In this case d⊖(F̃γp1(α(x)), F̃γp2(α(x))) = 0 for every γ ∈ Γ, due to
reflexivity of d⊖. S then chooses some x′ and D can choose the same x′, since
p2(x′) = p1(x′). Furthermore ε′ = p2(x′)− p1(x′) = 0 and the game continues
with (x′, x′, 0), i.e., in a situation analogous to the previous one.

2. Symmetry: we show that dG
α (x, y) = dG

α (y, x).

This is true since S can choose either x or y and D is then forced to play with
the other state. Hence the roles of x and y can be exchanged. Hence

dG
α (x, y) = inf{ε | D has a winning strategy for (x, y, ε)}

= inf{ε | D has a winning strategy for (y, x, ε)} = dG
α (y, x)

3. Triangle inequality: We prove that dG
α (x, z) ≤ dG

α (x, y) + dG
α (y, z). We do this

by constructing a winning strategy for D for (x, z, θ + δ) from strategies for
(x, y, θ), (y, z, δ).

Now, assume that in the (x, z, θ + δ)-game S chooses pi, i ∈ {1, 3} and x′ in
Step 1. We can assume that i = 1 (the other case is analogous).

If S chooses p1, x in the (x, y, θ)-game, D can play according to her strategy and
choose p2 and y with d⊖(F̃γp1(α(x)), F̃γp2(α(y))) ≤ θ for all γ. Now assume
that in the (y, z, δ)-game S chooses y and p2. Then D has an answering move
p3 and z with d⊖(F̃γp2(α(y)), F̃γp3(α(z))) ≤ δ. Combined we have, due to the
triangle inequality:

d⊖(F̃γp1(α(x)), F̃γp3(α(z)))

≤ d⊖(F̃γp1(α(x)), F̃γp2(α(y))) + d⊖(F̃γp2(α(y)), F̃γp3(α(z))) ≤ θ + δ

Hence D will answer S’s move in the (x, z, θ + δ)-game by p3, z in Step 2.

Now assume that S chooses pi with i ∈ {1, 3} and some state x′ ∈ X (again we
assume without loss of generality that i = 1) in Step 3. Then, following the
strategy for (x, y, θ), D chooses y′ with p1(x′) ≤ p2(y′). Assume that S would
choose p2 and y′ in the (y, z, δ)-game. Following her strategy D would choose
z′ with p2(y′) ≤ p3(z′). Combined, we have p1(x′) ≤ p3(z′).

172

5.4. Behavioural Distance Games over Set

Hence D will answer S’s move by z′ in Step 4.

Furthermore p3(z′)− p1(x′) = p3(z′)− p2(y′)︸ ︷︷ ︸
=θ′

+ p2(y′)− p1(x′)︸ ︷︷ ︸
δ′

. Hence we are

in the situation (x′, z′, θ′ +δ′) with existing winning strategies for the (x′, y′, θ′)-
and (y′, z′, δ′)-games.

Finally, we obtain

εx,z = inf{ε | D has a winning strategy for (x, z, ε)}

≤ inf{θ + δ | D has a winning strategy for (x, y, θ) and (y, z, δ)}

= dG
α (x, y) + dG

α (y, z)

□

Next we show that the game distance is always bounded by the behavioural
distance.

The strategy for D can be straightforwardly explained whenever X is finite. In
particular we want to show that whenever dα(x, y) ≤ ε, then D has a winnning
strategy for (x, y, ε). Assume that S chooses s ∈ {x, y} with p1 : X → [0,⊤]. In
this case D chooses p2 with p2(z) = sup{p1(u)− dα(u, z) | u ∈ X} in Step 2. From
Lemma 5.2.4 we know that p1 ≤ p2 and p2 is non-expansive. It can be shown that
this choice satisfies d⊖(F̃γp1(α(s)), F̃γp2(α(t))) ≤ ε for all γ ∈ Γ. Now S chooses i
and x′ ∈ X in Step 3. Then either i = 1 and D can choose y′ = x′ in Step 4 and the
game continues with x′, y′ and ε′ = p2(y′)− p1(x′) ≥ 0. Or i = 2 and D can choose
y′ such that p1(y′)− dα(y′, x′) = p2(x′) (the supremum is reached since X is finite).
This means that p1(y′) ≥ p2(x′) and ε′ = p1(y′)− p2(x′) = dα(x′, y′). In both cases,
the game can continue.

If we compare this to the behavioural equivalence game, in which the duplicator’s
winning strategy is constructed as the closer p2 under behavioural equivalence of
p1 (see Theorem 3.3.2), the winning strategy here is based on the behavioural
pseudometric dα. As described above, the spoiler chooses an arbitrary real-valued
function p1 : X → [0,⊤] over X and similar to the construction of p2 in the classical
case, the duplicator wants to construct the least function p2 over p1 which does not
increase the behavioural distance.

Theorem 5.4.3

It holds that dG
α ≤ dα.

Proof: Let x, y ∈ X. We show for all δ > 0 that whenever dα(x, y) ≤ ε− δ, then D
can win the (x, y, ε)-game. This implies in particular that D has a winning strategy

173

5. Behavioural Distances:
Modal Logic and Games over Set

for (x, y, ε) with ε = dα(x, y) + δ. Since dG
α (x, y) is the infimum of all such ε we have

dG
α (x, y) ≤ dα(x, y) + δ and since this holds for all δ > 0 we get the desired inequality.

Assume that S chooses s ∈ {x, y} with p1 : X → [0,⊤] in Step 1. In this case D
chooses in Step 2 p2 = max{p1, h− δ

2} where h(z) = sup{p1(u)− dα(u, z) | u ∈ X}.
Lemma 5.2.4 implies that p1 ≤ h and h : (X, dα) 1−→ ([0,⊤], de) is non-expansive.
Clearly p1 ≤ p2.

The inequality p1 − p2 ≤ 0, i.e. d∞
⊖ (p1, p2) ≤ 0, and the non-expansiveness of the

predicate lifting (cf. Definition 5.2.18) implies d⊖(F̃γp1(α(s)), F̃γp2(α(s))) ≤ 0.
Furthermore we observe that p2 : (X, dα + δ

2) 1−→ ([0,⊤], de): Let u, z ∈ X and
we show that p2(z) − p2(u) ≤ dα(u, z) + δ

2 . Whenever p2(u) = p1(u) we have that
p1(u) ≥ h(u)− δ

2 and hence:

p2(z)− p2(u) = max
{
p1(z), h(z)− δ

2

}
− p1(u)

= max
{
p1(z)− p1(u), h(z)− δ

2 − p1(u)
}

≤ max
{
h(z)− h(u) + δ

2 , h(z)− δ

2 − h(u) + δ

2

}
≤ dα(u, z) + δ

2

Analogously, whenever p2(u) = h(u)− δ
2 we have:

p2(z)− p2(u) = max
{
p1(z), h(z)− δ

2

}
− h(u) + δ

2

= max
{
p1(z)− h(u) + δ

2 , h(z)− h(u)
}

≤ max
{
h(z)− h(u) + δ

2 , h(z)− h(u)
}

≤ dα(u, z) + δ

2

Furthermore we know from d⊖ ≤ de and the non-expansiveness of γ, p2 (and hence
of F̃γp2) that

d⊖(F̃γp2(α(s)), F̃γp2(α(t))) ≤ de(F̃γp2(α(s)), F̃γp2(α(t)))

≤
(
dα + δ

2

)↑Γ
(α(s), α(t))

From Proposition 5.2.20 it follows that

(
dα + δ

2

)↑Γ
(α(s), α(t)) ≤ d↑Γ

α (α(s), α(t)) + δ = dα(s, t) + δ ≤ ε− δ + δ = ε

174

5.4. Behavioural Distance Games over Set

Now the triangle inequality implies

d⊖(F̃γp1(α(s)), F̃γp2(α(t)))

≤ d⊖(F̃γp1(α(s)), F̃γp2(α(s)))︸ ︷︷ ︸
=0

+ d⊖(F̃γp2(α(s)), F̃γp2(α(t)))︸ ︷︷ ︸
≤ε

≤ ε,

hence p2 is a valid choice for D. S now chooses i and x′ ∈ X in Step 3. We distinguish
the following cases:

• Case i = 1: D chooses y′ = x′ in Step 4. We have p1(x′) ≤ p2(x′) = p2(y′) and
ε′ = p2(x′)− p1(y′) ≥ 0 = dα(x′, y′), a situation from which D has a winning
strategy by copying all moves of S.

• Case i = 2: If p1(x′) = p2(x′) D can again choose y′ = x′ in Step 4 and we are
in a situation analogous to Case i = 1 above.

Otherwise p2(x′) = h(x′) − δ
2 and there exists a y′ ∈ X such that h(x′) ≤

p1(y′)− dα(x′, y′) + δ
4 , which is chosen by D in Step 4. It holds that p2(x′) =

h(x′) − δ
2 ≤ p1(y′) − dα(x′, y′) + δ

4 −
δ
2 = p1(y′) − dα(x′, y′) − δ

4 ≤ p1(y′) and
ε′ = p1(y′)− p2(x′) ≥ dα(x′, y′) + δ

4 .

Now the game continues with the next round (x′, y′, ε′), where dα(x′, y′) ≤ ε′− δ
4

and so D has a winning strategy.

□

Example 5.4.4

Imagine the initial game situation (x, y, ε) for our example in Figure 5.5 and S
chooses x with predicate p1(4) = 1 and zero for all remaining states.
Now D follows the strategy above and plays a predicate p2 with p2(4) = p2(5) =
p2(7) = 1 and zero for all other states. Since 5, 7 are at distance 0 to 4, they
are now mapped to 1 as well. Since in particular 4 and 7 are mapped to 1, we
obtain d⊖(D̃γ̄Dp1(α(x)), D̃γ̄Dp2(α(y))) = d⊖(1

4 ,
1
2 + ε) = 0 ≤ ε (we obtain the

same value for γ•). Note again that D must be allowed to do more than S.
Now the winning strategy for D is obvious: if S picks a terminating state x′

and pi, D can also pick a terminating state y′ and pj with pj(y′) − pi(x′) = 0
(similarly for non-terminating states). We then end up in (x′, y′, 0) where x′, y′

are behaviourally equivalent.
If S had instead chosen y a predicate p1 with p1(7) = 1 and zero for all other states,
D would choose the same predicate p2 with d⊖(D̃γ̄Dp1(α(y)), D̃γ̄Dp2(α(x))) =

175

5. Behavioural Distances:
Modal Logic and Games over Set

d⊖(1
2 + ε, 1

2) = ε.

We now demonstrate that in the case of infinite branching, the construction of
the winning strategy for the D is not as simple as described before.

Example 5.4.5

Consider the coalgebra α : X → DX + 1 in Figure 5.9 on the state space X =
{y, y0, x, x1, x2, . . . }, where the probability of going from x to xi is α(x)(xi) = 1

2i .
For both states x, y the probability to terminate is 1 and hence x ∼ y. Now
imagine that S selects x and the real-valued predicate p1 with p1(xi) = 1− 1

2i

and p1(x) = 0. If we would construct the predicate for D as above, via p2(z) =
sup{p1(u)− dα(u, z) | u ∈ X}, this would yield p2(y0) = 1 since the distance of
all terminating states is 0.

x

x1 xi

1
2i

1
21

.

y

y0

1

Figure 5.9: Probabilistic transition system for the functor FX = DX + 1, where
X is infinite.

Then S chooses x′ = y0 and p2 in Step 3 and D has no available state y′ with
which to answer in Step 4. If y′ = xi, then p1(xi) = 1− 1

2i < 1 = p2(x′), otherwise
p1(y′) = 0 < 1.
In fact, D has no winning strategy for ε = 0, but we can show that there is a
winning strategy for every ε > 0 (since D can play a predicate that is below p2,
but at distance ε). Since the game distance is defined as the infinum over all
such ε’s it still holds that dG

α (x, y) = 0.

Finally, we can show the other inequality.

Theorem 5.4.6

It holds that dα ≤ dG
α .

Proof: Due to Proposition 5.4.2 we know that dG
α is a pseudometric. We will now show

that it is a prefix-point of the defining fixpoint equation, i.e. dG
α ≥ (dG

α)↑Γ ◦ (α× α).
Since dα is the smallest (pre-)fixpoint, this implies that dα ≤ dG

α .

176

5.4. Behavioural Distance Games over Set

Let x, y ∈ X. It holds that

(dG
α)↑Γ(α(x), α(y))

= sup{de(F̃γf(α(x)), F̃γf(α(y))) | f : (X, dG
α) 1−→ ([0,⊤], de), γ ∈ Γ}

We will show that d⊖(F̃γf(α(x)), F̃γf(α(y))) ≤ dG
α (x, y) and the same holds analo-

gously if the roles of x, y are reversed. This means that every element in the sup is
bounded by dG

α (x, y), from which the inquality follows. It is sufficient to show that
d⊖(F̃γf(α(x)), F̃γf(α(y))) ≤ ε whenever D has a winning strategy for (x, y, ε).

So, assuming that S chooses x and f at Step 1, we know that D can at Step 2
choose a real-valued predicate p2, such that d⊖(F̃γf(α(x)), F̃γp2(α(y))) ≤ ε for all
γ ∈ Γ.

We infer from the triangle inequality that

d⊖(F̃γf(α(x)), F̃γf(α(y)))

≤ d⊖(F̃γf(α(x)), F̃γp2(α(y))) + d⊖(F̃γp2(α(y)), F̃γf(α(y))).

The first summand is smaller or equal than ε and it remains to show that the second
summand equals 0. We show by contradiction that p2 ≤ f and thus we obtain 0 via the
non-expansiveness of the predicate lifting with respect to d∞

⊖ (cf. Definition 5.2.18).
So assume that p2 ̸≤ f and we argue that D can not win. There is a state x′ such
that p2(x′) > f(x′). S can then at Step 3 choose p2 and x′. Now D chooses at
Step 4 y′ with p2(x′) ≤ f(y′) and ε′ = f(y′)− p2(x′). In that case D has no winning
strategy: f(y′)− f(x′) ≤ dG

α (x′, y′) since f is non-expansive and f(x′)− p2(x′) < 0,
which implies ε′ = f(y′)− f(x′) + f(x′)− p2(x′) < dG

α (x′, y′) + 0 = dG
α (x′, y′). And

this is a contradiction, since D does not have a winning strategy for (x′, y′, ε′). □

Analogous as with the classical game in Section 3.3.2 we consider the relation
between distinguishing formulas and the winning strategies of the spoiler.

5.4.2 Spoiler Strategy for the Metric Case

The strategy for S for (x, y, ε) can be derived from a modal formula φ with
d⊖(JφK(x), JφK(y)) > ε. If ε < dα(x, y) = sup{de(JφK(x), JφK(y)) | φ}, such a
formula must exist (since we can use negation to switch x, y if necessary). The spoiler
strategy is defined over the structure of φ:

• φ = ⊤: this case can not occur.

• φ = [γ]ψ: S chooses x, p1 = JψK at Step 1. After D has chosen y, p2 at Step 2,
we can observe that p2 ̸≤ JψK (see proof of Theorem 5.4.7). Now in Step 3

177

5. Behavioural Distances:
Modal Logic and Games over Set

S chooses p2 and x′ such p2(x′) > JψK(x′). Now D needs to choose y′ such
that JψK(y′) ≥ p2(x′) in Step 4 and ε′ = JψK(y′)− p2(x′) < JψK(y′)− JψK(x′) =
de(JψK(x′), JψK(y′)) and so the game continues in the situation (x′, y′, ε′) with
the formula ψ.

• φ = min(ψ,ψ′): In this case either

de(JψK(x), JψK(y)) > ε or de(Jψ′K(x), Jψ′K(y)) > ε

(cf. Lemma 5.2.21(3)) and S picks ψ or ψ′ accordingly.

• φ = ¬ψ: In this case S takes ψ, since

de(JψK(x), JψK(y)) = de(JφK(x), JφK(y)) > ε.

• φ = ψ ⊖ q: In this case

de(JψK(x), JψK(y)) ≥ de(JφK(x), JφK(y)) > ε

(cf. Lemma 5.2.21(1)) and hence S takes ψ.

It can be shown that this strategy is indeed correct.

Theorem 5.4.7
Assume that α : X → FX is a coalgebra. Let φ be a formula with
de(JφK(x), JφK(y)) > ε. Then the spoiler strategy described above is winning for
S in the situation (x, y, ε).

Proof: Each step described in the strategy yields a smaller formula by structural
induction. Hence the game will eventually terminate.

We only have to consider the case φ = [γ]ψ in more detail and to show (by
contradiction) that S can make a valid move in Step 3 by proving that the predicate
p2 chosen by D in Step 2 must satisfy p2 ̸≤ JψK.

Hence assume that p2 ≤ JψK. First observe that

d⊖(F̃γp2(α(y)), F̃γJψK(α(y))) = 0

using the non-expansiveness of the predicate lifting wrt. d∞
⊖ (cf. Definition 5.2.18).

Using the triangle inequality, we have

d⊖(F̃γJψK(α(x)), F̃γp2(α(y)))

≥ d⊖(F̃γJψK(α(x)), F̃γJψK(α(y)))− d⊖(F̃γp2(α(y)), F̃γJψK(α(y)))︸ ︷︷ ︸
=0

= d⊖(JφK(x), JφK(y))

> ε

178

5.5. Conclusion and Discussion

which means that D can not play p2 in Step 2 and we have a contradiction. □

Note that Theorem 5.4.6 is not a direct corollary of this theorem, since here we
require that a formula φ with de(JφK(x), JφK(y)) > ε exists, which is not necessarily
true in scenarios where the fixpoint iteration does not terminate in ω steps.

Example 5.4.8

We will show how S can construct a winning strategy for (x, y, ε
2) based on the

formula φ = [γ̄D][γ•]⊤ from Example 5.3.3. The transition system is shown in
Figure 5.5.
It holds that d⊖(JφK(y), JφK(x)) = ε > ε

2 . S plays y and p1 = J[γ•]⊤K which,
due to the definition of γ• equals 1 on terminating states and zero on non-
terminating states. Now γ̄D(Dp1(α(y))) = 1

2 + ε, so D must play in such a way
that γ̄D(Dp2(α(x))) ≥ 1

2 + ε
2 . This can only be achieved by setting p2(3) = ε (or

to a larger value). Now S chooses p2, x′ = 3 and D can only take p1 and either 4,
5 or 7 as y′. In each case we obtain ε′ = p1(y′)− p2(x′) = 1− ε < 1 = de(0, 1) =
de(J[γ•]⊤K(x′), J[γ•]⊤K(y′)).
The spoiler continues to follow his strategy and plays x′, p1 = J⊤K in the next
step, which is successful, since y′ is a terminating state and x′ is not.

5.5 Conclusion and Discussion

After performing the research introduced in Chapter 3, the first thing we noticed
was that a quantitative and general version of the triad had not been presented so
far. Besides a quantitative version of a coalgebraic game, there have also been no
generical results in the field of logic.

We summarize our contributions where the main parts are illustrated in Fig-
ure 5.10:
▷ First of all, inspired by the work in [BB+14] we improved the Kantorovich lifting
via a parametrization based on a finite set Λ of evaluation maps. The new version
allows to capture additional examples, without going via the somewhat cumbersome
multifunctor lifting described in [BB+14].
▷ Secondly, we present a real-valued coalgebraic modal logic and give a Hennessy-
Milner theorem for the coalgebraic setting.

After the adaptation of Ash’s lemma [Ash72] and proving the preservation of totally
boundedness via lifting (Propositions 5.3.7,5.3.6), the quantitative Hennessy-Milner
theorem naturally follows from the parametrization based on a set Λ of evaluation

179

5. Behavioural Distances:
Modal Logic and Games over Set

Behavioural
distances
dα(x, y) ≤ ε

Real valued
modal logics

∀φ
de(JφK(x), JφK(y))

≤ ε

Spoiler-Duplicator
Game

for x, y, ε

Hennessy-Milner theoremDuplicator Strategy

Spoiler strategy

Figure 5.10: Given a coalgebra α : X → FX we have three ways to characterize
quantitative behaviour: behavioural distance dα, modal logics , and a game-theoretical
view.

maps, where the requirements are listed in Definition 5.2.18. The requirement of
monotonicity is replaced by local non-expansiveness in the metric case. The fact that
monotonicity for partial orders generalizes to non-expansiveness for directed metrics
has already been discussed in [TR98].

▷ Thirdly, we worked out a quantitative game version. For this, we follow the
outline of Section 3.3, which treats the classical case, with some variations. An
important difference is the fact that the metric case is parameterized over a set Γ of
evaluation maps. Note that we actually mimic the variant of the game discussed in
Paragraph 3.3.1, where we fix evaluation maps, but omit the requirement of weak
pullback preservation. Analogously to the results obtained for the real-valued logic,
the requirement of monotonicity is replaced by local non-expansiveness.

Comparison to related work can be found in the introduction and throughout
the chapter but at this point we summarize everything and close this chapter by
discussing some open points and questions.

Our work is inspired by the Hennessy-Milner theorem for probabilistic transition
systems [DG+04] and similar results obtained in [WS+18a] for fuzzy logics, on the
way to proving a van Benthem theorem. A generalization of our Hennessy-Milner
theorem is published in [WS21].

Behavioural distances from a coalgebraic perspective are studied in [BW06] which
presents an algorithm to approximate the distance between two states. Another
categorical approach is given by the work in [KK+19], which considers games from a

180

5.5. Conclusion and Discussion

fibrational perspective which provides an elegant way to capture several interesting
examples of bisimulation notions, including behavioural metrics. The so-called
codensitiy lifting of an endofunctor F along such a fibration is based on [SK+18] and
has two parameters: a set of modalities (given as F -algebras) and an observation
domain. While this approach allows handling examples such as Meas, the work
in [KK+19] neither considers codensity bisimilarity on Kleisli categories nor includes
any results on modal logics.

The relation between the Kantorovich lifting d↑F and the Wasserstein lifting d↓F

based on a single evaluation map is studied in [BB+14; Ker16] and under some mild
conditions for the evaluation maps d↓F serves as an upper bound for d↑F .

An interesting metric game for probabilistic transition systems on the base of the
Wasserstein lifting is presented in [WS+18b], where the main difference lies in the fact,
that the duplicator does not imitate the moves of the spoiler. Given two probabilistic
systems (X,α1), (Y, α2), the initialization of the game (x, y, ε) is analogous to ours,
but the duplicator makes the first move like in Baltag’s game [Bal99]. Via this
move the duplicator has to choose a probability distribution µ (which is a coupling
of the two probability measures given by α1(x) and α2(y)) and some distance
function d′ : X × Y → [0, 1] such that the evaluation based on µ and d′ is less or
equal the threshold ε. Again similar to the rules by Baltag, the duplicator has to
define µ, d′ in such a way, that she always can answer to any move µ(x′, y′) > 0
by the spoiler. Similar to our game, the new round is derived from both moves
(x′, y′, d′(x′, y′)) [WS+18b].

In fact, the variant of the classical game that uses the lifted order ≤F is more
reminiscent of the Wasserstein lifting for metrics. It is future work to define a variant
of the metric game via the Wasserstein lifting (or other liftings of metrics).

Another open question is to prove the Hennessy-Milner theorem for the real-valued
logic in the case where the fixpoint is not reached in ω steps. The original variant of
the Hennessy-Milner-theorem only holds for finitely-branching transition systems,
but this result can be generalized if we allow infinite conjunctions (cf. the logic in
Section 5.3). A natural question is whether the same solution is applicable to the
metric case, by replacing the min- by an inf-operator (of restricted cardinality κ, as
in Section 3.2.3). However, for this it seems necessary to generalize the notion of
total boundedness to a new variant where we do not require that the set of anchors
{x1, . . . , xn} of Definition 5.3.5 is finite, but bounded by κ.

A related question is the following: does the Kantorovich lifting preserve com-
pleteness of metrics? (A metric space (X, d) is complete if every Cauchy sequence

181

5. Behavioural Distances:
Modal Logic and Games over Set

converges in X.) Furthermore we would like to add ∞ as a possible distance value,
as in [BB+14]. However, this can not be integrated so easily, for instance it is unclear
how to define negation.

Finally, in the quantitative case it could be interesting to know whether we can
use existing efficient algorithms (for the probabilistic case), for instance in order to
generate the strategy of the spoiler (see, e.g. [CBW12]).

182

6

Behavioural Equivalence: Coalgebraic
Modal Logic and Games Beyond Set

Trace semantics is one possible notion of behavioural equivalence and known as the
coarsest one in the linear-time/branching-time spectrum [Gla01]. As discussed in
Example 2.2.2 this notion does not capture the non-deterministic branching of LTS,
but sometimes such branchings are side-effects and we are rather interested if two
states admit the same traces or words. As introduced in Section 2.3.4 so-called Kleisli
extensions allow us to capture trace semantics via coalgebraic behaviour equivalences
for various branching types [JSS15]. Especially, the work for coalgebraic games in the
context of behavioural equivalences is restricted to Set as introduced in Chapter 3
and via Kleisli extensions we switch to Kleisli categories. In order to complete the
picture of logical and game-theoretical semantics we study the top and the bottom
of the linear and branching time spectrum characterized via coinduction [JSS15].

6.1 Introduction

Most of the work in terms of coalgebraic games and modal logics concerns applications
where the state based models live in Set [Kup07; KM18; Pat03; Sch08]. Inspired
by the goal to lift the level of abstraction for coalgebraic logic and games, various
high-level frameworks from the categorical literature can be employed.

We start with the fibrational approach (see Definition 2.3.40) pioneered by Her-
mida and Jacobs in order to reason about predicates or types from a general point of
view [HJ98]. Recall, that fibrations are in one-to-one correspondence with indexed
categories (see Section 2.3.5) and in terms of games, CLat∧-fibrations are considered
in [KK+19] which are fibrations restricted to fibers which correspond to a complete
lattice and reindexing preserves arbitrary meets. Such a framework allows to capture
several notions of bisimulation together with their corresponding game characteri-
zations [KK+19]. Moreover, it turns out that the properties of such a fibrational
framework are also quite natural in the context of coalgebraic modal logics [KR20;
HKC18].

Furthermore, it has already been observed [JS09] that the natural transformation

183

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

induced by polyadic predicate liftings [Sch08] are surrounded by a framework known
as dual adjunction. To treat coalgebraic modal logics via dual adjunctions is quite
common in the literature [Kli07; BK05; KKP04; JS09] since the contravariant part
allows to relate coalgebras living in Set or Meas with their modal logic [JS09]. In
order to deal with F -coalgebras the adjunction is extended via an endofunctor F on
the left. On the right you see another endofunctor L which captures modal logics.
More concretely, L is used for the syntax of the modal operators and additionally
it is required that L has an initial algebra to represent other formulas of the logic
(see [JS09; KR20]).

Cop A
T

H

F L

Figure 6.1: A dual adjuntion H ⊣ T extended by an F and L-endofunctor [JS09].

Contravariant views are also omnipresent in an approach called indexed category.
It is well-known that an indexed category can be transformed into a fibration via the
Grothendieck construction and Jacobs observed that predicate liftings are nothing
but indexed morphisms. Besides this, Jacobs motivated the indexed category based
view to define predicate liftings for monads in the context of Kleisli categories [Jac10].

While the work [KR20] combining fibrations and dual adjunctions introduces a
framework which allows to move from binary relations (bisimulations) to quantitative
relations (behavioural metrics), we study a way to close the game-theoretical gap
with respect to Kleisli categories [JSS15] by answering the following question: Can we
lift the “hidden side effects” via monads known for coalgebraic behavioural equivalence
to game-based characterizations? We are not aware of an approach that generalizes
predicate liftings to the setting we study in this chapter, in particular to trace
semantics. The papers [KK11; KR16] study generic trace logics and define trace
equivalence based on so-called theory maps (or trace maps as in [KK11]) where we
define equivalence as the kernel of a coalgebra homomorphism.

Apart from our major objective to set up a game characterization which captures
Kleisli categories as well as Set we focus on an approach to establish a more abstract
definition of logic and games. Our motivation is to provide a game characterization
that is analogous to the coalgebraic Definition 2.3.17 of behavioural equivalences
presented in Chapter 2 and therefore we expand our results from Chapter 3 to trace
semantics. Moreover, we extend the ideas based on indexed categories [Jac10] to
a Kleisli extension of predicate liftings which to our knowledge is new. Summariz-

184

6.2. Foundations

ing, our contribution is different compared to the games obtained for a fibrational
framework [KK+19] which do not address trace semantics or modal logics but brings
games for bisimulation and behavioural metrics under one roof.

In the next Section 6.2 we introduce the relevant categorical preliminaries required
in this chapter. In Section 6.3 we extend the ideas of Jacobs in the field of Kleisli
categories [Jac10; JSS15] and give a recipe to construct predicate liftings for Kleisli
categories. Finally, in Section 6.4 we present a framework where we prove general
adequacy and expressivity for coalgebraic modal logic and games.

6.2 Foundations

In this chapter we move from logics and games over coalgebras in Set to logics and
games for coalgebras in the Kleisli category over some Set-monad T and we denote
such a category with Kℓ(T) as introduced in Definition 2.3.32. The background of
this chapter is based on the preliminaries presented in Section 2.3.4 and Section 2.3.5.

In order to talk about elements, we restrict to categories C such that an free-
forgetful adjunction exists. This means, that there exists a left adjoint for the forgetful
functor C |_|−→ Set.

Set C
I

|_|

Figure 6.2: For a concrete category (C, U) over Set we assume that there exists an
inclusion functor I from Set to our base category C.

Since Kleisli categories are our main motivation, we first present the general
construction of an adjunction given by a Kleisli category in Table 6.1. Afterwards,
we give an overview in Table 6.2 of the adjunctions used as examples within this
chapter.

IX = X, If = ηY ◦ f

for f : X → Y, f,X, Y ∈ Set

|X| = TX, |g| = µY ◦ Tg

for g : X → Y, g,X, Y ∈ Kℓ(T)

Table 6.1: The left I : Set→ Kℓ(T) and right |_| : Kℓ(T)→ Set adjoint for Kleisli
categories induced by a set monad (T, η, µ).

The second monad MF in Table 6.2 is derived from the definition presented in
Example 2.3.31. Here we restrict to fields instead of semirings to guarantee the
decidability of language equivalence (cf. [Sch61]).

185

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

T = P T =MF

IX = X, If : X → PY

If(x) = {f(x)} for f : X → Y ∈ Set

|X| = PX,PX |g|−→ PY

|g|(X ′) =
⋃
{g(x) | x ∈ X ′}, X ′ ⊆ X

for g : X → Y, g ∈ Kℓ(P)

IX = X, If : X →MFY

If(x)(y) =

1 f(x) = y

0 else

|X| =MFX,MFX
|g|−→MFY

|g|(h)(y) =
∑

h′∈suppΦ

Φ(h′) · h′(y)

h ∈MFX

MFg(h) = Φ ∈MF(MFY)

suppΦ = {h′ ∈MFY | Φ(h′) ̸= 0}

for g : X → Y, g ∈ Kℓ(MF)

Table 6.2: Two concrete adjunctions given by the monads: powerset P and the
multiset MF.

Next we specify for each Kleisli category introduced in Table 6.2 a transition
system type and use these applications as running examples.

Example 6.2.1

By following [HJS07; JSS15] we model a non-deterministic automaton (NDA)
as a coalgebra living in C = Rel = Kℓ(P). Recall the content of Section 2.3.4
that a Kleisli extension Rel F̄- Rel of Set F- Set (i.e. F̄ ◦ ι = ι ◦ F) is
in correspondence (see [Mul94, Theorem 2.2] for a general statement) with a
distributive law FT

θ- TF which is a natural transformation and compatible
with the monad structure of T (see Definition 2.3.34 and [Mul94, Theorem 2.2]
for a general statement).
Consider F_ = A × _ + 1 (where 1 = {•}) with the following distributive
law [Jac04, Section 4]:

A× PX + 1 θX- P(A×X + 1) (a, U) 7→ {a} × U, • 7→ {•}.

This induces a functor Rel F̄- Rel which acts on a relation X r- Y , seen as
a Kleisli arrow X

r′
- PY , as follows: F̄ r = θY ◦ Fr′. Notice that F̄ -coalgebras

model implicit non-determinism (i.e. this side-effect is hidden to an outside
observer as shown in Paragraph 2.3.4) [HJS07], thus behavioural equivalence
coincides with language equivalence (instead of bisimilarity) in this case.

186

6.2. Foundations

Example 6.2.2

We consider (linear) weighted automata (LWA) as coalgebras as studied in [JSS15].
LWA are modelled as coalgebras of the endofunctor MF(1 + A × _), where F

is a field and MF is the multiset monad (see Example 2.3.31). We write x ↓s
and x a,s′

−−→ x′ whenever α(x)(•) = s and α(x)(a, x′) = s′ (resp.) for a given LWA
X

α- MF(A×X + 1) in MF.
Recall that the language of a given LWA α starting from a state x ∈ X is an
inductively defined function tr(x) : A⋆ → F as follows. Below a ∈ A, w ∈ A⋆,
and ε is the empty word.

tr(x)(ε) = α(x)(•), tr(x)(aw) =
∑

x
a,s−−→x′

s · tr(x′)(w).

Two states x, x′ ∈ X are (weighted) language equivalent iff tr(x) = tr(x′).
This coincides with coalgebraic behavioural equivalence in Kℓ(MF) (see [JSS15;
KK18]). Note that probabilistic automata can be encoded by letting F = R0 and
restricting the weights to the interval [0, 1].

Analogously to Chapter 3 and Chapter 5 we need to consider predicates and their
liftings, since the semantics of modal logic formulas are predicates (JφK : X → {0, 1})
or correspond to the moves of the players in the games presented within this thesis
(see Definition 3.3.1 or Definition 5.4.1).

More precisely, in Set, the predicates on a set X are given by characteristic
functions over X (i.e. subsets of X). Now given a function X

f- Y then a
predicate pY (i.e. a characteristic function over Y) can be transformed into a
predicate on X by the pullback operation f−1(p̂Y) ⊆ X in Set. The essential aspect
of predicate liftings is the natural way how a subset of X is mapped to a subset of FX
(see Definition 3.2.9). In Set the naturality follows from the contravariant powerset
functor and Jacobs lifts this observation to a high abstract level as introduced in
Section 2.3.5.

From now on, we also present our work in the context of indexed categories to
get an abstract view on the material: logic and games.

As already mentioned and well-known, indexed morphisms (i.e. predicate liftings)
and logic go hand in hand. Regarding the correspondence between games and logic
in Set (see Figure 3.10) the question arises how indexed morphisms harmonize with
games?

Therefore, we consider the following observation on categorical logic where indexed

187

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

categories with even more structure are studied [Pit00]. For instance, existential
quantification can be interpreted as left adjoint of a functor between fibres [Jac10].

Example 6.2.3

Consider the contravariant powerset functor Setop Q̃- Cat introduced in
Example 2.3.38. One can restrict from Cat to Poset and obtain for a given
function f : X → Y ∈ Set the reindexing functor f∗ : (PY,⊆)→ (PX,⊆) that
takes subsets Y ′ ⊆ Y back to subsets of the domain of f (i.e. f∗ = f−1):

f∗(Y ′) = {x | f(x) ∈ Y ′}

The left adjoint of this functor is the existential quantifier ∃f : PX → PY . More
precisely, ∃f maps a subset X ′ ⊆ X to

{y ∈ Y | ∃x ∈ X s.t. f(x) = y and x ∈ X ′}

Analogously, one can view this from the fibrational perspective based on the
Grothendieck construction E(Q̃)→ Set (see Section 2.3.5) which results in the
fibration Pred - Set where Pred is the category of predicates.
The category Pred has as objects pairs (X, pX) where pX : X → {0, 1} is
a characteristic function over X and the morphisms are given by functions
f : (X, pX) → (Y, pY) such that for all x ∈ X we have that pX(x) implies
pY (f(x)).
The elements in E(Q̃) are given by tuples (X,X ′) where X ∈ Set and X ′ ∈ Q̃X,
and a subset corresponds to a characteristic function X → {0, 1}. Thus we get
the same elements as in Pred. The morphisms in E(Q̃) are also given as pairs of
functions (f, p) : (X,X ′) → (Y, Y ′) such that f : X → Y and p : X ′ → f−1[Y ′]
with f−1[Y ′] ∈ Q̃X [Jac99].

De facto, in Section 6.4.3, this left adjoint is necessary in defining the winning
strategy of the duplicator. Based on the fact that an indexed category can be
transformed into a fibration by the so called Grothendieck construction (see [Jac99,
Chapter 9] or Section 2.3.5), we present the following useful result:

Proposition 6.2.4: [Jac99]

An indexed category Cop Φ- Cat has the bifibration property if, and only if,
the reindexing functor f∗ (for every f ∈ C) has a left adjoint ∃f .

188

6.2. Foundations

Example 6.2.5

The contravariant powerset functor Setop Q̃- Cat is an example of an indexed
category with the bifibration property, i.e. the fibration

Pred - Set

is an opfibration. This is because the reindexing functor f−1 (for any function f)
has a left adjoint given by the direct image functor (see Example 6.2.3).

From now on, we require that our indexed category has the bifibration property.
The next result helps in building new indexed categories having bifibrations from

the old ones. We will use this construction later in Section 6.4.3.

Lemma 6.2.6
The bifibration property is preserved by the composition of functors.

Analogously to the foundations of Chapter 3 we need to consider separating sets
of predicate liftings (i.e. indexed morphisms) (see Definition 3.2.13 and the third
part of the proof of Theorem 3.3.2).

Now that we are also studying a more general view on logic and games we need
a more general version of Definition 3.2.13. But therefore, we need to define the
evaluation of a predicate by a state since predicates are objects in the categorical
sense and states are elements in the set theoretical sence. So we parametrize the
evaluation of predicates by a natural transformation Φ ω- Q̃◦|_|, which transforms
an abstract predicate into a concrete predicate, i.e. as subsets of the underlying
state-space. Often ω is the identity natural transformation.

Cop F - Cop

λ⇒ ω⇒

Cat � Q̃
�

ΦΦ
-

Setop

|_|
-

Figure 6.3: Evaluation of predicates in the context of indexed categories.

Definition 6.2.7
A state c ∈ |C| (for some C ∈ C) satisfies a predicate U ∈ ΦC, denoted c |=ω U ,
iff c ∈ ωCU . We omit the subscript whenever it is clear from the context.

189

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

Example 6.2.8

We instantiate our framework by defining an indexed category over our working
category C = Kℓ(T). Recall the standard indexed category Q̃ on Set (Ex-
ample 6.2.5). Composing with the dual of forgetful functor Kℓ(T) |_|- Set
gives an indexed category on Kℓ(T), where Φ is given by the composition
Kℓ(T)op |_|- Setop Q̃- Cat.

Kl(P)op
F̄ - Kl(P)op

λ⇒ IdΦ⇒

Cat � Q̃
�

Q̃|_|Q̃|_| -

Setop

|_|
-

As a result, predicate liftings are of type Q̃ ◦ |_| - Q̃ ◦ |_| ◦F . Lastly, ω = IdΦ

and therefore ωC = idC (for each C ∈ C) since a predicate on C is a subset of
TC in this setting. Our framework is depicted above for the running example on
NDAs, where F̄ is an extension of A×_+1 (cf. Example 6.2.1) and Φ λ- Φ◦F
is a predicate lifting which is yet to be defined.

Now, we are ready to define a more abstract view on separating sets of predicate
liftings (compare with Definition 3.2.13):

Definition 6.2.9
Given a category C. A set Λ of predicate liftings is separating with respect to F
if, and only if,

∀c,c′∈|F C|
((
∀U∈ΦC,λ∈Λ

(
c ∈ ωF CλCU ⇐⇒ c′ ∈ ωF CλCU

))
=⇒ c = c′

)
.

for each C ∈ C.

6.3 Kleisli Extension of Predicate Liftings

Predicate liftings play a major role for logic and games (see Chapter 3). Moving
from a coalgebra α : X → TFX in Set to a coalgebra in Kℓ(T) the question arises
how to obtain suitable predicate liftings Φ|X| λ- Φ|F̄X|.

Since an indexed category on Set induces an indexed category on a Kleisli category
(see Example 6.2.8) it seems natural to construct such predicate liftings based on
predicate liftings Φ σF

- ΦF,Φ σT
- ΦT of F, T which are both endofunctors on

190

6.3. Kleisli Extension of Predicate Liftings

Set. Summarizing the underlying components we have:

1. a functor F where F : Set→ Set

2. a monad (T, η, µ) where T : Set→ Set

3. a Kleisli extension Kℓ(T) F̄- Kℓ(T) and thus, a

4. distributive law FT
σ- TF such that σ is compatible with the multiplica-

tion µ.

5. an indexed category Φ ◦ |_| on Kleisli

To avoid the effort to create the necessary predicate liftings from scratch it seems
natural to derive such predicate liftings (i.e. λ’s) from the components listed above
as in Equation 6.1.

ΦTC = Φ|C|
σF

|C|- ΦF |C|
σT

F |C|- ΦTF |C|
∃|θC |- Φ|F̄C| = ΦTFC. (6.1)

However, the approach presented in Equation 6.1 is not as natural as it seems. More
precisely, usually λ fails to be a natural transformation.

Example 6.3.1

In the context of NDAs, i.e. when C = Set, T = P, F = A×_ + 1, Φ = Q̃, for
some alphabet A we will show that λ is not a natural transformation.
Therefore, we give a counterexample i.e. a function f : X → Y such that the
diagram in Figure 6.4 does not commute.
First of all we explain the five different morphisms involved in that computation.
Before we proceed, we want to emphasize how our notations are organized where
we have (at least) four different functors applied to a non-empty set X:

U ∈ Q̃PX Ũ ∈ Q̃(A× PX + 1)
Ũ ∈ Q̃P(A× PX + 1) Ū ∈ Q̃P(A×X + 1)

Table 6.3: Organization of the notations with respect to the different functors
with U ∈ PX.

191

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

Q̃PX Q̃(A× PX + 1) Q̃P(A× PX + 1) Q̃P(A×X + 1)

Q̃PY Q̃(A× PY + 1) Q̃P(A× PY + 1) Q̃P(A× Y + 1)

σa
PX

σP
F |X| |θX |!

Q̃|f | Q̃(A× f + 1)

σa
PY σP

F |Y | |θY |!

Figure 6.4: Naturality of predicate liftings implies that the given diagram com-
mutes. Unfortunately, this does not hold for the lifting proposed by Equation 6.1.

Note, that in case we apply one of the functors above to a non-empty set Y we
use V instead of U as basis for our notations (see Table 6.3).

1. Q̃|f | is based on |f | = µY ◦ Pf and defined as follows:

|f |(U) = {y ∈ Y | ∃x ∈ U s.t. y ∈ f(x)}

and therefore we conclude:

Q̃|f |V = {X ′ ∈ PX | |f |(X ′) ∈ V}

2. Analogously we derive Q̃(A× f + 1) as follows:

Q̃(A× f + 1)V̄ = {Ū ∈ P(A×X + 1) | A× f + 1(Ū) ∈ V̄}

where A× f + 1(Ū) =

{(a′, y) ∈ A× Y | ∃ x (a′, x) ∈ Ū ∧ y ∈ f(x)} ∪ {• | • ∈ Ū}

3. σa
PXU = {(a, Ū) | Ū ∈ U}

4. σP
F |Y |Ũ = {U | U ⊆ Ũ} is the usual modal 2 operator.

5. |θX |! is the direct image of |θX | where θ is the distribution law.

Let X = {x1, x2}, Y = {y1, y2, y3, y4}, A = {a}, and a function f : X → PY
which maps x1 7→ {y1, y3} and x2 7→ {y2, y4}.
Now, consider V = {{y1, y2}, {y3, y4}} where Q̃|f |V = ∅ which is lifted via the
Construction 6.1 to {∅} ∈ Q̃P(A×X + 1).

192

6.3. Kleisli Extension of Predicate Liftings

But, σa
PY V = {(a, {y1, y2}), (a, {y3, y4})} is lifted to

{∅, {(a, {y1, y2})}, {(a, {y3, y4})}, {(a, {y1, y2}), (a, {y3, y4})}}

via σP
F |Y |. Based on the direct image of the distribution law we get:

{∅, {(a, y1), (a, y2)}, {(a, y3), (a, y4)}, {(a, y1), (a, y2), (a, y3), (a, y4)}}

and we denote this set with V̄. Finally, we see that Construction 6.1 fails
to be natural since for {(a, x1), (a, x2)} we have A× f + 1({(a, x1), (a, x2)}) =
{(a, y1), (a, y2), (a, y3), (a, y4)} ∈ V̄ and {{(a, x1), (a, x2)}} ̸= {∅} which is ob-
tained the other way around within the diagram (as explained above).

Since the problem can be traced back to the distributive law FT
σ- TF

a solution is given by a distributive law between F and a corresponding functor
G : Set → Set inspired by abstract determinization techniques for a similar set-
ting [JSS15].

Considering a coalgebra α : X → HX where H includes a monad T there are two
options for T within H:

X → G(TX) X → T (FX)

The monad can act inside or influence the branching from the outside. Typically
in various applications, G is associated with the branching type of a deterministic
version of the corresponding system of interest (like G = _A× 2 in the case of NDA).
As described in [JSS15] in the case of NDAs both forms are equivalent, but in general
this does not hold.

Kℓ(T) F̄ - Kℓ(T)

⇓ γ

C

|_|
?

G - C

|_|
?

Kℓ(T) F̄ - Kℓ(T)

⇑ θ

C

|_|
?

F - C

|_|
?

Figure 6.5: The distributive laws of F and G wrt. T .

To circumvent the problem with the distributive law FT
θ- TF we consider the

functor G equipped with a natural transformation between F and G as illustrated in
Figure 6.5 which yields the following idea

Φ|C|
σG

|C|- ΦG|C| (γC)∗
- Φ|F̄C| (6.2)

193

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

Thus, given a monad T , a coalgebra α : X → TFX and a functor G, the following
Lemma 6.3.2 helps to find a distributive law TF

γ- GT .

Lemma 6.3.2

Let F̄ be a Kleisli extension of F which induces a distributive law FT
θ- TF .

Then every distributive law TF
γ- GT which is compatible with θ and µ in

the sense that the following square

TFTC
γT C- GTTC

TTFC

T θC ?

TFC

µF C ?
γC - GTC

GµC

?

commutes, induces a distributive law |_|◦ F̄ - G◦|_|. Moreover, the converse
also holds.

Proof: Let C f- D ∈ Kℓ(T). Then we need to show that the following square on
the left commutes. But this follows immediately by the commutative diagram drawn
on the right, where the top square commutes due to the naturality of γ.

|F̄C| γC - G|C|

|F̄D|

|F̄ f |

?
γD - G|D|

G|f |

?

TFC
γC - GTC

TFTD

T F f
?

γT D - GTTD

GT f
?

TTFD

T θD
?

TFD

µF D
?

γD - GTD

GµD

?

For the converse, take f = idT C and view it as a Kleisli arrow TC - C. □

Now we are ready to define predicate liftings for Kleisli categories. Given an
indexed morphism Φ σG

- ΦG and a distributive law γ as described previously we
obtain a predicate lifting λC defined in the following way:

Φ|C|
σG

|C|- ΦG|C| (γC)∗
- Φ|F̄C| (6.3)

Theorem 6.3.3
The above mapping λ is a predicate lifting.

194

6.3. Kleisli Extension of Predicate Liftings

Proof: This result follows from the naturality of σG and γ (similar to the one in
Definition 3.2.9). In case two diagrams (a left one given by σG and one right diagram
derived from γ) commute then the composition of these diagrams also commutes.

Given a function f : X → Y ∈ Kℓ(T), we know that the digram induced by f

and σG commutes due to the naturality of σG. Therefore, it suffices to show that
the naturality of γC : TFX → GTX implies the naturality of γ∗

C : GTX → TFC

which is just the opposite natural transformation. □

In the context of logic and games we also need to show that we obtain a separating
set of predicate liftings. Therefore, we explore our result in more detail on two
different transition system types (NDA and LWA). In each application we first
apply the construction of Equation 6.3 and then we show that this way we obtain a
separating set of predicate liftings.

Non-Deterministic Finite Automata An NDA is modelled via a coalgebra
α : X → P(A × X + 1) ∈ Set. If one wants to work with language equivalence
instead of bisimulation it is already described in Example 6.2.1 how the lifting of
F = A×X+1 to F̄ (i.e. the Kleisli extension) works. Recall that our Kleisli category
is Kℓ(P) which is equivalent to Rel.

Now, we want to instantiate the Kleisli extension of a predicate lifting given in
Equation 6.3 to NDAs. Our monad is the powerset monad T = P and the situation
is the following:

G = _A × {0, 1} F = A×_ + 1
X → (PX)A × {0, 1} X → P(A×X + 1)

Table 6.4: The Set endofunctors G and F in combination with the powerset
monad [JSS15].

Recall, that 2 = {0, 1} and we have three different functors applied to a non-empty
set X:

U ∈ Q̃(X) Ū ∈ P(A×X + 1) U ∈ Q̃PX

Next, we define the distributive law γ : TF → GT as follows [JSS15]:

P(A×X + 1) γX- (PX)A × 2 Ū 7→ (γA
X Ū , γ

2
X Ū),

where γA
X Ū(a) = {x | (a, x) ∈ Ū} and γ2

X Ū = 1 ⇐⇒ • ∈ Ū .

Moreover, from [JSS15] we know that γ is compatible with θ and the multiplication
(i.e.

⋃
) in the sense of Lemma 6.3.2. In addition, we also need a predicate lifting

195

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

of G = _A × 2 with respect to the indexed category Q̃. So consider the family of

liftings Q̃X
σa

X- Q̃(XA × 2) (for each a ∈ A) and Q̃X
σ↓

X- Q̃(XA × 2):

U 7→ {(p, b) ∈ XA × 2 | p(a) ∈ U} and U 7→ {(p, 1) | p ∈ XA}.

Lemma 6.3.4

The above mappings σa
X (for a ∈ A) and σ↓

X are predicate liftings.

Proof: Let V ⊆ Y and X
f- Y be a function and

Gf : XA + 2→ Y A + 2 with Gf(p, b) = (f ◦ p, b)

Then,

(Gf)−1σa
Y (V) = (Gf)−1{(q, b) ∈ Y A × 2 | q(a) ∈ V }

=
{

(p, b′) ∈ XA × 2 | (Gf)(p, b′) ∈ {(q, b) | q(a) ∈ V }
}

=
{

(p, b′) ∈ XA × 2 | (f ◦ p, b′) ∈ {(q, b) | q(a) ∈ V }
}

= {(p, b) | f(p(a)) ∈ V }

= {(p, b) | p(a) ∈ f−1(V)}

= σa
X(f−1(V)).

For the mapping associated with termination, we derive

(Gf)−1σ↓
Y (V) = (Gf)−1{(q, 1) | q ∈ Y A}

=
{

(p, b) ∈ XA × 2 | (Gf)(p, b) ∈ {(q, 1) | q ∈ Y A}
}

=
{

(p, 1) ∈ XA × 2 | f ◦ p ∈ Y A
}

= σ↓
X(f−1(V)).

□

Thanks to Theorem 6.3.3, we know that γ−1 ◦ σa, γ−1 ◦ σ↓ are valid predicate
liftings for the Kleisli extension F̄ of an endofunctor F = A × _ + 1 of Set to an
endofunctor A×_ + 1 of Rel:

Rel A×_+1- Rel

Finally, given a set A of actions we obtain for any set X and each a ∈ A the
predicate liftings:

λa
X , λ

↓
X : Φ|X|

σG
|X|- ΦG|X| (γX)∗

- Φ|F̄X|

196

6.3. Kleisli Extension of Predicate Liftings

These liftings map a subset U ⊆ PX to a subset of PF̄X where we have to
distinguish between different actions and termination.

For each a ∈ A we compute

λa
X(U) = γX

−1σa
PX(U)

= γX
−1{(p, b) ∈ (PX)A × 2 | p(a) ∈ U}

=
{
Ū | γX(Ū) ∈ {(p, b) | p(a) ∈ U}

}
=

{
Ū | γA

X Ū(a) ∈ U
}

=
{
Ū | {x | (a, x) ∈ Ū} ∈ U

}
and for termination we derive

λ↓
X(U) = γX

−1σ↓
PX(U)

= γX
−1{(p, 1) | p ∈ (PX)A}

=
{
Ū | γX(Ū) ∈ {(p, 1) | p ∈ (PX)A}

}
=

{
Ū | γ2

X Ū = 1
}

=
{
Ū | • ∈ Ū

}
.

As a conclusion we relate our predicate liftings to the results of the determinization
techniques [JSS15].

Our predicate liftings induce the action (λa
X) and termination (λ↓

X) modalities
after determinization for a given coalgebra α : X → P(A×X + 1) ∈ Set. Since we
apply γX ◦ µ ◦ |α| we determinize α into a system over the state space PX [JSS15].
The application of |α| results in PPFX and therefore the composition γX ◦µ◦|α| with
µ = ∪ defines the behavioural dynamics of the automaton (with codomain G|X|).

This means, that for a given U ∈ Q̃PX a state U ∈ PX satisfies a modality [λa
X]

if |α|(U) ∈ λa
X(U) where as usual in the context of logic U denotes the semantic of

some formula (see Section 3.2.3). For Spoiler-Duplicator games, U will play a major
role in the moves defined for each player.

Therefore, we need to know what does it mean if |α|(U) ∈ λa
X(U) holds and the

computation |α|−1(λa
X(U)) yields the following:

|α|(U) ∈ λa
X(U)⇐⇒ {x′ | ∃ x ∈ U s.t. x a−→ x′} ∈ U

Analogously, for λ↓
X we obtain:

|α|(U) ∈ λ↓
X(U)⇐⇒ ∃x ∈ U s.t. • ∈ α(x)

197

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

As mentioned at the beginning of this paragraph, we need a separating set Λ
of predicate liftings. Such a set Λ is expressive enough to distinguish two differ-
ent elements t1, t2 ∈ PFX and the predicate liftings that we derived are indeed
separating.

Lemma 6.3.5

The set Λ = {λa | a ∈ A} ∪ {λ1} is separating with respect to A×X + 1.

Proof: Let t1, t2 ∈ P(A×X + 1) such that t1 ̸= t2. Hence we have to consider only
two cases:

1. For some (a, x) it holds that (a, x) ∈ t1 but (a, x) /∈ t2: Here we consider the
predicate U = {{x}} together with the lifting λa

X . The lifting then yields all
such Ū ⊆ A×X + 1 containing at least (a, x), hence t2 /∈ λa

X(U). Obviously
t1 ∈ λa

X(U).

2. For 1 it holds that • ∈ t1 but • /∈ t2: Here it does not matter, which predi-
cate we choose as long as we work with λ1

X . Based on this lifting, we know
that t2 /∈ λ1

X(U) for all U ∈ Q̃PX, hence all elements in the lifting contain
termination.

□

The construction and proofs for our next application work similarly and therefore
we just present the results and the proofs can be found in Section A.4 of the appendix.

(Linear) Weighted Automata For LWA we fix C = Set, T = MF, F =
A×_ + 1, G = _A × F, and recall from [JSS15, Section 7.3] the distributive laws
A×MFX + 1 θX- MF(A×X + 1) and MF(A×X + 1) γX- (MFX)A × F:

θX(•)(♡) =

1, if ♡ = •

0, otherwise.

θX(a, τ)(♡) =

τ(x), if ♡ = (a, x), for some x ∈ X

0, otherwise.

where

γX(p) = (γA
Xp, p(•)), where γA

Xp(a)(x) = p(a, x) (for a ∈ A, x ∈ X)

We know (from [JSS15]) that γ is compatible with θ and µ (the multiplication of the
monadMF) in the sense of Lemma 6.3.2. In light of the NDAs, consider the following

198

6.3. Kleisli Extension of Predicate Liftings

predicate liftings to characterize weighted language equivalence Q̃X
σa

X ,σs
X- Q̃(XA×F)

(for a ∈ A and s ∈ F): U 7→ {(p, s) ∈ XA×F | p(a) ∈ U} and U 7→ {(p, s) | p ∈ XA},
respectively.

Lemma 6.3.6
The above mappings σa

X , σ
s
X (for a ∈ A, s ∈ F) are indexed morphisms.

The proof of this lemma is similar to the proof of Lemma 6.3.4. And thanks to
Theorem 6.3.3, we know that γ−1 ◦ σa and γ−1 ◦ σs are valid predicate liftings.

Lemma 6.3.7

For any U ⊆MFX we find that λa
X(U) = {p̄ ∈ MF(A×X + 1) | γA

X p̄(a) ∈ U}
and λs

X(U) = {p̄ ∈MF(A×X + 1) | p̄(•) = s}.

Just like in our running example above, the determinization of an LWA α is the
composition:

MFX
MFα- MFMF(A×X + 1) µA×X+1- MF(A×X + 1) γX- (MFX)A × F.

More concretely, it maps a p ∈MFX to a pair (p̂, s), where

p̂(a)(x′) =
∑
x∈X

p(x) · α(x)(a, x′) and s =
∑
x∈X

p(x) · α(x)(•).

In terms of SOS rules, determinisation is given as follows:

p ∈MFX

p
a−→ p̂(a)

p ∈MFX s =
∑

x∈X p(x) · α(x)(•)
p ↓s

where p ↓s denotes the termination weight s of p.

Lemma 6.3.8

For any U ⊆MFX and X
α- MF(A×X + 1), we have

|α|−1λa
X(U) = {p ∈MFX | p

a−→ p̂(a) =⇒ p̂(a) ∈ U}

and |α|−1λs
X(U) = {p ∈ MFX | s =

∑
x∈X p(x) · α(x)(•)}. Moreover, the set

Λ = {λa | a ∈ A} ∪ {λs | s ∈ F} is separating with respect to A×X + 1.

We summarize our contribution. In this chapter we have seen how modalities
can be constructed in case we consider a coalgebra in Kleisli and are aware of the
relevant functor G.

In the next section we define expressive logics and also play games in this setting.

199

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

6.4 Coalgebraic Modal Logic and Games Beyond Set

This section is dedicated to our main building blocks within this thesis: logic and
games. Therefore, we present an abstract game characterization based on indexed
categories and adapt the well-known coalgebraic view on modal logic.

Since categories such as Kℓ(P) fails to admit all coequalizers, we need to establish
a proof-technique for the completeness parts of our proofs. We start with a work-
around for the construction of a witnessing coalgebra homomorphism based on a
given equivalence relation present in Set and lifted to the category C (see restrictions
of the setting in Section 6.2).

6.4.1 The Witnessing Coalgebra Homomorphisms

Coalgebraically, given a coalgebra α : X → FX in a concrete category C two
states c, c′ ∈ |X| are behaviour equivalent if there exists a coalgebra homomorphism
f : X → Y ∈ C such that |f |(x) = |f |(y) (compare Definition 2.3.17). In Chapter 3
such a witness with respect to logical/game-theoretical equivalence is constructed
based on the fact that Set has all coequalizers. Unfortunately this does not hold in
general since Kℓ(P) does not admit all coequalizers [Mil00].

Example 6.4.1

We consider Rel = Kℓ(P) to show that there exist categories which fail to admit
all coequalizers (see Definition 2.3.15). For Rel = Kℓ(P) this observation is
mentioned in many publications, but for completeness we consider the partial
order ≤= {(0, 0), (0, 1), (1, 1)} ⊆ {0, 1} × {0, 1}, which is also omnipresent in
Chapter 3. Note, that ≤ can be seen as a morphism in Rel.
The situation is depicted in Figure 6.6, given two parallel relations ≤, id{0,1}

we search for a coequalizer q : {0, 1} → Q. Furthermore, for ≤ we have that
≤ ◦ ≤ = ≤ ◦ id{0,1} holds and by the properties of a coequalizer q there must
exists a unique morphism u with ≤ = u ◦ q.
We need to demonstrate that in general no relation q with the required properties

q ◦ ≤ = q ◦ id{0,1} and ≤ = u ◦ q by Definition 2.3.15

exists. Therefore, for any candidate q,Q we notice the following:

1. At least for some e, e′ ∈ Q with (0, e), (1, e′) ∈ q we have that e ̸= e′ since
(0, 0) ∈ ≤ implies (0, e) ∈ q and (e, 0) ∈ u at least for one e ∈ Q. And if
(1, e) ∈ q we have that (e, 0) /∈ u since (1, 0) /∈ ≤. This implies that we

200

6.4. Coalgebraic Modal Logic and Games Beyond Set

need at least two different elements e, e′ ∈ Q. Therefore Q = ∅ or Q = 1
are excluded.

{0, 1} {0, 1} Q

{0, 1}
≤

q

u ?
≤

id{0,1}

Figure 6.6: Kℓ(P) fails to admit all coequalizers.

2. Next, consider any Q ∈ Kℓ(P) with |Q| ≥ 2 and due to (1) we have
e ̸= e′ ∈ Q such that

(0, e) ∈ q (e, 0) ∈ u since (0, 0) ∈ ≤

(1, e′) ∈ q (e′, 1) ∈ u since (1, 1) ∈ ≤

but (1, 0) /∈ ≤= u ◦ q

For q and u given as above we have {(0, e), (1, e′)} ≠ {(0, e), (0, e′), (1, e′)}
and thus q = q ◦ id{0,1} ̸= q ◦ ≤. Therefore, for any (1, e′) ∈ q we need to
add (0, e′) to q to obtain q ◦ ≤ = q ◦ id{0,1} = q.

Now we satisfy the first property and ≤ = u ◦ q holds but we can construct
a u′ adding (e, 1) to u which still satisfies ≤ = u′ ◦ q, but this violates the
uniqueness of u.

On the otherside, any additional (0, l) ∈ q with l ̸= e again violates the
uniqueness of u since we can add (l, 0) or (l, 1) to u such that ≤= u ◦ q
holds.

Finally, we conclude that no coequalizer exists (cf. [nca09]).

However, it still could be the case that the specific coequalizers that we are
interested in (i.e. based on an equivalence relation ≡ ∈ C equipped with the usual
projections) exist. But it still would remain unclear if such a coequalizer yield the
necessary witnessing coalgebra homomorphism.

Therefore, we consider a special type of subcategories inspired by the work
in [AB+12] whenever the category of interest lacks the existence of epi-mono factor-
izations.

201

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

Definition 6.4.2
A category B is a reflective subcategory of C iff there is an inclusion functor
B ⊂ Ir- C and Ir has a left adjoint C R- B (often called reflector).

Recall, that summarized we get a composition of two adjunctions where one is
derived from the base category (i.e. Kℓ(T)) and the forgetful functor which is used for
concretization and the second adjunction results from the reflective subcategory which
enables the construction of a witnessing coalgebra homomorphism (see Figure 6.7).

B

Kℓ(T)

Set

|_|I

IrR

Figure 6.7: A second adjunction results from the reflective subcategory B.

As with the Kleisli extensions where a Set functor F has to be lifted to a
Kleisli functor F̄ (see Figure 2.16) we need to take care under which conditions an
F -coalgebra in the base category is reflected to an F -coalgebra in the subcategory.

Theorem 6.4.3: [AB+12; HJ98]

Let B ⊂ Ir- C be a reflective subcategory of C. If C F- C preserves B, i.e.,
∀B,f∈B (FB ∈ B ∧ Ff ∈ B) and F ◦ Ir = Ir ◦ F, then we have a diagram
CoalgB(F)

�R̄
Īr
- CoalgC(F) with R̄ ⊣ Īr. Here, Īr is the obvious inclusion.

The reflector R̄ typically results in a form of (on-the-fly) determinization, which
will be spelled out in more detail after presenting the main contribution of this
subsection. Recall, that the motivation of moving to a reflective subcategory results
from the fact that some categories do not have all coequalizers. Therefore, we show
how the two adjunctions help to construct a coequalizer in the subcategory.

The proof for the coequalizer construction of f ∈ B which serves as a base for the
witnessing coalgebra homomorphism g ∈ C with respect to logical (game) equivalence
can be found in Appendix A.4. Here we give a more intuitive explanation for the
construction of f ∈ B.

Given a logical equivalence ≡ ⊆ |C| × |C| on the underlying state space of the
coalgebra C α- FC, then the idea is to use the following series of transformations

202

6.4. Coalgebraic Modal Logic and Games Beyond Set

due to the two adjunctions R ⊣ Ir and I ⊣ |_|. Below we fix ε, η and ε′, η′ for the
(co)unit of the adjunctions R ⊣ Ir and I ⊣ |_|, respectively.

≡ πi- |C| ∈ Set

I ≡
π′

i- C
ηC- IrRC ∈ C

RI ≡ π̃i- RC ∈ B

Note that the counit-unit identities results in Rπ′
i = π̃i. As B has all coequalizers,

we can construct the coequalizer RI ≡
π̃1-

π̃2
- RC f- B. Finally, the transpose of

f yields the necessary coalgebra homomorphism denoted with g.
In order to show that g is a witnessing coalgebra homomorphism we need to

prove that Ff ◦ R̄α ◦ π̃1 = Ff ◦ R̄α ◦ π̃2 holds. Therefore, we need the following two
properties where g is again the transpose of f , R̄ the lifting of the reflector R given
by Theorem 6.4.3, and π̃i with i ∈ {1, 2} are the transposes of ηC ◦ π′

i. Here π′
i is the

transpose of the usual projection πi of an equivalence relation ≡ ⊆ |C| × |C| under
the adjunction I ⊣ |_|.

1. First we show that for a given equivalence relation ≡ ⊆ |C| × |C| and all
(c, c′) ∈ ≡ we get |g|c = |g|c′ where g ∈ C is the transpose of the constructed
coequalizer f ∈ B.

2. Second we need to show that |Fg| ◦ |α| ◦ π1 = |Fg| ◦ |α| ◦ π2 implies

Ff ◦ R̄α ◦ π̃1 = Ff ◦ R̄α ◦ π̃2.

Therefore, we state the following two results where the proofs can be found in the
Appendix A.4:

Lemma 6.4.4
Given an equivalence relation ≡⊆ |C| × |C|. If there is a reflective subcategory
B of C having all the coequalizers, then for the transpose g of f given by
RI ≡

π̃1-

π̃2
- RC f- B we have that |g|c = |g|c′ for each (c, c′) ∈≡.

Lemma 6.4.5
Given a coequalizer f under the restrictions described in Lemma 6.4.4 and F

preserves B. For its transpose g it holds that |Fg| ◦ |α| ◦ π1 = |Fg| ◦ |α| ◦ π2

implies Ff ◦ R̄α ◦ π̃1 = Ff ◦ R̄α ◦ π̃2.

Lemma 6.4.4 is needed to show, that given the specific properties induced by a logical
equivalence relation ≡L or by a game equivalence relation ≡G in Set, the transpose

203

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

ge ∈ C of fe ∈ B is indeed a witnessing coalgebra homomorphism for all (x, y) ∈ ≡e

with e ∈ {L,G}. Directly after this section we will separately define and prove
these theorems, since each proof relies on the specific properties of the corresponding
equivalence relation.

In addition, we explain in the following paragraph both constructions based
on language equivalence for NDA’s. Afterwards we proceed with the logical and
game-theoretical view.

An example for the construction of a witnessing coalgebra homo-
morphism Now we want to focus on the coequalizer construction in Kℓ(P) and
therefore we consider a simple example. Therefore, we recall the idea described
above:

≡ πi- |C| ∈ Set

I ≡
π′

i- C
ηC- IrRC ∈ C

RI ≡ π̃i- RC ∈ B

Example 6.4.6

In this paragraph we consider an example automaton and introduce the language
equivalence relation ≡La ⊆ PX ×PX for the concrete states PX where X is the
state space given by the coalgebra in Kℓ(P).
The equivalence relation ≡La contains only those pairs of states which accept
the same language. This means for all (V,W) ∈ ≡La it holds that there is some
x ∈ V that accepts the word w ∈ A∗ iff there is an y ∈W that accepts w too.

y

z

a, b

x

a

Figure 6.8: A simple NDA.

Let X = {x, y, z} ∈ Kℓ(P) and A = {a, b} the set of labels. The automaton in
Figure 6.8 is an NDA with one accepting state z. The concrete states are given
by PX. Note, that {y} and {x} are not language equivalent since y accepts the
word b but there is no such state in {x}.
Furthermore, in Figure 6.9 the language equivalent and concrete state pairs are
ordered with respect to the words they accept.

204

6.4. Coalgebraic Modal Logic and Games Beyond Set

(∅, ∅)

• : ({z}, {z})a : ({x}, {x})

a, • : ({x, z}, {x, z})
a, b : ({y}, {y}), ({x, y}, {y}),
({y}, {x, y}), ({x, y}, {x, y})

a, b, • : ({y, z}, {x, y, z}),
({x, y, z}, {y, z}), ({x, y, z}, {x, y, z})

Figure 6.9: In this figure we see the language equivalence relation ≡La for the
NDA in Figure 6.8 with X = {x, y, z}. The language accepted by this NDA
is L = {a, b, •} (• corresponds to the empty word). Additionally, all language
equivalent state pairs are sorted according to equivalence classes.

Before we construct the coequalizer, we give the concrete definitions of the various
arrows involved in it:

1. The projections πi with i ∈ {1, 2} are the usual projections given by the relation
≡La and ≡La

πi- |X| in Set.

2. The counit PX
ε′

X- X ∈ Kℓ(P) of I ⊣ |_| is the converse of membership
relation, i.e. (U, x) ∈ ε′

X ⇐⇒ x ∈ U .

3. Lifting of πi to π′
i = ε′

X ◦ Iπi ∈ Kℓ(P) based on the counit ε′
X for i ∈ {1, 2}

and (U, V) ∈ ≡La⊆ PX × PX:

(U, V)π′
1 x iff x ∈ U

(U, V)π′
2 y iff y ∈ V

I ≡La IPX IX
Iπ1

Iπ2

ε′
X

4. Lifting of π′
i to π̃i = R(ε′

X ◦ Iπi) = R(π′
i) in Setop with respect to R ⊣ Ir.

π̃1(W) = {(U, V) ∈ ≡La| U ∩W ̸= ∅}

π̃2(W) = {(U, V) ∈ ≡La| V ∩W ̸= ∅}
Q̃I ≡La Q̃IPX Q̃IX

RIπ1

RIπ2

Rε′

Before we proceed, note that the relations π′
i introduced above are quite intuitive.

However, we explore two different cases of π̃i in Example 6.4.7 since the computations
given by these arrows are a bit fizzy.

205

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

Example 6.4.7

We consider the NDA given in Figure 6.8 and the language equivalence ≡La

depicted in Figure 6.9. For the concrete states {x} and {y} we obtain two different
cases, one where π̃1(_) = π̃2(_) holds and one for which π̃1(_) = π̃2(_) fails.
First, we consider π̃i({y}) for i ∈ {1, 2}:

PX PPX P(≡La)

{y} {{y}, {x, y},
{y, z}, {x, y, z}}

{({y}, {y}), ({y}, {x, y}), ({x, y}, {y}),
({x, y}, {x, y}), ({y, z}, {x, y, z})

({x, y, z}, {y, z}), ({x, y, z}, {x, y, z})}

Rε′

Rπ2

Rπ1

Figure 6.10: π̃i({y}) for i ∈ {1, 2} and π̃1({y}) = π̃2({y}) holds.

Second, we consider π̃i({x}) for i ∈ {1, 2}:

PX PPX P(≡La)

{x} {{x}, {x, y},
{x, z}, {x, y, z}}

{({x}, {x}), ({x, y}, {x, y}), ({x, z}, {x, z}),
({x,y}, {y}), ({y, z}, {x, y, z}),

({x, y, z}, {y, z}), ({x, y, z}, {x, y, z})}

{({x}, {x}), ({x, y}, {x, y}), ({x, z}, {x, z}),
({y}, {x,y}), ({y, z}, {x, y, z})

({x, y, z}, {y, z}), ({x, y, z}, {x, y, z})}

Rε′

Rπ2

Rπ1

Figure 6.11: π̃i({x}) for i ∈ {1, 2} and π̃1({x}) ̸= π̃2({x}) holds.

Finally, we can move to the coequalizer construction based on the two parallel
arrows π̃i with i ∈ {1, 2} depicted here in Figure 6.12 where

B = {W ∈ PX | π̃1(W) = π̃2(W)}.

Moreover, the coequalizer in Setop is nothing but an equalizer in Set; thus, we find
that (B, f) is an equalizer of the projections π̃i (for i ∈ {1, 2}).

Now that we know how to construct f : RC → B and its transpose g : C → IrB

206

6.4. Coalgebraic Modal Logic and Games Beyond Set

RI ≡La RX B

π̃1

π̃2

f

Figure 6.12: Coequalizer based on π̃i.

we want to consider the arrow B
β- A× B + 1 ∈ Setop which is defined by the

following universal property of equalizer in Set (see Figure 6.13). Here, R̄α is the
backward determinization of the given coalgebra (as described, e.g. in [BB+12b] as
a deterministic automaton accepting the reverse language), i.e. it maps (a, U) 7→
{x | ∃x′∈U (a, x′) ∈ α(x)} and • 7→ {x | • ∈ α(x)}. Thus, in essence, β acts like R̄α
on the elements of B (see Figure 6.13).

B ⊂ f - PX
π̃1-

π̃2
- P(I ≡La)

A×B + 1

β

6

⊂A×f+1- A× (PX) + 1

R̄α

6

Figure 6.13: The equalizer f ∈ Set which is a coequalizer in Setop.

In this example, we obtain as β the automaton drawn in Figure 6.14 on the
right with six states. Note, that {x}, {x, z} are removed because they do not satisfy
π̃1(_) = π̃2(_) as shown for {x} in Example 6.4.7.

∅
{x, y}

{y}
{z}

{y, z}

{x, y, z}

y

x

z

a, b

a, b

a

b
a

b

a

b

a, b

a
a, b

Figure 6.14: The transpose g of the constructed coequalizer f is given by the dashed
lines.

The dotted line indicates the relation g obtained as the transpose of f with respect

207

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

to R ⊣ Ir; concretely, (x, U) ∈ g ⇐⇒ x ∈ U .
More importantly, g ∈ Kℓ(P) is a witnessing coalgebra homomorphism because

A×X + 1(g) ◦α = β ◦ g. This can be validated by inspecting for any x ∈ X,W ∈ B:

• ∃U∈B (x ∈ U ∧ (a,W) ∈ β(U)) ⇐⇒ ∃x′∈X((a, x′) ∈ α(x) ∧ x′ ∈W);

• ∃U∈B (x ∈ U ∧ • ∈ β(U)) ⇐⇒ • ∈ α(x).

Note that |g| maps both {x, y}, {y} ∈ |X| to {{x, y}, {y}, {y, z}, {x, y, z}}, witnessing
the fact that they are language equivalent.

Finally, one can observe that the coequalizer gives us the largest sub-automaton of
the backwards determinization that respects ≡La. Removing ∅, {y, z}, and {x, y, z}
will result in smallest such sub-automaton given by the backwards determiniza-
tion [AB+12].

6.4.2 Logic

Coalgebraic modal logic is induced by a separating set Λ of predicate liftings where
each λ ∈ Λ is a natural transformation of type Φ λ- Φ ◦ F . Therefore, we get
an abstract modal logic by the following grammar (see [Pat03] or compare with
Definition 3.2.18):

φ ∈ MΛ ::=
∧
i∈I

φi | ¬φ | [λ]φ, for every λ ∈ Λ.

To talk about the interpretation of the formulas and especially about the modal
operators derived from the predicate liftings (i.e. the indexed morphisms) we need
that the fibres of our indexed category are expressive enough. More concretely, the
situation is depicted in Figure 6.15 and we require that the fibres provide enough
information to interpret the formulas defined on our predicate liftings of type Φ→ Φ
(i.e indexed morphisms).

For the standard example of an indexed category based on the contravariant
powerset functor Jacobs mentioned Boolean algebras (i.e. Setop Φ- BA) as one
possible option but in the same breath he argues, that Poset provides more algebraic
structure [Jac10]. One needs to be careful in choosing the fibres induced by Φ (see
Grothendieck C.1) since there are predicate liftings which do not need to preserve all
the structure of a Boolean algebra. Such preservation properties rely on the nature
of the concrete application (see [Jac10]).

Regarding our examples introduced in Section 6.3 the corresponding predicate
liftings are meet preserving (see Appendix A.4.1). Fibrational frameworks which

208

6.4. Coalgebraic Modal Logic and Games Beyond Set

ΦC σC - ΦFC

̸=

Q̃|C|

ωC

? ∃|α|-
⊥�

|α|∗
Q̃|FC|

ωF C

?

Figure 6.15: The fibers induced by the indexed category Φ should have enough
structure due to the semantic of a formula φ.

are quite close to our work require meet preserving functions as used in [KK+19] to
define generic games.

Nevertheless, one may also argue that this restriction excludes diamond modality
since it does not preserve the meet operation.

Example 6.4.8

In this example we show that the standard 3-operator (see Hennessy-Milner logic
in Definition 3.2.2) fails to preserve meets. Consider the system in Figure 6.16
with state space X = {x, y, z, u} and two formulas φ1 = 3tt and φ2 = ¬φ1 where
Jφ1K = {x, y} and Jφ2K = {u, z}. Therefore we obtain

J3φ1 ∧3φ2K = J3φ1K ∩ J3φ2K = {x} ∩ {x, y} = {x} and

J3(φ1 ∧ φ2)K = {x′ ∈ X | ∃z′ ∈ X.x′ → z′ and z′ ∈ ∅} = ∅

Clearly, ∅ ≠ {x} which implies that 3 is not meet preserving.

x

y z

u

Figure 6.16: A simple unlabelled transition system.

One way to circumvent this situation is to consider the category of complete
Boolean algebras with order preserving functions as morphisms. This works in our
setting (since all our indexed morphisms are meet preserving, thus they are also
order preserving) and one could include both box and diamond modalities in the
logic [Jac01].

209

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

Since all our logics in various concrete cases are Boolean in nature, we therefore
impose the following assumption.
Assumption: Henceforth, indexed categories will be of type Cop - cBA∧, where
cBA∧ is the category of complete Boolean algebras and meet preserving morphism.
Alternatively one can consider cBA the category of complete Boolean algebras and
order preserving morphism.

Another point for clarification at this stage is the purpose of having conjunction
and negation in our logic, especially, when one of the aims is to characterize trace
equivalence rather than bisimilarity.

Therefore, recall that our main motivation is to work out a logical framework as
well as a game-theoretical characterization which behave similar to the notion of coal-
gebraic behavioural equivalence. Therefore, we need conjunction and negation from a
general point of view. This means that on the one side the game-theoretical semantics
should coincide with trace equivalence and on the other side with bisimulation.

Just like Hennessy-Milner logical formulae are satisfied by the states of a transition
system, here the modal formulae will be satisfied by concrete states c ∈ |C| of a
coalgebra C α- FC ∈ C. However, this will be done in two steps due to the fact
that concrete states and coalgebras live in different categories. First, given a formula
φ ∈ MΛ and a coalgebra C α- FC we construct a predicate JφKα ∈ ΦC, which is
obtained by structural induction:

• Let φ =
∧

i∈I φi. Then JφKα =
∧

i∈IJφiKα.

• Let φ = ¬φ′. Then JφKα = ¬Jφ′Kα.

• Let φ = [λ]φ′. Then JφKα = α∗λCJφ′Kα.

Secondly, a concrete state 1 c- |C| ∈ Set (or, c ∈ |C|) satisfies a formula φ, denoted
c |=α φ, whenever c−1ωCJφKα = 1. In other words, c |=α φ ⇐⇒ c ∈ ωCJφKα.

We begin with the soundness part of our logical characterization (see [Pat04]),
which is easier to establish and holds without any further restrictions on our frame-
work.

Theorem 6.4.9
Behavioural equivalence implies logical equivalence ≡L.

Proof: Let c, c′ ∈ |C| be two behaviourally equivalent states, i.e., there is a coalgebra
homomorphism (C,α) f- (D,β) such that |f |c = |f |c′. First we claim that for any
formula φ ∈ MΛ we have JφKα = f∗JφKβ . We prove this by structural induction on φ.

210

6.4. Coalgebraic Modal Logic and Games Beyond Set

Without loss of generality, let φ = [λ]φ′. Then,

JφKα = α∗λCJφ′Kα = α∗λCf
∗Jφ′Kβ = f∗β∗λDJφ′Kβ = f∗J[λ]φ′Kβ.

The second equality from the right in the above equation is due to the following two
commutative squares from the left. The left square commutes due to the naturality
of λ, the middle square commutes since f is a coalgebra homomorphism, and the
right one commutes due to the naturality of ω.

ΦC λC- ΦFC α∗
- ΦC ωC - Q̃|C|

ΦD

f∗

6

λD

- ΦFD

F f∗

6

β∗
- ΦD

f∗

6

ωD

- Q̃|D|

|f |−1
6

Furthermore, using the naturality of ω, i.e., ωC ◦ f∗ = |f |∗ ◦ ωD, we find that

c |=α φ ⇐⇒ c ∈ ωCf
∗JφKβ

⇐⇒ c ∈ |f |−1ωDJφKβ

⇐⇒ c′ ∈ |f |−1ωDJφKβ

⇐⇒ c′ |=α φ.

□

Finally, we show that logical equivalence ≡L implies behavioural equivalence. We
give a proof sketch, where the details of this proof (see Appendix A.4) become similar
to the one of the analogue theorem in Chapter 3 (see Appendix A.3) once we realize
how to construct the coequalizer from the underlying logical equivalence (see previous
Section 6.4.1). Recall, that in Set the main point is given by the separating set of
predicate liftings property. Here we combine this property with Lemma 6.4.5 and
require that ω preserves intersections and unions (i.e. preserves fibred (co)limits).

Theorem 6.4.10

If Φ ω- Q̃ ◦ |_| preserves fibred (co)limits and is injective on objects, Λ is
separating for F , and there is a reflective subcategory B of C having all the
coequalizers and F preserves B, then logical equivalence implies behavioural
equivalence.

The proof starts with the fact that given for any U ∈ ΦD we have a pair c, c′ ∈ |C|
such that c ∈ ωC(g∗U) and c′ ̸∈ ωC(g∗U) then c ̸≡L c′ holds which can be easily

211

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

shown via contradiction. Next, since c ̸≡L c
′ holds we use the distinguishing formula

of c vs. c′ given by:
φU =

∧
c′ ̸∈ωC(g∗U)

∨
c∈ωC(g∗U)

φc,c′

Finally, given the transpose g : C → D of the constructed coequalizer f the main
idea is to show that |Fg||α|(c) and |Fg||α|(c′) can not be distinguished by any pair
(λ,U) with λ ∈ Λ, U ∈ ΦD in case (c, c′) ∈ ≡L (i.e. c, c′ satisfy the same formulas).

To obtain this result above we continue our proof in showing the following claim:

ĉ |=α φU ⇐⇒ ĉ ∈ ωC(g∗U), for any ĉ ∈ |C|

6.4.3 The Game-Theoretical Perspective

This section presents a generalization of the game variant discussed in Section 3.3.1
for coalgebras living in Set where the predicate liftings are directly integrated into
the game rules. More specifically, here we are (again) dealing with spoiler/duplicator
games. Recall, that the spoiler (S) is often referred to in the literature as an attacker.
This is because S denounces the statement that two states have the same behaviour.
The opposition, so to speak, is the duplicator or defender (D) since D must be able
to mimic every move of S (see Section 3.3.1).

The intuition to formulate game-rules using predicates arises from the need to
specify target states rather than a single state already established in [KM18; DLT08]
and explained in more detail via Example 3.3.5. Moreover, adding predicate liftings
into the game naturally follows from the fact that predicate liftings are omnipresent
in coalgebraic modal logic.

Since predicate liftings are indexed morphisms and our framework allows to take
a more abstract view on the material, we first present a game characterization based
on indexed categories and later we show how we close the gap between notions of
bisimulation and trace semantics with respect to games (which brings us back to
Kleisli categories).

Definition 6.4.11

Given a coalgebra C
α- FC, a set of chosen predicate liftings Λ, and two

distinct states c, c′ ∈ |C|, then the game works as follows from the current game
instance (c, c′):

• Step 1: Spoiler chooses a state s ∈ {c, c′} and a predicate U ∈ ΦC.

• Step 2: Duplicator picks the remaining state t (i.e., t = c if s = c′ or t = c′

212

6.4. Coalgebraic Modal Logic and Games Beyond Set

if s = c) and a predicate U ′ ∈ ΦC such that: |α|(s) ∈ ωF C(λCU) =⇒
|α|(t) ∈ ωF C(λCU

′) for all λC ∈ Λ.

• Step 3: Spoiler chooses a predicate Ū ∈ {U,U ′} and a state d ∈ |C| such
that d ∈ ωC(Ū).

• Step 4: Duplicator chooses a state d′ ∈ |C| with the remaining predicate
Ū ′ such that d′ ∈ ωC(Ū ′).

The game instance changes to (d, d′). D wins the game if the game continues
forever or if S cannot perform Step 3. S wins the game whenever D has no
moves at Step 2 or Step 4.

Analogous to the games presented in Chapter 3 and Chapter 5, we also start
here with the simpler part of the proof. However, this time we need an additional
requirement to prove soundness. Remember that the coalgebra and both the predicate
and the lifted predicate live in ΦC.

Consider the following initial situation, where a pair of behaviourally equivalent
states (c, c′) is given and S has chosen a predicate U in Step 1. Unfortunately, in
general we can not simply assume that the construction of the answer-move in Step 2
by D works as in the classical case. We recall the situation in Figure 6.17 for a
given coalgebra α : X → FX ∈ Set (see proof of Theorem 3.3.2). Assume, that a
coalgebra homomorphism f : X → Y and the move p1 of S are given. The move p2 of
D is constructed via the characteristic function of f−1(f [p̂1]) ⊆ X (where p̂ denotes
the subset induced by the characteristic function p).

2

X FX

Z FZ

f

α

β

Ff

p2

p′
1

Figure 6.17: Given a coalgebra homomorphism f and the spoiler move p1, we
construct duplicators move p2 = p′

1 ◦ f where p′
1 is the characteristic function of f [p̂1]

in Set.

Since in general f!U ∈ ΦY is not guaranteed (see Example 2.3.45) , taking the
closure of an abstract predicate U choosen by S in Step 1 with respect to some
coalgebra homomorphism f requires the bifibration property (see proposition 6.2.4).
Additionally, we also require that our functor ωC preserves the bifibration structure

213

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

of the indexed categories Φ and Q̃. This restriction is useful in answering Step 4 for
the duplicator.

ΦC ωC- Q̃|C|

(6.4)

ΦD

∃f

?
ωD- Q̃|D|

|f |!
?

Theorem 6.4.12

Let Cop Φ- cBA∧ be an indexed category having the bifibration property
such that Square (6.4) commutes for every f ∈ C. If c, c′ ∈ |C| of a coalgebra
C

α- FC ∈ C are behaviourally equivalent then the duplicator wins the game
from (c, c′).

Proof: Let c, c′ ∈ |C| be behaviourally equivalent states, i.e., there is some coalgebra
homomorphism (C,α) f- (D,β) such that |f |c = |f |c′. Suppose the spoiler chooses
the state c (the symmetric case when the spoiler chooses c′ is similar) and a predicate
U ∈ ΦC. Since E(Φ) - C has the bifibration property, there is an adjunction
between the fibre categories:

∃fU - V ∈ ΦD
U - f∗V ∈ ΦC (U ∈ ΦC, V ∈ ΦD).

Thus, from the unit of this adjunction, we take the transpose of the identity map
∃fU - ∃fU and get

U - f∗∃fU ∈ ΦC.

So, we let the duplicator choose the state c′ and fix U ′ = f∗∃fU . Next, it suffices
to show that the following two claims hold.

ωF C(λCU) ⊆ ωF C(λCU
′), (6.5)

|α|c ∈ ωF C(λCU
′) ⇐⇒ |α|c′ ∈ ωF C(λCU

′). (6.6)

For (6.5), let U p- U ′ ∈ ΦC be the transpose of the identity map ∃fU - ∃fU

in the adjunction ∃f ⊣ f∗. Then, we get by λC , ωF C

ωF C(λCU) ωF C(λCp)- ωF C(λCU
′) ∈ Q̃|FC| =⇒ ωF C(λCU) ⊆ ωF C(λCU

′).

Therefore, c ∈ |α|−1 ◦ ωF C(λCU)⇒ c ∈ |α|−1 ◦ ωF C(λCU
′). For (6.6), consider the

diagram in (6.7) and note that its commutativity follows from the naturality of λ, ω,

214

6.4. Coalgebraic Modal Logic and Games Beyond Set

and the fact that f is a coalgebra homomorphism.

ΦC λC- ΦFC ωF C- Q̃|FC| |α|−1
- Q̃|C|

ΦD

f∗

6

λD

- ΦFD

ΦF f

6

ωF D

- Q̃|FD|

Q̃|F f |

6

|β|−1
- Q̃|D|

Q̃|f |

6

(6.7)

Thus, we find that

|α|c ∈ ωF C(λCf
∗∃fU) ⇐⇒ c ∈ |α|−1ωF CλCf

∗(∃fU)

⇐⇒ c ∈ Q̃|f | ◦ Q̃|β| ◦ ωF D ◦ λD(∃fU)
(6.7)⇐⇒ |β|(|f |c) ∈ ωF D ◦ λD(∃fU)

⇐⇒ |β|(|f |c′) ∈ ωF D ◦ λD(∃fU)
(|f |c=|f |c′)⇐⇒ c′ ∈ Q̃|f | ◦ Q̃|β| ◦ ωF D ◦ λD(∃fU)

⇐⇒ c′ ∈ Q̃(|α|) ◦ ωF C ◦ λC ◦ Φ(f)(∃fU)
(6.7)⇐⇒ |α|c′ ∈ ωF C ◦ λC ◦ Φ(f)(∃fU).

Now, without loss of generality, suppose Spoiler chooses a predicate Ū ∈ {U,U ′}
and a state c̄ ∈ |C| such that c̄ ∈ ωCŪ . Then we distinguish the following cases:

1. Let Ū = U . Clearly, by construction we have U p- U ′ in ΦC. Moreover,
ωCU

ωC(p)- ωCU
′ ∈ Q̃|C|, i.e., ωCU ⊆ ωCU

′. So duplicator can choose d′ = d

and, clearly, we have d′ ∈ ωCU
′.

2. Let Ū = U ′. Now, suppose spoiler chooses a state d′ ∈ |C| such that d′ ∈ ωCU
′.

Then, d′ ∈ ωC(f∗∃fU) and we derive

d′ ∈ ωCΦf(∃fU) =⇒ d′ ∈ Q̃|f |ωD(∃fU)

=⇒ |f |d′ ∈ ωD∃fU

=⇒ |f |d′ ∈ |f |!ωCU

Notice that the leftmost implication is due to the naturality of ω and the
rightmost implication is due to (6.4). Thus, we find some d ∈ ωCU such that
|f |d = |f |d′.

□

For the converse, we work with the relation ≡G ⊆ |C| × |C| defined as follows

≡G = {(c, c′) | D has a winning strategy from the instance (c, c′)}

215

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

Note that we first have to prove that ≡G is an equivalence relation.

Lemma 6.4.13
The above relation ≡G is an equivalence relation.

Proof: As is usual, we only need to consider the following three properties:

• ≡G is reflexive: (c, c) for every c ∈ |C|.
Assume S chooses c and U then D chooses c and U as well, for which we clearly
have c ∈ |α|−1 ◦ ωF C(λCU) ⇒ c ∈ |α|−1 ◦ ωF C(λCU). Then the next game
situation is (d, d), since D can always answer with the same choice made by S.

• ≡G is symmetric: c ≡G c′ implies c′ ≡G c.
If there is a winning strategy for (c, c′) there must always be a winning strategy
for (c′, c), since S can choose either c or c′.

• ≡G is transitive: if c ≡G c′ and c′ ≡G b, then c ≡G b.

Assume S chooses c and U (the case where S chooses c′ is analogous, taking
into account that ≡G is symmetric). We know by c ≡G c′ that some U ′ for D
exists with c ∈ |α|−1 ◦ ωF C(λCU)⇒ c′ ∈ |α|−1 ◦ ωF C(λCU

′).

If S were to make the choice of U ′ and c′, we know by c′ ≡G b that some U ′′

exists such that c′ ∈ |α|−1 ◦ ωF C(λCU
′)⇒ b ∈ |α|−1 ◦ ωF C(λCU

′′) holds.

And since implication is transitive we have

c ∈ ◦|α|−1 ◦ ωF C(λCU)⇒ b ∈ |α|−1 ◦ ωF C(λCU
′′)

Now, assume that in Step 3 S chooses U, d with d ∈ ωC(U). Again by
(c, c′) ∈ ≡G we have some answer of D who chooses d′ with d′ ∈ ωC(U ′)
and d ≡G d′. In addition, if S chooses U ′, d′, there is an answer d′′ by D with
d

′′ ∈ ωC(U ′′) based on (c′, b) ∈ ≡G such that d′ ≡G d
′′ . This state d′′ is then

finally chosen by D in Step 4.

Now we have the following situation d ≡G d′, d′ ≡G d
′′ and we can continue

with this strategy for D.

□

216

6.4. Coalgebraic Modal Logic and Games Beyond Set

Theorem 6.4.14
Under the assumptions of Theorem 6.4.10 and assumption (6.4), game equivalence
≡G implies behavioural equivalence.

Analogously to the proof in the context of logic the idea is to show that for a state
pair (c, c′) ∈ ≡G there exits no pair (λ,U) with U ∈ ΦD that distinguishes these
two states where D = IrB is based on the transpose g of the coequalizer f ∈ B (see
Lemma 6.4.4).
Proof: Following the proof of Theorem 6.4.10 we recall the construction of the wit-
nessing coalgebra homomorphism C

g- IrB with D = IrB based on Lemma 6.4.4
and Lemma 6.4.5.

Our aim is to show that c1 ≡G c2 implies that the behaviour of these states
coincides i.e |Fg| ◦ |α|(c1) = |Fg| ◦ |α|(c2). Based on Definition 6.2.9 (separation) to
prove this, it is sufficient to show that for any U ∈ ΦIrB we get

|Fg| ◦ |α|(c1) ∈ ωF IrB(λIrB(U))⇔ |Fg| ◦ |α|(c2) ∈ ωF IrB(λIrB(U))

with λIrB = λD any predicate lifting living in C. And ωF IrB = ωF D is the embedding
of predicates living in ΦFIrB = ΦFD into Set.

For any U ∈ ΦIrB with U1 = g∗(U) and c1 (the case c2 is analogous) chosen by
the spoiler we get, by the winning strategy of the duplicator some U2 with

|α|(c1) ∈ ωF C(λC ◦ U1)⇒ |α|(c2) ∈ ωF C(λC ◦ U2)

Next, in Diagram 6.8 we give an overview of several commuting diagrams induced
by the naturality of λ, ω combined with the morphism g.

ΦD λD - ΦFD

ΦC λC
-

� α∗

�

g
∗

ωD

ΦFC
�

(F
g)

∗

Q̃|D|
?

Q̃|FD|

ωF D

?

Q̃|C|

ωC

?
� |α|−1�

|g|
−1

Q̃|FC|

ωF C

?� |F
g|
−1

(6.8)

In addition we know that for any d ∈ ωC(Ui) with i, j ∈ {1, 2} duplicator has some
d′ ∈ ωC(Uj) with j ≠ i such that d ≡G d′ i.e. |g|d = |g|d′ holds (see Lemma 6.4.4).
Since g is the transpose of the coequalizer f ∈ B in the reflective subcategory we get
ωC(V) ⊆ ωC(g∗U) with U1 = g∗U and V = U2:

217

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

Suppose d ∈ ωC(V) then by the winning strategy of the duplicator we know that

d′ ∈ ωC(g∗U)

⇔ |g|d′ ∈ ωIrB(U) (see Diagram 6.8)

⇔ |g|d ∈ ωIrB(U) (since |g|d = |g|d′)

⇔ d ∈ ωC(g∗U) (see Diagram 6.8)

We now show V ⊑ g∗U with the following two intermediate steps:

1. |g|! ωC(V) = |g|! ωc(g∗U) : Based on the winning strategy of the duplicator
for c ≡G c′ we know that for any d ∈ ωC(V) duplicator has some d′ ∈ ωC(g∗U)
such that |g|d = |g|d′ holds (and for any d′ ∈ ωC(g∗U) duplicator has some
d ∈ ωC(V) such that |g|d = |g|d′). Together with the direct image |g|! we get
|g|!ωC(V) = |g|!ωC(g∗U).

2. ∃g V = ∃g g
∗U : Here we mainly work with assumption (6.4), which gives us

ωIrB(∃gV) (6.4)= |g|!ωC(V) and ωIrB(∃gg
∗U) (6.4)= |g|!ωC(g∗U)

⇒ ωIrB(∃gV) = ωIrB(∃gg
∗(U)) (see above & (1))

⇒ ∃gV = ∃gg
∗(U) (ωIrB injective on objects)

Now, we can conclude the following again based on assumption (6.4) :

∃gV ⊑ ∃gg
∗(U) ∈ ΦIrB

V ⊑ g∗∃gg∗(U) ∈ ΦC (V ∈ ΦC,U ∈ ΦIrB)

And since we have g∗∃gg
∗(U) = g∗(U) by adjunction we derive V ⊑ g∗(U).

V ⊑ g∗U ∈ ΦC (λC is functor)

⇒ λC(V) ⊑ λC(g∗U) ∈ ΦC (ωF C is functor)

⇒ ωF C(λC(V)) ⊆ ωF C(λC(g∗U)) (6.9)

Finally, we can derive the assumption mentioned at the beginning, that for any
U ∈ ΦIrB we get

|Fg| ◦ |α|(c1) ∈ ωF IrB(λIrB(U))⇔ |Fg| ◦ |α|(c2) ∈ ωF IrB(λIrB(U)).

218

6.4. Coalgebraic Modal Logic and Games Beyond Set

Based on the previous conclusion (6.9) and the fact that this works analogous for
the case where spoiler chooses c2 we get with U1 = g∗U :

|α|(c1) ∈ ωF C(λC ◦ U1)⇒ |α|(c2) ∈ ωF C(λC ◦ U1)

|α|(c2) ∈ ωF C(λC ◦ U1)⇒ |α|(c1) ∈ ωF C(λC ◦ U1)

Since this conclusion holds for all U ∈ ΦIrB (with D = IrB) and U1 = g∗U we
finally derive:

(
|α|(c1) ∈ ωF C(λCg

∗U))⇔ |α|(c2) ∈ ωF C(λCg
∗U)

)
⇒

(
|α|(c1) ∈ ωF C((Fg)∗λIrB(U))⇔ |α|(c2) ∈ ωF C((Fg)∗λIrB(U))

)
⇒

(
|α|(c1) ∈ |Fg|−1ωF IrB(λIrBU)⇔ |α|(c2) ∈ |Fg|−1ωF IrB(λIrBU)

)
,

which is the sufficient property mentioned at the beginning of the proof. □

The following two corollaries follow from the fact, that Set and Kleisli categories
Kℓ(T) induced by a monad T satisfy (see Lemma 6.2.6) the requirements of both
theorems introduced previously.

Corollary 6.4.15

For C = B = Set, Φ = Q̃, and ω = IdQ̃, our game coincides with the game
variant based on a separating set of monotone predicate liftings mentioned in
Section 3.3.1 [KM18].

Corollary 6.4.16

Given a reflective subcategory B ⊂ Ir- Kℓ(T) having coequalizers with F pre-
serving this subcategory (i.e, F ◦Ir = Ir ◦F) and F is separating with respect to
Λ, then behaviourally equivalent states are exactly those from which duplicator
has a winning strategy.

Finally, we close this section playing a game on one of the two running applications
within this chapter.

Example 6.4.17

Here we illustrate how the game works on NDAs. We recall the automaton from
Example 6.4.6 drawn in Figure 6.18.

219

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

x

z

a
y

a, b

Figure 6.18: An NDA with x, y being not language equivalent.

Consider the initial situation ({x}, {x, y}) (notice the concrete state space is the
set P{x, y, z}) and S chooses {x, y} with U = {{z}}, so we have

|α|({x, y}) = {(a, z), (b, z)} ∈ λb
X({{z}})

To answer this move D chooses {x} and U ′ = {∅, {z}} with

|α|({x}) = {(a, z)} ∈ λb
X({∅, {z}})

Note here, that the essential component of U ′ is the ∅, since no b-transition is
observable from {x}. Next S chooses ∅, U ′ and so D can only go on with {z}.
Therefore, in Step 1 of the next round S selects {z} with |α|({z}) = {•} and some
predicate U and wins in Step 2 due to •. D is unable to find a valid predicate U ′

for |α|(∅) = ∅ satisfying ∅ ∈ λ1
X(U ′).

Note, that since we are interested in the behavioural equivalence of the concrete
state pairs we need to play with the predicates obtained by Φ. For the play in
Example 6.4.17 this results in a game over the state space PX.

Concerning our second application, since Kℓ(MF) is the category VectF of vector
spaces and linear maps [JSS15] and VectF has all coequalizers (cf. [Bae19]), we may
take Kℓ(MF) as the reflective subcategory of itself.

6.4.4 The Relation between Logic and Games

Winning-strategies can be described intuitively as a scheme of how to play with
respect to the move of the opponent in such a way that no matter which move the
other player does next, there exists at least one option to win the game.

A formal treatment is studied in Section 3.4 and regarding the proof of Theo-
rem 6.4.12 a winning strategy for the duplicator is (indirectly) described based on
the bifibration property and on the witnessing coalgebra homomorphism.

Similar to the classical case in Section 3.3.2 we give a construction to derive the
winning strategy for S from a modal formula φ which distinguishes two concrete
states c1, c2 (i.e., c1 |= φ and c2 ̸|= φ) of a given coalgebra C α- FC. The spoiler

220

6.4. Coalgebraic Modal Logic and Games Beyond Set

strategy is defined over the structure of φ ∈ MΛ (for a fixed set Λ) in the following
way:

• If φ =
∧

i∈I φi then S picks a formula φi (for some i ∈ I) such that c2 ̸|= φi.

• If φ = [λ]ψ (for λ ∈ Λ), S chooses c1 and U = JψK in Step 1. After D has
chosen c2 and some predicate U ′ in Step 2, we find that ωC(U ′) ⊈ ωC(JψK).
Now in Step 3 S chooses U ′ and a state c′

2 with c′
2 ∈ ωCU

′ and c′
2 ̸|= ψ. Then D

must choose JψK and a state c′
1 with c′

1 |= ψ in Step 4 and the game continues
with c′

1, c
′
2 and ψ.

• If φ = ¬ψ, S takes ψ and reverses the roles of c1, c2.

It can be shown that this strategy is successful for the spoiler to win the game from
a pair of behaviourally non-equivalent states.

Theorem 6.4.18
Under all the assumptions of Theorem 6.4.12, the above results in a winning
strategy for S from a pair of behaviourally different states.

Proof: We prove this by structural induction:

1. Base case φ = [λC]ψ: Here we prove that S has a winning strategy based on the
choice (c1, JψK). Here we use the fact, that ωC(U2) ⊈ ωC(JψKα) with U2 being
a valid answer move by D (in the case D has no valid move, we are done). We
proceed with a proof by contradiction and assume that ωC(U2) ⊆ ωC(JψKα) .
Similar to the details in the proof of Theorem 6.4.14 we know that

ωC(U2) ⊆ ωC(JψKα) (U2 is a valid move by D)

⇒ ∃|g|ωC(U2) = ∃|g|ωC(JψKα) (see 6.4)

⇒ ωIrB∃g(U2) = ωIrB∃g(JψKα) (ω injective on objects)

⇒ ∃g(U2) = ∃g(JψKα)

⇒ g∗∃g(U2) = g∗∃g((JψKα) (U2 ⊑ g∗∃g(U2))

⇒ U2 ⊑ g∗∃g((JψKα) (6.10)

In addition, since we know U2 is an valid move by D, we have

|α|(c1) ∈ ωF C(λC(JψKα)) ⇒ |α|(c2) ∈ ωF C(λC(U2))

and finally we derive based on JψKα = g∗JψKβ and the fact that our adjunction
∃g ⊣ g∗ is a galois connection including the property g∗∃gg

∗ = g∗ [HH90] the

221

6. Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set

following

|α|(c2) ∈ ωF C(λC(U2)) (see 6.10)

⇒ |α|(c2) ∈ ωF C(λC(g∗∃g((JψKα))

⇒ |α|(c2) ∈ ωF C(λC(g∗∃gg
∗JψKβ)) (g∗∃gg

∗ = g∗)

⇒ |α|(c2) ∈ ωF C(λC(g∗JψKβ))

⇒ |α|(c2) ∈ ωF C(λC(JψKα))

But this yields a contradiction c2 |= [λC]ψ.

Therefore, we go on with ωC(U2) ⊈ ωC(Jψ′K) and this implies we have some
state c′

1 ∈ ωC(U2) which does not satisfy ψ′.

2. φ =
∧

i∈I φi: Then there is some formula φi (for some i ∈ I) with c2 ̸|= φi (i.e.
c2 /∈ JφK), hence S chooses c1 and JφK.

3. In the case negation exists, we assume it is well behaved φ = ¬ψ: Then we
simply can switch to c2 ̸|= ¬ψ = ¬(c2 |= ¬ψ) = ¬(¬(c2 |= ψ)) = c2 |= ψ and
c1 |= ¬ψ.

□

6.5 Conclusion and Discussion

Coalgebraic behaviour equivalence allows to reason about the states and their behaviour
in a high degree of abstraction since one can move to categories different from Set.
In the sense of system verification the semantics play a major role and one can choose
between logical and game-theoretical semantics.

To summarize our contributions:
▷ We close the logical and game-theoretical gap in the scope of the linear time-
branching spectrum where in this chapter we focused on language equivalence. In
particular, our framework can be applied to derive the characterizations for (weighted)
language, trace, failure, and ready semantics [BK+20].
▷ In analogy to the requirements of the categorical work for the linear time-branching
spectrum [PT99; JSS15] we give a recipe to derive modalities for Kleisli categories.

However, it still remains unclear how our construction can help to derive the
modalities for conditional transition systems (CTS) [BK+17] (e.g. systems present
in the Kleisli category induced by the input monad).

222

6.5. Conclusion and Discussion

Another categorical framework that enables the generalization of classical Hennessy-
Milner theorems to coarser notions of behavioural equivalences [DMS19] is graded
logics [DMS19]. A comparison of Kleisli (Eilenberg-Moore) and graded logics is
given in [DMS19].

We already gave an overview of other related approaches (see [KK+19; KR20]) in
the introduction. Regarding our indexed categories restricted to boolean algebras, we
want to emphasize that the restriction by CLat∧-fibrations to complete lattices where
each pullback functor preserves all meets corresponds to an indexed category which
maps to the category of complete lattices and meet preserving functions [KK+19].
And a complete boolean algebra can be seen as a complete lattice which shows that
the restrictions are more or less the same as they are motivated by the nature of
logic.

Furthermore, our setting does not capture Meas since the given indexed category
fails to admit the bifibration property (see Example 2.3.45). A framework which
captures Meas is given by dual adjunctions where the idea of this concept is sketched
in Figure 6.1.

Nevertheless, the results of logical and game-theoretical nature based on fibration
and dual adjunction [KR20; KK+19] do not cover trace equivalence. Concerning
dual adjunctions, it is not yet clear how to set up this framework to characterize logic
for decorated trace in general. For instance, in the case of C = Kℓ(P), we need a left
adjoint for the composition Kℓ(P)op |_|- Setop Q̃- cBA∧ before we even start to
apply this abstract framework. Unfortunately, a left adjoint for Q̃ ◦ |_| cannot exists
since this composition does not preserves limits. In particular, Q̃|∅| ̸∼= 1, where ∅
and 1 are the terminal objects in Kℓ(P) and cBA∧.

Summarizing, concerning categories beyond Set there are still some open ques-
tions how coalgebraic behavioural equivalence can be characterized via logical or
game-theoretical semantics. But all the frameworks mentioned in the introduction
(including indexed categories) come closer step by step in answering this non-trivial
question [KK+19; KR20].

223

7

Parity Games over Continuous Lattices

Parity games play a major role in the scope of the modal µ-calculus model checking.
Analogously to Hintikka’s game, we have two players ∃ and ∀ where the winning
strategies of both players represent an alternative characterization of semantics [Sti95;
BW18; Hin68].

Continuous lattices have been introduced by Scott [Sco72] in connection with the
semantics of the λ-calculus [Sco72], which is equivalent to Turing machines [Roj15;
Tur37]. The work by Scott relates to the semantics of programming languages and
is generally known as the origin of domain theory. Therefore, a suitable notion of
approximation as the one given by continuous lattices is of fundamental interest in
the theory of computation [GH+03; AJ94; CPA16]

7.1 Introduction

Model checking is one of the most familiar applications, where system of fixpoint
equations are omnipresent, since a property expressed via a logical formula can
be transformed into such a system [Sei96]. Another area in the scope of program
analysis [NNH99] uses the flow graph of a program to derive a system of fixpoint
equations, which describe a set of constraints based on the context of the underlying
analysis. The properties of interest can be expressed through greatest fixpoints (i.e.
invariant/safety properties) or via least fixpoints (i.e. liveness/reachability properties).
One of the most famous examples is bisimilarity that can be characterized as the
greatest fixpoint as explained for LTS in Section 2.2.2 or studied from a coalgebraic
perspective in Chapter 3.

Least and greatest fixpoint can be profitably mixed, in order to obtain expressive
specification logics, among which the µ-calculus [Koz83] is a classical example. The
µ-calculus is very expressive, but the nesting of fixpoints increases the complexity
of model checking. Common approaches to the model checking problem rely on an
encoding in terms of parity games (see, e.g., [BW18; Sti95; EJ91]).

The seminal paper [Jur00] provides an algorithm for the solution of parity games
which is polynomial in the number of states and exponential in (half of) the alternation

225

7. Parity Games over Continuous Lattices

depth, recently improved to quasi-polynomial in [CJ+17]. A detailed discussion of
the complexity of µ-calculus model checking can be found in [BW18].

One of the key ingredients in Jurdzisńki’s algorithm for solving parity games is
the concept of progress measures, which can be understood as witnesses for winning
strategies. It has been already noticed [HSC16], that this key ingredients can be
lifted to a more general setting, i.e. system of fixpoint equations over general lattices.
The motivation to move from the standard setting given by powerset lattices to
other lattices is implied by the fact, that numerous applications require lattices
which capture fuzziness, probabilities or as considered in Chapter 5 quantitative
information. Although the work in [HSC16] is extending Jurdzisńki’s approach, the
progress measures play a slightly different role in the form of invariants respectively
ranking functions, where Jurdzisńki focuses on the computation technique.

Inspired by the mentioned work, in this chapter we present a game-theoretical
approach to the solution of systems of fixpoint equations over continuous lattices
[Sco72]. They include discrete structures, such as most domains used in program
analysis, and continuous structures, such as the real interval [0, 1] or the lattice of
open sets of a locally compact Hausdorff space.

Similar to the Hintikka/Henkin game with players ∃ and ∀, there is a probably
folklore game between an existential and an universal player, which has been observed
in [Ven08] where the game is referred to as an unfolding game.

As a first result, here we show how the unfolding game can be extended to work
for a system of fixpoint equations over lattices, resulting in a surprisingly simple
game that we refer to as a fixpoint game.

As already pointed out, on the one hand, the nesting of least and greatest fixpoint
equations has some advantages (e.g. highly expressive logics), but on the other hand,
the winning conditions of the parity games extend to non-trivial ones.

We start with the idea of our game, which is given by the following observation: for
the simpler case of powerset lattices the interaction between the players in the fixpoint
game fundamentally relies on the possibility of testing the presence of elements in
the image of a set and on the fact that a subset is completely determined by the
elements that belongs to it.

When moving to a more general class of lattices we need to ensure that this kind
of interaction can be suitably mimicked.

At this stage continuous lattices enter the game, since they provide exactly the
necessary machinery as they come equipped with a notion of finitary approximation
based on the way-below relation and each element arises as the join of the elements

226

7.2. Foundations

(possibly restricted to a selected basis) which are way-below it, in the same way as a
subset is the union of its singletons.

Where our paper [BK+19a] also generalizes the work of Jurdziński for solving
parity games [Jur00] to systems of fixpoint equations over continuous lattices, in this
thesis we concentrate on the presentation of the general game. Therefore, we obtain
the following two central points:

• We propose a game-theoretical characterization of the solution of systems of
fixpoint equations over lattices and we identify continuous lattices as a general
and appropriate setting for such theory.

• We present a theory of progress measures à la Jurdziński in this general frame-
work based on so-called µ- and ν-approximants. In particular, µ-approximants
turn out to be closely related to the progress measures of [HSC16].

The chapter starts with Section 7.2, where we recap the basics of continuous
lattices and introduce several notations including also orders of tuples and ordinals.
Afterwards in Section 7.3, we present systems of fixpoint equations over a lattice and
redefine their solution together with a corresponding notion of approximation. In
Section 7.4 we consider two different application scenarios: µ-calculus and program
analysis. Section 7.5 includes a game-theoretical approach to the solution of a system
of equations over a continuous lattice, where we apply our theory to the applications
of Section 7.4. Besides, we also compare bisimulation games and modal µ-calculus
model checking games with our game. We briefly discuss the concept of progress
measures in the penultimate Section 7.6 before we sum everything up in the final
Section 7.7.

7.2 Foundations

The following definitions, examples, and theorems build on the lattice-theory pre-
sented in Section 2.1 and are partly taken from [DP02; GH+03].

Recall from Section 2.1, that we denote with L a complete lattice. Since all lattices
in this chapter will be complete, we will often omit the qualification complete.

Definition 7.2.1: Upward-Closure

Given an element l ∈ L we define its upward-closure

↑ l = {l′ | l′ ∈ L ∧ l ⊑ l′}

227

7. Parity Games over Continuous Lattices

Definition 7.2.2: Basis
A basis for a lattice is a subset BL ⊆ L such that for each l ∈ L it holds that
l =

⊔
{b ∈ BL | b ⊑ l}.

Definition 7.2.3: Completely Join-Irreducible

An element l ∈ L is completely join-irreducible if whenever l =
⊔
X for some

X ⊆ L then l ∈ X.

Since we are only interested in completely join-irreducible elements we will often
omit the qualification completely. Note that ⊥ is never an irreducible since ⊥ =

⊔
∅

and ⊥ ̸∈ ∅.

Example 7.2.4

Three simple examples of lattices, that we will refer to later, are:

• The powerset of any set X, ordered by subset inclusion (PX,⊑). Join is
union, meet is intersection, top is X and bottom is ∅. A basis is the set
of singletons BPX = {{x} | x ∈ X}. These are also the join-irreducible
elements. Any set Y ⊆ X with |Y | > 1 is not irreducible, since Y =⊔

x∈Y {x} but clearly Y ̸= {x} for any x ∈ Y .

• The real interval [0, 1] with the usual order ≤. Join and meet are the sup
and inf over real numbers, 0 is bottom and 1 is top. The rationals Q∩ (0, 1]
are a basis. There are no irreducible elements (in fact, for any x ∈ [0, 1] we
have that x =

⊔
{y | y < x} and clearly x ̸∈ {y | y < x}).

• Consider the partial order W = N0 ∪ {ω, a} depicted in Figure 7.1. It is
easy to see that it is a lattice. All elements are irreducible apart from the
bottom 0 and the top ω. For the latter notice that, e.g., ω =

⊔
{1, a}.

We will focus on special lattices where elements are generated by suitably defined
approximations. Given a lattice L, a subset X ⊆ L is directed if X ̸= ∅ and every
pair of elements in X has an upper bound in X.

Definition 7.2.5: Way-Below Relation

Let L be a lattice. Given two elements l, l′ ∈ L we say that l is way-below l′,
written l≪ l′ when for every directed set D ⊆ L, if l′ ⊑

⊔
D then there exists

d ∈ D such that l ⊑ d. We denote by

↠

l the set of elements way-below l, i.e.,

228

7.2. Foundations

↠

l = {l′ | l′ ∈ L ∧ l′ ≪ l}.

Definition 7.2.6: Continuous Lattices
The lattice L is called continuous if l =

⊔ ↠

l for all l ∈ L.

Intuitively, the way-below relation captures a form of finitary approximation: if
one imagines that ⊑ is an order on the information content of the elements, then
x≪ y means that whenever y can be covered by joining (possibly small) pieces of
information, then x is covered by one of those pieces. Then a lattice is continuous if
any element can be built by joining its approximations.

Example 7.2.7: Non-continuous lattice

The lattice W = N0 ∪ {ω, a} in Figure 7.1 is not continuous. In fact, a ̸≪ a since
a ⊑

⊔
N but a ̸⊑ i for all i ∈ N0. Therefore

↠

a = {0} and thus a ̸=
⊔ ↠

a.

0
1
2

ω

a

Figure 7.1: A complete lattice W which is not continuous.

Concerning the origin of the name continuous lattice, we can quote [Sco72] that
says that “One of the justifications (by euphony at least) of the term continuous
lattice is the fact that such spaces allow for so many continuous functions.” For
instance, one indication is the fact that meet and join are both continuous in such
lattices.

It can be shown that if L is a continuous lattice and BL is a basis, for all l ∈ L, it
holds that l =

⊔
(

↠

l∩BL).

Various lattices that are commonly used in semantics enjoy a property stronger
than continuity, defined below.

Definition 7.2.8: Compact Element, Algebraic Lattice

Let L be a lattice. An element l ∈ L is called compact whenever l ≪ l. The
lattice L is algebraic if the set of compact elements is a basis.

229

7. Parity Games over Continuous Lattices

Example 7.2.9

Some examples are as follows:

• All finite lattices are continuous (since every finite directed set has a
maximum). More generally, all algebraic lattices (which include all finite
lattices) are continuous. The way-below relation is x≪ y if x compact and
x ⊑ y.

• Given a set X, the powerset lattice P(X), ordered by inclusion, is an
algebraic lattice. The compact elements are the finite subsets. In fact, any
set Y is the union of its finite subsets, i.e., Y =

⋃
{F | F ⊆ Y ∧ F finite}.

Since {F | F ⊆ Y ∧ F finite} is a directed set, compactness requires that
Y ⊆ F for some finite F ⊆ Y , hence Y = F . Therefore Y ≪ Z holds when
Y is finite and Y ⊆ Z.

• The interval [0, 1] with the usual order ≤ is a continuous lattice. For
x, y ∈ [0, 1], we have x≪ y when x < y or x = 0. In fact, each ∅ ≠ Y ⊆ [0, 1]
is directed. Imagine that y ≤

⊔
Y for such a Y . Then by standard properties

of the reals there always exists a y′ ∈ Y such that x ≤ y′ if and only if x < y

or x = 0. Note that this lattice is not algebraic since the only compact
element is 0.

Tuples and Ordinals We will often consider tuples of elements. Given a set A,
an n-tuple in An will be denoted by a boldface letter a. The components of a tuple
a will be denoted by using the same name of the tuple, not in boldface style and
with an index, i.e., a = (a1, . . . , an). For an index n ∈ N we use the notation n to
denote the integer interval {1, . . . , n}. Given a ∈ An and i, j ∈ n we write ai,j for
the subtuple (ai, ai+1, . . . , aj).

Definition 7.2.10: Pointwise Order
Given a lattice (L,⊑) we will denote by (Ln,⊑) the set of n-tuples endowed with
the pointwise order defined, for l, l′ ∈ Ln, by l ⊑ l′ if li ⊑ l′i for all i ∈ n.

The structure (Ln,⊑) is a lattice and it is continuous if L is continuous, with the
way-below relation given by l≪ l′ iff li ≪ l′i for all i ∈ n [GH+03, Proposition I-2.1].
More generally, for any set X, the set of functions LX = {f | f : X → L}, endowed
with pointwise order, is a lattice (continuous when L is).

230

7.2. Foundations

Definition 7.2.11: Lexicographic Order

Given a partial order (P,⊑) we will denote by (Pn,⪯) the set of n-tuples endowed
with the lexicographic order (where the last component is the most relevant),
i.e., inductively, for l, l′ ∈ Pn, we let l ⪯ l′ if either ln < l′n or ln = l′n and
l1,n−1 ⪯ l′

1,n−1.

When (L,⊑) is a lattice also (Ln,⪯) is a lattice. Given a set X ⊆ Ln, the
meet of X with respect to ⪯ can be obtained by taking the meet of the single
components, from the last to the first, i.e., it is defined inductively as

d
X = l where

li =
d
{l′i | l′ ∈ X ∧ l′

i+1,n = li+1,n}. The join can be defined analogously. Similarly,
one can show that ⪯ is a well-order whenever ⊑ is.

As in [Jur00; HSC16], we will also need to consider tuples with a preorder arising
from the lexicographic order, when some components are considered irrelevant.

Definition 7.2.12: Truncated Lexicographic Order

Let (P,⊑) be a partial order and let n ∈ N. For i ∈ n we define a preorder
⪯i on Pn by letting, for x,y ∈ Pn, x ⪯i y if xi,n ⪯ yi,n. We write =i for the
equivalence induced by ⪯i and x ≺i y for x ⪯i y and x ̸=i y. Whenever ⊑ is
a well-order, given X ⊆ Pn with X ≠ ∅ and i ∈ n, we write min⪯i X for the
vector x = (⊥, . . . ,⊥, xi, . . . , xn) where xi,n = min⪯{li,n | l ∈ X}.

In words, ⪯i is the lexicographic order restricted to the components i, i+ 1, . . . , n.
For instance, if P = N with the usual order, then (6, 1, 4, 7) ≺2 (5, 2, 4, 7), while
(6, 1, 4, 7) =3 (5, 2, 4, 7).

We denote ordinals by Greek letters α, β, γ, . . . and their order by ≤. The
collection of all ordinals is well-ordered. Given any ordinal α, the collection of
ordinals dominated by α is a set [α] = {λ | λ ≤ α}, which, seen as an ordered
structure, is a lattice. Meet and join of a set X of ordinals will be denoted by inf X
(which equals minX if X ̸= ∅) and supX. The lattice [α] is completely distributive,
which follows from classical results. In fact, the complete join-irreducibles are all
ordinals which are not limit ordinals. Hence, from [Ran52, Theorems 1 and 2], since
every element is the join of completely join-irreducible elements, we can conclude
that [α] is completely distributive. A similar argument shows that, for a fixed n ∈ N

and ordinal α, the lattice of n-tuples of ordinals, referred to as ordinal vectors,
endowed with the lexicographic order ([α]n,⪯) is completely distributive. In fact,
the only elements that are not complete join-irreducibles are vectors of the kind
(0, . . . , 0, α, βi, . . . , βn) where α is a limit ordinal and such vectors can be obtained as

231

7. Parity Games over Continuous Lattices

the join of the vectors (0, . . . , 0, β, βi, . . . , βn), with β < α and β a successor ordinal.

Parity Games Since our game is a parity game we introduce a formal definition
derived from [Jur00] and proceed with an informal description of the rules.

Definition 7.2.13: Parity Games [Jur00]

A parity graph G = (V,E, pr) is given by a directed graph (V,E) and a priority
function pr : V → n where n ∈ N. A parity game (V,E, pr , (V3, V2)) consists of
a game graph G = (V,E, pr) and of a partition (V3, V2) with V = V3 ∪ V2.

It is common to assume, that the game graphs are finite and the positions of the
existential player Eve (∃) are given by V3 where V2 includes the positions of the
universal player Adam (∀). From a position b ∈ V3 ∪ V2 the corresponding player
has to choose one of the available successors according to E. In case a player has
no option to proceed from her (his) position, the opponent is winning. Therefore,
it is simple to determine the winner of such a finite play, where for infinite plays
seq = v0v1 . . . vi . . . the parity condition determines the winner. Given an infinite
sequence seq of moves, we define

inf (seq) = {j ∈ n | there are infinitly many i ∈ seq with j = pr(vi)},

and max(inf (seq)) determines the winner, i.e. in case the highest priority in (seq)
occurring infinitely often is even the existential player ∃ is winning. Otherwise, ∀ is
the winner.

7.3 Fixpoint Equations: Solutions and Approximants

We focus on systems of (fixpoint) equations over some lattice, where, for each equation
one can be interested either in the least or in the greatest solution. We define the
solution of a system and we devise some results concerning its approximations that
will play a major role later.

Almost invariably, in the mentioned settings, the involved functions are monotone
and the domains of interest are complete lattices where the key result for deriving the
existence of (least or greatest) fixpoints is Knaster-Tarski’s fixpoint theorem [Tar55].

Definition 7.3.1: System of Equations

Let L be a lattice. A system of equations E over L is a list of equations of the

232

7.3. Fixpoint Equations: Solutions and Approximants

following form

x1 =η1 f1(x1, . . . , xm)

. . .

xm =ηm fm(x1, . . . , xm)

where fi : Lm → L are monotone functions and ηi ∈ {µ, ν}. The system will
often be denoted as x =η f(x), where x, η and f are the obvious tuples. We
denote by ∅ the system with no equations.

Systems of equations of this kind have been considered by various authors, e.g., [BC+97;
CKS92; Sei96; HSC16]. In particular, [HSC16] works on general lattices.

We next define the pre-solutions of a system as tuples of lattice elements that,
replacing the variables, satisfy all the equations of the system. The solution will be a
suitably chosen pre-solution, taking into account also the ηi annotations that specify
for each equation whether the least or greatest solution is required.

Definition 7.3.2: Pre-Solution
Let L be a lattice and let E be a system of equations over L of the kind x =η f(x).
A pre-solution of E is any tuple u ∈ Lm such that u = f(u).

Note that f can be seen as a function f : Lm → Lm. In this view, pre-solutions
are the fixpoints of f . Since all components fi are monotone, also f is monotone over
(Lm,⊑). Then, it is well-known that the set of fixpoints of f , i.e., the pre-solutions
of the system, are a sublattice. In order to define the solution of a system we need
some further notation.

Definition 7.3.3: Substitution
Given a system E of m equations over a lattice L of the kind x =η f(x), an
index i ∈ m and l ∈ L we write E[xi := l] for the system of m − 1 equations
obtained from E by removing the i-th equation and replacing xi by l in the
other equations, i.e., if x = x′xix

′′, η = η′ηiη
′′ and f = f ′fif

′′ then E[xi := l]
is x′x′′ =η′,η′′ f ′f ′′(x′, l,x′′).
Let f [xi := l] : Lm−1 → L be defined by f [xi := l](x′,x′′) = f(x′, l,x′′). Then,
explicitly, the system E[xi := l] has m− 1 equations,

xj =ηj fj [xi := l](x′,x′′) j ∈ {1, . . . , i− 1, i+ 1, . . . , n}

We can now recursively define the solution of a system of equations. The notion

233

7. Parity Games over Continuous Lattices

is the same as in [HSC16], although we find it convenient to adopt a more succinct
formulation

Definition 7.3.4: Solution
Let L be a lattice and let E be a system of m equations on L of the kind
x =η f(x). The solution of E, denoted sol (E) ∈ Lm, is defined inductively as
follows:

sol (∅) = ()
sol (E) = (sol (E[xm := um]), um) where

um = ηm(λx. fm(sol (E[xm := x]), x))

The i-th component of the solution will be denoted soli(E).

Here we show that the definition of the solution of an equational system in [HSC16]
is equivalent to our Definition 7.3.4. In both definitions the solution u = (u1, . . . , um)
is solved recursively based on interim solutions by calculating fixpoints.

Definition 7.3.5: Solution of an Equational System [HSC16]

Let L be a lattice and let E be a system of m ≥ 1 equations on L of the
kind x =η f(x). For each i ∈ m and j ∈ i we define monotone functions
f ‡ : Lm−i+1 → L and l

(i)
j : Lm−i → L as follows, inductively on i:

1. i = 1 :

f ‡
1(l1, . . . , lm) := f1(l1, . . . , lm)

l
(1)
1 (l2, . . . , lm) := η1[f ‡

1(_, l2, . . . , lm) : L→ L]

with η1 ∈ {µ, ν}.

2. i = i+ 1 :

f ‡
i+1(li+1, . . . , lm) := fi+1(l(i)1 (li+1, . . . , lm), . . . , l(i)i (li+1, . . . , lm), li+1, . . . , lm)

l
(i+1)
i+1 (li+2, . . . , lm) := ηi+1[f ‡

i+1(_, li+2, . . . , lm) : L→ L]

with ηi+1 ∈ {µ, ν}. The l(i+1)
i+1 solution is then used to obtain the (i+ 1)-th

interim solutions for each j ∈ i:

l
(i+1)
j (li+2, . . . , lm) := l

(i)
j (l(i+1)

i+1 (li+2, . . . , lm), li+2, . . . , lm)

234

7.3. Fixpoint Equations: Solutions and Approximants

Proposition 7.3.6

Let L be a lattice and let E be a system of m ≥ 1 equations on L of the kind
x =η f(x). Then the solution from Definition 7.3.5 coincides with the solution
from Definition 7.3.4.

Proof: Let li+1, . . . , lm ∈ L be given. We show

l
(i)
j (li+1, . . . , lm) = solj(E[xi+1,m := li+1,m])

for j ∈ i by induction on i:

1. i = 1: We define E′ = E[x2,m := l2,m] and according to Definition 7.3.4 we
have

sol (E[x2,m := l2,m]) = sol (E′) = sol (E′[x1 := u1]), u1) = (u1)

where u1 = η1(λx. f1(x)). In Definition 7.3.5 for i = 1 we only have to consider
l
(1)
1 (l2, . . . , lm) = η1[f ‡

1(_, l2, . . . , lm)] = η1[f1(_, l2, . . . , lm)] which corresponds
to sol1(E[x2,m := l2,m]) = u1 = η1(λx. f1(x)).

2. i → i+ 1 : We define E′ = E[xi+2,m := li+2,m]. Here we need to distinguish
two cases to prove that l(i+1)

j (li+2, . . . , lm) = solj(E′) for all j ∈ i.

(a) j = i+ 1: From Definition 7.3.4 we have

sol (E[xi+2,m := li+2,m]) = sol (E′) = sol (E′[xi+1 := ui+1]), ui+1)

where ui+1 = ηi+1(λx. fi+1(sol (E′[xi+1 := x]), x, li+2, . . . , lm)).

Hence soli+1(E[xi+2,m := li+2,m]) = ui+1 and from Definition 7.3.5 we
obtain

l
(i+1)
i+1 (li+2, . . . , lm) = ηi+1[f ‡

i+1(x, li+2, . . . , lm)]

where f ‡
i+1(x, li+2, . . . , lm) is defined by

fi+1(l(i)1 (x, li+2, . . . , lm), . . . , l(i)i (x, li+2, · · · , lm), x, li+2 . . . , lm).

From the induction hypothesis it follows that

l
(i)
j (x, li+2, . . . , lm) = solj(E[xi+1,m := x, li+2,m])

= solj(E′[xi+1 := x]) = lj

for j ∈ i. We define (l1, . . . , li) = sol (E′[xi+1 := x]) and observe that
l
(i+1)
i+1 (li+2, . . . , lm) is the ηi-fixpoint of λx.fi+1(l1, . . . li, x, li+2, . . . , lm). The

same is true for ui+1 and hence we conclude

l
(i+1)
i+1 (li+2, . . . , lm) = ui+1 = soli+1(E′).

235

7. Parity Games over Continuous Lattices

(b) j ≤ i : First, from Definition 7.3.4 we obtain

solj(E′) = solj(E[xi+2,m := li+2,m]) = solj(E[xi+1,m := li+1,m])

where li+1 = soli+1(E′). From the induction hypothesis we know that
solj(E[xi+1,m := li+1,m]) = l

(i)
j (li+1, li+2, . . . , lm). On the other hand we

have from Definition 7.3.5 that

l
(i+1)
j (li+2 . . . lm) = l

(i)
j (l(i+1)

i+1 (li+2, . . . lm), li+2, . . . , lm)

and from (2a) we finally get li+1 = l
(i+1)
i+1 (li+2, . . . lm).

□

In words, for solving a system of m equations, the last variable is considered as a
fixed parameter x and the system of m− 1 equations that arises from dropping the
last equation is recursively solved. This produces an (m− 1)-tuple parametric on x,
i.e., we get u1,m−1(x) = sol (E[xm := x]). Inserting this parametric solution into the
last equation, we get an equation in a single variable

x =ηm fm(u1,m−1(x), x)

that can be solved by taking for the function λx. fm(u1,m−1(x), x), the least or
greatest fixpoint, depending on whether the last equation is a µ- or ν-equation. This
provides the m-th component of the solution um = ηm(λx. fm(u1,m−1(x), x)). The
remaining components of the solution are obtained inserting um in the parametric
solution u1,m−1(x) previously computed, i.e., u1,m−1 = u1,m−1(um).

The next lemma will be helpful in several places. In particular, it shows that
the definition above is well-given, since we are taking (least or greatest) fixpoints of
monotone functions.

Lemma 7.3.7: Solution is Monotone
Let E be a system of m > 0 equations of the kind x =η f(x) over a lattice
L. For i ∈ m the function g : L → Lm−1 defined by g(x) = sol (E[xi := x]) is
monotone.

Proof: The proof proceeds by induction on m. The base case m = 1 holds trivially
since necessarily i = 1 and for any x ∈ L, the system E[xi := x] is empty, with empty
solution.

236

7.3. Fixpoint Equations: Solutions and Approximants

Let us assume m > 1. We distinguish two subcases according to whether i = m

or i < m. If i = m then by definition of solution

g(x) = sol (E[xm := x]) = (sol (E[xm := x][xm−1 := um−1(x)]), um−1(x)) (7.1)

where um−1(x) = ηm−1(λy. fm−1(sol (E[xm := x][xm−1 := y]), y, x).
Next observe that the function h : L2 → Lm−2 defined by

h(x, y) = sol (E[xm := x][xm−1 := y])

is monotone. In fact, it is monotone in y by inductive hypothesis, and also in x, again
by inductive hypothesis, since E[xm := x][xm−1 := y] = E[xm−1 := y][xm := x].
Observe that um−1 can be written as

um−1(x) = ηm−1(λy. fm−1(h(x, y), y, x))

Recalling that also fm−1 is monotone, we deduce that um−1 is monotone.
Finally, using the definition of g and um−1, from (7.1) we can derive

g(x) = (h(x, um−1(x)), um−1(x))

which allows us to conclude that g is monotone.
If instead, i < m, just note that

g(x) = sol (E[xi := x]) = (sol (E[xi := x][xm := um(x)]), um(x)) (7.2)

where um(x) = ηm(λy.fm (sol (E[xi := x][xm := y]), y, x). Then the proof proceeds
as in the previous case. □

It can be easily proved that the solution of a system is, as anticipated, a special
pre-solution.

Lemma 7.3.8: Solution is Pre-Solution
Let E be a system of m equations over a lattice L of the kind x =η f(x) and
let u be its solution. Then u is a pre-solution, i.e., u = f(u).

Proof: The proof proceeds by induction on m. The base case m = 0 trivially holds.
For any m > 0, let u = u′um, f = f ′fm and x = x′xm. Since u′ = sol (E[xm := um]),
by inductive hypothesis, we have that

u′ = f ′[xm := um](u′) = f ′(u). (7.3)

Moreover, again by definition of solution, we have that

um = ηm(λx. fm(sol (E[xm := x]), x))

237

7. Parity Games over Continuous Lattices

. Hence um = fm(sol (E[xm := um]), um)). Recalling that sol (E[xm := um]) = u′

we deduce um = fm(u′, um) = fm(u), that together with (7.3) gives u = f(u) as
desired. □

The game theoretical characterisation of the solution of a system of fixpoint
equations discussed later will rely on a notion of approximation of the solution that
is reminiscent of the lattice progress measure in [HSC16].

Definition 7.3.9: Approximants

Let E be a system of m equations over the lattice L of the kind x =η f(x).
Given any tuple l ∈ Lm, let fi,l : L→ L be the function defined by

fi,l(x) = fi(sol (E[xi+1,m := li+1,m][xi := x]), x, li+1,m).

We say that a tuple l ∈ Lm is a µ-approximant when for all i ∈ m, if ηi = ν then
li = ν(fi,l), else if ηi = µ then li = fα

i,l(⊥) for some ordinal α. Dually, l ∈ Lm is
a ν-approximant when for all i ∈ m, if ηi = ν then li = fα

i,l(⊤) for some ordinal
α, else if ηi = µ then li = µ(fi,l).
Whenever l is a µ-approximant we write ord(l) to denote the least m-tuple of
ordinals α such that for any i ∈ m, if ηi = µ then li = fαi

i,l (⊥) else, if ηi = ν,
li = fαi

i,l (⊤) = ν(fi,l).

Observe that, spelling out the definition of the solution of a system of equations, it
can be easily seen that soli(E[xi+1,m := li+1,m]) = ηi(fi,l). Then a µ-approximant is
obtained by taking under-approximations for the least fixpoints and the exact value
for greatest fixpoints. In fact, in the case of µ-approximants, for each i ∈ m, if ηi = ν,
the i-th component is set to ν(fi,l) which is i-th component soli(E[xi+1,m := li+1,m])
of the solution. Instead, if ηi = µ the component li is set to fα

i,l(⊥) for some ordinal
α, which is an underapproximation of µ(fi,l) = soli(E[xi+1,m := li+1,m]), obtained
by iterating fi,l over ⊥ up to ordinal α. For ν-approximants the situation is dual.

We remark that the function fi,l depends only on the subvector li+1,m. In
particular fm,l does not depend on l. In fact, fm,l = λx. fm(sol (E[xm := x]), x).
Using l as subscript instead of the subvector is a slight abuse of notation that makes
the notation lighter.

Approximants can be given an inductive characterisation. Besides shedding some
light on the notion of approximant, the following easy result will be useful at a
technical level.

238

7.3. Fixpoint Equations: Solutions and Approximants

Lemma 7.3.10: Inductive characterisation of Approximants

Let E be a system of m > 0 equations over the lattice L, of the kind x =η f(x)
and let gm : L→ L be the function gm(x) = fm(sol (E[xm := x]), x). A tuple
l ∈ Lm is a µ-approximant iff the following conditions hold

1. either ηm = µ and lm = gα
m(⊥) for some ordinal α, or ηm = ν and lm = νgm

2. l1,m−1 is a µ-approximant of E[xm := lm].

Proof: Immediate. □

As mentioned above, µ-approximants are closely related to lattice progress mea-
sures in the sense of [HSC16]. In fact, from Lemma 7.3.10 we can infer that, given a
vector α of ordinals, the µ- or ν-approximant l ∈ Lm with ord(l) = α is uniquely
determined. More precisely, a µ-approximant l is determined by the subvector
of ord(l) consisting only of the m-tuple of components of ord(l) corresponding to
µ-indices. Hence we can define a function that maps each such m-tuple of ordinals to
the corresponding µ-approximant and this turns out to be a lattice progress measures
in the sense of [HSC16]. Actually, as proved in [BK+18, Appendix B], it is the
greatest one. It can be seen to coincide with the measure used in [HSC16, Theorem
2.13] (completeness part).

We next observe that the name approximant is appropriate, i.e., µ-approximants
provide an approximation of the solution from below, while ν-approximants from
above. The solution is thus the only pre-solution which is both a µ- and a ν-
approximant.

Lemma 7.3.11: Solution and Approximants

Let E be a system of m equations over the lattice L, of the kind x =η f(x).
The solution of E is the greatest µ-approximant and the least ν-approximant.

Proof: The solution u is clearly a µ-approximant. We prove that it is the greatest
µ-approximant by induction on m. If m = 0 the thesis is vacuously true. If m > 0,
consider another µ-approximant l. We distinguish two subcases according to whether
ηm = µ or ηm = ν. If ηm = µ, we know that lm = fα

m,l(⊥) for some ordinal α.
Observe that fm,l = λx. fm(sol (E[xm := x]), x)) is the function for which um is the
least fixpoint, hence

lm ⊑ um. (7.4)

Moreover, by Lemma 7.3.10, l1,m−1 is a µ-approximant for the system E[xm := lm].

239

7. Parity Games over Continuous Lattices

Hence, by inductive hypothesis

l1,m−1 ⊑ sol (E[xm := lm]) (7.5)

Moreover, by monotonicity of the solution (Lemma 7.3.7), since lm ⊑ um, we get
sol (E[xm := lm]) ⊑ sol (E[xm := um]) = u1,m−1. Therefore, combined with (7.4) and
(7.5), we conclude l ⊑ u.

The proof for ν-approximants is dual. □

We conclude with a technical lemma that will be used to locally modify approxi-
mations in the game.

Lemma 7.3.12: Updating Approximants

Let E be a system of m equations over the lattice L, of the kind x =η f(x) and
let l be a µ-approximant with ord(l) = α. For any i ∈ m and ordinal α ≤ αi

1. if ηi = µ, then l′ = (sol (E[xi+1,m := li+1,m][xi := l′i]), l′i, li+1,m), with l′i =
fα

i,l(⊥) for some ordinal α, is a µ-approximant

2. if ηi = ν, then l′ = (sol (E[xi+1,m := li+1,m]), li+1,m) is a µ-approximant

and in both cases ord(l′) ⪯i ord(l). A dual result holds for ν-approximants.

Proof: Let us focus on (1). In order to show that

l′ = (sol (E[xi+1,m := li+1,m][xi := l′i]), l′i, li+1,m)

is a µ-approximant, first observe that the components li+1, . . . , lm do not change.
Component l′i is of the desired shape by definition. Finally, for j < i the component
l′j is defined as solj(E[xi+1,m := li+1,m][xi := l′i]) and thus, by definition of solution
of a system, if ηj = ν then l′j = ν(fj,l′) and if ηj = µ then l′j = µ(fj,l′) = fβ

j,l′(⊥)
for some ordinal β, as desired. Finally observe that since l and l′ coincide on
components i + 1, . . . ,m, and li = fαi

i,l (⊥), while l′i = fα
i,l(⊥), with α ≤ αi, clearly

ord(l′) ⪯i ord(l).

The proof for (2) is analogous. In fact, also in this case the components i+ 1 . . . ,m
are unchanged and finally, for j ≤ i the component l′j is defined as

solj(E[xi+1,m := li+1,m][xi := l′i]),

thus the same reasoning as above applies.
Both can be easily dualized for ν-approximants. □

240

7.4. Application Scenarios

7.4 Application Scenarios

We will consider two different verification questions and demonstrate how to refor-
mulate both analysis frameworks via a system of fixpoint equations as described in
Definition 7.3.1.

The content of the following two sections is taken from [NNH99; BW18; BK08]
where the beginnings of model checking go back further (cf. [QS82; CE81; GV08]).

7.4.1 Modal µ-Calculus

The system behaviour should match the specification and bisimulation (see Sec-
tion 2.2) is one way to verify if an implementation or design satisfies the underlying
requirements. In case the specification is quite complex, model checking provides
a suitable alternative technique where several properties are considered instead of
one large specification model [FV99]. This concept can be described as follows (see
[BK08; FV99]):

1. Provide a model of the system design or implementation which is usually given
by a state-based model (see Section 2.2).

2. Formalize the required properties in terms of the underlying specification
language.

3. Verify if the model satisfies each of the properties.

Since state-based models have already been discussed in Section 2.2 we move to the
second point and focus on an expressive logic. Therefore, we consider the standard
µ-calculus which allows to encode also formulas from linear temporal logic (LTL) and
computational tree logic (CTL). LTL and CTL are basic languages for verifying linear
temporal and branching properties (for the interested reader we refer to [BK08]).

The syntax of the standard µ-calculus extends the set of logical operators given
by Hennessy-Milner introduced in Section 3.2.1. For fixed disjoint sets PVar of
propositional variables, ranged over by x, y, z, . . . and Prop of propositional symbols,
ranged over by p, q, r, . . ., formulas are defined by

φ ::= t | f | p | x | φ1 ∧ φ2 | φ1 ∨ φ2 | 2φ | 3φ | ηx. φ

where p ∈ Prop, x ∈ PVar and η ∈ {µ, ν}. Formulas of the kind ηx. φ are called
fixpoint formulas.

241

7. Parity Games over Continuous Lattices

We explain the semantics of such a formula with respect to an unlabelled transition
system (or Kripke structure) (S,→) where S is the set of states and → ⊆ S × S is
the transition relation. For the sake of completeness we recall the semantics of the
standard and modal operators by Hennessy-Milner presented in Section 3.2.1. Given
a formula φ and an environment ρ : Prop ∪ PVar → PS mapping each proposition
or propositional variable to the set of states where it holds, we denote by JφKρ the
semantics of φ which are defined as follows (see, e.g., [BW18]):

JtKρ = S J2φKρ = {s ∈ S | ∀t∈S s→ t⇒ t ∈ JφKρ}

JfKρ = ∅ J3φKρ = {s ∈ S | ∃t∈S s→ t and t ∈ JφKρ}

JxKρ = ρ(x) J¬φKρ = S \ JφKρ

We consider the fixpoint operators µ and ν separately and by the monotonicity of all
logical operators above we derive the following semantics [BW18]:

Jµx.φKρ =
⋂
{S′ ⊆ S | JφKρ[x:=S′] ⊆ S′}

Jνx.φKρ =
⋃
{S′ ⊆ S | S′ ⊆ JφKρ[x:=S′]}

The definition above is based on Knaster-Tarski (see Section 2.1) and since the
lattice (PS,⊆) satisfies the requirements of Kleene’s Theorem (see Theorem 2.1.3)
we can compute µx.φ and νx.φ respectively based on ⊥ and ⊤.

We will explain the semantics using a small Example 7.4.1. A detailed introduction
to modal µ-calculus can be found in [BW18].

Example 7.4.1

In Figure 7.2 a simple Kripke structure is given where only state b satisfies the
proposition p. Consider the formula φ = νx2.((µx1.(p ∨3x1)) ∧2x2) requiring
that from all reachable states there exists a path that eventually reaches a state
where p holds.

a b

p

Figure 7.2: A simple Kripke structure with one proposition p.

We apply the fixpoint iteration technique and therefore we interpret x2 via
⊤ = {a, b} .
Next, we need to compute the least fixpoint with respect to the inner formula

242

7.4. Application Scenarios

(µx1.(p ∨3x1)) ∧2x2. Note, that x2 does not occur within φ′ = µx1.(p ∨3x1)
and we start the fixpoint iteration with x1 = ⊥ = ∅:

x1 = ∅ : {b} ∪ 3∅ = {b} =⇒ Jφ′Kρ[x1:=∅] ̸= ∅

x1 = {b} : {b} ∪ 3{b} = {a, b} =⇒ Jφ′Kρ[x1:={b}] ̸= {b}

x1 = {a, b} : {b} ∪ 3{a, b} = {a, b} =⇒ Jφ′Kρ[x1:={a,b}] = {a, b}

We proceed with the outer fixpoint operator ν and as computed above x1 = {a, b}
and we start with x2 = ⊤ = {a, b}:

x2 = {a, b} : {a, b} ∪ 2{a, b} ={a, b} =⇒ JφKρ[x2:={a,b}] = {a, b}

Therefore we obtain x1 = x2 = {a, b} and JφK = {a, b}. This solution corresponds
to the fact that the formula φ holds in every state due to the system in Figure 7.2.

Next, note that any µ-calculus formula can be expressed in equational form, by
inserting an equation for each propositional variable (see also [CKS92; Sei96]). The
reverse translation is also possible, hence these specification languages are equally
expressive [HSC16]. Here, we will only depict the relation via an example, the formal
treatment is given in [BK+18; CKS92].

Example 7.4.2

We consider the system in Figure 7.2 and translate the formula
φ = νx2.((µx1.(p ∨3x1)) ∧2x2) into an equational system.
The fixpoint operator of the inner formula (µx1.(p ∨ 3x1)) ∧ 2x2 binding the
variable x1 yields the first equation where the outer fixpoint operator binding
the variable x2 results in a second equation:

x1 =µ p ∨3x1

x2 =ν x1 ∧2x2

(x1 =µ {b} ∪3x1)
(x2 =ν x1 ∩2x2)

Figure 7.3: Equational form of φ = νx2.((µx1.(p ∨3x1)) ∧2x2).

The solution x1 = x2 = {a, b} is computed inductively via fixpoints and therefore
we obtain the same computations as in Example 7.4.1.

243

7. Parity Games over Continuous Lattices

Example 7.4.3

Consider the formula φ′ = νx2.(2x2∧µx1.((p∧3x2)∨3x1)) requiring that from
all reachable states there is a path along which p holds infinitely often. The
equational form of φ′ is:

x1 =µ (p ∧3x2) ∨3x1

x2 =ν 2x2 ∧ x1

On the same transition system of the previous example (see Figure 7.2), the
solution of the corresponding system is x1 = x2 = S. Notice that this time
the order of the equations is relevant, while in the previous example it was
not. Indeed, if we swap the two equations in the system, the solution becomes
x1 = x2 = ∅. In general, the order of the equations is important whenever there is
alternation of fixpoints (mutual dependencies between least and greatest fixpoint
equations).

7.4.2 Data Flow Analysis

Data-flow analysis of programs is another area where fixpoints play a major role. One
can easily state a program analysis question in this setting as a system of fixpoint
equations, based on the flow graph of the program under consideration.

There are several data-flow analyses as liveness or available expressions, but we
focus on the well-known constant propagation analysis (see, e.g., [NNH99]). Its
aim is to show that the value of a variable is always constant at a certain program
point, allowing us to optimize the program by replacing the variable by the constant.
Consider for instance the while program in Figure 7.4, where variables contain integer
values and blocks are numbered in order to easily reference them.

[y:=6]1;
[x:=y+1]2;
while [*]3 do

[y:=x+y]4

od

Figure 7.4: A simple while program.

The condition for the while loop (block 3) is irrelevant and is hence replaced by *.
Note that variable x always has value 7 in block 4 and hence the assignment in this

244

7.4. Application Scenarios

block could be replaced by y:=7+y.

Following [NNH99] we analyze such programs by setting up an instance of a
monotone framework. In particular we will use the following lattice to record the
results of the analysis:

L = (Z ∪ {⊥})Var ∪ {⊤}

where Var is the set of variables. That is, a lattice element is either ⊤ or a function
ρ : Var → Z ∪ {⊥} that assigns a variable x to a value in Z (if x is known to have
constant value ρ(x) at this program point) or to ⊥ (to indicate that x is possibly
non-constant). As usual, we are allowed to over-approximate and ⊥ might be assigned
although the value of the variable is actually constant.

The lattice order is defined as follows: two assignments ρ1, ρ2 : Var → Z ∪ {⊥}
are ordered, i.e. ρ1 ⊑ ρ2, if for each x ∈ Var either ρ1(x) = ρ2(x) or ρ1(x) = ⊥. That
is, we consider a flat order where ⊥ is smaller than the integers and the integers
themselves are incomparable, and extend it pointwise to functions. Clearly, ⊤ is the
largest lattice element and we use some overloading and denote by ⊥ the function that
maps every variable to ⊥. Note that this order deviates from the usual convention
in program analysis which states that smaller values should be more precise than
larger values. We do this since our game characterizes whether a lattice element is
below the solution. Since we want to check that the solution is more precise than a
given threshold, we have to reverse the order.

Let us write ρ′ = ρ[x 7→ z] for z ∈ Z to denote function update, that is ρ′(x) = z

and ρ′(y) = ρ(y) for y ̸= x. When ρ = ⊤ we define ρ[x 7→ z] = ⊤.

Observe that L is algebraic (and hence continuous). The compact elements
are ⊤ and those functions which have finite support, i.e., functions of the kind
⊥[x1 7→ z1, . . . , xn 7→ zn] where only finitely many variables are not mapped to ⊤. In
particular we can use as a basis the functions ⊥[x 7→ z] for some x ∈ Var and z ∈ Z.
Note also that L is not distributive. For instance if ρi = ⊥[x 7→ i] for i ∈ {1, 2, 3}
then (ρ1 ⊓ ρ2) ⊔ ρ3 = ⊥ ⊔ ρ3 = ρ3 while (ρ1 ⊔ ρ3) ⊓ (ρ2 ⊔ ρ3) = ⊤ ⊓⊤ = ⊤.

Example 7.4.4

From the program in Figure 7.4 we can easily derive the system of fixpoint
equations in Figure 7.5, where we use ρi to record the lattice value for the entry
of block i.

245

7. Parity Games over Continuous Lattices

ρ1 =ν ⊥
ρ2 =ν ρ1[y 7→ 6]
ρ3 =ν ρ2[x 7→ ρ2(y) + 1] ⊓ ρ4[y 7→ ρ4(x) + ρ4(y)]
ρ4 =ν ρ3

Figure 7.5: The equation system for the corresponding constant propagation
analysis with respect to the program in Figure 7.4.

At the beginning, no variable is constant. Then the equation system mimics the
control flow of the program. In block 3 we have to take the meet to obtain an
analysis result that is less precise than the results coming from block 2 respectively
block 4. Furthermore, since precision increases with the order, we are interested
in the greatest solution, which means that we have only ν-equations.
The expected solution is ρ1 = ⊥, ρ2 = ⊥[y 7→ 6], ρ3 = ρ4 = ⊥[x 7→ 7] witnessing
that at block 2 variable y has constant value 6 and at blocks 3 and 4 variable x

has constant value 7.

7.5 Fixpoint Games over Continuous Lattices

In this section we present a game-theoretical approach to the solution of a system of
fixpoint equations over a continuous lattice. More precisely, given a lattice with a
fixed basis, the game allows us to check whether an element of the basis is smaller
(with respect to ⊑) than the solution of a selected equation. This corresponds to
solving the associated verification problem. For instance, when model checking the
µ-calculus, one is interested in establishing whether a system satisfies a formula φ,
which amounts to check whether {s0} ⊆ uφ where s0 is the initial state and uφ is
the last component of the solution of the system of equations associated with φ.

7.5.1 Definition of the Game

The fixpoint game that we introduce has been inspired by the unfolding game
described in [Ven08], that works for a single fixpoint equation over the powerset
lattice. We adopted the name fixpoint game, analogously to [HK+17].

246

7.5. Fixpoint Games over Continuous Lattices

Definition 7.5.1: Fixpoint Game

Let L be a continuous lattice and let BL be a basis of L such that ⊥ ̸∈ BL. Given
a system E of m equations over L of the kind x =η f(x), the corresponding
fixpoint game is a parity game, with an existential player ∃ and a universal
player ∀, defined as follows:

• The positions of ∃ are pairs (b, i) where b ∈ BL and i ∈ m and those of ∀
are tuples l ∈ Lm.

• From (b, i) the possible moves of ∃ are E(b, i) = {l | l ∈ Lm ∧ b ⊑ fi(l)}.

• From l ∈ Lm the possible moves of ∀ are A(l) = {(b, i) | i ∈ m ∧ b ∈ BL

∧ b≪ li}.

The game is schematized in Table 7.1. For a finite play, the winner is the player
whose opponent is unable to move. For an infinite play, let h be the highest index
that occurs infinitely often in a pair (b, i):

If ηh = ν then ∃ wins, else ∀ wins.

Observe that the fixpoint game is a parity game [EJ91; Zie98] (on an infinite
graph) and the winning condition is the natural formulation of the standard winning
condition in this setting.

Position Player Moves
(b, i) ∃ (l1, . . . , lm) such that b ⊑ fi(l1, . . . , lm)

(l1, . . . , lm) ∀ (b′, j) such that b′ ≪ lj

Table 7.1: The fixpoint game

Hereafter, whenever we consider a continuous lattice L, we assume that a basis
BL is fixed such that ⊥ ̸∈ BL. Elements of the basis will be denoted by letters b
with super or subscripts.

We will prove correctness and completeness of the game, i.e., we will show that if
u is the solution of the system, given a basis element b ∈ BL and i ∈ m, if b ⊑ ui

then starting from (b, i) the existential player has a winning strategy, otherwise the
universal player has a winning strategy.

247

7. Parity Games over Continuous Lattices

Example 7.5.2

As an example, consider the µ-calculus formula

φ = νx2.((µx1.(p ∨3x1)) ∧2x2)

and the corresponding equation system of Example 7.4.2:

x1 =µ {b} ∪3x1

x2 =ν x1 ∩2x2

Recall that the lattice is (PS,⊆) and let us fix as a basis the set of singletons
BPS = {{a}, {b}}.
A portion of the fixpoint game is graphically represented as a parity game in
Figure 7.6. Diamond nodes correspond to positions of player ∃ and the box
nodes to positions of player ∀. Only a subset of the possible positions for ∀ are
represented. The positions which are missing, such as ({a, b}, {a, b}), can be
shown to be redundant, in a sense formalized in [BK+18]), so that the subgame
is equivalent to the full game. Numbers in the diamond nodes correspond to
priorities. Box nodes do not have priorities (or we can assume priority 0). Since
index 1 and 2 corresponds to a µ and a ν equation, respectively, in this specific
case the winning condition for player ∃ is exactly the same as for parity games:
either the play is finite and ∃ plays last or the play is infinite and the highest
priority that occurs infinitely often is even (in this case 2).
Let (u1, u2) be the solution of the system. We can check if a ∈ u2, i.e., if a
satisfies φ, by playing the game from the position ({a}, 2). In fact, {a} ⊑ u2

amounts to a ∈ u2.

({a}, 2) ({a}, {a, b})

({a}, 1)

({b}, 2)

({a}, ∅) ({b}, ∅)

({b}, {b})

({b}, 1) (∅, ∅)

Figure 7.6: Graphical representation of a fixpoint game

Indeed player ∃ has a winning strategy that we can represent as a function ς from
the positions of the game (for any play) to the corresponding moves of player ∃, i.e.,
ς : BPS × 2→ PS×PS. A winning strategy for ∃ is given by ς({a}, 1) = ({b}, ∅),
ς({a}, 2) = ({a}, {a, b}), ς({b}, 1) = (∅, ∅) and ς({b}, 2) = ({b}, {b}). In Fig. 7.6
we depict by bold arrows the choices prescribed by the strategy.

248

7.5. Fixpoint Games over Continuous Lattices

A possible play of the game could be the following, where x; denotes a move of
x ∈ {∃,∀}:

({a}, 2) ∃; ({a}, {a, b}) ∀; ({a}, 1) ∃; ({b}, ∅) ∀; ({b}, 1) ∃; (∅, ∅)
∀
̸;,

hence ∃ wins. Another (infinite) play is the following. It is also won by ∃ since
the highest index that occurs infinitely often is 2, which is a ν-index:

({a}, 2) ∃; ({a}, {a, b}) ∀; ({a}, 2) ∃; ({a}, {a, b}) ∀; . . .

Note that if ∃ always plays as specified by ς, she will always win.

7.5.2 Correctness and Completeness

Before proving correctness and completeness of the game in the general case, as
a warm up, we give some intuition and outline the proof for the case of a single
equation. Let f : L → L be a monotone function on a continuous lattice L and
consider the equation x =η f(x), where η ∈ {ν, µ}, with solution u = ηf . In this
case the positions for ∃ are simply basis elements b ∈ BL and ∃ must choose l ∈ L
such that b ⊑ f(l). Positions of ∀ are lattice elements l ∈ L and moves are elements
of the basis b ∈ BL, with b ≪ l. In the case of η = µ, player ∀ wins infinite plays
and in the case of η = ν, player ∃ wins infinite plays.

When η = µ, if b ⊑ u, then b ⊑ fα(⊥) for some ordinal α. The idea is that ∃
can win by descending the chain fβ(⊥). E.g., if β = γ + 1 is a successor ordinal,
then ∃ can play fγ(⊥). If instead, η = ν, then the existential player can win just by
identifying some post-fixpoint l such that b ⊑ l. In fact, if l is a post-fixpoint, i.e.,
l ⊑ f(l) we know that l ⊑ u. Moreover, if b ⊑ l then b ⊑ f(l) and thus ∃ can cycle
on l and win. More formally:

(Case η = µ)

In this case u = fα(⊥) for some ordinal α.

• Completeness: We show that whenever b ⊑ fβ(⊥), for some ordinal β (i.e., b
is below some µ-approximant), then ∃ has a winning strategy, by transfinite
induction on β. First observe that β > 0. In fact, otherwise b ⊑ f0(⊥) = ⊥,
hence b = ⊥, while ⊥ ̸∈ BL by hypothesis. Hence we have two possibilities:

– If β is a limit ordinal, player ∃ plays l = fβ(⊥), which is a post-fixpoint and
hence b ⊑ fβ(⊥) ⊑ f(fβ(⊥)). Then ∀ chooses b′ ≪ fβ(⊥) =

⊔
γ<β f

γ(⊥).

249

7. Parity Games over Continuous Lattices

Since this is a directed join, by definition of the way-below relation there
exists γ < β with b′ ⊑ fγ(⊥).

– If β = γ + 1, ∃ plays l = fγ(⊥) and ∀ chooses b′ ≪ fγ(⊥), hence
b′ ⊑ fγ(⊥).

Note that ∃ always has a move and the answer of ∀ is some b′ ⊑ fγ(⊥), with
γ < β, from which there exists a winning strategy for ∃ by the inductive
hypothesis.

• Correctness: We show that whenever b ̸⊑ u, player ∀ has a winning strategy.

Observe that a move of ∃ will be some l such that b ⊑ f(l). Note that there
must be a b′ ≪ l with b′ ̸⊑ u. In fact, otherwise, if for all b′ ≪ l it holds that
b′ ⊑ u, since L is a continuous lattice, we would have l =

⊔
{b′ | b′ ≪ l} ⊑ u

and furthermore b ⊑ f(l) ⊑ f(u) = u, which is a contradiction.

Hence ∀ can choose such a b′ ≪ l with b′ ̸⊑ u and the game can continue. Then
either ∃ runs out of moves at some point or we end up in an infinite play. In
both cases ∀ wins.

(Case η = ν)

In this case u = fα(⊤) for some ordinal α.

• Completeness: We show that when b ⊑ u, then ∃ has a winning strategy. In
fact, in this case ∃ simply plays l = u, which satisfies b ⊑ u = f(u) and ∀
answers with some b≪ u, hence b ⊑ u. The game can thus continue forever,
leading to an infinite play which is won by ∃.

• Correctness: We show that whenever b ̸⊑ fβ(⊤), for some ordinal β (i.e., b is
not below some ν-approximant), then ∀ has a winning strategy, by transfinite
induction on β. First observe that β > 0. In fact, otherwise b ̸⊑ f0(⊤) = ⊤
would be a contradiction. Hence we distinguish two cases:

– If β is a limit ordinal b ̸⊑ fβ(⊤) =
d

γ<β f
γ(⊤), which means that there

exists γ < β such that b ̸⊑ fγ(⊤).

Now any move of ∃ is some l with b ⊑ f(l). Therefore l ̸⊑ fγ(⊤), since
otherwise b ⊑ f(l) ⊑ f(fγ(⊤)) = fγ+1(⊤) ⊑ fβ(⊤) (since γ + 1 < β).
Hence there must be b′ ≪ l with b′ ̸⊑ fγ(⊤). Otherwise, as above, if for
all b′ ≪ l we had b′ ⊑ fγ(⊤), then by continuity of the lattice, we would
conclude l =

⊔
{b′ | b′ ≪ l} ⊑ fγ(⊤). Such a b′ can be chosen by ∀, and

the game continues.

250

7.5. Fixpoint Games over Continuous Lattices

– If β = γ + 1 we know that b ̸⊑ fβ(⊤) = f(fγ(⊤)).

Any move of ∃ is l with b ⊑ f(l), which as above implies that l ̸⊑ fγ(⊤)
and thus the existence of b′ ≪ l with b′ ̸⊑ fγ(⊤). The basis element b′ is
chosen by ∀ and the game continues.

Hence ∀ always has a move, ending up in b′ ̸⊑ fγ(⊤), from which there exists
a winning strategy for ∀ by the induction hypothesis.

Observe that cases of a µ- and a ν-equation are not completely symmetric. In the
completeness part, for showing that l ⊑ νf we use the fact that νf is the greatest
post-fixpoint. Instead, for showing that l ⊑ µf we use the fact that l ⊑ fα(⊥) for
some α and provide a proof that we can descend to ⊥, similarly to what happens for
ranking functions in termination analysis. Note that in order to guarantee that we
truly descend, also below limit ordinals, we require that ∀ plays b with b≪ l. Then
we can use the fact that whenever b is way-below a directed join, then it is smaller
than one of the elements over which the join is taken. We remark that choosing b
with b ⊑ l instead would not be sufficient (see Proposition 7.5.11). In the correctness
part, despite the asymmetry, both proofs use the fact that each element is the join
of all elements way-below it, for which it is essential to be in a continuous lattice
(see Proposition 7.5.9). Instead, for completeness, the continuity hypothesis does not
play a role.

For the general case, correctness and completeness of the game are proved by
relying on the notions of µ- and ν-approximant. Additionally, a general version of
the completeness proof fails in case one replaces ≪ by ⊑.

We prove the two properties separately where an overview of the proof structure
is given in Table 7.2. Completeness exploits a result that shows how ∃ can play
descending along a chain of µ-approximants and, as in the case of a single equation,
it can be proved for general lattices, without assuming the continuity hypothesis.

Lemma 7.5.3: Descending on µ-approximants

Let E be a system of m equations over a lattice L of the kind x =η f(x).
For each µ-approximant l ∈ Lm and (b, i) ∈ A(l) there exists a µ-approximant
l′ ∈ E(b, i) such that ord(l) ⪰i ord(l′). Moreover, if ηi = µ, the i-th component
strictly decreases and thus the inequality is strict.

Proof: Let l ∈ Lm be a µ-approximant and let (b, i) in A(l), i.e., b ∈ BL and i ∈ m
with b≪ li. We distinguish various cases:

251

7. Parity Games over Continuous Lattices

Table 7.2: Overview of the building blocks for the completeness and correctness
proofs of the fixpoint game. Both proofs rely on µ- and ν-approximates where the
former is used within the completeness part and the second in the correctness proof.
Continuity is needed to prove correctness where in general completeness fails if one
only works with ⊑.

Fixpoint Games over Continuous Lattices

Completeness Correctness
Descending on µ-approximants

Ascending on ν-approximants(Lemma 7.5.3)
Non-Algebraic Algebraic (Lemma 7.5.6)

≪ ⊑ or ≪ Continuity

1. (ηi = µ) This means that li = fα
i,l(⊥) for some ordinal α. Since f0

i,l(⊥) = ⊥ and
b≪ ⊥ would imply b = ⊥, while ⊥ ̸∈ BL, necessarily α ̸= 0. We distinguish
two subcases:

(a) α = β + 1 is a successor ordinal
Let l′i = fβ

i,l(⊥) and (l′1, . . . , l′i−1) = sol (E[xi+1,m := li+1,m][xi := l′i]).
Then define

l′ = (l′1, . . . , l′i−1, l
′
i, li+1,m)

Observe that l′ is a µ-approximant by Lemma 7.3.12. Moreover l′ ∈ E(b, i).
In fact

b ⊑ li = fβ+1
i,l (⊥)

= fi,l(fβ
i,l(⊥))

= fi,l(l′i)

= fi(sol (E[xi+1,m := li+1,m][xi := l′i]), l′i, li+1,m)

= fi(l′1, . . . , l′i−1, l
′
i, li+1,m)

= fi(l′)

Finally, note that ord(l′) ≺i ord(l) since vectors l and l′ coincide on the
components i+ 1, . . . ,m, and li = fβ+1

i,l (⊥) while l′i = fβ
i,l(⊥).

(b) α is a limit ordinal
Since b ≪ li = fα

h,l(⊥) =
⊔

β<α f
β
i,l(⊥), which is a directed join, by

252

7.5. Fixpoint Games over Continuous Lattices

definition of the way-below relation, there is β < α such that b ⊑ fβ
i,l(⊥).

We set l′i = fβ
i,l(⊥) and (l′1, . . . , l′i−1) = sol (E[xi+1,m := li+1,m][xi := l′i]).

Then we define

l′ = (l′1, . . . , l′i−1, l
′
i, li+1,m)

The vector l′ is a µ-approximant by Lemma 7.3.12. Moreover l′ ∈ E(b, i)
since

b ⊑ l′i
[since l′i = fβ

i,l(⊥) is a post-fixpoint]

⊑ fi,l(l′i)

= fi(sol (E[xi+1,m := li+1,m][xi := l′i]), l′i, li+1,m)

= fi(l′1, . . . , l′i−1, l
′
i, li+1,m)

= fi(l′)

Finally, note that ord(l′) ≺i ord(l) since vectors l and l′ coincide on the
components i+ 1, . . . ,m, and li = fα

i,l(⊥) while l′i = fβ
i,l(⊥), with β < α.

2. (ηi = ν)
In this case li = ν(fi,l). Let (l′1, . . . , l′i−1) = sol (E[xi,m := li,m]). Then define

l′ = (l′1, . . . , l′i−1, li,m)

The vector l′ is a µ-approximant by Lemma 7.3.12. Moreover, observe that
l′ ∈ E(b, i), since

b ⊑ li

[since li is a fixpoint]

= fi,l(li)

= fi(sol (E[xi,m := li+1,m]), li,m)

= fi(l′1, . . . , l′i−1, li,m)

= fi(l′)

Finally, note that ord(l′) ⪯i ord(l) since vectors l and l′ coincide on the
components i, . . . ,m.

□

253

7. Parity Games over Continuous Lattices

The previous result allows us to prove that player ∃ can always win starting from
a µ-approximant. Roughly, relying on Lemma 7.5.3, we can prove that player ∃ can
play on µ-approximants in a way that each time the i-th equation is chosen, the
ordinal vector associated to the approximant decreases with respect to ⪯i, and it
strictly decreases when the i-th equation is a µ-equation. This, together with the
fact that the order on ordinals is well-founded, allows one to conclude that either
the play is finite and ∃ plays last or the highest index on which one can cycle is
necessarily the index of a ν-equation. In both cases player ∃ wins.

Lemma 7.5.4: ∃ wins on µ-approximants

Let E be a system of m equations over a lattice L of the kind x =η f(x) and let
l ∈ Lm be a µ-approximant. Then in a game starting from l (which is a position
of ∀) player ∃ has a winning strategy.

Proof: We first describe the strategy for player ∃ and then prove that it is a winning
strategy.

The key observation is that ∃ can always play a µ-approximant, where she plays
the solution in the first step. In fact, let l′ ∈ Lm be the current µ-approximant. For
any possible move (b′, i′) ∈ A(l′) of ∀, by Lemma 7.5.3 there always exists a move
l′′ ∈ E(b′, i′) of ∃ which is a µ-approximant such that ord(l′) ⪰i ord(l′′). Additionally,
if ηi = µ the inequality is strict.

Since ∃ player has always a move, either the play finishes because ∀ has no moves,
hence ∃ wins or the play continues forever.

In this last case, note that, if h is the largest index occurring infinitely often,
then necessarily ηh = ν, hence ∃ wins. In fact, assume by contradiction that ηh = µ.
Consider the sequence of turns of the play starting from the point where all indexes
repeat infinitely often.

Let l′, (b′, j), l′′ be consecutive turns. By the choice of h, necessarily j ≤ h.
Moreover, by construction, if

ord(l′) ⪰j ord(l′′)

Observing that for j ≤ j′ it holds α ⪰j α′ implies α ⪰j′ α′, we deduce that

ord(l′) ⪰h ord(l′′)

i.e., the sequence is decreasing. Moreover, since ηh = µ, whenever j = h, ord(l′) ≻h

ord(l′′), i.e., the sequence strictly decreases. This contradicts the well-foundedness
of ≻h. □

254

7.5. Fixpoint Games over Continuous Lattices

Since the solution of a system of equation is a µ-approximant (the greatest one),
completeness is an easy corollary of Lemma 7.5.4.

Corollary 7.5.5: Completeness

Let E be a system of m equations over a lattice L of the kind x =η f(x). Given
any µ-approximant l ∈ Lm, b ∈ BL and i ∈ m, if b ⊑ li then ∃ has a winning
strategy from position (b, i).

Proof: Just observe that at the first turn ∃ can play the µ-approximant l that is in
E(b, i) by hypotheses. Then using Lemma 7.5.4 we conclude that ∃ wins. □

For correctness we rely on a result, dual to Lemma 7.5.3, that allows to ascend
along ν-approximants. However, in this case, the fact of working in a continuous
lattice is crucial (see Proposition 7.5.9).

Lemma 7.5.6: Ascending on ν-approximants

Let E be a system of m equations over a continuous lattice L of the kind
x =η f(x). Given a ν-approximant l ∈ Lm, an element b ∈ BL and an index
i ∈ m with b ̸⊑ li, for all tuples l′ ∈ E(b, i) there are a ν-approximant l′′ and
(b′′, j) ∈ A(l′) such that (1) b′′ ̸⊑ l′′j and (2) ord(l) ⪰i ord(l′′). Moreover, if
ηi = ν, the i-th component strictly decreases and thus the inequality in item 2
above is strict.

Proof: Let l ∈ Lm be a ν-approximant, let b ∈ BL and let i ∈ m with b ̸⊑ li. Take
l′ ∈ E(b, i), i.e., such that b ⊑ fi(l′). We prove that there are a ν-approximant l′′

and (b′′, j) ∈ A(l′) satisfying (1) and (2) above, by distinguishing various cases:

(i) (ηi = µ) Define l′′ = (sol (E[xi,m := li,m]), li, li+1,m), which is a ν-approximant
by Lemma 7.3.12. Note that, since li = µ(fi,l),

li = fi,l(li) = fi(sol (E[xi,m := li,m]), li, li+1,m) = fi(l′′)

We first prove prove (1), i.e., that there exists (b′′, j) ∈ A(l′), i.e., j ∈ m and
b′′ ∈ BL, b′′ ≪ l′j with b′′ ̸⊑ l′′j . In fact, otherwise, if for any j and b′′ ≪ l′j we
had b′′ ⊑ l′′j , then for any j, since BL is a basis and L a continuous lattice:

l′j =
⊔
{b′′ | b′′ ∈ BL ∧ b′′ ≪ l′j} ⊑ l′′j .

However, by monotonicity of fi, this would imply fi(l′) ⊑ fi(l′′) = li, that
together with the hypothesis b ⊑ fi(l′), would contradict b ̸⊑ li.

255

7. Parity Games over Continuous Lattices

For point (2), note that ord(l′) ⪯i ord(l) since vectors l and l′ coincide on all
components i, . . . ,m, and li = fα

i,l(⊥).

(ii) (ηi = ν) This means that li = fα
i,l(⊤) for some ordinal α, necessarily α ̸= 0

(since otherwise li = ⊤ and b ̸⊑ li could not hold). We distinguish two subcases

(a) α = β + 1 is a successor ordinal
Define l′′ = (sol (E[xi+1,m := li+1,m][xi := fβ

i,l(⊤)]), fβ
i,l(⊤), li+1,m). Then

we have

b ̸⊑ li

= fβ+1
i,l (⊤)

= fi,l(fβ
i,l(⊤))

= fi(sol (E[xi+1,m := li+1,m][xi := fβ
i,l(⊤)]), fβ

i,l(⊤), li+1,m)

= fi(l′′)

Recalling that b ⊑ fi(l′), as in case (i) we deduce point (1), i.e., that there
exists (b′′, j) ∈ A(l′) such that b′′ ̸⊑ l′′j .

Concerning point (2), note that ord(l′) ≺i ord(l) since vectors l and
l′ coincide on the components i + 1, . . . ,m, and li = fβ+1

i,l (⊥) while
l′i = fβ

i,l(⊥).

(b) α is a limit ordinal
In this case

b ̸⊑ li = fα
i,l(⊤) =

d
β<α f

β
i,l(⊤) =

d
β<α f

β+1
i,l (⊤)

Therefore there exists β < α such that b ̸⊑ fβ+1
i,l (⊤). Hence, we can define

l′′i = fβ
i,l(⊤) and take the ν-approximant

l′′ = (sol (E[xi+1,m := li+1,m][xi := l′′i]), l′′i , li+1,m)

Then we have

b ̸⊑ fβ+1
i,l (⊤)

= fi,l(fβ
i,l(⊤))

= fi(sol (E[xi+1,m := li+1,m][xi := fβ
i,l(⊤)]), fβ

i,l(⊤), li+1,m)

= fi(l′′)

and thus, again, recalling that b ⊑ fi(l′), as in case (i) we deduce point
(1), i.e., that there exists (b′′, j) ∈ A(l′) such that b′′ ̸⊑ l′′j .

256

7.5. Fixpoint Games over Continuous Lattices

Concerning point (2), note that ord(l′′) ≺i ord(l) since vectors l and l′′

coincide on the components i+1, . . . ,m, and li = fα
i,l(⊥) while l′′i = fβ

i,l(⊥),
with β < α.

□

As in the dual case, correctness is an easy corollary of the above lemma, recalling
that the solution is the least ν-approximant.

Lemma 7.5.7: Correctness
Let E be a system of m equations over a continuous lattice L of the kind
x =η f(x). For a ν-approximant l ∈ Lm, b ∈ BL and i ∈ m, if b ̸⊑ li then ∀ has
a winning strategy from position (b, i).

Proof: We first describe the strategy for the universal player and then prove that it
is a winning strategy.

Let l ∈ Lm be a ν-approximant, b ∈ L and i ∈ m such that b ̸⊑ li. Starting from
(b, i), for any possible move l′ ∈ E(b, i) of ∃. Then ∀ can play a pair (b′, j) ∈ A(l′),
whose existence is ensured by Lemma 7.5.6, such that there is a ν-approximant l′′

satisfying b′′ ̸⊑ l′′j and ord(l′′) ⪯i ord(l). Additionally, if ηi = ν the inequality is
strict.

According to the strategy defined above ∀ player has always a move. Thus either
the play finishes because ∃ has no moves, hence ∀ wins or the play continues forever.

In this last case, with an argument dual with respect to that in Lemma 7.5.4, we
can show that if h is the largest index occurring infinitely often, then necessarily
ηh = µ, hence ∀ win. □

Combining Corollary 7.5.5 and Lemma 7.5.7 we reach the desired result.

Theorem 7.5.8: Correctness and Completeness

Given a system ofm equations E over a continuous lattice L of the kind x =η f(x)
with solution u, then for all b ∈ BL and i ∈ m,

b ⊑ ui iff ∃ has a winning strategy from position (b, i).

Proof: Immediate corollary of Lemma 7.3.11, Corollary 7.5.5 and Lemma 7.5.7. □

Note that even when the fixpoint is reached in more than ω steps, thanks to the
fact that the order on the ordinals is well-founded and players descend over the
order, ordinals do not play an explicit role in the game. In particular plays are not

257

7. Parity Games over Continuous Lattices

transfinite and whenever ∀ or ∃ win due to the fact that the other player cannot
make a move, this happens after a finite number of steps. This can be a bit surprising
at first since the game works for general continuous lattices, including, for instance,
intervals over the reals.

We close this subsection by proving two results that, in a sense, show that the
choice of continuous lattices and the design of the game based on the way-below
relation are the right ones.

We first observe that the restriction to continuous lattices is not only sufficient
but also necessary for the correctness of the game. The proofs of the following two
propositions could be found in [BK+18].

Proposition 7.5.9: Correctness – exactly in Continuous Lattices

Let L be a lattice and let BL be a fixed basis with ⊥ ̸∈ BL. The game is correct
for every system of equations over L if and only if L is continuous.

Example 7.5.10

As a counterexample, consider the lattice W in Figure 7.1, which is not continuous
and let BW be any basis such that 0 ̸∈ BW . First note that necessarily a ∈ BW ,
otherwise a ̸=

⊔
{x ∈ BW | x ⊑ a} =

⊔
∅ = 0. Secondly,

↠

a = {0} since a ̸≪ a.
Then, consider the equation x =µ f(x), where the function f : W →W is defined
by f(0) = 0, and f(x) = ω for x ̸= 0. Clearly f is monotone and its least fixpoint
is µf = 0. However, the player ∃ can win any play of the game from position
a, despite the fact that a ̸⊑ µf = 0. In fact, the first move of ∃ can be a, since
a ⊑ f(a) = ω. But then player ∀ has no moves since

↠

a∩BW = ∅. And so player
∃ always wins while she should not.

The second observation is that using the lattice order instead of the way-below
relation may break completeness. More precisely, consider the natural variant of
the game where the way-below relation is replaced by the lattice order. Let us call
it weak game. Since the set of possible moves of player ∀ is enlarged, correctness
clearly continues to hold. Instead, as we hinted before, completeness could fail. We
show that it is exactly on algebraic lattices that completeness still holds for the weak
game.

258

7.5. Fixpoint Games over Continuous Lattices

Proposition 7.5.11: Way-below is needed in Non-Algebraic Lattices

Let L be a lattice. The weak game is complete on every system of equations
over L if and only if BL consists of compact elements (which in turn means that
L is algebraic).

Note that when the elements of the basis are compact, the way-below relation
with respect to elements of the basis is the lattice order. Hence the result above
essentially states that the weak game is complete exactly when it coincides with the
original game, thus further supporting the appropriateness of our formulation of the
game.

Example 7.5.12

As a counterexample, consider the continuous lattice [0, 1] with the usual order
and basis B[0,1] = Q ∩ (0, 1]. Recall that [0, 1] is not algebraic (the only compact
element is 0) and way-below relation is the strict order <. Let g : [0, 1]→ [0, 1]
be the function defined by g(x) = x+1

2 . The fixpoint equation x =µ g(x) has
solution µg = 1.
In the weak game, from position l ∈ [0, 1], player ∀ can play any b ≤ l (instead,
of b < l). Then player ∃ loses any play starting from position 1, despite the fact
that 1 ≤ µg = 1. In fact, the only possible move of player ∃ is 1, and ∀ can play
any x ≤ 1. In particular, playing 1 the game will continue forever and will thus
be won by ∀.
Notice that, instead, in the original game, from position 1, player ∀ has to play
an element 1− ε for some ε > 0. Then, it is easy to see that at each step i player
∃ will be able to play some zi ≤ 1−2iε. This means that after finitely many steps
∃ will be allowed to play 0, thus leaving no possible answer to ∀ and winning the
game.

We close this section getting back to constant propagation analysis introduced in
Section 7.4.2.

Example 7.5.13

Recall that the system of fixpoint equations expressing the analysis in Figure 7.5
had solution ρ1 = ⊥, ρ2 = ⊥[y 7→ 6], ρ3 = ρ4 = ⊥[x 7→ 7]. We next describe a
game that shows that indeed ⊥[x 7→ 7] ⊑ ρ4 and hence x has constant value 7 at
block 4. Induced by the order, every directed set of size greater than two includes

259

7. Parity Games over Continuous Lattices

⊤.
The game (⊥[x 7→ 7], 4) proceeds as follows:

∃; (⊥,⊥,⊥[x 7→ 7],⊥) (⊥[x 7→ 7] ⊑ f4(⊥,⊥,⊥[x 7→ 7],⊥))
∀; (⊥[x 7→ 7], 3) (⊥[x 7→ 7]≪ p3 = ⊥[x 7→ 7])
∃; (⊥,⊥[y 7→ 6],⊥,⊥[x 7→ 7]) (⊥[x 7→ 7] ⊑ f3(⊥,⊥[y 7→ 6],⊥,⊥[x 7→ 7])
∀;

Now the universal player has two options: either choose (⊥[x 7→ 7], 4), which
brings him back to an earlier game situation and might potentially lead to an
infinite game. Since we are considering greatest fixpoints, this means that ∃ wins.
If he chooses the other option (i.e. (⊥[y 7→ 6], 2)), the game continues as follows,
where eventually ∀ has no move left and ∃ wins as well:

(⊥[y 7→ 6], 2) ∃; (⊥,⊥,⊥,⊥)
∀
̸;

7.5.3 Comparison with Other Games

We discuss how our parity game over systems of fixpoint equations relates to other
game characterizations. Therefore, we consider bisimulation for LTS and model
checking via the µ-calculus.

Bisimulation Games: The bisimulation games presented in Chapter 3 yield a
game-theoretical interpretation of behavioral equivalence. Analogous to the fixpoint
game, we have two players, spoiler (S) and duplicator (D), where S wants to show
that two states are non-bisimilar and D wants to prove the opposite.

Given a LTS (X,Σ,→) we recall the function F(R) : P(X ×X) → P(X ×X)
introduced in Section 2.2.2 defined as follows:

F(R) = {(x, y) ∈ X ×X | ∀ a ∈ Σ :

∀x′ with x
a→ x′, ∃ y′ s.t. y a→ y′ and (x′, y′) ∈ R; and

∀ y′ with y
a→ y′, ∃x′ s.t. x a→ x′ and (x′, y′) ∈ R

} (7.6)

Therefore, we obtain the following single equation system

R =ν F(R)

260

7.5. Fixpoint Games over Continuous Lattices

where the solution characterizes bisimilarity. Regarding our framework the lattice is
given by L = P(X ×X) and the basis BL consists of all singleton relations.

In the fixpoint game ∀ has the same role as S, since {(x, y)} ⊈ νF is equivalent
to x ≁ y. Therefore, D and ∃ pursue the same target, to prove x ∼ y. In case ∃ has
a winning-strategy for the initial situation ({(x, y)}, 1) one can conclude that x ∼ y
holds or equivalently {(x, y)} ⊆ νF .

Example 7.5.14

As an example, consider the LTS given in Figure 7.7. A bisimulation is given by
{(x0, y0), (x1, y1), (x1, y2), (x2, y3), (x3, y3), (x4, y4)}.

x0

x1

x2 x3

x4

a

b b

aa

a

b

b a

y0

y1 y2

y3

y4

a a

b b

a

a, b

Figure 7.7: A LTS where x0 ∼ y0 holds and the existential player ∃ has a winning-
strategy for (x0, y0) in the fixpoint game.

Example 7.5.15

We apply the fixpoint game to the LTS given in Figure 7.7. Due to the fact that
the system of interest includes a single equation we write b instead of (b, i) for
the ∃-positions.
The initial situation is given by {(x0, y0)} and possible game sequences are
described in Figure 7.8.
The positions of the existential player ∃ are given by diamonds and some options
for valid moves by ∃ are represented by rectangles, which in turn yield the
positions for the universal player ∀. Note, that ∀ has to work with singletons due
to the definition of BL.

261

7. Parity Games over Continuous Lattices

{(x0, y0)}

{(x0, y0), (x1, y1), (x1, y2)} . . .

{(x1, y1)} {(x1, y2)}

{(x2, y3)} {(x3, y3)}

∃ ∃

Infinite games are winning for ∃

∀ ∀

{(x1, y1), (x2, y3), (x3, y3), (x1, y2)}

∀ ∀

.

.

∃∃

∃∃

∃ ∃

∀ ∀

{(x2, y3), (x3, y3), (x4, y4)}

∀
∃ ∃

∀

{(x4, y4)}

∀

∅
∃(No options for ∀)

Figure 7.8: Partial game board for the initial situation {(x0, y0)}. Other options
for ∃ are denoted with dashed lines and all the positions (b, 1) with b ∈ LB (the
diamonds) have a ν-index.

262

7.5. Fixpoint Games over Continuous Lattices

As depicted in the partial game board in Figure 7.8 the ∃-player either wins
because the ν-index is visited infinitely often or ∀ has no move due to ∅, which is
a valid move for ∃ at position {(x4, y4)}.
For the sake of completeness, consider the non-bisimilar state pair (x4, y3). Note,
that ∃ has no way to win by the rules of the game since no matter which R ∃
plays the pair (x4, y3) will not be included in F(R).

This game is more reminiscent of Baltag’s game [Bal99] than the two game versions
given by Definition 3.2.1 and Definition 3.3.1. All games have in common that the
moves of the existential player (or duplicator) consider the direct successors of the
state pair of the current game round.

The difference lies in the fact that in Baltag’s game as well as in the fixpoint
game, the first move is given by the existential player via a relation R satisfying
{(x, y)} ⊆ F(R) or equivalently (α(x), α(y)) ∈ ΓR where α is the given LTS and
Γ lifts R to a relation ΓR ⊆ FX × FX with F = P(A × _) in correspondence
to the generalization of bisimulation by Aczel and Mendler [Bal99]. Thus, all the
direct successors of x, y are taken into account via such a relational move. In case
{(x, y)} ⊆ νF the existential player works with (partial) bisimulations which in
turn yields positions satisfying ⊆ νF . Otherwise (i.e. x ≁ y), either at least one
non-bisimilar state pair exists by the move of ∃ such that ∀ will eventually win or no
relation R with {(x, y)} ⊆ νF(R) exists.

As already mentioned above, in the game versions presented in Chapter 3 the
duplicator has the same role as ∃, but in those games she only has to take care of
the states included by the predicate given by the move of the spoiler, i.e. D has to
mimic the moves of S.

The Modal µ-Calculus Parity Games We already introduced how µ-calculus
formulas are used in the process of system verification (see Section 7.4.1). It is
generally considered difficult to infer the interpretation of a µ-calculus formula using
the semantics defined in Section 7.4.1. Thus, the motivation to combine parity
games with the modal µ-calculus lies in the simplification of the interpretation
process [BW18].

Therefore, we will consider parity games over µ-calculus formulas, where our game
also relates to other classical techniques for model checking the µ-calculus, as tableau
systems or automata (see, e.g., [Eme85; SW91]). A detailed comparison with the
tableaux technique can be found in [BK+18].

263

7. Parity Games over Continuous Lattices

The following definitions and examples are derived form [BW18; Ven08; Jur00]
where [Sti95] presents a property checking game over modal µ-calculus formulas with
parity-conditions for infinite sequences originating from [EJ91].

We refer to the formal definition of parity games [Jur00] (see Definition 7.2.13) and
present an informal description of how a formula can be encoded into a game [BW18].

To compare the winning conditions of our fixpoint game over equational systems
with the game version played on a µ-calculus formula φ, we need to encode φ into a
parity game. The reduction of the model checking problem to a parity game relies
on two aspects: the inductive syntax given by φ and the alternation depth. These
transformations are described in more detail in [BW18] where positions are tuples
(s, φ′) with s being a state of the underlying state-based model and φ′ is a formula
of the smallest set of formulas containing φ which is closed under subformulas and
the unfolding of φ. Here we just give an overview of the main intuitions behind this
concept:

1. An example for a base case (s, p) is given by a formula φ = p. In case s |= p

holds, ∃ is winning if we add φ to V2. This way ∀ has no outgoing edge and
loses. If s ⊭ p, we add p to V3 and ∀ wins because ∃ has no move. Other base
cases are treated analogously.

2. For modal operators we consider the 2-operator where the 3-operator is
handled similarly. First of all we consider the position (s, [a]φ) and derive for
each a-reachable state t a new transition: (s, [a]φ)→ (t, φ) if s a→ t. A position
(s, [a]φ) is winning for ∃ if for all a-reachable states t i.e. s a→ t we have that
t |= φ. Therefore the derived positions should belong to ∀ since in case one
state t exists which does not satisfy φ the universal player should have the
opportunity to select this path. Dually, (s, ⟨a⟩φ) should belong to ∃.

3. For similar reasons as described in (2) disjunctions belong to ∃ and conjunctions
to ∀.

4. For the fixpoint operators we follow the intuition behind a fixpoint and define
transitions from (s, ηX.φ(X)) to (s, φ(ηX.φ(X))). Since there exists only one
transition it does not matter to which player such a position belongs.

5. Finally, we need to assign priorities (ranks) to the positions. For a given formula
φ starting with ν we assign an even priority to the corresponding position
where for formulas starting with µ we use odd numbers. In order to ensure
this, alternation depths with respect to the bound variables by the η-operators
are used [BW18].

264

7.5. Fixpoint Games over Continuous Lattices

It is not hard to see that this procedure yields the same winning-conditions for ∃ and
∀ as described for our fixpoint game (see [FLV10] and [EJ91]). Before we compare
both games we derive an instance of such a game.

Example 7.5.16

We consider the formula φ = νx2.((µx1.(p∨3x1))∧2x2) given in Example 7.5.2.

(a, νx2.((µx1.(p ∨3x1)) ∧2x2)) [0]

(a, (µx1.(p ∨3x1)) ∧2φx2))[0]

(b, φx2) [0]

(b, (µx1.(p ∨3x1)) ∧2φx2)) [0]

(b, µx1.(p ∨3x1)) [1] (b,2φx2) [0]

(b, p ∨3φ′
x1) [0]

(b, p) [0] (b,3φ′
x1) [0]

(a, φ′) [1] (a,2φx2) [0]

(a, p ∨3φ′
x1) [0]

(a, p) [0](a,3φ′
x1) [0]

(b, µx1.(p ∨3x1)) [1]
...

Figure 7.9: The game board derived from a µ-calculus formula [BW18].

The positions and transitions illustrated in Figure 7.9 are constructed based
on the previously described transformation rules. For simplification we denote
φ′ = µx1.(p∨3x1). We use rectangles for the positions of ∀, chamfered rectangles

265

7. Parity Games over Continuous Lattices

for ∃ and no shape for the remaining unfolding steps. The priorities are denoted
with [_] and for fixpoints we denote with φx2 (φ′

x1) the whole formula with
respect to the unfolding rule. Note, that both alternation depths (for µ, x1 and
ν, x2) are 1 since x2 does not occur in φ′ and therefore we get the ranks 1 and 0
respectively.

We are now ready to compare the formula based game with the game over the
corresponding system of equations presented in Example 7.5.2. The positions in the
fixpoint game depicted in Figure 7.6 refers to the same (sub)formulas and thus it
results in an equivalent game board where the fixpoint game does not consider the
intermediate positions based on the whole inductive structure of the formula. More
precisely, in both versions we move from the initial position to a ∀-position which
includes three options: going back to the initial position, moving to φ′ with respect
to a (i.e. to the corresponding equation for the variable x1), or moving to φ with
respect to b.

Next, we consider the last position of those three options. In our game ∀ has
the opportunity to cycle on this ν-index or move to φ′ (i.e. to the corresponding
equation for the variable x1), but this time with respect to b. The game version
obtained by the previously described transformation rules enables exactly the same
options and therefore ∃ has a winning strategy. More precisely, ∀ avoids cycling on
even priorities (i.e. ν-indizes) and ∃ decides for a finite path ending in the position
(b, p) or equivalently (∅, ∅) in Figure 7.6, where ∀ has no further option and therefore
he loses the play.

Since a formula can be transformed into an equivalent equational system where each
equation is derived from a (sub)formula given by a nested fixpoint operator [CKS92;
HSC16], it is not a big surprise to observe that ∃ obtains equivalent winning strategies
in both game versions. (A detailed discussion with respect to the equivalence of the
semantics can be found in [BK+18]). Although, the game board from the system
of equations yields a more compact representation, involving alternation depths
improves the runtime if one wants to compute the winning strategies (see [Jur00;
BK+19a]).

Analogous to the two-player games presented in Chapter 3,5 and 6, winning
strategies play a significant role in the context of parity games. Consider a system
E of fixpoint equations as described for the modal µ-calculus in Section 7.4.1. For
a subset b ⊆ S where S is the state space of some underlying Kripke system, it
holds that the states in b satisfy the property characterized by E if and only if ∃

266

7.6. Winning Strategies and Progress Measures

has a winning strategy for a game starting with position (b,m) where m denotes the
number of fixpoint equations in E. Therefore, the question arises how to compute
the winning strategies.

7.6 Winning Strategies and Progress Measures

As mentioned at the beginning of this chapter and considered in the previous section,
our game is a parity game (see Definition 2.3.16) and game theoretical semantics
provide a comprehensible alternative for logical semantics (see Section 7.4.1).

As a consequence, one is interested whether ∃ has a winning strategy or not.
Winning strategies are functions that map each winning position to possible moves,
which in turn result in winning positions regardless of the opposing player’s actions.
In parity games, progress measures are witnesses for such winning strategies [Jur00].

In this section we just briefly consider progress measures along the lines of [Jur00],
influenced by [HSC16] and introduce a general notion of progress measure for fixpoint
games over continuous lattices presented in [BK+19a]. We will show how a complete
progress measure characterizes the winning positions for the two players.

Given an ordinal α we denote by [α]m⋆ = {β | β ≤ α}m ∪ {⋆}, the set of ordinal
vectors with entries smaller or equal than α, with an added bound ⋆.

Definition 7.6.1: Progress measure

Let L be a continuous lattice and let E be a system of m equations over L of the
kind x =η f(x). Given an ordinal λ, a λ-progress measure for E is a function
R : BL → m→ [λ]m⋆ such that for all b ∈ BL, i ∈ m, either R(b)(i) = ⋆ or there
exists l ∈ E(b, i) such that for all (b′, j) ∈ A(l) it holds

• if ηi = µ then R(b)(i) ≻i R(b′)(j);

• if ηi = ν then R(b)(i) ⪰i R(b′)(j)

A progress measure maps any basis element of the lattice and index i ∈ m to an
m-tuple of ordinals, with one component for each equation. Components relative
to µ-equations roughly measure how many unfolding steps for the equation would
be needed to reach an under-approximation li above b, and thus, for ∃, to win the
game. Components relative to ν-equations, as in the original work of [Jur00], are
less relevant, as we will see.

Intuitively, whenever R(b)(i) ̸= ⋆, the progress measure R provides an evidence
of the existence of a winning strategy for ∃ in a play starting from (b, i). The tuple

267

7. Parity Games over Continuous Lattices

l, whose existence is required by the definition, is a move of player ∃ such that for
any possible answer of ∀, the progress measure will not increase with respect to ⪯i,
and it will strictly decrease in the case of µ-equations. Since ≺i is well-founded, this
ensures that we cannot cycle on a µ-equation. Also note that whenever the current
index is i, all indices lower than i are irrelevant (expressed by the orders ⪰i resp.
≻i), which is related to the fact that the highest index which is visited infinitely
often is the only relevant index for determining the winner of the game. This idea is
formalized in the following lemma.

Lemma 7.6.2: Progress Measures are Strategies

Let L be a continuous lattice and let E be a system of m equations over L of
the kind x =η f(x) with solution u. For any b ∈ BL and i ∈ m, if there exists
some ordinal λ and a λ-progress measure R such that R(b)(i) ⪯i (λ, . . . , λ), then
b ⊑ ui.

Proof: We show that ∃ has a winning strategy from (b, i). The strategy consists in
choosing a move l ∈ E(b, i) such that for all (b′, j) ∈ A(l), it holds

• R(b)(i) ≻i R(b′)(j), if ηi = µ

• R(b)(i) ⪰i R(b′)(j), if ηi = ν

which exists by definition of progress measure.
Now, observe that player ∃ can always make its turn. Therefore either the play

stops because ∀ runs out of moves, hence ∃ win. Otherwise, the play is infinite, and,
if we denote by h the largest index occurring infinitely often, then ηh = ν, hence ∃
wins. In fact, assume by contradiction that ηh = µ. Consider the sequence of turns
of the play starting from the point where all indexes repeat infinitely often and take
the m-tuples of ordinals R(b′)(h) corresponding to the positions (b′, i) where ∃ plays.
For any two successive elements, say (b′, i) and (b′′, j), by construction

R(b′)(i) ⪰i R(b′′)(j)

Observing that for i ≤ j it holds α ⪰i α′ implies α ⪰j α′, we deduce that

R(b′)(i) ⪰h R(b′′)(j)

i.e., the sequence is decreasing.
Moreover, since ηh = µ, whenever i = h, the sequence strictly decreases, i.e.,

R(b′)(i) ≻h R(b′′)(j). This contradicts well-foundedness of ≺h. □

268

7.7. Conclusion and Discussion

The above lemma, in a sense, says that progress measures provide sound character-
izations of the solution. However, in general, they are not complete, since whenever
R(b)(i) = ⋆ we cannot derive any information on (b, i), i.e., if u is the solution of the
system, we cannot conclude that b ̸⊑ ui. This motivates the following definition.

Definition 7.6.3: Complete Progress Measures

Let L be a continuous lattice and let E be a system of equations over L of the
kind x =η f(x) with solution u. A λ-progress measure R : BL → m→ [λ]m⋆ is
called complete if for all b ∈ BL and i ∈ m, if b ⊑ ui then R(b)(i) ⪯i (λ, . . . , λ).

Observe that in search of a complete progress measure, in principle, we would
have to try all ordinals as a bound. One can take as bound the height λL of the
lattice L [HSC16], which provides a generalization of the small progress measure
in [Jur00].

The existence of such a small progress measure allows to express a complete
progress measure as a least fixpoint, thus providing a technique for computing the
progress measure and solving the corresponding system of equations. For more details
we refer to [BK+19a] and the discussion in the next section.

7.7 Conclusion and Discussion

Our work combines the theory of program analysis and verification [CC77] with
domain theory. Both areas are based on lattice theory and in particular on complete
lattices where in the second case continuous lattices have been introduced by Scott
as a semantic domain for the λ-calculus [Sco72]. Continuous lattices, which received
this name due to their intimate connection with continuous functions, have since
found many further applications in the semantics of programming languages [GH+03;
AJ94].

Our contributions presented in this thesis can be categorized as follows:
▷ First of all, we developed a game-theoretical characterization for systems of fixpoint
equations over continuous lattices. Our game generalizes the parity games for the
µ-calculus [BW18; Sti95] since it extends the game-theoretical approach to continuous
lattices.
▷ Secondly, we established a generalization of progress measures which represent
witnesses for winning strategies in parity games.

As already discussed in detail in Section 7.5.3, regarding µ-calculus model checking
our game version refers to the equational representation of system properties, which

269

7. Parity Games over Continuous Lattices

is inspired by the work in [HSC16].

The modal µ-calculus is an expressive temporal logic, which originates on an
unpublished work of Scott and Bakker and the further development by Kozen [Koz83].
The whole chapter refers to the very detailed overview given by [BW18], which
introduces the problem of efficient model checking, which involves the solution of
nested fixpoint equations, see, e.g., [BC+97; Sei96; CKS92]. The paper [CKS92]
introduced the notion of a hierarchical system of fixpoint equations, on which our
paper is based as well. The main focus of this chapter is the reduction of the model
checking problem into the question of finding winning strategies for parity games as
first described in [EJ91]. A very satisfying technique for solving parity games was
proposed in [Jur00] resulting in an algorithm which is exponential only in half of the
alternation depth.

Since the fixpoint equations derived from a modal µ-calculus formula φ are based
on the nested µ, ν-operators within φ as well as the other games presented in [BW18;
Sti95] are inductively derived from φ, the corresponding game boards show conceptual
similarities. However, the construction of our game is rather simple in that sense, that
it can be directly played on the single equations using the indices of the equations,
where the other game boards are based on several rules regarding the whole inductive
structure of φ. Since quantitative parity games (or model checking [HK97]) as for
the probabilistic µ-calculi [Mio12; FGK10; MM07] also closely follow the inductive
structure of the formula, it is an interesting question whether the conceptual simplicity
of our game can lead to a new perspective on existing games. Quantitative logics are
already mentioned in Chapter 5 and also play a significant role in model checking
based on “non-binary” truth values (see, e.g., [KL07; EKN12; GL+05; Fit91]), which
is considered in our paper [BK+19a], but not in this thesis.

Furthermore, in [BK+19a] we present techniques to compute the generalized
version of a small progress measure which is introduced by Jurdziński’ [Jur00] and
studied in a coalgebraic context in [HSC16]. Our results are based on the fact that
the set of progress measures forms a lattice since [α]m⋆ = {β | β ≤ α}m ∪ {⋆} is a
lattice too. This allows to formulate progress measure equations which leads to a
monotone function over progress measures and therefore enables the computation of
a complete progress measure via smallest fixpoint computations. Afterwards, given a
system of fixpoint equations E we introduce so-called selections which provide for
each element b of the basis and a function fi a subset of the moves E(b, i) that are
sufficient to cover b in all possible ways. Build up on the observation that selections
describe a disjunctive normal form, we introduce a logical characterization of the

270

7.7. Conclusion and Discussion

existential player’s moves and study different ideas how progress measures can be
(effectively) computed working also in the scope of infinite lattices [BK+19a; MS17;
GS11].

The work in [BKP20] of my coauthors [BK+19a] extends our results in two
different dimensions. First of all, they get rid of the restriction to continuous lattices
via the observation that an equational system over any complete lattice L can be
encoded via a corresponding system over a lattice P(BL) by means of a Galois
insertion. Secondly, this observation leads to algorithmic developments including
up-to techniques inspired by the work in [BG+18; Hir98; PS11]. More precisely,
given a monotone function f : L→ L they consider a compatible function u : L→ L

i.e. u ◦ f ⊑ f ◦ u with the property:

l ⊑ f(u(l))⇒ l ⊑ νf

Given a system E of m fixpoint equations, the integration of compatible up-to
functions as abstractions enables the simplification of the computations.

Next, a local algorithm is presented which addresses questions whether two states
are bisimilar. The aim of such an algorithm is to compute the information which
is needed to correctly verify such statements. The on-the-fly algorithm combines
backtracking techniques with pruning procedures and yields a generalization of the
computation presented in [SS98] according to fixpoint games. Furthermore, they
combine their algorithm with up-to techniques inspired by [Hir99] to improve the
computation in practice.

On the one hand, they generalize the results of [BK+19a] partially presented in
this chapter to complete lattices and integrate ideas of abstraction theory [CC77],
but on the other hand the construction P(BL) increases the domain of interest and
the games might become larger (i.e. more moves are available).

For solving fixpoint equations over infinite lattices (e.g. the real numbers), it still
remains open how to compute or approximate an exact solution. However the use of
up-to techniques seems to be a promising approach since the techniques described in
[BKP20] are sound, when their overapproximations are not guaranteed to be close
enough for non-continuous functions.

Another open question is given by the observation, that a parity game over a finite
graph can be easily converted into a system of boolean equations whose solution
characterizes the winning positions for the players. Since our game is a standard
parity game, possibly played on an infinite graph, the standard conversion would
lead to infinitely many equations. Systems of equations of this kind are considered,

271

7. Parity Games over Continuous Lattices

e.g., in [Mad97]. An interesting question is under which conditions an infinite parity
game can be converted into finitely many equations on an (infinite) powerset lattice.

272

8

Conclusion and Future Work

The primary objective of this thesis was to complete the coalgebraic framework for
state-based systems with logical and game-theoretical approaches. To summarize this
thesis we provide an overview of the contributions and start with the four research
areas extended via the work presented in this thesis:
▷ Coalgebraic modal logic and games over Set (Chapter 3, Chapter 4 and Ap-
pendix A.1)
▷ Games and logic for behavioural distances over Set (Chapter 5)
▷ Coalgebraic modal logic and games beyond Set (Chapter 6)
▷ Parity Games (Chapter 7)

For each item above, we start with a discussion of the main contributions and
finally close each topic with a brief outlook. Note, that for each topic a detailed
conclusion can be found in the corresponding chapter(s).

Coalgebraic Modal Logic and Games over Set: Specifications are given in
terms of logical formulas and in many scenarios several (probabilistic) aspects such as
resources, concurrency, or security have to be considered at the same time [CK+11].
Therefore, the composition of different types of branchings and their corresponding
modalities is of crucial interest where coalgebraic modal logic does not only provide a
generalization of modal logic in terms of soundness and expressiveness, the theory of
coalgebras also offers compositionality results (i.e. for branchings derived from the
combination of functors) [CK+11]. Coalgebraic modal logic is a generalization where
modalities are expressed via predicate liftings [HJ98; Jac01; Pat04]. In a nutshell,
predicate liftings are converters, which transform a subset of X into a subset of FX
where F specifies the branching type of a transition system.

In Chapter 3 we present two game-theoretical characterizations in terms of
predicate liftings where we extend the results in [Sch08]. We connect the existence of
a expressive set of monotone modalities with the anti-symmetry of the lifted order
≤F with ≤= {(0, 0), (0, 1), (1, 1)} (see Proposition 3.2.17). To consider ≤ is quite
natural in a qualitative setting: either a state satisfies a modal formula or it does
not. Given a functor F , which can be a composition of several functors, due to

273

8. Conclusion and Future Work

Proposition 3.2.17 to get a sound and complete game, one only needs to verify if ≤F

is an anti-symmetric preorder and (Fp : FX → F2)p : X→2 is jointly injective.
Inspired by Cleaveland [Cle90], the game-based approach based on ≤F provides

general techniques to derive a distinguishing logical formula of two non-bisimilar states
automatically. This approach relies on so-called cone modalities (see Definition 3.4.11)
which are modalities purely based on ≤F . The usage of cone modalities avoids
to iterate over infinitely many modalities as given in the probabilistic settings.
Besides, the meanings of cone modalities can be transformed to those of the standard
modal operators (e.g. necessarily, everywhere, or probably) which is described in
Section 3.4.4, where we provide some encoding techniques into more familiar modal
logics. Therefore, cone modalities also offer an automatism that does not require the
user to specify a set of modal operators in advance.

Moreover, in Chapter 4 we present a prototype implementation of the algorithms
presented in Chapter 3 named T-Beg. A huge advantage of the coalgebraic frame-
work is that generic algorithms enable a high degree of abstraction: a part of the
architecture of T-Beg was already predefined by the coalgebraic approach before
we even started to think of a suitable design. More precisely, Algorithm 3.1 is
encapsulated in a separate class implied by the parameterization in terms of the
functor and a concrete transition system.

In future we would like to adapt our algorithms in two dimensions. First, we want
to improve the polynomial runtime behaviour and slacken the requirements via the
techniques presented in [PT87; DM+17]. Second, we believe that our bisimulation
games can be extended to polyadic predicate liftings [Sch08].

Behavioural Distances over Set: In practice, notions of behavioural equiv-
alence are rather too strict since implementations do not always fully match the
requirements and one needs to move to a quantitative setting [DLT08; AFS09].

Therefore, pseudometrics and non-expansive functions enter the scene, where
pseudometrics over the state space X (i.e. d : X × X → [0, 1]) correspond to
behavioural distances and non-expansive functions are mappings between metric
spaces which do not increase the distance. The work in [BB+14] presents a coalgebraic
treatment of the material based on the Kantorovich and Wasserstein liftings, which
are standard concepts in terms of probabilistic transition systems originating from
transportation theory [BW06; Vil09].

Inspired by the work in [BB+14] we improved the Kantorovich lifting via a
parametrization based on a set Λ of evaluation maps. Moreover, we present a
real-valued coalgebraic modal logic and give a Hennessy-Milner theorem for the

274

coalgebraic setting. Furthermore, we also provide a quantitative game in terms of
real-valued evaluation maps and present a quantitative version of the classical triad
mentioned also in the introduction (see Figure 1.3). Compared to the qualitative
setting, monotonicity is replace by local non-expansiveness which is already mentioned
in [TR98].

Further, behavioural distances could be studied in terms of the Wasserstein lifting
which is used to set up a game for probabilistic systems as presented in [WS+18b]
and also serves as an upper bound for the distance based on the Kantorovich
lifting [BB+14; Ker16]. In analogy to the results presented in Section 3.4, efficient
computation techniques (see, e.g. [CBW12; BB+19]) would enable the generation of
spoiler strategies.

In order to lift the level of abstraction – moving to settings beyond Set – an
approach based on fibrations is presented in [KK+19] which generalizes our games
but does not consider modal logics. Therefore, the authors in [KR20] consider modal
logics based on fibrations and dual adjunctions which allows to handle Set as well as
Meas. However, we address this topic in Chapter 6.

Coalgebraic Modal Logic beyond Set: The coalgebraic notion of behavioural
equivalence (see Definition 2.3.17) is a quite general notion since it also works beyond
the standard category Set. In Chapter 6 we address the non-trivial question if
we can setup logical and game-theoretical characterizations which capture different
notions of coalgebraic behavioural equivalence, e.g. bisimulation as well as language
equivalence.

Inspired by the work in [PT99; HJS07; JSS15] we move to Kleisli categories where
for example for non-deterministic automata coalgebraic behavioural equivalence
coincides with language equivalence. This phenomenon is achieved since the side-
effect (i.e. the non-determinism) is hidden to an outside observer.

We work with indexed categories where Jacobs noticed that predicate liftings
are nothing but indexed morphisms. We extend the ideas based on indexed cate-
gories [Jac10] to a Kleisli extension of predicate liftings which to our knowledge is
new. Furthermore, we generalize the logical notion and game version presented in
Section 3.3.1 so that we can capture trace equivalence as well as bisimulation.

Summarizing, we provide a different contribution compared to the games obtained
for a fibrational framework [KK+19] which do not address trace semantics or modal
logics but put games for bisimulation and behavioural metrics under one roof.

For categories beyond Set there are still some open questions how coalgebraic
behaviour equivalence can be characterized via logical or game-theoretical semantics.

275

8. Conclusion and Future Work

But all the frameworks (i.e. indexed categories, dual adjunctions and fibrations)
contribute in answering this non-trivial question [KK+19; KR20].

Parity Games: The motivation to study parity games is given by the fact
that any modal µ-calculus model checking problem can be reduced to the question
whether the existential player ∃ has a winning strategy for the game derived from the
formula [Sti95; EJ91]. Inspired by the work in [HSC16] we present a simple parity
game based on the equational representation of a µ-calculus formula. The winner
of a game is determined by the highest index occurring infinitely often and in case
this index is a ν-index, the existential player ∃ is winning. Otherwise, the universal
player ∀ is the winner. Furthermore, we generalize such a game-theoretical approach
to continuous lattices, which are anchored in the origin of domain theory introduced
by Scott [Sco72; GH+03]. Continuous lattices are defined based on the so-called
way-below relation, which provides the right notion to generalize the property of
any element in a powerset lattice. More precisely, each subset is determined by
the elements that belong to it and a generalization of this property enables the
approximation in other settings, for instance for fixpoint equation systems over the
real interval [0, 1] (see [MS17]).

Only briefly addressed in this thesis, in our general framework a theory of progress
measures in analogy to Jurdzisńki’s work is already established in [BK+19a], where
progress measures serve as witnesses for winning strategies [Jur00; HSC16].

Summarizing the results presented in this thesis, our generalization provides
a new basis to study further approaches in terms of computation techniques for
progress measures. Several ideas are included in [BK+18] where one is based on the
incorporation of SMT solvers.

An extension of our work is presented in [BKP20], which mainly considers up-to
techniques and local algorithms which combines backtracking and pruning techniques.

Another interesting question is given by quantitative parity games [Mio12; FGK10]:
how can the game presented in this thesis and the work in [BKP20] lead to a new
perspective on such games?

276

A

Additional Material

The results in Section A.1 and Section A.2 are inspired by the reviews of Calco
Early-Ideas 2017 [KM17b], CMCS 2020 [KMS20b] and the joint work with Lutz
Schröder.

A.1 Games for Non-Weak Pullback preserving Functors

We consider games for neighbourhood frames where the requirement of a weak
pullback preserving functor as introduced for the game in Chapter 3 is not satisfied
by the functor which characterizes the neighbourhood branching, where such models
originate from [MON70; Sco70].

Motivation for Neighbourhood Frames
For normal logic the modal operator 2 satisfies the following axiom

2(φ1 ∧ φ2)↔ 2φ1 ∧2φ1

which is valid in any Kripke model. Concerning a modal operator of non-normal
modal logic the axiom 2φ1∧2φ1 → 2(φ1∧φ2) might not be valid any more [HK04].
For such scenarios neighbourhood structures and semantics enter the scene [Che80;
Pac17] and monotonic neighborhood structures provide the right models if the
properties of the modal operators are reduced to monotonicity [HK04; Han03]:

φ1 → φ2 implies 2φ1 → 2φ2

Moreover, non-normal (monotone) modal logics are generalized by the so-called
coalition logic which is used in Social Choice theory to analyze selection procedures
with the goal to model the ability of a group of agents [Pau01]. The semantics of
such logics are given by effectivity functions PN → PPS [MP82] and by strategic
games where S represents possible options (states) depending on the setting and
N denotes the agents involved in the social choice process. An effectivity function
e : PN → PPS is given by any function e which is outcome monotonic [Pau01]:

For all C ⊆ N,X ⊆ Y ⊆ S : X ∈ e(C)⇒ Y ∈ e(C)

277

A. Additional Material

An effectivity function assigns to each group of agents (i.e. C ⊆ N) a neighbourhood
function on S and e(C) are the neighbourhoods or outcomes for which C (i.e. the
group/agent) is effective [Han03].

A strategic game form G = (N, {Σi | i ∈ N}, o, S) contains non-empty sets of
strategies or actions Σi for every player i ∈ N and an outcome function o :

∏
i∈N Σi → S

which maps each tuple of player strategies to a state s ∈ S. Intuitively, in a strategic
game each player decides for one of his possible strategies and all decisions together
produce the outcome of the game [Pau01; Han03].

In addition, such effectivity functions needs to be playable, which means that a
function has a strategic game form (the transformation of a strategic game form into
an effectivity function is described in [Pau01; Han03]). All playable functions are
given by the following structure:

S → (PN → PPS)

Therefore, a coalation model is based on several monotonic neighbourhood frames
EC : S → PPS each for every subset of agents (i.e. C ⊆ N)[Pau01]. Since a notion
of bisimulation is used to answer the question if two models (states) can be viewed
as equal [Pau01] we explain in the next section that our game in Definition 3.3.1
characterizes this notion of bisimulation, although the underlying functor is not weak
pullback preserving.

A Game for Neighbourhood Frames
Based on the work in [BK11] we require in Lemma 3.2.7 that a functor preserves
weak pullbacks to ensure that the lifted order of a partial order ≤ and πi : ≤→ 2
the usual projections with i ∈ {1, 2}

≤F = {(Fπ1(t), Fπ2(t)) | t ∈ F ≤}

is transitive. But since we are only interested in lifting a very specific order

≤= {(0, 0), (0, 1), (1, 1)}

the question arises if transitivity holds without the assumption of weak-pullback
preservation. Especially, since the footnote of Proposition 13 in [BK11] leaves this
point open.

Next, we show that the monotone neighbourhood functor M (see Example 3.4.6)
serves as an example for such a functor, where the lifted order is transitive and
anti-symmetric. Moreover, this enables to prove the correctness and soundness of our

278

A.1. Games for Non-Weak Pullback preserving Functors

game for monotone neighbourhood frames without the assumption of weak pullback
preservation.

First, we start with the coalgebraic characterization of monotone neighbourhood
frames (mNHF) and models (mNHM) (see [HK04]).

Definition A.1.1: Monotone Neighbourhood Functor [HK04]

The monotone neighbourhood functor M is defined based on the composition of
the contravariant powerset functor Q with itself. For this, we have for any set
X and any function f : X → Y [DM+18]:

MX = {X ′ ∈ QQX | X ′ is upward closed under ⊆}

Mf(X ′) = {Y ′ ⊆ Y | f−1[Y ′] ∈ X ′} for all X ′ ⊆ QX.

A monotone neighbourhood frame (mNHF) is given by a pair (X,α) where
α : X →MX.
A monotone neighbourhood model (mNHM) is given by a pair (X,α) where
α : X → MX × PP and P is a set of propositions. An mNHM is based on
an mNHF equipped with a valuation function v : X → PP , captured by the
extension of the functor M to M×PP .

The proof of Theorem 3.3.2 requires that F has a separating set of mono-
tone predicate liftings and preserves weak pullbacks, which guarantees that ≤F is
transitive [BK11].

In [DM+18] the authors already present a monotone unary and separating predi-
cate lifting for the monotone neighbourhood functor:

λX(X ′) = {U ∈MX | X ′ ∈ U}

Remember that the set of separating sets is monotone iff the lifted order is anti-
symmetric and (Fp : FX → F2)p : X→2 is jointly injective (see Proposition 3.2.17).
Therefore, to show that our game with one coalgebra presented in Definition 3.3.1 is
sound and complete for mNHF, it suffices to show that the lifted order ≤M is again
a partial order (reflexive, transitive and also anti-symmetric). Thus, it is left to show
that ≤M is transitive.

Regarding the definition of ≤M we consider the lifting of the usual projections
πi :≤→ {0, 1} with i ∈ {1, 2}. Here, we want to emphasize, that M≤ contains only
20 elements, since all the other (2)23 − 20 elements in QQ ≤ are not upward closed.
Note, that except the upward-closed element ∅ all other elements include ≤. Thus,

279

A. Additional Material

already 127 subsets of P ≤ can not be upward closed (see Figure A.1).

≤

{(0, 0), (0, 1)} {(0, 0), (1, 1)} {(0, 1), (1, 1)}

{(0, 0)} {(0, 1)} {(1, 1)}

∅

Figure A.1: There are 20 upward-closed subsets of M≤.

Next, the definition of ≤M⊆M2×M2 is based on the elements as follows:

≤M= {(Mπ1(U),Mπ2(U)) | U ∈M ≤}

where Mπi(U) : M≤→M{0, 1} is defined as follows:

Mπi(U) = {X ⊆ {0, 1} | π−1
i [X] ∈ U} [MV12]

with

M{0, 1} ={∅, {∅, {0}, {1}, {0, 1}}, {{0}, {0, 1}},

{{1}, {0, 1}}, {{0}, {1}, {(0, 1)}}, {{0, 1}}}

In addition, one can easily define the preimages of the projections πi : ≤ → {0, 1},
since the powerset of {0, 1} contains only 4 elements.

π−1
1 [∅] = ∅ π−1

2 [∅] = ∅

π−1
1 [{0}] = {(0, 0), (0, 1)} π−1

2 [{0}] = {(0, 0)}

π−1
1 [{1}] = {(1, 1)} π−1

2 [{1}] = {(0, 1), (1, 1)}

π−1
1 [{0, 1}] = {(0, 0), (0, 1), (1, 1)} π−1

2 [{0, 1}] = {(0, 0), (0, 1), (1, 1)}

Given that one can easily compute for each U ∈ M ≤ the resulting tuple. Based
on all those computations one can verify that the lifted order is transitive and
anti-symmetric. We only show a few cases and summarize the result in Figure A.2:

1. U = {{(0, 0), (0, 1), (1, 1)}} :

Mπ1(U) = {{0, 1}}

≤M Mπ2(U) = {{0, 1}}

280

A.1. Games for Non-Weak Pullback preserving Functors

2. U = {{(0, 1), (1, 1)}, {(0, 0), (0, 1), (1, 1)}} :

Mπ1(U) = {{0, 1}}

≤M Mπ2(U) = {{1}, {0, 1}}

3. U = {{(0, 0), (0, 1)}, {(0, 0), (1, 1)}, {(0, 0), (0, 1), (1, 1)}} :

Mπ1(U) = {{0}, {0, 1}}

≤M Mπ2(U) = {{0, 1}}

4. U = {{(0, 0)}, {(0, 1)}, {(0, 0), (0, 1)}, {(0, 0), (1, 1)}, {(0, 1), (1, 1)},
{(0, 0), (0, 1), (1, 1)}} :

Mπ1(U) = {{0}, {0, 1}}

≤M Mπ2(U) = {{0}, {1}, {0, 1}}

5. U = {∅, {(0, 0)}, {(0, 1)}, {(1, 1)}, {(0, 0), (0, 1)}, {(0, 1), (1, 1)},
{(0, 0), (1, 1)}, {(0, 0), (0, 1), (1, 1)}} :

Mπ1(U) = {∅, {0}, {1}, {0, 1}}

≤M Mπ2(U) = {∅, {0}, {1}, {0, 1}}

Finally, we derive the following partial order ≤M illustrated in Figure A.2 and
conclude that the lifted order satisfies the requirements necessary for Theorem 3.3.2.
Therefore – and because M has a unary separating predicate lifting – our game in
Definition 3.3.1 is suitable for mNHF.

∅ {∅, {0}, {1}, {0, 1}} {{0}, {0, 1}}

{{0, 1}} {{0}, {1}, {0, 1}}

{{1}, {0, 1}}

Figure A.2: The lifted order ≤M is transitive, reflexive and anti-symmetric (i.e. a
partial order).

281

A. Additional Material

A.2 Our Coalgebraic Game over Two Coalgebras

We present a variant of our game where the setting is given by two coalgebras with
disjoint state spaces.

We noticed some problem while playing the game in Definition 3.3.1 over two
mNHF frames, which also holds for functors which preserve weak pullbacks.

The problem occurs in Step 3 of the game (see Definition 3.3.1) where the spoiler
can choose between p1, p2. In case p1 includes some state, such that no behaviourally
equivalent state is present in the state space of the other coalgebra, the duplicator has
no opportunity to include a corresponding state into p2. The states given in the initial
situation can be behaviourally equivalent, but the duplicator has no winning-strategy,
since the spoiler can choose p1 and the state, where no behaviourally equivalent state
is present in p2 and therefore the duplicator will lose at Step 4 of the game.

Before we start to explain this problem on a concrete example, we introduce
the notion of monotone bisimulation, which coincides with coalgebraic behavioural
equivalence for mNHF [HK04]:

Definition A.2.1: Monotone Bisimulation [HK04]

Let (X1, α1), (X2, α2) be two mNHF. A non-empty relation Z ⊆ X1 ×X2 is a
monotone bisimulation between (X1, α1) and (X2, α2) if for all x1 ∈ X1 and
x2 ∈ X2 such that (x1, x2) ∈ Z, the following two conditions are satisfied:

forth : ∀C1 ∈ α1(x1).∃C2 ∈ α2(x2) s.t. (∀c2 ∈ C2.∃c1 ∈ C1 : (c1, c2) ∈ Z).

back : ∀C2 ∈ α2(x2).∃C1 ∈ α1(x1) s.t. (∀c1 ∈ C1.∃c2 ∈ C2 : (c1, c2) ∈ Z).

Now, the problem becomes clear for the initial pair (s1, s2) of Example A.2.2,
where two mNHF frames are given [HK04]: if the spoiler chooses s1, p1 = {t1, u1}
then p2 can not include a state which is monotone bisimilar to u1. This results in a
winning-strategy for the spoiler although s1 is monotone bisimilar to s2 [HK04].

Example A.2.2: [HK04]

Let X = {s1, t1, u1, v1}, Y = {s2, t2} and two coalgebras α1 : X → MX, α2 :
Y →MY defined as follows be given:

282

A.2. Our Coalgebraic Game over Two Coalgebras

α1(s1) = ↑ {{t1}, {u1, v1}} α2(s2) = ↑ {{t2}}

α1(t1) = ↑ ∅ α2(t2) = ↑ ∅

α1(u1) = ↑ {{u1}}

α1(v1) = ↑ ∅

The relation Z = {(s1, s2), (t1, t2), (v1, t2)} is a monotone bisimulation [HK04].

As previously mentioned, this problem also occurs if we play the game over two
F -coalgebras where F preserves weak pullbacks and therefore we slightly adapt
Definition 3.3.1 of the game. This variation has been proposed by Lutz Schröder to
simplify our game during the work presented in Section 3.3.2. Here we show that
this idea solves our problem previously described. The difference is that we play over
two coalgebras and S has to work with p2 in Step 3, where in Definition 3.3.1 S can
freely choose between p1 and p2.

Definition A.2.3: Game over two F -coalgebras

Let two coalgebras α1 : X → FX, α2 : Y → FY with two non-empty and
disjoint sets X,Y be given, where F has a separating set of predicate liftings
and the lifted order ≤F is a partial order:

• Initial situation: (x, y) ∈ X × Y .

• Step 1: S chooses s ∈ {x, y} and a predicate p1 : X → 2 if
s = x (p1 : Y → 2 if s = y).

• Step 2: D takes t ∈ {x, y}\{s} and has to answer with a predicate
p2 : Y → 2 if s = x (p2 : X → 2 if s = y) satisfying

Fp1(α(s)) ≤F Fp2(α(t))

• Step 3: S proceeds with p2 and chooses some state x′ ∈ X (x′ ∈ Y) with
p2(x′) = 1.

• Step 4: D chooses some state y′ ∈ X (x′ ∈ X) with p1(y′) = 1.

The game continues with (x′, y′).

The winning conditions stay the same but we repeat it quickly: Duplicator wins if the

283

A. Additional Material

game runs for ever or spoiler has no choice at Step 3. Spoiler wins if the duplicator
has no option at Step 2 or Step 4.

Theorem A.2.4

If ≤F is a partial order and F has a separating set of predicate liftings, then
x ∼ y iff D has a winning strategy for the initial situation (x, y).

Similar to the proof of Theorem 3.3.2 this proof splits into three parts. On the one
hand we need to show that the relation

W ′ = {(u, v) ∈ (X × Y) ∪ (Y ×X) | D has a winning strategy for (u, v)}

is symmetric. Note, that here we do not require the relation to be reflexive or
transitive, since at the initial situation we only consider state pairs of type (x, y) ∈
X × Y where X and Y are disjoint sets.

But for the third part of the proof, we need to derive an equivalence relation
W ⊆ (X ∪ Y) × (X ∪ Y) from W ′ i.e. the reflexive and transitive closure of W ′.
Therefore, we have to show, that in case (x1, y), (y, x2) ∈ W ′ then D has a winning-
strategy for the initial situation (x1, x2) ∈ X × Y of a game where X,α1 and Y, α2

are both initialized with α1 and Y := X (or with Y, α2 if x1, x2 ∈ Y). Note, that in
this game version, a special case is given by α1 = α2 since the players have to play
with the predicates of their underlying system α1 or α2.

(Alternatively, in such a case one can restrict to α1 and play the game only over
one system, but then we need to adapt Step 2 to enable games over reflexive pairs.
This yields the game version described in Definition 3.3.1 with a small modification:
the move of the Spoiler in Step 3 is restricted to the predicate p2. The proofs are
analogous to the proofs of Theorem 3.3.2 where the case S chooses p1 in Step 3 can
be omitted.)

Summarizing, the goal is to add the reflexive and transitive pairs based on W ′ to
W where we need to show that D has a winning strategy for all these pairs.

Secondly, a part of the proof is to establish a winning strategy for D whenever
x ∼ y (soundness).

The last part is to construct two witnesses (i.e. coalgebra homomorphisms):

f : X → (X ∪ Y)/W, g : Y → (X ∪ Y)/W

with f(x′) = g(y′) for each (x′, y′) ∈ W which implies that f(x) = g(y) holds
for each (x, y) ∈ W ′. And finally, we show that this way we obtain a coalgebra
β : (X ∪ Y)/W → F ((X ∪ Y)/W) and hence x ∼ y (correctness).

284

A.2. Our Coalgebraic Game over Two Coalgebras

Lemma A.2.5

Given two coalgebras α1 : X → FX, α2 : Y → FY and ≤F is a partial order.
Then

W ′ = {(u, v) ∈ X × Y or Y ×X | D has a winning strategy for (u, v)}

is a symmetric relation.
For any pair (u, u) where u is either in X or Y , D has a winning strategy for
the initial situation (u, u) with α2 := α1 if u ∈ X (or α1 := α2 if u ∈ Y).
In addition, if (x, y), (y, z) ∈ W ′ then D has a winning-strategy for the initial
situation (x, z) with α2 := α1 if x, z ∈ X (or α1 := α2 if x, z ∈ Y).

Proof:

• D has a winning strategy for any reflexive pair: (u, u) where u is either in X

or Y .

Both parameters of the game are initialized with the same coalgebra and
therefore D can copy any move of S and either the game never terminates or
S has no option in Step 3.

• W ′ is symmetric: (x, y) ∈ W ′ implies (y, x) ∈ W ′.

If there is a winning strategy for (x, y) there must always also be a winning
strategy for (y, x), since S can choose either x or y.

• Note if (x, y), (y, z) ∈ W ′, then D has a winning-strategy for (x, z) with
α1 = α2.

Assume that in Step 1 S chooses x and p1 (the case where S chooses y is analo-
gous, taking into account that W ′ is symmetric). We know by (x, y) ∈ W ′ that
D has an answer, hence he chooses p2, for which Fp1(α1(x)) ≤F Fp2(α2(y)).

For S has to work with p2 and y, we know by (y, z) ∈ W ′ that D has an
answering move, by choosing p3 such that Fp2(α2(y)) ≤F Fp3(α1(z)).

Hence D makes the choice of p3 in Step 2. Now we have that

Fp1(α1(x)) ≤F Fp2(α2(y)) ≤F Fp3(α1(z))

and, by transitivity of ≤F , Fp1(α1(x)) ≤F Fp3(α1(z)). Thus, in case the game
is initialized two times with the same coalgebra we can derive from p3 a suitable
move for the duplicator since Y := X (or X := Y).

285

A. Additional Material

(Here, transitivity holds by assumption since we have shown, that the lifted or-
der ≤F can be transitive although the functor does not preserve weak pullbacks
cf. Figure A.2).

Note, that in this game version for Step 3 S has to work with p2 in case of
(x, y) and with p3 in case of (y, z):

Assume that in Step 3 S chooses p3, z′ with p3(z′) = 1. Again, by (y, z) ∈ W ′,
there is an answer of D who chooses y′ with p2(y′) = 1 and (y′, z′) ∈ W ′.

From (x, y) ∈ W ′ we know that if S chooses p2, y′ in Step 3, there is an answer
by D who chooses x′ with p1(x′) = 1 and (x′, y′), (y′, x′) ∈ W ′. This state x′ is
hence finally chosen by D in Step 4.

Since we now have (x′, y′), (y′, z′) ∈ W ′, we can continue this strategy for D
forever.

In addition, if (x, y), (y, x′) ∈ W ′ and (x′, y′) ∈ W ′ with x, x′ ∈ X and y, y′ ∈ Y one
can derive similarly that (x, y′) ∈ W ′. □

We proceed with the proof of Theorem A.2.4:

Proof: x ∼ y ⇒ D has winning strategy: We show that whenever x ∼ y, then D
can always answer the steps of S and we end up in a pair x′ ∼ y′, from which this
strategy continues.

Whenever x ∼ y, there exists a coalgebra β : Z → FZ and two coalgebra homo-
morphisms f : X → Z, g : Y → Z such that f(x) = g(y).

We assume that S chooses state x (the other case is analogous) and a predicate
p1 : X → 2. D has now to react with a predicate p2. This is constructed based on
p′ : Z → 2 defined as follows:

1. p′(z) = 1 if there exists an x′ with p1(x′) = 1 and f(x′) = z.

2. p2 = p′ ◦ g

Note that it does not matter if p1(x′) = 1 (which implies p′(f(x′)) = 1) and no y
exists such that g(y) = z = f(x′) since spoiler has to work with p2 in Step 3.

In other words, p2(y) = 1 for y ∈ Y whenever there exists x′ ∈ X such that
g(y) = f(x′) and p1(x′) = 1. Note, that analogous to Theorem 3.3.2 p′ : Z → 2 is
the least predicate such that p′ ◦ f ≥ p1 (i.e., p′ ≤ p for all p satisfying p ◦ f ≥ p1).

286

A.2. Our Coalgebraic Game over Two Coalgebras

2

X FX

Z FZ

F2

Y FY

f

α1

g

α2

β

Ff

Fg

p1

p2

p′

Fp2

Fp′

Since p1 ≤ p′ ◦ f , we know by Lemma 3.2.8 that Fp1 ≤F F (p′ ◦ f) holds. In
addition, we have p2 = p′ ◦ g.

Since f, g are homomorphisms, we obtain for f(x) = g(y):

(Ff ◦ α1)(x) = (β ◦ f)(x) = (β ◦ g)(y) = (Fg ◦ α2)(y)

which implies

(Fp′ ◦ Ff ◦ α1)(x) = (Fp′ ◦ Fg ◦ α2)(y)

⇒ (Fp′ ◦ Ff ◦ α1)(x) = (Fp2 ◦ α2)(y)

⇒ (Fp1 ◦ α1)(x) ≤F (Fp′ ◦ Ff ◦ α1)(x) = (Fp2 ◦ α2)(y)

By construction of p2 there are two cases we have to distinguish:

1. p2 is the constant 0-predicate, since p1(u) = 1 holds only for states u ∈ X
(u ∈ Y), where no y′ ∈ Y (x′ ∈ X) with f(u) = g(y′) (f(x′) = g(u)) exists. S
has no option at Step 3 of the game and thus D wins.

2. p2 is not the constant 0-predicate and S now chooses a state y′ with the
constraints described in Step 3, i.e., p2(y′) = 1 = p′ ◦ g(y′) with g(y′) = z′. By
construction of p′ this means that there must exist a x′ such that p1(x′) = 1
with f(x′) = z′. Therefore and by p2 = p′ ◦ g, we have f(x′) = z′ = g(y′) and
p′(f(x′)) = p′(g(y′)) = 1. Thus, D can choose this state x′ with f(x′) = g(y′)
and p1(x′) = 1. In this case x′ ∼ y′ holds and the game can continue.

D has a winning strategy ⇒ x ∼ y: We already know by Lemma A.2.5 that

W ′ = {(x, y) ∈ (X × Y) ∪ (Y ×X) | D has a winning strategy for (x, y)}

is symmetric and in case (x, y), (y, z) ∈ W ′ there also exists a winning-strategy for
(x, z) where α1 and α2 are equal. Thus we obtain an equivalence relation W which

287

A. Additional Material

includes all the pairs, where the duplicator has a winning-strategy (no matter if we
play on two different systems or over one system).

We define two functions f : X → Z, g : Y → Z with Z = (X ∪ Y)/W and
f(x) = [x]W and [y]W = g(y).

Note, that we need the reflexive pairs to get a class represented by a state z in
Z, if for a state x ∈ X (Y) there exists no state in y ∈ Y (X) such that (x, y) ∈ W ′.
Such a state will be mapped to that z by f (respectively g).

It suffices to show that β(g(y)) := Fg(α2(y)) and β(f(x)) := Ff(α1(x)) with
β(f(x)) = β(g(y)) are well defined, since then we have two coalgebra homomorphisms
that witness the behavioural equivalence of x, y.

Assume that we have a winning strategy for (x, y) (i.e., (x, y) ∈ W ′) or in other
words f(x) = g(y), but Ff(α1(x)) ̸= Fg(α2(y)). Then we know, by the assumption
that the functor F has a separating set of predicate liftings (respectively the equivalent
condition in [Sch08]), that some p : Z → 2 exists such that Fp(Ff(α1(x))) ̸=
Fp(Fg(α2(y))).

We now show, by contradiction, that D does not have a winning strategy for
(x, y): S chooses p1 = p ◦ f and we obtain

Fp1 ◦ α(x) ̸= F (p ◦ g) ◦ α(y),

since Fp1 = Fp ◦ Ff . Since the preorder ≤F on F2 is antisymmetric due to
Proposition 3.2.17 at least one of the following two overlapping cases will occur:

• Fp1 ◦ α1(x) ≰F F (p ◦ g) ◦ α2(y)

• F (p ◦ g) ◦ α2(y) ≰F Fp1 ◦ α1(x)

Here we only consider the first case, since for the second case the argument is
analogous. S picks x and D can not play p2 such that p2 ≤ p ◦ g, since in this case
we would get Fp2 ≤F F (p ◦ g) and F (p ◦ g) is by assumption not good enough for D:
combining this with the condition of Step 2 we obtain

(Fp1 ◦ α1)(x) ≤F (Fp2 ◦ α2)(y) ≤F (F (p ◦ g) ◦ α2)(y)

which, with transitivity of ≤F , is a contradiction to the first case above.
Hence p2 ≰ p ◦ g, which implies that some y′ ∈ Y exists such that p2(y′) = 1 and

(p ◦ g)(y′) = 0. So S picks p2 and that y′. D then picks some x′ ∈ X with p1(x′) = 1.
If (x′, y′) ∈ W (i.e. f(x′) = g(y′)) it follows from the construction of p1 = p ◦ f
that 1 = p1(x′) = p(f(x′)) = p(g(y′)) holds. But this is again a contradiction to
(p ◦ g)(y′) = 0. Hence (x′, y′) ̸∈ W and D does not have a winning strategy. □

288

A.2. Our Coalgebraic Game over Two Coalgebras

We are now ready to play our game on the Example from [HK04].

Example A.2.6

This example demonstrates how to play our game over two monotone neighbour-
hood frames given in Example A.2.2.
The initial situation of the game is (s1, s2):

1. S chooses s1 and a predicate p1 : X → 2 where p1(t1) = p1(u1) = p1(v1) = 1
and p1(s1) = 0.

2. D has to work with s2 and defines a predicate p2 : Y → 2 where p2(t2) = 1
and p2(s2) = 0 and obtains:

Mp1(α1(s1)) = {{1}, {0, 1}} ≤M {{1}, {0, 1}} =Mp2(α2(s2))

3. S has to proceed with p2 and chooses t2 with p2(t2) = 1.

4. D chooses t1 with p1(t1) = 1.

In the next round, S has to choose between t1 and t2 and we have α1(t1) = ∅ =
α1(t2). No matter what S will do, D can answer with the constant 0-predicate
in Step 2. Therefore, S will have no option at Step 3 and D wins the game.
Assume, that S plays in Step 1 with s1 and p1(u1) = 1 and p1(x) = 0 for
all x ∈ X \ {u1}. Since Mp1(α1(s1)) = {{0}, {0, 1}} D can answer with the
constant 0-predicate p0 in Step 2. We get Mp0(α2(s2)) = {{0}, {0, 1}} because
p−1

0 [{0, 1}] = {s2, t2} ∈ α(s2) and p−1
0 [{0}] = {s2, t2} ∈ α(s2) where

Mp0(α2(s2)) = {X ⊆ {0, 1} | p−1
0 [X] ∈ ↑ {{t2}}}

Therefore, S will have no option at Step 3 and D again wins the game.

For a single mNHF one can also compute the winning strategies and construct
distinguishing formulas for non-bisimilar state pairs. But without any further
optimizations the runtime behaviour becomes exponential, since the functor M is
not separable by singletons (see Example 3.4.6) and therefore, one needs to iterate
over all possible unions of equivalence classes within the for-loop of Algorithm 3.1.
In general for two coalgebras (X,α1), (Y, α2), Algorithm 3.1 has to be adapted to
the construction of W.

Note, that for neighbourhood models one gets similar results based on a pre-
order lifting ≤F where each subset of propositions ρ ⊆ P yields a transitive and

289

A. Additional Material

antisymmetric cone analogous to the cone in Figure A.2.

A.3 Additional Material for Chapter 3

The following proposition is inspired by the results presented in [Sch08] originating
from [Pat04].

Proposition 3.2.19 [KM18]

The logic Lκ(Λ) is sound, that is given a coalgebra α : X → FX and x, y ∈ X,
x ∼ y implies that JφKα(x) = JφKα(y) for all formulas φ.
Whenever F is κ-accessible and Λ is separating for F , the logic is also expressive:
whenever JφKα(x) = JφKα(y) for all formulas φ we have that x ∼ y.

Proof:
Soundness: Assume that x ∼ y, that is there exists a coalgebra morphism f : X → Y

between α and a coalgebra β : Y → FY such that β ◦ f = Ff ◦ α. We show that for
all φ, JφKα = JφKβ ◦ f by structural induction over φ. The only interesting case is
the modality (φ = [ev]ψ with ev ∈ Λ) and here we obtain

J[ev]ψKα = ev ◦ F JψKα ◦ α = ev ◦ F (JψKβ ◦ f) ◦ α

= ev ◦ F JψKβ ◦ Ff ◦ α = ev ◦ F JψKβ ◦ β ◦ f = J[ev]ψKβ ◦ f

where the second equality is due to the induction hypothesis. Now it follows easily
that JφKα(x) = JφKβ(f(x)) = JφKβ(f(y)) = JφKα(y).

Expressiveness: We define a logical indistinguishability relation on X:
x ≡ y ⇐⇒ ∀φ(x |= φ ⇐⇒ y |= φ). Let f : X → X/ ≡ be the function that maps
every x ∈ X to its equivalence class [x]≡. In particular f(x) = f(y).

Furthermore we define β : (X/ ≡) → F (X/ ≡) as β([x]≡) = Ff(α(x)). It is
sufficient to show that β is well-defined, since then β ◦f = Ff ◦α and we have shown
that x ∼ y.

Hence we have to show that for x, y ∈ X with x ≡ y it always holds that
Ff(α(x)) = Ff(α(y)). Since Λ is separating for F (cf. Definition 3.2.13) it is
sufficient to show that

(ev ◦ Fp ◦ Ff ◦ α)(x) = (ev ◦ Fp ◦ Ff ◦ α)(y) (A.1)

for all ev ∈ Λ and all p : (X/ ≡) → 2. Since F is κ-accessible there exists Z ⊆ X,
|Z| < κ such that α(x), α(y) ∈ FZ ⊆ FX.

290

A.3. Additional Material for Chapter 3

Now, for a given p : (X/ ≡)→ 2 define q : X → 2 with q = p ◦ f . Given z0, z1 ∈ Z
with q(z0) = 0, q(z1) = 1, we know that f(z0) ̸= f(z1) and hence z0 ̸≡ z1. So there
exists a formula φz0,z1 that distinguishes z0, z1, that is z0 ̸|= φz0,z1 and z1 |= φz0,z1

(this can be ensured since we have negation).

Now consider the following formula:

φ =
∧

z0∈Z
q(z0)=0

(∨
z1∈Z

q(z1)=1

φz0,z1

)

Note that since |Z| < κ the conjunction and disjunctions obey the cardinality
restrictions. For every z1 ∈ Z with q(z1) = 1 a formula φz′

0,z1 , which is satisfied by
z1, occurs in every disjunction and hence JφK(z1) = 1. On the other hand for every
z0 ∈ Z with q(z0) = 0 there is a disjunction consisting only of formulas φz0,z′

1
, which

are not satisfied by z0, and hence JφK(z0) = 0. Summarizing, we obtain that JφK and
q agree on Z.

We will now proceed to show that (A.1) holds for a given ev and p: set ψ = [ev]φ
and we obtain

(ev ◦ Fp ◦ Ff ◦ α)(x) = (ev ◦ F (p ◦ f) ◦ α)(x) = (ev ◦ Fq ◦ α)(x)

= (ev ◦ F JφK ◦ α)(x) = JψK(x)

Here we use the fact that whenever t ∈ FZ and h|Z = g|Z for h, g : X → 2 we have
Fh(t) = Fg(t) (since h ◦ ι = g ◦ ι, where ι : Z → X is the embedding of Z into X).
In our case t = α(x).

Similarly we have (ev ◦ Fp ◦ Ff ◦ α)(y) = JψK(y) and since x, y are logically
indistinguishable (A.1) follows. □

The following Corollary A.3.1 refers to the construction of a distinguishing formula
presented in Corollary 3.4.18. For the case I(x, y) > 1 the size of the conjunctions may
be minimized working with C ⊂ X\P instead of X\P as described in Corollary 3.4.18.
Remember P is the move derived from the winning strategy T (x, y) = (s, P) of the
spoiler.

In the scope of LTS optimizations are already taken into account by the work
of Cleaveland since the recursive construction is based only on the a-successors of
the underlying states x, y where a ∈ A is splitting for (x, y) [Cle90]. In the general
setting, one needs to remove all the states from X \ P , which we denote with P ′,
such that FχP ∪P ′(α(t)) = FχP (α(t)) for each t ∈ {x, y}.

291

A. Additional Material

Corollary A.3.1: A Simplified Construction

We use the construction of φx,y as described in Corollary 3.4.18 with the only
modification that for i = I(x, y) > 1 the formula φ is replaced by

φ′ =
∧

y′∈ C

φx′,y′

for some x′ ∈ P and C = X \ (P ∪ P ′) such that FχP ∪P ′(α(y)) = FχP (α(y))
and FχP ∪P ′(α(x)) = FχP (α(x)) with P ′ maximal. Then this yields a formula
φx,y such that x ⊨ φx,y and y ⊭ φx,y.

Proof: Remember that we define φx,y = [ev]φ′ with v = FχP (α(x)), ev = ↑v in
case T (x, y) = (x, P) (the other case works analogous). Furthermore, we know that
ev(FχP (α(y))) = 0 because of T (x, y) = (x, P) and ev is a cone modality.
We show x ⊨ φx,y: By definition no state y′ ∈ C satisfies φ′. And by the proof of
Proposition 3.4.15 we know that all y′ ∈ X \ P have been separated from x′ ∈ P in
an iteration j < I(x, y) and y′ ∈ C ⇒ y′ ∈ X \ P . Based on Lemma 3.4.16 we know
that each z ∈ P satisfies φ′ since we have x′ ⊨ φ′ by construction and z, x′ ∈ P with
I(x′, z) > j.

Therefore, we have P ⊆ Jφ′K ⊆ P ∪ P ′. Since v = FχP (α(x)) = FχP ∪P ′(α(x))
we get by Lemma 3.2.8 v ≤F FχJφ′K(α(x)) ≤F v which implies v = FχJφ′K(α(x)) (by
antisymmetry of ≤F). Finally, we derive

↑ v(FχJφ′K(α(x))) = 1

.
We conclude that y ⊭ φx,y: We have that v = FχJφ′K(α(x)) and FχP ∪P ′(α(y)) =
FχP (α(y)) ≱F v and thus we have

↑ v(FχJφ′K(α(y))) = 0

□

A.4 Proofs for Chapter 6

Lemma 6.2.6
The bifibration property is preserved by the composition of functors.

Proof: Suppose a given bifibration Dop Φ- Cat and a functor C F- D, then
we need to show that the composition Ψ = Φ ◦ F is again a bifibration. Let

292

A.4. Proofs for Chapter 6

C
f- C ′ ∈ C. It is straightforward to show that ΨC

∃F f- ΨC ′ with ΦF = Ψ is
the left adjoint to the reindexing functor (Ff)∗. □

Lemma 6.3.7

For any U ⊆MFX we find that λa
X(U) = {p̄ ∈ MF(A×X + 1) | γA

X p̄(a) ∈ U}
and λs

X(U) = {p̄ ∈MF(A×X + 1) | p̄(•) = s}.

Proof: For any U ⊆MFX we find that

λa
X(U) = γX

−1σa
MFX(U)

= γX
−1{(p, s) ∈ (MFX)A × F | p(a) ∈ U}

=
{
p̄ ∈MF(A×X + 1) | γX p̄ ∈ {(p, s) ∈ (MFX)A × F | p(a) ∈ U}

}
=

{
p̄ ∈MF(A×X + 1) | γA

X p̄(a) ∈ U
}
.

Similarly, in the context of termination, we find (for each s ∈ F):

λs
X(U) = γX

−1σs
MFX(U)

= γX
−1{(p, s) | p ∈ (MFX)A}

=
{
p̄ ∈MF(A×X + 1) | γX p̄ ∈ {(p, s) | p ∈ (MFX)A}

}
= {p̄ ∈MF(A×X + 1) | p̄(•) = s} .

□

Lemma 6.3.8

For any U ⊆ MFX and X
α- MF(A × X + 1), we have |α|−1λa

X(U) =
{p ∈ MFX | p

a−→ p̂(a) =⇒ p̂(a) ∈ U} and |α|−1λs
X(U) = {p ∈ MFX | s =∑

x∈X p(x) · α(x)(•)}. Moreover, the set Λ = {λa | a ∈ A} ∪ {λs | s ∈ F} is
separating with respect to A×X + 1.

Proof: Let U ⊆MFX and a given LWA X
α- MF(A×X + 1). Then we derive

|α|−1λa
XU = |α|−1

{
p̄ ∈MF(A×X + 1) | γA

X p̄(a) ∈ U
}

=
{
p ∈MFX | |α|p ∈

{
p̄ ∈ D(A×X + 1) | γA

X p̄(a) ∈ U
}}

=
{
p ∈MFX | γA

X(µA×X+1MFα(p))a ∈ U
}

=
{
p ∈MFX | p

a−→ p̂(a) =⇒ p̂(a) ∈ U
}
.

293

A. Additional Material

Similarly, we have a modality to handle termination that can be derived as follows:

|α|−1λs
XU = |α|−1 {p̄ ∈MF(A×X + 1) | p̄(•) = s}

= {p ∈MFX | |α|p ∈ {p̄ ∈MF(A×X + 1) | p̄(•) = s}}

= {p ∈MFX | s =
∑
x∈X

p(x) · α(x)(•)}.

Now it remains to show that Λ is separating w.r.t. A × X + 1. So let p̄, p̄′ ∈
MF(A×X + 1) with p̄ ̸= p̄′. Then we identify the following two cases:

1. Let p̄(•) ̸= p̄′(•). Consider an empty predicate ∅ with r = p̄(•). Then we find
p̄ ∈ λr

X∅; however, p̄′ ̸∈ λr
XU (for any U ⊆MFX) since the definition of λr is

independent of U and, moreover, p̄′(•) ̸= r.

2. Let p̄(a, x) ̸= p̄′(a, x), for some a ∈ A, x ∈ X. Consider the function

p(x′) =

p̄(a, x), if x′ = x

0, otherwise

together with a predicate U = {p}. Clearly, p̄ ∈ λa
XU; however, p̄′ ̸∈ λa

XU

because p(x) = p̄(a, x) ̸= p̄′(a, x).

□

Lemma A.4.1

Given the predicate lifting σa
X and σ↓

X introduced in Lemma 6.3.4. Both indexed
morphisms preserve finite meets.

Proof: Clearly, σa
X (for each X ∈ Set) preserves finite meet because

(b, p) ∈ σa
X(

⋂
i∈I

Ui) ⇐⇒ b ∈ 2 ∧ pa ∈
⋂
i∈I

Ui

⇐⇒ b ∈ 2 ∧ ∀i∈I pa ∈ Ui

⇐⇒
⋂
i∈I

(b, p) ∈ σa
XUi.

Lastly, σ↓
X preserves finite meet because

σ↓
X(

⋂
i∈I

Ui) = 1×XA =
⋂
i∈I

(1×XA) =
⋂
i∈I

σ↓
XUi.

□

The proof that λa
X , λ

s in the setting of LWA preserve finite meets is similar to
the Boolean case.

294

A.4. Proofs for Chapter 6

For the rest of the proofs we have the following situation:

Given an equivalence relation ≡⊆ |C| × |C|, we have a reflective subcategory B
of C which has all the coequalisers and F preserves B.
Let C α- FC ∈ C be a coalgebra and let ≡

π1-

π2
- |C| be some equivalence

relation on |C|, i.e., ≡L = {(c, c′) ∈ |C| × |C| | ∀φ∈MΛ c |= φ ⇐⇒ c′ |= φ}.
Furthermore, we fix ε, η and ε′, η′ for the (co)unit of the adjunctions R ⊣ Ir and
I ⊣ |_|, respectively. Moreover, due to the given adjoint situations, we have the
following correspondences on arrows:

≡
π1-

π2
- |C| ∈ Set

I ≡
π′

1-

π′
2

- C
ηC- IrRC ∈ C

RI ≡
π̃1-

π̃2
- RC ∈ B

where π′
i is the transpose of πi under I ⊣ |_| (i.e., π′

i = ε′
C ◦ Iπi for i ∈ {1, 2})

and π̃i is the transpose of ηC ◦ π′
i under R ⊣ Ir (i.e., π̃i = εRC ◦ R(ηC ◦ π′

i) for
i ∈ {1, 2}). Note that Rπ′

i = π̃i because of the counit-unit identities. B has all
the coequalisers, so in particular we can construct the following coequaliser:

RI ≡
π̃1-

π̃2
- RC f- B ∈ B.

Let g be the transpose of f under R ⊣ Ir, i.e., g = Irf ◦ ηC .

Lemma 6.4.4
Given an equivalence relation ≡⊆ |C| × |C|. If there is a reflective subcategory
B of C having all the coequalizers, then for the transpose g of f given by
RI ≡

π̃1-

π̃2
- RC f- B we have that |g|c = |g|c′ for each (c, c′) ∈≡.

Proof: Next we show that any two equivalent states (c, c′) ∈ ≡ are mapped to
same point by |g|, i.e.,

|Irf ◦ ηC | ◦ π1 = |Irf ◦ ηC | ◦ π2. (A.2)

Recall that g = Irf ◦ ηC . For this we first derive

f ◦ π̃1 = f ◦ π̃2 =⇒ f ◦ Rε′
C ◦ RIπ1 = f ◦ Rε′

C ◦ RIπ2

=⇒ |Irf | ◦ |IrRε′
C | ◦ |IrRIπ1| = |Irf | ◦ |IrRε′

C | ◦ |IrRIπ1|

then plug it into the following commuting diagram in Set, where i ∈ {1, 2}.

295

A. Additional Material

|I ≡ | |ηI≡| - |IrRI ≡ |

|I|C||

|ιπi|

? |ηI|C|| - |IrRI|C||

|IrRIπi|

?

≡
πi

-

η
′ ≡

-

|C|

η′
|C|

6
|ε′

C |

?

|ηC |
- |IrRC|

|IrRε′
C |

?

|Irf |
- |IrB|

Note that |ε′
C | ◦ |Iπi| ◦ η′

≡ = πi because the naturality of η′ gives:

|Iπi| ◦ η′
≡ = η′

|C| ◦ πi =⇒ |ε′
C | ◦ |Iπi| ◦ η′

≡ = |ε′
C | ◦ η′

|C| ◦ πi = id|C| ◦ πi = πi.

□

Lemma 6.4.5
Given a coequalizer f under the restrictions described in Lemma 6.4.4 and F

preserves B. For its transpose g it holds that |Fg| ◦ |α| ◦ π1 = |Fg| ◦ |α| ◦ π2

implies Ff ◦ R̄α ◦ π̃1 = Ff ◦ R̄α ◦ π̃2.

Proof: Let us see why |Fg|◦|α|◦π1 = |Fg|◦|α|◦π2 implies Ff◦R̄α◦π̃1 = Ff◦R̄α◦π̃2.
Recall that if two arrows are the same, then so are their transpose. Thus, if
|Fg| ◦ |α| ◦π1 = |Fg| ◦ |α| ◦π2, then their transposes under the two adjunctions results
in the following diagram (see Figure A.3) in B. We first transpose |Fg| ◦ |α| ◦ πi

under I ⊣ |_| and then transpose the obtained transpose under R ⊣ Ir.

RI ≡
RIπ1-

RIπ2
- RI|C| RI|α|- RI|FC| RI|F g| - RI|FIrB|

RC

Rε′
C

?

Rα
- RFC

Rε′
F C

? RF g- RFIrB = RIrFB

Rε′
F IrB

?

(A.3)

FRC

ϑC

?

F f
-

R̄α
-

FB

εF B

?

Figure A.3: A commuting diagram.

The commutativity of all squares except (A.3) follows directly from the naturality of
the counit ε′. For Square (A.3), again recall that ϑC is the transpose of FηC , i.e.,
ϑC = εF RC ◦ RFηC and consider the diagram in Figure A.4 drawn below.

Thus, |Fg| ◦ |α| ◦ π1 = |Fg| ◦ |α| ◦ π2 implies Ff ◦ R̄α ◦ π̃1 = Ff ◦ R̄α ◦ π̃2.

296

A.4. Proofs for Chapter 6

RFC RF ηC- RFIrRC
RF Irf- RFIrB

RIrFRC

wwwww
RIrF f- RIrFB

wwwww

FRC

εF RC
?

F f
- FB

εF B
?

Figure A.4: A commuting diagram due to the (co)unit of the adjunction R ⊣ Ir.

□

Theorem 6.4.10

If Φ ω- Q̃ ◦ |_| preserves fibred (co)limits and is injective on objects, Λ is
separating for F , and there is a reflective subcategory B of C having all the
coequalisers and F preserves B, then logical equivalence implies behavioural
equivalence.

Proof: Our aim is to construct β by using the universal property of a coequaliser.
Thus, we define β(f(c)) = Ff ◦ R̄α(c) for c ∈ RC.

Consider the following commutative diagram in Figure A.5 (without the dashed
arrow) in C, where the commutativity of Square (A.5) follows from the commutative
diagram drawn in Figure A.6 and by recalling that ϑC is the transpose of FηC , i.e.,
ϑC = εF RC ◦ RFηC .

C
g - IrB

C

wwwwww
ηC- IrRC

Irf - IrB

wwwwww
(A.4)

FC

α

?
ηF C- IrRFC

IrRα

? IrϑC- IrFRC
IrF f-

IrR̄α

-

IrFB

Irβ

?

(A.5)

FC

wwwwww
F ηC

- FIrRC

wwwwww
F Irf

- FIrB

wwwwww

Figure A.5: Construction of β based on the transpose of f ∈ B.

297

A. Additional Material

We already have shown that for any two logical equivalent states c, c′ we have
|g|(c) = |g|(c′) (see Lemma 6.4.4).

FC
ηF C - IrRFC

FIrRC

F ηC

?
ηF IrRC- IrRFIrRC

IrRF ηC

?

IrFRC

wwwwww
ηIrF RC- IrRIrFRC

wwwwww

IrFRC

IrεF RC

?

=============

Figure A.6: A commutative diagram due to the (co)unit of the adjunction R ⊣ Ir.

Next, we need to show that β ∈ B is well defined and therefore we show that
by f ◦ π̃1

′ = f ◦ π̃2
′ the equation Ff ◦ R̄α ◦ π̃1 = Ff ◦ R̄α ◦ π̃2 (see Square A.4

in Figure A.5) holds and based on Lemma 6.4.5 it suffices to proof the equation
|Fg| ◦ |α| ◦ π1 = |Fg| ◦ |α| ◦ π2.

So let c, c′ ∈ |C| such that c ≡ c′ and fix D = IrB. Clearly, the elements
|Fg||α|(c), |Fg||α|(c′) ∈ |FD| and we will use the fact F is separating with respect
to Λ to conclude that these two elements are the same.
Consider the diagram in (A.6) where the four squares commute (three out of four
square commute due to the naturality of ω and one due to the naturality of λ).

ΦD λD - ΦFD

ΦC λC
-

� α∗

�

g
∗

ωD

ΦFC
�

(F
g)

∗

Q̃|D|
?

Q̃|FD|

ωF D

?

Q̃|C|

ωC

?
� |α|−1�

|g|
−1

Q̃|FC|

ωF C

?� |F
g|
−1

(A.6)

Let U ∈ ΦD be a predicate. Note that, for any c1, c2 ∈ |C|, if c1 ∈ ωC(g∗U)
and c2 ̸∈ ωC(g∗U) then, c1 ̸≡ c2. To see this pick two points c1, c2 such that
the antecedent is true. Then, due to the naturality of ω (see (A.6)) we have
c1 ∈ |g|∗ωD(U) and c2 ̸∈ |g|∗ωD(U). Thus, |g|(c1) ̸= |g|(c2) because otherwise we

298

A.4. Proofs for Chapter 6

would have a contradiction |g|(c1) ∈ ωD(U) and |g|(c1) = |g|(c2) ̸∈ ωD(U). Hence,
by Equation (A.2) we get c1 ̸≡ c2.

Moreover, since negations are well-behaved (in Boolean algebras) we find a formula
φc1,c2 such that c1 ̸|=α φc1,c2 and c2 |=α φc1,c2 .

Consider φU =
∧

c1 ̸∈ωC(g∗U)
∨

c2∈ωC(g∗U) φc1,c2 and we claim that

ĉ |=α φU ⇐⇒ ĉ ∈ ωC(g∗U), for any ĉ ∈ |C|. (A.7)

Suppose ĉ ∈ ωC(g∗U). Then we distinguish two cases:

1. If there is no c1 such that c1 ̸∈ ωC(g∗U). Then, φU is equivalent to ⊤, i.e. J⊤K,
the terminal object in the fibre category. Clearly, ĉ ∈ ωC(J⊤K) = |C| because
ωC preserves fibre limits.

2. If there is some c1 such that c1 ̸∈ ωC(g∗U). Then, for all such c1 we have c1 ̸≡ ĉ.
Thus, there is some distinguishing formula φc1,ĉ such that ĉ |= φc1,ĉ. I.e.,

ĉ ∈
⋂

c1 ̸∈ωC(g∗U)

⋃
c2∈ωC(g∗U)

ωC(Jφc1,c2Kα) =⇒ ĉ |=α φU .

The last implication is because ωC preserves both fibre limits and colimits.

For the converse, suppose ĉ ̸∈ ωC(g∗U). Then, we distinguish two cases:

1. If there is no c2 such that c2 ∈ ωC(g∗U). Then, φU is equivalent to ⊥, i.e., the
initial object in the fibre category. Clearly, c1 ̸|=α φU because c1 ̸∈ ωCJ⊥K and
ωCJ⊥K = ∅. The latter is because ω preserves fibred colimits.

2. If there is some c2 such that c2 ∈ ωC(g∗U). Then, for all such c2 there is
some distinguishing formula φĉ,c2 such that ĉ ̸|=α φĉ,c2 and c2 |=α φĉ,c2 . I.e.,
ĉ ̸∈

⋃
c2∈ωC(g∗U) ωCJφĉ,c2Kα. Clearly,

ĉ ̸∈
⋂

c1 ̸∈ωC(g∗U)

⋃
c2∈ωC(g∗U)

ωCJφc1,c2Kα =⇒ ĉ ̸∈ ωcJφU Kα.

Thus, (A.7) holds, i.e., ωCJφU Kα = ωC(g∗U), for any U ∈ ΦD. And the injectivity
of ωC on objects gives:

JφU Kα = g∗U, (for any U ∈ Φ). (A.8)

299

A. Additional Material

Furthermore, for any λ ∈ Λ and U ∈ ΦD, we derive:

|Fg||α|(c) ∈ ωF D(λDU) ⇐⇒ c ∈ |α|−1 ◦ |Fg|−1 ◦ ωF D(λDU)
(A.6)⇐⇒ c ∈ ωC ◦ α∗ ◦ λC(g∗U)
(A.8)⇐⇒ c ∈ ωC ◦ α∗ ◦ λC(JφU Kα)

(Def. [λ])⇐⇒ c |=α [λ]φU

(c≡c′)⇐⇒ c′ |=α [λ]φU

⇐⇒ |Fg||α|(c′) ∈ ωF D(λDU).

Hence |Fg||α|(c) = |Fg||α|(c′). □

300

B

Bibliography

[ARP13] Fides Aarts, Joeri de Ruiter, and Erik Poll. “Formal Models of Bank
Cards for Free”. In: Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013 Workshops Proceedings,
Luxembourg, March 18-22, 2013. IEEE Computer Society, 2013, pp. 461–
468. doi: 10.1109/ICSTW.2013.60 (cit. on p. 33).

[AJ94] Samson Abramsky and Achim Jung. “Domain Theory”. In: Handbook
of Logic in Computer Science. Ed. by Samson Abramsky, Dov Gabbay,
and Thomas Stephen Edward Maibaum. Oxford University Press, 1994,
pp. 1–168 (cit. on pp. 225, 269).

[AIS12] Luca Aceto, Anna Ingólfsdóttir, and Jirí Srba. “The algorithmics of
bisimilarity”. In: Advanced Topics in Bisimulation and Coinduction.
Ed. by Davide Sangiorgi and Jan J. M. M. Rutten. Vol. 52. Cambridge
tracts in theoretical computer science. Cambridge University Press, 2012,
pp. 100–172. doi: 10.1017/CBO9780511792588.004 (cit. on pp. 98, 99).

[AM89] Peter Aczel and Nax Paul Mendler. “A Final Coalgebra Theorem”. In:
Category Theory and Computer Science, Manchester, UK, September
5-8, 1989, Proceedings. Ed. by David H. Pitt, David E. Rydeheard,
Peter Dybjer, Andrew M. Pitts, and Axel Poigné. Vol. 389. Lecture
Notes in Computer Science. Springer, 1989, pp. 357–365. doi: 10.1007/

BFb0018361 (cit. on p. 48).

[AB+12] Jirí Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan
Milius, and Alexandra Silva. “A Coalgebraic Perspective on Minimiza-
tion and Determinization”. In: Foundations of Software Science and
Computational Structures - 15th International Conference, FOSSACS
2012, Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings. Ed. by Lars Birkedal. Vol. 7213. Lecture Notes in Computer
Science. Springer, 2012, pp. 58–73. doi: 10.1007/978-3-642-28729-

9_4 (cit. on pp. 201, 202, 208).

301

https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1017/CBO9780511792588.004
https://doi.org/10.1007/BFb0018361
https://doi.org/10.1007/BFb0018361
https://doi.org/10.1007/978-3-642-28729-9_4
https://doi.org/10.1007/978-3-642-28729-9_4

Bibliography

[AGT10] Jirí Adámek, H. Peter Gumm, and Vera Trnková. “Presentation of
Set Functors: A Coalgebraic Perspective”. In: Journal of Logic and
Computation 20.5 (2010), pp. 991–1015. doi: 10.1093/logcom/exn090

(cit. on p. 80).

[AHS09] Jirí Adámek, Horst Herrlich, and George E. Strecker. Abstract and
Concrete Categories - The Joy of Cats. Dover Publications, 2009. isbn:
978-0-486-46934-8. url: http://katmat.math.uni-bremen.de/acc

(cit. on pp. 19, 39, 54–56, 59).

[AR94] Jirí Adámek and Jirí Rosický. Locally Presentable and Accessible Cat-
egories. Vol. 189. London Mathematical Society Lecture Note Series.
Cambridge University Press, 1994. url: https://books.google.de/

books?id=iXh6rOd7of0C (cit. on p. 80).

[AFS04] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. “Linear and
Branching Metrics for Quantitative Transition Systems”. In: Automata,
Languages and Programming: 31st International Colloquium, ICALP
2004, Turku, Finland, July 12-16, 2004. Proceedings. Ed. by Josep
Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella. Vol. 3142.
Lecture Notes in Computer Science. Springer, 2004, pp. 97–109. doi:
10.1007/978-3-540-27836-8_11 (cit. on p. 141).

[AFS09] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. “Linear and
Branching System Metrics”. In: IEEE Trans. Software Eng. 35.2 (2009),
pp. 258–273. doi: 10.1109/TSE.2008.106 (cit. on pp. 17, 136, 141, 142,
158, 274).

[Ash72] Robert B. Ash. Real Analysis and Probability. Academic Press, 1972.
doi: 10.1016/C2013-0-06164-6 (cit. on pp. 165, 167, 170, 179).

[Awo06] Steve Awodey. Category Theory. Oxford logic guides. Clarendon Press,
2006. isbn: 978-0-19-856861-2 (cit. on p. 56).

[BB+19] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi
Tang, and Franck van Breugel. “Computing Probabilistic Bisimilarity
Distances for Probabilistic Automata”. In: 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amster-
dam, the Netherlands. Ed. by Wan J. Fokkink and Rob van Glabbeek.
Vol. 140. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019, 9:1–9:17. doi: 10.4230/LIPIcs.CONCUR.2019.9 (cit. on p. 275).

302

https://doi.org/10.1093/logcom/exn090
http://katmat.math.uni-bremen.de/acc
https://books.google.de/books?id=iXh6rOd7of0C
https://books.google.de/books?id=iXh6rOd7of0C
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1109/TSE.2008.106
https://doi.org/10.1016/C2013-0-06164-6
https://doi.org/10.4230/LIPIcs.CONCUR.2019.9

Bibliography

[Bae19] John Baez. Category Theory (Lecture Script). Available from author’s
website. 2019. url: http : / / math . ucr . edu / home / baez / qg -

winter2016/CategoryTheoryNotes.pdf (cit. on p. 220).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008. isbn: 978-0-262-02649-9 (cit. on pp. 18, 241).

[BK11] Adriana Balan and Alexander Kurz. “Finitary Functors: From Set to
Preord and Poset”. In: Algebra and Coalgebra in Computer Science -
4th International Conference, CALCO 2011, Winchester, UK, August
30 - September 2, 2011. Proceedings. Ed. by Andrea Corradini, Bartek
Klin, and Corina Cîrstea. Vol. 6859. Lecture Notes in Computer Science.
Springer, 2011, pp. 85–99. doi: 10.1007/978-3-642-22944-2_7 (cit. on
pp. 76, 77, 132, 133, 278, 279).

[BB+14] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König.
“Behavioral Metrics via Functor Lifting”. In: 34th International Con-
ference on Foundation of Software Technology and Theoretical Com-
puter Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India.
Ed. by Venkatesh Raman and S. P. Suresh. Vol. 29. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2014, pp. 403–415. doi:
10.4230/LIPIcs.FSTTCS.2014.403 (cit. on pp. 18, 136, 137, 140, 145–
147, 156, 158, 179, 181, 182, 274, 275).

[BB+18] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König.
“Coalgebraic Behavioral Metrics”. In: Logical Methods in Computer
Science 14.3 (2018). Selected Papers of the 6th Conference on Algebra
and Coalgebra in Computer Science (CALCO 2015). url: https://

lmcs.episciences.org/4827 (cit. on pp. 136–140, 142, 145, 148, 158).

[BK+18] Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso
Padoan. Fixpoint Games on Continuous Lattices. 2018. url: https:

//arxiv.org/abs/1810.11404 (cit. on pp. 239, 243, 248, 258, 263, 266,
276).

[BK+19a] Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso
Padoan. “Fixpoint Games on Continuous Lattices”. In: Proc. ACM
Symposium on Principles of Programming Languages (POPL) 3 (2019),
26:1–26:29. doi: 10.1145/3290339 (cit. on pp. 19, 21–23, 27, 227, 266,
267, 269–271, 276).

303

http://math.ucr.edu/home/baez/qg-winter2016/CategoryTheoryNotes.pdf
http://math.ucr.edu/home/baez/qg-winter2016/CategoryTheoryNotes.pdf
https://doi.org/10.1007/978-3-642-22944-2_7
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.403
https://lmcs.episciences.org/4827
https://lmcs.episciences.org/4827
https://arxiv.org/abs/1810.11404
https://arxiv.org/abs/1810.11404
https://doi.org/10.1145/3290339

Bibliography

[BKP20] Paolo Baldan, Barbara König, and Tommaso Padoan. “Abstraction,
Up-To Techniques and Games for Systems of Fixpoint Equations”. In:
31st International Conference on Concurrency Theory, CONCUR 2020,
September 1-4, 2020, Vienna, Austria (Virtual Conference). Ed. by
Igor Konnov and Laura Kovács. Vol. 171. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 25:1–25:20. doi: 10.4230/LIPIcs.

CONCUR.2020.25 (cit. on pp. 271, 276).

[Bal99] Alexandru Baltag. Truth-as-Simulation: Towards a Coalgebraic Per-
spective on Logic and Games. Tech. rep. SEN-R9923. CWI-(Centre for
Mathematics and Computer Science), Nov. 1999 (cit. on pp. 13, 17, 181,
263).

[Bal00] Alexandru Baltag. “A Logic for Coalgebraic Simulation”. In: Coalgebraic
Methods in Computer Science, CMCS 2000, Berlin, Germany, March 25-
26, 2000. Ed. by Horst Reichel. Vol. 33. Electronic Notes in Theoretical
Computer Science. Elsevier, 2000, pp. 42–60. doi: 10.1016/S1571-

0661(05)80343-3 (cit. on p. 125).

[Bar70] Micheal Barr. “Relational algebras”. In: Reports of the Midwest Category
Seminar IV. Vol. 137. lnm. Springer Berlin Heidelberg, 1970. isbn: 978-
3-540-36292-0 (cit. on pp. 76, 77).

[BSd04] Falk Bartels, Ana Sokolova, and Erik de Vink. “A hierarchy of proba-
bilistic system types”. In: Theoretical Computer Science 327.1 (2004).
Selected Papers of CMCS ’03, pp. 3–22. issn: 0304-3975. doi: https:

//doi.org/10.1016/j.tcs.2004.07.019 (cit. on pp. 51, 52, 54).

[Bén85] Jean Bénabou. “Fibered Categories and the Foundations of Naive Cat-
egory Theory”. In: Journal of Symbolic Logic 50.1 (1985). published
online Cambridge University Press, pp. 10–37. doi: 10.2307/2273784

(cit. on p. 65).

[BK+19b] Harsh Beohar, Barbara König, Sebastian Küpper, and Christina Mika-
Michalski. “Coalgebraic Games in Kleisli Categories”. In: CALCO Early
Ideas ’19. 2019 (cit. on pp. 21, 23).

[BK+20] Harsh Beohar, Barbara König, Sebastian Küpper, and Christina Mika-
Michalski. Coalgebraic modal logic and games: an indexed category frame-
work. unpublished. 2020 (cit. on pp. 19, 21, 23, 65, 222).

304

https://doi.org/10.4230/LIPIcs.CONCUR.2020.25
https://doi.org/10.4230/LIPIcs.CONCUR.2020.25
https://doi.org/10.1016/S1571-0661(05)80343-3
https://doi.org/10.1016/S1571-0661(05)80343-3
https://doi.org/https://doi.org/10.1016/j.tcs.2004.07.019
https://doi.org/https://doi.org/10.1016/j.tcs.2004.07.019
https://doi.org/10.2307/2273784

Bibliography

[BK+21] Harsh Beohar, Barbara König, Sebastian Küpper, and Christina Mika-
Michalski. “Coalgebraic modal logic and games for coalgebras with side
effects”. In: CoRR abs/2110.09911 (2021). arXiv: 2110.09911. url:
https://arxiv.org/abs/2110.09911 (cit. on p. 23).

[BK+17] Harsh Beohar, Barbara König, Sebastian Küpper, and Alexandra Silva.
“Conditional Transition System with Upgrades”. In: 2017 International
Symposium on Theoretical Aspects of Software Engineering (TASE).
Sept. 2017, pp. 1–8. doi: 10.1109/TASE.2017.8285624 (cit. on p. 222).

[BB07] Patrick Blackburn and Johan van Benthem. “Modal logic: a semantic
perspective”. In: Handbook of Modal Logic. Ed. by Patrick Blackburn,
J. F. A. K. van Benthem, and Frank Wolter. Vol. 3. Studies in logic
and practical reasoning. North-Holland/Elsevier, 2007, pp. 1–84. doi:
10.1016/s1570-2464(07)80004-8 (cit. on p. 15).

[BB+13] Christoph Blume, H. J. Sander Bruggink, Martin Friedrich, and Bar-
bara König. “Treewidth, pathwidth and cospan decompositions with
applications to graph-accepting tree automata”. In: Journal of Visual
Language Computing 24.3 (2013), pp. 192–206. doi: 10.1016/j.jvlc.

2012.10.002 (cit. on p. 41).

[BHR14] Udi Boker, Thomas A. Henzinger, and Arjun Radhakrishna. “Battery
transition systems”. In: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014. Ed. by Suresh Jagannathan and
Peter Sewell. ACM, 2014, pp. 595–606. doi: 10.1145/2535838.2535875

(cit. on p. 141).

[BB+12a] Filippo Bonchi, Marcello M. Bonsangue, Michele Boreale, Jan J. M. M.
Rutten, and Alexandra Silva. “A coalgebraic perspective on linear
weighted automata”. In: Inf. Comput. 211 (2012), pp. 77–105. doi:
10.1016/j.ic.2011.12.002 (cit. on pp. 31, 49–51, 53).

[BB+12b] Filippo Bonchi, Marcello M. Bonsangue, Jan J.M.M. Rutten, and Alexan-
dra Silva. “Brzozowski’s Algorithm (Co)Algebraically”. In: Logic and
Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion
of His 60th Birthday. Ed. by Robert L. Constable and Alexandra Silva.
Vol. 7230. Lecture Notes in Computer Science. Springer, 2012, pp. 12–23.
doi: 10.1007/978-3-642-29485-3_2 (cit. on p. 207).

305

https://arxiv.org/abs/2110.09911
https://arxiv.org/abs/2110.09911
https://doi.org/10.1109/TASE.2017.8285624
https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1016/j.jvlc.2012.10.002
https://doi.org/10.1016/j.jvlc.2012.10.002
https://doi.org/10.1145/2535838.2535875
https://doi.org/10.1016/j.ic.2011.12.002
https://doi.org/10.1007/978-3-642-29485-3_2

Bibliography

[BG+18] Filippo Bonchi, Pierre Ganty, Roberto Giacobazzi, and Dusko Pavlovic.
“Sound up-to techniques and Complete abstract domains”. In: Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar and
Erich Grädel. ACM, 2018, pp. 175–184. doi: 10.1145/3209108.3209169

(cit. on p. 271).

[BRS08] Marcello Bonsangue, Jan Rutten, and Alexandra Silva. “Coalgebraic
Logic and Synthesis of Mealy Machines”. In: Foundations of Software
Science and Computational Structures, 11th International Conference,
FOSSACS 2008, Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29
- April 6, 2008. Proceedings. Ed. by Roberto M. Amadio. Vol. 4962.
Lecture Notes in Computer Science. Springer, 2008, pp. 231–245. doi:
10.1007/978-3-540-78499-9_17 (cit. on pp. 36, 38, 125, 131).

[BK05] Marcello M. Bonsangue and Alexander Kurz. “Duality for Logics of Tran-
sition Systems”. In: Foundations of Software Science and Computational
Structures, 8th International Conference, FOSSACS 2005, Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Ed. by Vladimiro
Sassone. Vol. 3441. Lecture Notes in Computer Science. Springer, 2005,
pp. 455–469. doi: 10.1007/978-3-540-31982-5_29 (cit. on p. 184).

[BF16] Wassim Mohamed Boussahel and Georg Frey. “Priced discrete Au-
tomata for modeling energy efficient manufacturing systems”. In: 13th
International Workshop on Discrete Event Systems, WODES 2016,
Xi’an, China, May 30 - June 1, 2016. Ed. by Christos G. Cassan-
dras, Alessandro Giua, and Zhiwu Li. IEEE, 2016, pp. 79–84. doi:
10.1109/WODES.2016.7497829 (cit. on p. 141).

[BW18] Julian C. Bradfield and Igor Walukiewicz. “The mu-calculus and Model
Checking”. In: Handbook of Model Checking. Ed. by Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Springer
International Publishing, 2018, pp. 871–919. doi: 10.1007/978-3-319-

10575-8_26 (cit. on pp. 18, 19, 225, 226, 241, 242, 263–265, 269, 270).

[BW05] Franck van Breugel and James Worrell. “A behavioural pseudometric
for probabilistic transition systems”. In: Theoretical Computer Science

306

https://doi.org/10.1145/3209108.3209169
https://doi.org/10.1007/978-3-540-78499-9_17
https://doi.org/10.1007/978-3-540-31982-5_29
https://doi.org/10.1109/WODES.2016.7497829
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-319-10575-8_26

Bibliography

331.1 (2005), pp. 115–142. doi: 10.1016/j.tcs.2004.09.035 (cit. on
pp. 136, 137, 162, 163).

[BW06] Franck van Breugel and James Worrell. “Approximating and computing
behavioural distances in probabilistic transition systems”. In: Theoretical
Computer Science 360.1-3 (2006), pp. 373–385. doi: 10.1016/j.tcs.

2006.05.021 (cit. on pp. 137, 144, 145, 180, 274).

[BC+97] Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long, and
Wilfredo R. Marrero. “An improved algorithm for the evaluation of
fixpoint expressions”. In: Theoretical Computer Science 178.1–2 (1997),
pp. 237–255. doi: 10.1007/3-540-58179-0_66 (cit. on pp. 233, 270).

[CJ+17] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and
Frank Stephan. “Deciding parity games in quasipolynomial time”. In:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017.
ACM, 2017, pp. 252–263. doi: 10.1145/3055399.3055409 (cit. on
p. 226).

[CPA16] Robert Cartwright, Rebecca Parsons, and Moez A. AbdelGawad. “Do-
main Theory: An Introduction”. In: CoRR abs/1605.05858 (2016). arXiv:
1605.05858. url: http://arxiv.org/abs/1605.05858 (cit. on p. 225).

[CCP18] Valentina Castiglioni, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. “A Logical Characterization of Differential Privacy via
Behavioral Metrics”. In: Formal Aspects of Component Software - 15th
International Conference, FACS 2018, Pohang, South Korea, October 10-
12, 2018, Proceedings. Ed. by Kyungmin Bae and Peter Csaba Ölveczky.
Vol. 11222. Lecture Notes in Computer Science. Springer, 2018, pp. 75–
96 (cit. on p. 136).

[CGT16] Valentina Castiglioni, Daniel Gebler, and Simone Tini. “Logical Charac-
terization of Bisimulation Metrics”. In: Proceedings 14th International
Workshop Quantitative Aspects of Programming Languages and Systems,
QAPL 2016, Eindhoven, The Netherlands, April 2-3, 2016. Ed. by Mirco
Tribastone and Herbert Wiklicky. Vol. 227. EPTCS. 2016, pp. 44–62.
doi: 10.4204/EPTCS.227.4 (cit. on pp. 17, 136).

[CHR10] Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. “Quanti-
tative Simulation Games”. In: Time for Verification, Essays in Memory
of Amir Pnueli. Ed. by Zohar Manna and Doron A. Peled. Vol. 6200.

307

https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.1016/j.tcs.2006.05.021
https://doi.org/10.1016/j.tcs.2006.05.021
https://doi.org/10.1007/3-540-58179-0_66
https://doi.org/10.1145/3055399.3055409
https://arxiv.org/abs/1605.05858
http://arxiv.org/abs/1605.05858
https://doi.org/10.4204/EPTCS.227.4

Bibliography

Lecture Notes in Computer Science. Springer, 2010, pp. 42–60. doi:
10.1007/978-3-642-13754-9_3 (cit. on pp. 136, 143).

[CG+14] Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi,
and Lili Xu. “Generalized Bisimulation Metrics”. In: CONCUR 2014
- Concurrency Theory - 25th International Conference, Rome, Italy,
September 2-5, 2014. Proceedings. Ed. by Paolo Baldan and Daniele
Gorla. Vol. 8704. Lecture Notes in Computer Science. Springer, 2014,
pp. 32–46. doi: 10.1007/978-3-662-44584-6_4 (cit. on pp. 17, 136).

[Che80] Brian F. Chellas. Modal Logic - An Introduction. Cambridge University
Press, 1980. isbn: 978-0-51162119-2. doi: 10.1017/CBO9780511621192

(cit. on p. 277).

[CBW12] Di Chen, Franck van Breugel, and James Worrell. “On the Complexity
of Computing Probabilistic Bisimilarity”. In: Foundations of Software
Science and Computational Structures - 15th International Conference,
FOSSACS 2012, Part of ETAPS 2012, Tallinn, Estonia, March 24 -
April 1, 2012. Proceedings. Vol. 7213. Lecture Notes in Computer Science.
Springer, 2012, pp. 437–451. doi: 10.1007/978-3-642-28729-9_29

(cit. on pp. 182, 275).

[CD08] Xin Chen and Yuxin Deng. “Game Characterizations of Process Equiva-
lences”. In: Programming Languages and Systems. APLAS 2009. Ed. by
G. Ramalingam. Berlin, Heidelberg: Springer, 2008, pp. 107–121. doi:
https://doi.org/10.1007/978-3-540-89330-1_8 (cit. on p. 71).

[CK+11] Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde
Venema. “Modal Logics are Coalgebraic”. In: Comput. J. 54.1 (2011),
pp. 31–41. doi: 10.1093/comjnl/bxp004 (cit. on p. 273).

[CE81] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic”. In:
Logics of Programs, Workshop, Yorktown Heights, New York, USA, May
1981. Ed. by Dexter Kozen. Vol. 131. Lecture Notes in Computer Science.
Springer, 1981, pp. 52–71. doi: 10.1007/BFb0025774 (cit. on p. 241).

[CK91] Edmund M. Clarke and Robert P. Kurshan, eds. Computer Aided Verifi-
cation, 2nd International Workshop, CAV ’90, New Brunswick, NJ, USA,
June 18-21, 1990, Proceedings. Vol. 531. Lecture Notes in Computer
Science. Springer, 1991. isbn: 3-540-54477-1. doi: 10.1007/BFb0023712.

308

https://doi.org/10.1007/978-3-642-13754-9_3
https://doi.org/10.1007/978-3-662-44584-6_4
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1007/978-3-642-28729-9_29
https://doi.org/https://doi.org/10.1007/978-3-540-89330-1_8
https://doi.org/10.1093/comjnl/bxp004
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0023712

Bibliography

[Cle90] Rance Cleaveland. “On Automatically Explaining Bisimulation Inequiva-
lence”. In: Computer-Aided Verification. Ed. by Edmund M. Clarke and
Robert P. Kurshan. Lecture Notes in Computer Science 531. Springer
Heidelberg, 1990, pp. 364–372. isbn: 978-3-540-38394-9. doi: 10.1007/

BFb0023750 (cit. on pp. 17, 21, 72, 96, 116, 125, 126, 274, 291).

[CKS92] Rance Cleaveland, Marion Klein, and Bernhard Steffen. “Faster model
checking for the modal Mu-Calculus”. In: Proc. of CAV 1992. Vol. 663.
Lecture Notes in Computer Science. Springer, 1992, pp. 410–422. doi:
10.1007/3-540-56496-9_32 (cit. on pp. 19, 233, 243, 266, 270).

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints”. In: Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los An-
geles, California, USA, January 1977. ACM, 1977, pp. 238–252. doi:
10.1145/512950.512973 (cit. on pp. 269, 271).

[CC79] Radhia Cousot and Patrick Cousot. “Constructive versions of Tarski’s
fixed point theorems.” In: Pacific Journal of Mathematics 82.1 (1979),
pp. 43–57 (cit. on p. 27).

[CRH02] P.J.L. Cuijpers, Michel A. Reniers, and W.P.M.H. (Maurice) Heemels.
Hybrid Transition Systems. Vol. 0212. Computer science reports. Eind-
hoven University of Technology, 2002 (cit. on p. 140).

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to lattices and
order. Cambridge University Press, 2002. doi: https://doi.org/10.

1017/CBO9780511809088 (cit. on pp. 25, 27, 227).

[dR99] E.P. de Vink and J.J.M.M. Rutten. “Bisimulation for probabilistic
transition systems: a coalgebraic approach”. In: Theoretical Computer
Science 221.1 (1999), pp. 271–293. issn: 0304-3975. doi: 10.1016/S0304-

3975(99)00035-3 (cit. on p. 49).

[DM+19] Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann.
“Generic Partition Refinement and Weighted Tree Automata”. In: Formal
Methods - The Next 30 Years - Third World Congress, FM 2019, Porto,
Portugal, October 7-11, 2019, Proceedings. Ed. by Maurice H. ter Beek,
Annabelle McIver, and José N. Oliveira. Vol. 11800. Lecture Notes in
Computer Science. Springer, 2019, pp. 280–297. doi: 10.1007/978-3-

030-30942-8_18 (cit. on pp. 101, 134).

309

https://doi.org/10.1007/BFb0023750
https://doi.org/10.1007/BFb0023750
https://doi.org/10.1007/3-540-56496-9_32
https://doi.org/10.1145/512950.512973
https://doi.org/https://doi.org/10.1017/CBO9780511809088
https://doi.org/https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1007/978-3-030-30942-8_18
https://doi.org/10.1007/978-3-030-30942-8_18

Bibliography

[Des99] Josée Desharnais. “Labelled Markov processes”. PhD thesis. McGill
University, Montreal, Nov. 1999 (cit. on pp. 17, 136).

[DG+04] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panan-
gaden. “Metrics for labelled Markov processes”. In: Theoretical Computer
Science 318.3 (2004), pp. 323–354. doi: 10.1016/j.tcs.2003.09.013

(cit. on pp. 17, 136, 137, 180).

[DLT08] Josée Desharnais, François Laviolette, and Mathieu Tracol. “Approxi-
mate Analysis of Probabilistic Processes: Logic, Simulation and Games”.
In: Fifth International Conference on the Quantitative Evaluaiton of Sys-
tems (QEST 2008), 14-17 September 2008, Saint-Malo, France. IEEE
Computer Society, 2008, pp. 264–273. doi: 10.1109/QEST.2008.42

(cit. on pp. 13, 18, 71, 90–92, 125, 136, 137, 212, 274).

[DMS19] Ulrich Dorsch, Stefan Milius, and Lutz Schröder. “Graded Monads
and Graded Logics for the Linear Time - Branching Time Spectrum”.
In: 30th International Conference on Concurrency Theory, CONCUR
2019, August 27-30, 2019, Amsterdam, the Netherlands. Ed. by Wan J.
Fokkink and Rob van Glabbeek. Vol. 140. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 36:1–36:16. doi: 10.4230/LIPIcs.

CONCUR.2019.36 (cit. on p. 223).

[DM+17] Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann.
“Efficient Coalgebraic Partition Refinement”. In: 28th International
Conference on Concurrency Theory, CONCUR 2017, September 5-8,
2017, Berlin, Germany. Ed. by Roland Meyer and Uwe Nestmann.
Vol. 85. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017, 32:1–32:16. doi: 10.4230/LIPIcs.CONCUR.2017.32 (cit. on
pp. 17, 21, 97–101, 103, 109, 110, 112, 125, 274).

[DM+18] Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann.
“Predicate Liftings and Functor Presentations in Coalgebraic Expres-
sion Languages”. In: Coalgebraic Methods in Computer Science - 14th
International Workshop, CMCS 2018, Colocated with ETAPS 2018,
Thessaloniki, Greece, April 14-15, 2018, Revised Selected Papers. Ed. by
Corina Cîrstea. Vol. 11202. Lecture Notes in Computer Science. Springer,
2018, pp. 56–77. doi: 10.1007/978-3-030-00389-0_5 (cit. on pp. 108,
279).

310

https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1109/QEST.2008.42
https://doi.org/10.4230/LIPIcs.CONCUR.2019.36
https://doi.org/10.4230/LIPIcs.CONCUR.2019.36
https://doi.org/10.4230/LIPIcs.CONCUR.2017.32
https://doi.org/10.1007/978-3-030-00389-0_5

Bibliography

[DI02] Daniel C. DuVarney and S. Purushothaman Iyer. “C Wolf - A Toolset
for Extracting Models from C Programs”. In: Formal Techniques for
Networked and Distributed Systems - FORTE 2002, 22nd IFIP WG 6.1
International Conference Houston, Texas, USA, November 11-14, 2002,
Proceedings. Ed. by Doron A. Peled and Moshe Y. Vardi. Vol. 2529.
Lecture Notes in Computer Science. Springer, 2002, pp. 260–275. doi:
10.1007/3-540-36135-9_17 (cit. on p. 131).

[Dwo06] Cynthia Dwork. “Differential Privacy”. In: Automata, Languages and
Programming, 33rd International Colloquium, ICALP 2006, Venice,
Italy, July 10-14, 2006, Proceedings, Part II. Ed. by Michele Bugliesi,
Bart Preneel, Vladimiro Sassone, and Ingo Wegener. Vol. 4052. Lecture
Notes in Computer Science. Springer, 2006, pp. 1–12 (cit. on p. 136).

[DH+01] Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach,
Corina S. Pasareanu, Robby, Hongjun Zheng, and Willem Visser. “Tool-
Supported Program Abstraction for Finite-State Verification”. In: Pro-
ceedings of the 23rd International Conference on Software Engineering,
ICSE 2001, 12-19 May 2001, Toronto, Ontario, Canada. Ed. by Hausi A.
Müller, Mary Jean Harrold, and Wilhelm Schäfer. IEEE Computer So-
ciety, 2001, pp. 177–187. doi: 10.1109/ICSE.2001.919092 (cit. on
p. 131).

[EM42] Samuel Eilenberg and Saunders Maclane. “Natural Isomorphisms in
Group Theory.” In: Proceedings of the National Academy of Sciences of
the United States of America 28 12 (1942), pp. 537–43. doi: 10.1073/

pnas.28.12.537 (cit. on p. 39).

[EKN12] Pantelis E. Eleftheriou, Costas D. Koutras, and Christos Nomikos. “No-
tions of bisimulation for Heyting-valued modal languages”. In: Journal
of Logic and Computation 22 (2012), pp. 213–235 (cit. on p. 270).

[Eme85] E. Allen Emerson. “Automata, tableaux, and temporal logics”. In: Pro-
ceedings of Logics of Programs 1985. Ed. by R. Parikh. Vol. 193. Lecture
Notes in Computer Science. Springer, 1985, pp. 79–88. doi: 10.1007/3-

540-15648-8_7 (cit. on p. 263).

[EJ91] E. Allen Emerson and Charanjit S. Jutla. “Tree Automata, Mu-Calculus
and Determinacy (Extended Abstract)”. In: 32nd Annual Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October

311

https://doi.org/10.1007/3-540-36135-9_17
https://doi.org/10.1109/ICSE.2001.919092
https://doi.org/10.1073/pnas.28.12.537
https://doi.org/10.1073/pnas.28.12.537
https://doi.org/10.1007/3-540-15648-8_7
https://doi.org/10.1007/3-540-15648-8_7

Bibliography

1991. IEEE Computer Society, 1991, pp. 368–377. doi: 10.1109/SFCS.

1991.185392 (cit. on pp. 18, 19, 225, 247, 264, 265, 270, 276).

[FLT11] Uli Fahrenberg, Axel Legay, and Claus R. Thrane. “The Quantitative
Linear-Time–Branching-Time Spectrum”. In: IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2011, December 12-14, 2011, Mumbai, India. Ed.
by Supratik Chakraborty and Amit Kumar. Vol. 13. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2011, pp. 103–114. doi:
10.4230/LIPIcs.FSTTCS.2011.103 (cit. on pp. 17, 136).

[FKP17] Nathanaël Fijalkow, Bartek Klin, and Prakash Panangaden. “Expres-
siveness of Probabilistic Modal Logics, Revisited”. In: 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland. Ed. by Ioannis Chatzigiannakis, Pi-
otr Indyk, Fabian Kuhn, and Anca Muscholl. Vol. 80. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 105:1–105:12. doi:
10.4230/LIPIcs.ICALP.2017.105 (cit. on p. 71).

[FGK10] Diana Fischer, Erich Grädel, and Łukasz Kaiser. “Model Checking
Games for the Quantitative mu-Calculus”. In: Theory Comput. Syst.
47.3 (2010), pp. 696–719. url: http : / / logic . rwth - aachen . de /

~kaiser/quantitative_games_journal.pdf (cit. on pp. 270, 276).

[FV99] Kathi Fisler and Moshe Y. Vardi. “Bisimulation and Model Checking”. In:
Correct Hardware Design and Verification Methods, 10th IFIP Advanced
Research Working Conference, CHARME ’99, Bad Herrenalb, Germany,
September 27-29, 1999, Proceedings. Ed. by Laurence Pierre and Thomas
Kropf. Vol. 1703. Lecture Notes in Computer Science. Springer, 1999,
pp. 338–341. doi: 10.1007/3-540-48153-2_29 (cit. on pp. 18, 241).

[Fit91] Melvin Fitting. “Many-valued modal logics”. In: Fundamenta Informati-
cae 15 (1991), pp. 235–254 (cit. on p. 270).

[FLV10] Gaëlle Fontaine, Raul Andres Leal, and Yde Venema. “Automata for
Coalgebras: An Approach Using Predicate Liftings”. In: Automata,
Languages and Programming, 37th International Colloquium, ICALP
2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II. Ed. by
Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf
der Heide, and Paul G. Spirakis. Vol. 6199. Lecture Notes in Computer

312

https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.103
https://doi.org/10.4230/LIPIcs.ICALP.2017.105
http://logic.rwth-aachen.de/~kaiser/quantitative_games_journal.pdf
http://logic.rwth-aachen.de/~kaiser/quantitative_games_journal.pdf
https://doi.org/10.1007/3-540-48153-2_29

Bibliography

Science. Springer, 2010, pp. 381–392. doi: 10.1007/978-3-642-14162-

1_32 (cit. on pp. 125, 265).

[FKW17] David de Frutos-Escrig, Jeroen J. A. Keiren, and Tim A. C. Willemse.
“Games for Bisimulations and Abstraction”. In: Logical Methods in
Computer Science 13.4 (2017). doi: 10.23638/LMCS-13(4:15)2017

(cit. on p. 127).

[GK09] Nicola Gambino and Joachim Kock. “Polynomial functors and poly-
nomial monads”. In: Mathematical Proceedings of the Cambridge
Philosophical Society 154 (June 2009), pp. 153–192. doi: 10.1017/

S0305004112000394 (cit. on p. 42).

[GS11] Thomas Martin Gawlitza and Helmut Seidl. “Solving systems of rational
equations through strategy iteration”. In: ACM Trans. Program. Lang.
Syst. 33.3 (2011), 11:1–11:48 (cit. on p. 271).

[GH+80] Gerhard Gierz, Karl H. Hofmann, Klaus Keimel, Jimmie D. Lawson,
Michael W. Mislove, and Dana S. Scott. A Compendium of Continuous
Lattices. Springer, 1980. doi: 10.1007/978-3-642-67678-9.

[GH+03] Gerhard Gierz, Karl H. Hofmann, Klaus Keimel, Jimmie D. Lawson,
Michael W. Mislove, and Dana S. Scott. Continuous Lattices and Do-
mains. Cambridge University Press, 2003. doi: 10.1007/s11225-007-

9052-y (cit. on pp. 25, 27, 225, 227, 230, 269, 276).

[GZ12] Antoine Girard and Gang Zheng. “Verification of Safety and Liveness
Properties of Metric Transition Systems”. In: ACM Trans. Embed. Com-
put. Syst. 11.S2 (2012), 54:1–54:23. doi: 10.1145/2331147.2331164

(cit. on p. 141).

[Gla01] Rob J. van Glabbeek. “The Linear Time - Branching Time Spectrum
I. The Semantics of Concrete, Sequential Processes”. In: Handbook of
Process Algebra. Ed. by Jan A. Bergstra, Alban Ponse, and Scott A.
Smolka. North-Holland/Elsevier, 2001, pp. 3–99. doi: 10.1016/b978-

044482830-9/50019-9 (cit. on pp. 14, 35, 71, 183).

[GS13] Daniel Gorín and Lutz Schröder. “Simulations and Bisimulations for
Coalgebraic Modal Logics”. In: Algebra and Coalgebra in Computer
Science - 5th International Conference, CALCO 2013, Warsaw, Poland,
September 3-6, 2013. Proceedings. Ed. by Reiko Heckel and Stefan Milius.
Vol. 8089. Lecture Notes in Computer Science. Springer, 2013, pp. 253–
266. doi: 10.1007/978-3-642-40206-7_19 (cit. on pp. 78, 94, 126).

313

https://doi.org/10.1007/978-3-642-14162-1_32
https://doi.org/10.1007/978-3-642-14162-1_32
https://doi.org/10.23638/LMCS-13(4:15)2017
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1007/978-3-642-67678-9
https://doi.org/10.1007/s11225-007-9052-y
https://doi.org/10.1007/s11225-007-9052-y
https://doi.org/10.1145/2331147.2331164
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1007/978-3-642-40206-7_19

Bibliography

[GO14] Erich Grädel and Martin Otto. “The Freedoms of (Guarded) Bisimu-
lation”. In: Johan van Benthem on Logic and Information Dynamics.
Outstanding Contributions to Logic. Ed. by Alexandru Baltag and Sonja
Smets. Vol. 5. Springer, 2014, pp. 3–31. doi: 10.1007/978-3-319-

06025-5_1 (cit. on p. 15).

[Gra66] John W. Gray. “Fibred and Cofibred Categories”. In: Proceedings of the
Conference on Categorical Algebra. Ed. by S. Eilenberg, D. K. Harrison, S.
MacLane, and H. Röhrl. Berlin, Heidelberg: Springer Berlin Heidelberg,
1966, pp. 21–83 (cit. on p. 66).

[Gro71] Alexander Grothendieck. “Catégories fibrées et descente”. In: Revête-
ments étales et groupe fondamental. Lecture Notes in Mathematics.
Springer Berlin Heidelberg, 1971. doi: 10.1007/BFb0058656 (cit. on
p. 65).

[GR02] Alexander Grothendieck and Michele Raynaud. Revêtements étales et
groupe fondamental (SGA 1). 2002. arXiv: math/0206203 [math.AG]

(cit. on p. 65).

[GL+05] Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham.
“Don’t Know in the µ-Calculus”. In: Proc. of VMCAI ’05. Ed. by Radhia
Cousot. Vol. 3385. Lecture Notes in Computer Science. Springer, 2005,
pp. 233–249 (cit. on p. 270).

[GV08] Orna Grumberg and Helmut Veith. “25 Years of Model Checking -
History, Achievements, Perspectives”. In: 25 Years of Model Checking.
Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-69850-0

(cit. on p. 241).

[GS01] H. Peter Gumm and Tobias Schröder. “Monoid-labeled transition sys-
tems”. In: Coalgebraic Methods in Computer Science, CMCS 2001, a
Satellite Event of ETAPS 2001, Genova, Italy, April 6-7, 2001. Ed. by
Andrea Corradini, Marina Lenisa, and Ugo Montanari. Vol. 44-1. Elec-
tronic Notes in Theoretical Computer Science. Elsevier, 2001, pp. 185–
204. doi: 10.1016/S1571-0661(04)80908-3 (cit. on pp. 51, 53).

[Han03] Helle Hvid Hansen. “Monotonic Modal Logics”. MA thesis. University
of Amsterdam, 2003 (cit. on pp. 126, 277, 278).

[HK04] Helle Hvid Hansen and Clemens Kupke. “A Coalgebraic Perspective on
Monotone Modal Logic”. In: Proceedings of the Workshop on Coalgebraic
Methods in Computer Science, CMCS 2004, Barcelona, Spain, March

314

https://doi.org/10.1007/978-3-319-06025-5_1
https://doi.org/10.1007/978-3-319-06025-5_1
https://doi.org/10.1007/BFb0058656
https://arxiv.org/abs/math/0206203
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1016/S1571-0661(04)80908-3

Bibliography

27-29, 2004. Ed. by Jirí Adámek and Stefan Milius. Vol. 106. Electronic
Notes in Theoretical Computer Science. Elsevier, 2004, pp. 121–143.
doi: 10.1016/j.entcs.2004.02.028 (cit. on pp. 16, 277, 279, 282, 283,
289).

[HK+17] Helle Hvid Hansen, Clemens Kupke, Johannes Marti, and Yde Venema.
“Parity Games and Automata for Game Logic”. In: Dynamic Logic.
New Trends and Applications - First International Workshop, DALI
2017, Brasilia, Brazil, September 23-24, 2017, Proceedings. Vol. 10669.
Lecture Notes in Computer Science. Springer, 2017, pp. 115–132. doi:
10.1007/978-3-319-73579-5_8 (cit. on p. 246).

[HKP07] Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit. “Bisimulation for
Neighbourhood Structures”. In: Algebra and Coalgebra in Computer Sci-
ence, Second International Conference, CALCO 2007, Bergen, Norway,
August 20-24, 2007, Proceedings. Ed. by Till Mossakowski, Ugo Mon-
tanari, and Magne Haveraaen. Vol. 4624. Lecture Notes in Computer
Science. Springer, 2007, pp. 279–293. doi: 10.1007/978-3-540-73859-

6_19 (cit. on p. 51).

[HJS07] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. “Generic Trace Semantics
via Coinduction”. In: Logical Methods in Computer Science 3.4 (2007).
doi: 10.2168/LMCS-3(4:11)2007 (cit. on pp. 61, 62, 186, 275).

[HKC18] Ichiro Hasuo, Toshiki Kataoka, and Kenta Cho. “Coinductive pred-
icates and final sequences in a fibration”. In: Mathematical Struc-
tures in Computer Science 28.4 (2018), pp. 562–611. doi: 10.1017/

S0960129517000056 (cit. on p. 183).

[HSC16] Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. “Lattice-theoretic
progress measures and coalgebraic model checking”. In: Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016. Ed. by Rastislav Bodík and Rupak Majumdar. ACM,
2016, pp. 718–732. doi: 10.1145/2837614.2837673 (cit. on pp. 19, 226,
227, 231, 233, 234, 238, 239, 243, 266, 267, 269, 270, 276).

[Hen61] Leon A. Henkin. “Some Remarks on Infinitely Long Formulas”. In:
Journal of Symbolic Logic. Pergamon Press, 1961, pp. 167–183. doi:
10.2307/2270594 (cit. on p. 14).

315

https://doi.org/10.1016/j.entcs.2004.02.028
https://doi.org/10.1007/978-3-319-73579-5_8
https://doi.org/10.1007/978-3-540-73859-6_19
https://doi.org/10.1007/978-3-540-73859-6_19
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.1017/S0960129517000056
https://doi.org/10.1017/S0960129517000056
https://doi.org/10.1145/2837614.2837673
https://doi.org/10.2307/2270594

Bibliography

[HM80] Matthew Hennessy and Robin Milner. “On observing Nondeterminism
and Concurrency”. In: Automata, Languages and Programming. Ed. by
Jaco de Bakker and Jan van Leeuwen. Proc. of ICALP ’80, LNCS vol. 85.
Springer Berlin Heidelberg, 1980, pp. 299–309. isbn: 978-3-540-39346-7
(cit. on pp. 15, 71).

[HM85] Matthew Hennessy and Robin Milner. “Algebraic Laws for Nondeter-
minism and Concurrency”. In: J. ACM 32.1 (Jan. 1985), pp. 137–161.
issn: 0004-5411. doi: 10.1145/2455.2460 (cit. on pp. 72, 74, 114).

[HJ98] Claudio Hermida and Bart Jacobs. “Structural Induction and Coinduc-
tion in a Fibrational Setting”. In: Information and Computation 145.2
(1998), pp. 107–152. doi: 10.1006/inco.1998.2725 (cit. on pp. 17, 183,
202, 273).

[HH90] H. Herrlich and M. Hušek. “Galois connections categorically”. In: Journal
of Pure and Applied Algebra 68.1 (1990). Special Issue in Honor of B.
Banaschewski, pp. 165–180. issn: 0022-4049 (cit. on p. 221).

[Hin68] Jaakko Hintikka. “Language-Games for Quantifiers”. In: Studies in
Logical Theory. Ed. by Nicholas Rescher. Oxford:Blackwell, 1968, pp. 46–
72 (cit. on pp. 13, 15, 225).

[Hir98] Daniel Hirschkoff. “Automatically Proving Up-to Bisimulation”. In:
Electronic Notes in Theoretical Computer Science 18 (1998), pp. 75–89.
doi: 10.1016/S1571-0661(05)80251-8 (cit. on p. 271).

[Hir99] Daniel Hirschkoff. “Mise en oeuvre de preuves de bisimulation”. PhD
thesis. Ecole Nationale des Ponts et Chaussées, 1999 (cit. on p. 271).

[HV19] Wilfrid Hodges and Jouko Väänänen. “Logic and Games”. In: The
Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Fall
2019. Metaphysics Research Lab, Stanford University, 2019. url: https:

//plato.stanford.edu/archives/fall2019/entries/logic-games/

(cit. on pp. 14, 15).

[Hop71] John E. Hopcraft. “An n log n algorithm for minimizing states in a
finite automaton.” In: Theory of machines and computations. Academic
Press, New York, 1971, pp. 189–196 (cit. on pp. 17, 31).

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979. isbn: 0-
201-02988-X (cit. on p. 35).

316

https://doi.org/10.1145/2455.2460
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1016/S1571-0661(05)80251-8
https://plato.stanford.edu/archives/fall2019/entries/logic-games/
https://plato.stanford.edu/archives/fall2019/entries/logic-games/

Bibliography

[Hop20] Jonas Hoppe. “Automatic Explanation of Non-Bisimilarity for Probabilis-
tic Transition Systems”. Bachelor’s thesis. Universität Duisburg-Essen,
Fakultät für Ingenieurwissenschaften, Abteilung für Informatik und
Angewandte Kognitionswissenschaft, June 2020 (cit. on p. 144).

[HK97] Michael Huth and Marta Kwiatkowska. “Quantitative analysis and
model checking”. In: Proc. of LICS ’97. IEEE, 1997, pp. 111–122. doi:
10.1109/LICS.1997.614940 (cit. on p. 270).

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Ed. by S. Abramsky,
S. Artemov, R. A. Shoare, and A. S. Troelstra. 1st. Vol. 141. Studies in
Logic and the Foundations of Mathematics. North Holland, Elsevier,
Jan. 1999. isbn: 0444501703 (cit. on pp. 65–67, 188).

[Jac01] Bart Jacobs. “Many-sorted coalgebraic modal logic: a model-theoretic
study”. In: RAIRO - Theoretical Informatics and Applications - Infor-
matique Théorique et Applications 35.1 (2001), pp. 31–59. url: http:

//eudml.org/doc/92654 (cit. on pp. 17, 209, 273).

[Jac04] Bart Jacobs. “Trace Semantics for Coalgebras”. In: Electronic Notes in
Theoretical Computer Science 106 (2004). Proceedings of the Workshop
on Coalgebraic Methods in Computer Science (CMCS), pp. 167–184.
issn: 1571-0661. doi: 10.1016/j.entcs.2004.02.031 (cit. on p. 186).

[Jac10] Bart Jacobs. Predicate Logic for Functors and Monads. Available from
author’s website. 2010. url: http://www.cs.ru.nl/~bart/PAPERS/

predlift-indcat.pdf (cit. on pp. 65, 66, 68, 184, 185, 188, 208, 275).

[JSS15] Bart Jacobs, Alexandra Silva, and Ana Sokolova. “Trace semantics via
determinization”. In: Journal of Computer and System Science 81.5
(2015), pp. 859–879. doi: 10.1016/j.jcss.2014.12.005 (cit. on pp. 60,
62, 183–187, 193, 195, 197, 198, 220, 222, 275).

[JS09] Bart Jacobs and Ana Sokolova. “Exemplaric Expressivity of Modal
Logics”. In: Journal of Logic and Computation 20.5 (Feb. 2009), pp. 1041–
1068. issn: 0955-792X. doi: 10.1093/logcom/exn093 (cit. on pp. 68,
183, 184).

[Jur00] Marcin Jurdziński. “Small Progress Measures for Solving Parity Games”.
In: STACS 2000, 17th Annual Symposium on Theoretical Aspects of
Computer Science, Lille, France, February 2000, Proceedings. Ed. by
Horst Reichel and Sophie Tison. Vol. 1770. Lecture Notes in Computer

317

https://doi.org/10.1109/LICS.1997.614940
http://eudml.org/doc/92654
http://eudml.org/doc/92654
https://doi.org/10.1016/j.entcs.2004.02.031
http://www.cs.ru.nl/~bart/PAPERS/predlift-indcat.pdf
http://www.cs.ru.nl/~bart/PAPERS/predlift-indcat.pdf
https://doi.org/10.1016/j.jcss.2014.12.005
https://doi.org/10.1093/logcom/exn093

Bibliography

Science. Springer, 2000, pp. 290–301. doi: 10.1007/3-540-46541-3_24

(cit. on pp. 18, 19, 225, 227, 231, 232, 264, 266, 267, 269, 270, 276).

[KS90] Paris C. Kanellakis and Scott A. Smolka. “CCS Expressions, Finite
State Processes, and Three Problems of Equivalence”. In: Inf. Comput.
86 (1990), pp. 43–68. doi: 10.1016/0890-5401(90)90025-D (cit. on
pp. 31, 97, 98, 104, 110, 112).

[Ker16] Henning Kerstan. “Coalgebraic Behavior Analysis – From Qualitative
to Quantitative Analyses”. PhD thesis. Universität Duisburg-Essen,
Fakultät für Ingenieurwissenschaften, Abteilung für Informatik und
Angewandte Kognitionswissenschaft, May 2016 (cit. on pp. 56, 61, 139,
145, 146, 148, 158, 159, 181, 275).

[KM15] Narges Khakpour and Mohammad Reza Mousavi. “Notions of Confor-
mance Testing for Cyber-Physical Systems: Overview and Roadmap (In-
vited Paper)”. In: 26th International Conference on Concurrency Theory
(CONCUR 2015). Ed. by Luca Aceto and David de Frutos Escrig. Vol. 42.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 18–
40. isbn: 978-3-939897-91-0. doi: 10.4230/LIPIcs.CONCUR.2015.18

(cit. on pp. 17, 31, 136, 140, 141).

[KK11] Christian Kissig and Alexander Kurz. “Generic Trace Logics”. 2011.
arXiv: 1103.3239. url: http://arxiv.org/abs/1103.3239 (cit. on
p. 184).

[Kli07] Bartek Klin. “Coalgebraic Modal Logic Beyond Sets”. In: Proceedings of
the 23rd Conference on the Mathematical Foundations of Programming
Semantics, MFPS 2007, New Orleans, LA, USA, April 11-14, 2007. Ed.
by Marcelo Fiore. Vol. 173. Electronic Notes in Theoretical Computer
Science. Elsevier, 2007, pp. 177–201. doi: 10.1016/j.entcs.2007.02.

034 (cit. on p. 184).

[KR16] Bartek Klin and Jurriaan Rot. “Coalgebraic trace semantics via forgetful
logics”. In: Logical Methods in Computer Science 12.4 (2016). doi:
10.2168/LMCS-12(4:10)2016 (cit. on p. 184).

[KRM17] Urvashi Kodwani, Sonal Rajurkar, and S. Mundada. “Realization of
sequential circuit using finite state machine”. In: 2017 International
Conference on Intelligent Computing and Control Systems (ICICCS)

318

https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.4230/LIPIcs.CONCUR.2015.18
https://arxiv.org/abs/1103.3239
http://arxiv.org/abs/1103.3239
https://doi.org/10.1016/j.entcs.2007.02.034
https://doi.org/10.1016/j.entcs.2007.02.034
https://doi.org/10.2168/LMCS-12(4:10)2016

Bibliography

(2017), pp. 472–476. doi: 10.1109/ICCONS.2017.8250767 (cit. on
p. 131).

[KK+19] Yuichi Komorida, Shin-Ya Katsumata, Nick Hu, Bartek Klin, and Ichiro
Hasuo. “Codensity Games for Bisimilarity”. In: 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. IEEE, 2019, pp. 1–13. doi: 10.1109/LICS.

2019.8785691 (cit. on pp. 18, 125, 137, 180, 181, 183, 185, 209, 223,
275, 276).

[KK14] Barbara König and Sebastian Küpper. “Generic Partition Refinement
Algorithms for Coalgebras and an Instantiation to Weighted Automata”.
In: Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 International
Conference, TCS 2014, Rome, Italy, September 1-3, 2014. Proceedings.
Ed. by Josep Díaz, Ivan Lanese, and Davide Sangiorgi. Vol. 8705. Lecture
Notes in Computer Science. Springer, 2014, pp. 311–325. doi: 10.1007/

978-3-662-44602-7_24 (cit. on p. 99).

[KK18] Barbara König and Sebastian Küpper. “A Generalized Partition Refine-
ment Algorithm, Instantiated to Language Equivalence Checking for
Weighted Automata”. In: Soft Computing 22.4 (2018). doi: 10.1007/

s00500-016-2363-z (cit. on pp. 17, 55, 97–100, 102, 103, 110, 187).

[KKM17] Barbara König, Sebastian Küpper, and Christina Mika. “PAWS: A
Tool for the Analysis of Weighted Systems”. In: Proceedings 15th Work-
shop on Quantitative Aspects of Programming Languages and Systems,
QAPL@ETAPS 2017, Uppsala, Sweden, 23rd April 2017. 2017, pp. 75–
91. doi: 10.4204/EPTCS.250.5 (cit. on pp. 100, 127, 134).

[KM17a] Barbara König and Christina Mika. “Bisimulation Games on Coalgebras”.
In: CoRR abs/1705.10165 (2017). arXiv: 1705.10165. url: http://

arxiv.org/abs/1705.10165 (cit. on p. 137).

[KM17b] Barbara König and Christina Mika. “Bisimulation Games on Coalge-
bras*”. In: CALCO Early Ideas ’17. 2017 (cit. on pp. 22, 277).

[KM18] Barbara König and Christina Mika-Michalski. “(Metric) Bisimulation
Games and Real-Valued Modal Logics for Coalgebras”. In: 29th Inter-
national Conference on Concurrency Theory (CONCUR 2018). Ed. by
S. Schewe and L. Zhang. Vol. 118. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2018, 37:1–37:17. isbn: 978-3-95977-087-3. doi:

319

https://doi.org/10.1109/ICCONS.2017.8250767
https://doi.org/10.1109/LICS.2019.8785691
https://doi.org/10.1109/LICS.2019.8785691
https://doi.org/10.1007/978-3-662-44602-7_24
https://doi.org/10.1007/978-3-662-44602-7_24
https://doi.org/10.1007/s00500-016-2363-z
https://doi.org/10.1007/s00500-016-2363-z
https://doi.org/10.4204/EPTCS.250.5
https://arxiv.org/abs/1705.10165
http://arxiv.org/abs/1705.10165
http://arxiv.org/abs/1705.10165

Bibliography

10.4230/LIPIcs.CONCUR.2018.37 (cit. on pp. 21, 22, 85, 106, 108, 125,
126, 183, 212, 219, 290).

[KMS20a] Barbara König, Christina Mika-Michalski, and Lutz Schröder. Explaining
Non-Bisimilarity in a Coalgebraic Approach: Games and Distinguishing
Formulas. arXiv:2002.11459. 2020. url: https://arxiv.org/abs/

2002.11459.

[KMS20b] Barbara König, Christina Mika-Michalski, and Lutz Schröder. “Explain-
ing Non-Bisimilarity in a Coalgebraic Approach: Games and Distin-
guishing Formulas”. In: Coalgebraic Methods in Computer Science -
15th International Workshop, CMCS 2020, Colocated with ETAPS 2020,
Proceedings. Ed. by Daniela Petrisan and Jurriaan Rot. Vol. 12094.
Lecture Notes in Computer Science. Springer, 2020, pp. 133–154. doi:
10.1007/978-3-030-57201-3_8 (cit. on pp. 21–23, 33, 96, 128, 129,
277).

[Kot15a] Stefan Kottwitz. A mindmap showing TeX projects supported by DANTE
e.V. Website. https://www.texample.net/tikz/examples/servers/

visited on January 15, 2021. 2015 (cit. on p. 97).

[Kot15b] Stefan Kottwitz. Latex Cookbook. Packt, 2015. isbn: 9781784395148.
url: https://www.packtpub.com/hardware-and-creative/latex-

cookbook (cit. on p. 97).

[Koz83] Dexter Kozen. “Results on the Propositional µ-Calculus”. In: Theoretical
Computer Science 27.3 (1983). Special Issue Ninth International Collo-
quium on Automata, Languages and Programming (ICALP) Aarhus,
Summer 1982, pp. 333–354. doi: 10.1016/0304-3975(82)90125-6

(cit. on pp. 18, 225, 270).

[KW99] Marcus Kracht and Frank Wolter. “Normal Monomodal Logics Can
Simulate All Others”. In: The Journal of Symbolic Logic 64.1 (1999),
pp. 99–138 (cit. on p. 126).

[KL07] Orna Kupfermann and Yoad Lustig. “Latticed Simulation Relations and
Games”. In: Proc. of ATVA ’07. Vol. 4672. Lecture Notes in Computer
Science. Springer, 2007, pp. 316–330 (cit. on p. 270).

[Kup07] Clemens Kupke. “Terminal Sequence Induction via Games”. In: Logic,
Language, and Computation, 7th International Tbilisi Symposium on
Logic, Language, and Computation, TbiLLC 2007, Tbilisi, Georgia,
October 1-5, 2007. Revised Selected Papers. Ed. by Peter Bosch, David

320

https://doi.org/10.4230/LIPIcs.CONCUR.2018.37
https://arxiv.org/abs/2002.11459
https://arxiv.org/abs/2002.11459
https://doi.org/10.1007/978-3-030-57201-3_8
https://www.texample.net/tikz/examples/servers/
https://www.packtpub.com/hardware-and-creative/latex-cookbook
https://www.packtpub.com/hardware-and-creative/latex-cookbook
https://doi.org/10.1016/0304-3975(82)90125-6

Bibliography

Gabelaia, and Jérôme Lang. Vol. 5422. Lecture Notes in Computer
Science. Springer, 2007, pp. 257–271. doi: 10.1007/978-3-642-00665-

4_21 (cit. on pp. 125, 183).

[KKP04] Clemens Kupke, Alexander Kurz, and Dirk Pattinson. “Algebraic Seman-
tics for Coalgebraic Logics”. In: Proceedings of the Workshop on Coal-
gebraic Methods in Computer Science, CMCS 2004, Barcelona, Spain,
March 27-29, 2004. Ed. by Jirí Adámek and Stefan Milius. Vol. 106. Elec-
tronic Notes in Theoretical Computer Science. Elsevier, 2004, pp. 219–
241. doi: 10.1016/j.entcs.2004.02.037 (cit. on p. 184).

[KL09] Clemens Kupke and Raul Andres Leal. “Characterising Behavioural
Equivalence: Three Sides of One Coin”. In: Algebra and Coalgebra in
Computer Science, Third International Conference, CALCO 2009, Udine,
Italy, September 7-10, 2009. Proceedings. Ed. by Alexander Kurz, Marina
Lenisa, and Andrzej Tarlecki. Vol. 5728. Lecture Notes in Computer
Science. Springer, 2009, pp. 97–112. doi: 10.1007/978-3-642-03741-

2_8 (cit. on p. 75).

[KR20] Clemens Kupke and Jurriaan Rot. “Expressive Logics for Coinductive
Predicates”. In: 28th EACSL Annual Conference on Computer Science
Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain. Ed. by Maribel
Fernández and Anca Muscholl. Vol. 152. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 26:1–26:18. doi: 10.4230/LIPIcs.

CSL.2020.26 (cit. on pp. 183, 184, 223, 275, 276).

[Küp17] Sebastian Küpper. “Behavioural Analysis of Systems with Weights
and Conditions”. PhD thesis. Universität Duisburg-Essen, Fakultät für
Ingenieurwissenschaften, Abteilung für Informatik und Angewandte
Kognitionswissenschaft, Nov. 2017 (cit. on pp. 65, 98–100, 134).

[Kur00] Alexander Kurz. “Logics for coalgebras and applications to computer
science”. PhD thesis. Universität München, May 2000 (cit. on pp. 49,
75).

[LS89] Kim G. Larsen and Arne Skou. “Bisimulation Through Probabilistic Test-
ing”. In: Conference Record of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, Austin, Texas, USA, January 11-
13, 1989. ACM Press, 1989, pp. 344–352. doi: 10.1145/75277.75307

(cit. on pp. 32, 36, 92, 125).

321

https://doi.org/10.1007/978-3-642-00665-4_21
https://doi.org/10.1007/978-3-642-00665-4_21
https://doi.org/10.1016/j.entcs.2004.02.037
https://doi.org/10.1007/978-3-642-03741-2_8
https://doi.org/10.1007/978-3-642-03741-2_8
https://doi.org/10.4230/LIPIcs.CSL.2020.26
https://doi.org/10.4230/LIPIcs.CSL.2020.26
https://doi.org/10.1145/75277.75307

Bibliography

[LR19] Fosco Loregian and Emily Riehl. “Categorical notions of fibration”. In:
Expositiones Mathematicae (2019). issn: 0723-0869. doi: 10.1016/j.

exmath.2019.02.004 (cit. on p. 65).

[Mac98] Saunders MacLane. Categories for the Working Mathematician. 2nd
edition. New York: Springer-Verlag, 1998, pp. ix+317. doi: 10.1007/978-

1-4757-4721-8 (cit. on pp. 56, 59).

[ME45] Saunders MacLane and Samuel Eilenberg. “General Theory of Natural
Equivalences”. In: Transactions of the American Mathematical Society
(1945), pp. 231–294. doi: https://doi.org/10.2307/1990284 (cit. on
p. 39).

[Mad97] Angelika Mader. “Verification of Modal Properties Using Boolean Equa-
tion Systems”. PhD thesis. TU München, 1997 (cit. on p. 272).

[MPT08] Ondrej Majer, AHTI-Veikko Pietarinen, and Tero Tulenheimo. “Games
and logic in philosophy”. In: vol. 15. 2008. isbn: 978-1-4020-9373-9. doi:
10.1007/978-1-4020-9374-6.

[MPT09] Ondrej Majer, AHTI-Veikko Pietarinen, and Tero Tulenheimo, eds.
Games: Unifying Logic, Language, and Philosophy. Vol. 15. Logic, Epis-
temology, and the Unity of Science. Springer, 2009. isbn: 978-1-4020-
9373-9. doi: 10.1007/978-1-4020-9374-6 (cit. on p. 15).

[Mar19] Iza Marfisi-Schottman. “Games in Higher Education”. In: Encyclopedia
of Education and Information Technologies. Ed. by Arthur Tatnall.
Cham: Springer International Publishing, 2019, pp. 1–9. isbn: 978-3-
319-60013-0. doi: 10.1007/978-3-319-60013-0_35-1 (cit. on p. 13).

[Mar76] George Markowsky. “Chain-complete posets and directed sets with
applications”. In: Algebra Universalis 6 (1976), pp. 53–68. doi: 10.

1007/BF02485815.

[MV12] Johannes Marti and Yde Venema. “Lax Extensions of Coalgebra Func-
tors”. In: Coalgebraic Methods in Computer Science - 11th International
Workshop, CMCS 2012, Colocated with ETAPS 2012, Tallinn, Estonia,
March 31 - April 1, 2012, Revised Selected Papers. Ed. by Dirk Pattin-
son and Lutz Schröder. Vol. 7399. Lecture Notes in Computer Science.
Springer, 2012, pp. 150–169. doi: 10.1007/978-3-642-32784-1_9

(cit. on p. 280).

322

https://doi.org/10.1016/j.exmath.2019.02.004
https://doi.org/10.1016/j.exmath.2019.02.004
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/https://doi.org/10.2307/1990284
https://doi.org/10.1007/978-1-4020-9374-6
https://doi.org/10.1007/978-1-4020-9374-6
https://doi.org/10.1007/978-3-319-60013-0_35-1
https://doi.org/10.1007/BF02485815
https://doi.org/10.1007/BF02485815
https://doi.org/10.1007/978-3-642-32784-1_9

Bibliography

[MS19] Cristina Matache and Sam Staton. “A Sound and Complete Logic for
Algebraic Effects”. In: Foundations of Software Science and Computation
Structures - 22nd International Conference, FOSSACS 2019, Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings.
Ed. by Mikolaj Bojanczyk and Alex Simpson. Vol. 11425. Lecture Notes
in Computer Science. Springer, 2019, pp. 382–399. doi: 10.1007/978-

3-030-17127-8_22 (cit. on p. 72).

[May07] Merrilea J. Mayo. “Games for Science and Engineering Education”.
In: Commun. ACM 50.7 (July 2007), pp. 30–35. issn: 0001-0782. doi:
10.1145/1272516.1272536 (cit. on p. 13).

[MM07] Annabelle McIver and Carroll Morgan. “Results on the quantitative
µ-calculus qMµ”. In: ACM Trans. Comp. Log. 8.1:3 (2007) (cit. on
p. 270).

[Mea55] George H. Mealy. “A Method for Synthesizing Sequential Circuits”.
In: Bell System Technical Journal 34.5 (1955), pp. 1045–1079. doi:
10.1002/j.1538-7305.1955.tb03788.x (cit. on pp. 33, 34, 36–38).

[MK16] Murtaza Mehdi and Aihab Khan. “DNA Pattern Analysis using FA,
Mealy and Moore Machines”. In: International Journal of Computer
Science and Information Security 14 (Sept. 2016), p. 9 (cit. on pp. 33,
131).

[MR+17] Michael Michalski, Martin Rieth, Andreas Kempf, and Jens H. Krüger.
“CoFlaVis: A Visualization System for Pulverized Coal Flames”. In:
Comput. Sci. Eng. 19.6 (2017), pp. 72–78. doi: 10.1109/MCSE.2017.

3971156 (cit. on p. 31).

[Mil00] Stefan Milius. “Relations in Categories”. MA thesis. Graduate Program
in Mathematics and Statistics York University Toronto, Ontario, June
2000 (cit. on p. 200).

[MPS09] Stefan Milius, Thorsten Palm, and Daniel Schwencke. “Complete Itera-
tivity for Algebras with Effects”. In: Algebra and Coalgebra in Computer
Science, Third International Conference, CALCO 2009, Udine, Italy,
September 7-10, 2009. Proceedings. Ed. by Alexander Kurz, Marina
Lenisa, and Andrzej Tarlecki. Vol. 5728. Lecture Notes in Computer Sci-
ence. Springer, 2009, pp. 34–48. doi: 10.1007/978-3-642-03741-2_4

(cit. on p. 62).

323

https://doi.org/10.1007/978-3-030-17127-8_22
https://doi.org/10.1007/978-3-030-17127-8_22
https://doi.org/10.1145/1272516.1272536
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1109/MCSE.2017.3971156
https://doi.org/10.1109/MCSE.2017.3971156
https://doi.org/10.1007/978-3-642-03741-2_4

Bibliography

[Mio12] Matteo Mio. “On the Equivalence of Game and Denotational Semantics
for the Probabilistic µ-Calculus”. In: Logical Methods in Computer
Science 8.2:07 (2012), pp. 1–21. doi: 10.2168/LMCS-8(2:7)2012 (cit.
on pp. 270, 276).

[MS17] Matteo Mio and Alex Simpson. “Łukasiewicz µ-calculus”. In: Funda-
menta Informaticae 150.3-4 (2017), pp. 317–346. doi: 10.3233/FI-

2017-1472 (cit. on pp. 271, 276).

[Moh09] Mehryar Mohri. “Weighted Automata Algorithms”. English. In: Hand-
book of Weighted Automata. Ed. by Manfred Droste, Werner Kuich, and
Heiko Vogler. Springer, 2009, pp. 213–254. isbn: 978-3-642-01491-8. doi:
10.1007/978-3-642-01492-5_6 (cit. on p. 31).

[MPR96] Mehryar Mohri, Fernando Pereira, and Michael Riley. “Weighted Au-
tomata in Text and Speech Processing”. In: IN ECAI-96 WORKSHOP.
Vol. abs/cs/0503077. John Wiley and Sons, 1996, pp. 46–50. url: http:

//arxiv.org/abs/cs/0503077 (cit. on p. 31).

[MON70] RICHARD MONTAGUE. “Universal grammar”. In: Theoria 36.3 (1970),
pp. 373–398. doi: https://doi.org/10.1111/j.1755-2567.1970.

tb00434.x (cit. on p. 277).

[Moo56] Edward F. Moore. “Gedanken-Experiments on Sequential Machines”.
In: Automata Studies. Ed. by Claude Shannon and John McCarthy.
Princeton, NJ: Princeton University Press, 1956, pp. 129–153 (cit. on
p. 36).

[Mos99] Lawrence S. Moss. “Coalgebraic logic”. In: Annals of Pure and Applied
Logic - Dedicated to Rohit Parikh on his 60th birthday 96.1–3 (1999),
pp. 277–317. doi: 10.1016/S0168-0072(98)00042-6 (cit. on pp. 17,
125).

[MP82] Herve Moulin and Bezalel Peleg. “Cores of effectivity functions and
implementation theory”. In: Journal of Mathematical Economics 10.1
(1982), pp. 115–145. issn: 0304-4068. doi: https://doi.org/10.1016/

0304-4068(82)90009-X (cit. on p. 277).

[Mul94] Philip S. Mulry. “Lifting theorems for Kleisli categories”. In: Mathemat-
ical Foundations of Programming Semantics. Ed. by Stephen Brookes,
Michael Main, Austin Melton, Michael Mislove, and David Schmidt.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 304–319. doi:
10.1007/3-540-58027-1_15 (cit. on pp. 61, 186).

324

https://doi.org/10.2168/LMCS-8(2:7)2012
https://doi.org/10.3233/FI-2017-1472
https://doi.org/10.3233/FI-2017-1472
https://doi.org/10.1007/978-3-642-01492-5_6
http://arxiv.org/abs/cs/0503077
http://arxiv.org/abs/cs/0503077
https://doi.org/https://doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://doi.org/https://doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://doi.org/10.1016/S0168-0072(98)00042-6
https://doi.org/https://doi.org/10.1016/0304-4068(82)90009-X
https://doi.org/https://doi.org/10.1016/0304-4068(82)90009-X
https://doi.org/10.1007/3-540-58027-1_15

Bibliography

[nca09] ncatlab-anonymous. Rel - Limits and Colimits. Revision 15 on July
2014 and notes of the forum https://math.stackexchange.com/

questions/1931577/equalizers-dont-exist-in-rel visited last on
September 2021. 2009. url: http://ncatlab.org/nlab/show/Rel#

LimitsAndColimit (visited on 09/30/2021) (cit. on p. 201).

[Nic11] Rocco De Nicola. “Behavioral Equivalences”. In: Encyclopedia of Parallel
Computing. Ed. by David A. Padua. Springer, 2011, pp. 120–127. doi:
10.1007/978-0-387-09766-4_517 (cit. on p. 35).

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999. doi: 10.1007/978-3-662-03811-6

(cit. on pp. 225, 241, 244, 245).

[Ott04] Martin Otto. Elementary proof of the van Benthem-Rosen characterisa-
tion theorem. Tech. rep. 2342. Department of Mathematics, Technische
Universität Darmstadt, 2004 (cit. on pp. 15, 71).

[Pac17] Eric Pacuit. Neighborhood Semantics for Modal Logic. Springer Interna-
tional Publishing, Jan. 2017, pp. xii, 154. isbn: 978-3-319-67148-2. doi:
10.1007/978-3-319-67149-9 (cit. on p. 277).

[PT87] Robert Paige and Robert Endre Tarjan. “Three Partition Refinement
Algorithms”. In: SIAM Journal on Computing 16.6 (1987), pp. 973–989.
doi: 10.1137/0216062 (cit. on pp. 31, 98, 99, 101, 110, 112, 125, 274).

[PS78] Robert Paré and Dietmar Schumacher. “Abstract families and the ad-
joint functor theorems”. In: Indexed Categories and Their Applications.
Springer, 1978, pp. 1–125. doi: 10.1007/BFb0061361 (cit. on p. 68).

[Pat03] Dirk Pattinson. “Coalgebraic modal logic: soundness, completeness and
decidability of local consequence”. In: Theoretical Computer Science
309.1 (2003), pp. 177–193. issn: 0304-3975. doi: https://doi.org/10.

1016/S0304-3975(03)00201-9 (cit. on pp. 73, 78, 84, 85, 183, 208).

[Pat04] Dirk Pattinson. “Expressive Logics for Coalgebras via Terminal Sequence
Induction”. In: Notre Dame J. Formal Logic 45.1 (2004). Duke University
Press, pp. 19–33. doi: 10.1305/ndjfl/1094155277 (cit. on pp. 17, 55,
77, 80, 210, 273, 290).

[Pau01] Marc Pauly. “Logic for social software.” PhD thesis. University of Ams-
terdam, Interfacultary Research Institutes, Institute for Logic, Language
and Computation (ILLC), 2001 (cit. on pp. 13, 277, 278).

325

https://math.stackexchange.com/questions/1931577/equalizers-dont-exist-in-rel
https://math.stackexchange.com/questions/1931577/equalizers-dont-exist-in-rel
http://ncatlab.org/nlab/show/Rel#LimitsAndColimit
http://ncatlab.org/nlab/show/Rel#LimitsAndColimit
https://doi.org/10.1007/978-0-387-09766-4_517
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-67149-9
https://doi.org/10.1137/0216062
https://doi.org/10.1007/BFb0061361
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00201-9
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00201-9
https://doi.org/10.1305/ndjfl/1094155277

Bibliography

[Pit00] Andrew M. Pitts. “Categorical Logic”. In: Handbook of Logic in Com-
puter Science, Volume 5. Algebraic and Logical Structures. Ed. by S.
Abramsky, D. M. Gabbay, and T. S. E. Maibaum. Oxford University
Press, 2000. Chap. 2, pp. 39–128. isbn: 0-19-853781-6 (cit. on p. 188).

[PS11] Damien Pous and Davide Sangiorgi. “Enhancements of the bisimulation
proof method”. In: Advanced Topics in Bisimulation and Coinduction.
Ed. by Davide Sangiorgi and Jan Rutten. Cambridge University Press,
2011 (cit. on p. 271).

[PT99] John Power and Daniele Turi. “A Coalgebraic Foundation for Linear
Time Semantics”. In: Conference on Category Theory and Computer
Science, CTCS 1999, Edinburgh, UK, December 10-12, 1999. Ed. by
Martin Hofmann, Giuseppe Rosolini, and Dusko Pavlovic. Vol. 29. Elec-
tronic Notes in Theoretical Computer Science. Elsevier, 1999, pp. 259–
274. doi: 10.1016/S1571-0661(05)80319-6 (cit. on pp. 55, 56, 62, 63,
65, 222, 275).

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification
of concurrent systems in CESAR”. In: International Symposium on Pro-
gramming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings.
Ed. by Mariangiola Dezani-Ciancaglini and Ugo Montanari. Vol. 137.
Lecture Notes in Computer Science. Springer, 1982, pp. 337–351. doi:
10.1007/3-540-11494-7_22 (cit. on p. 241).

[Ran52] George N. Raney. “Completely Distributive Complete Lattices”. In:
Proceedings of the American Mathematical Society 3.5 (1952), pp. 677–
680. issn: 00029939, 10886826. url: http://www.jstor.org/stable/

2032165 (cit. on p. 231).

[Roj15] Raúl Rojas. “A Tutorial Introduction to the Lambda Calculus”. In:
CoRR abs/1503.09060 (2015). arXiv: 1503.09060. url: http://arxiv.

org/abs/1503.09060 (cit. on p. 225).

[Röß00] Martin Rößiger. “Coalgebras and Modal Logic”. In: Coalgebraic Methods
in Computer Science, CMCS 2000, Berlin, Germany, March 25-26,
2000. Ed. by Horst Reichel. Vol. 33. Electronic Notes in Theoretical
Computer Science. Elsevier, 2000, pp. 294–315. doi: 10.1016/S1571-

0661(05)80353-6 (cit. on p. 17).

326

https://doi.org/10.1016/S1571-0661(05)80319-6
https://doi.org/10.1007/3-540-11494-7_22
http://www.jstor.org/stable/2032165
http://www.jstor.org/stable/2032165
https://arxiv.org/abs/1503.09060
http://arxiv.org/abs/1503.09060
http://arxiv.org/abs/1503.09060
https://doi.org/10.1016/S1571-0661(05)80353-6
https://doi.org/10.1016/S1571-0661(05)80353-6

Bibliography

[Rut00] Jan J. M. M. Rutten. “Universal coalgebra: a theory of systems”. In:
Theoretical Computer Science 249.1 (2000), pp. 3–80. doi: 10.1016/

S0304-3975(00)00056-6 (cit. on pp. 16, 46, 48, 49, 51, 52, 72).

[San09] Davide Sangiorgi. “On the origins of bisimulation and coinduction”.
In: ACM Trans. Program. Lang. Syst. 31.4 (2009), 15:1–15:41. doi:
10.1145/1516507.1516510 (cit. on pp. 14, 71).

[San11] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cam-
bridge University Press, 2011. doi: 10.1017/CBO9780511777110 (cit. on
pp. 13, 14, 16, 29, 30, 35, 36).

[Sch08] Lutz Schröder. “Expressivity of Coalgebraic Modal Logic: The Limits and
Beyond”. In: Theoretical Computer Science 390.2-3 (2008). Foundations
of Software Science and Computational Structures, pp. 230–247. doi:
10.1016/j.tcs.2007.09.023 (cit. on pp. 17, 73, 78, 80, 83, 85, 89, 121,
183, 184, 273, 274, 288, 290).

[SP11] Lutz Schröder and Dirk Pattinson. “Description Logics and Fuzzy Prob-
ability”. In: IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July
16-22, 2011. Ed. by Toby Walsh. IJCAI/AAAI, 2011, pp. 1075–1081.
doi: 10.5591/978-1-57735-516-8/IJCAI11-184 (cit. on p. 137).

[Sch61] Marcel-Paul Schützenberger. “On the Definition of a Family of Au-
tomata”. In: Information and Control 4.2–3 (1961), pp. 245–270 (cit. on
p. 185).

[Sco70] Dana Scott. “Advice on Modal Logic”. In: Philosophical Problems in
Logic: Some Recent Developments. Ed. by Karel Lambert. Dordrecht:
Springer Netherlands, 1970, pp. 143–173. isbn: 978-94-010-3272-8. doi:
10.1007/978-94-010-3272-8_7 (cit. on p. 277).

[Sco72] Dana Scott. “Continuous lattices”. In: Toposes, Algebraic Geometry and
Logic. Ed. by F. W. Lawvere. Lecture Notes in Mathematics. Springer,
1972, pp. 97–136. doi: 10.1007/BFb0073961 (cit. on pp. 225, 226, 229,
269, 276).

[Sei96] Helmut Seidl. “Fast and simple nested fixpoints”. In: Information Pro-
cessing Letters 59.6 (1996). Elsevier, pp. 303–308. doi: 10.1016/0020-

0190(96)00130-5 (cit. on pp. 19, 225, 233, 243, 270).

327

https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.1016/j.tcs.2007.09.023
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-184
https://doi.org/10.1007/978-94-010-3272-8_7
https://doi.org/10.1007/BFb0073961
https://doi.org/10.1016/0020-0190(96)00130-5
https://doi.org/10.1016/0020-0190(96)00130-5

Bibliography

[Sok11] Ana Sokolova. “Probabilistic systems coalgebraically: A survey”. In:
Theoretical Computer Science 412.38 (2011), pp. 5095–5110. doi: 10.

1016/j.tcs.2011.05.008 (cit. on pp. 31, 32).

[SK+18] David Sprunger, Shin-ya Katsumata, Jérémy Dubut, and Ichiro Hasuo.
“Fibrational Bisimulations and Quantitative Reasoning”. In: Coalgebraic
Methods in Computer Science - 14th International Workshop, CMCS
2018, Colocated with ETAPS 2018, Thessaloniki, Greece, April 14-15,
2018, Revised Selected Papers. Ed. by Corina Cîrstea. Vol. 11202. Lecture
Notes in Computer Science. Springer, 2018, pp. 190–213. doi: 10.1007/

978-3-030-00389-0_11 (cit. on p. 181).

[Sta09] Sam Staton. “Relating Coalgebraic Notions of Bisimulation”. In: Algebra
and Coalgebra in Computer Science, Third International Conference,
CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings. Ed.
by Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki. Vol. 5728.
Lecture Notes in Computer Science. Springer, 2009, pp. 191–205. doi:
10.1007/978-3-642-03741-2_14 (cit. on p. 73).

[SS98] Perdita Stevens and Colin Stirling. “Practical Model-Checking Using
Games”. In: Tools and Algorithms for Construction and Analysis of
Systems, 4th International Conference, TACAS ’98, Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS’98,
Lisbon, Portugal, March 28 - April 4, 1998, Proceedings. Ed. by Bernhard
Steffen. Vol. 1384. Lecture Notes in Computer Science. Springer, 1998,
pp. 85–101. doi: 10.1007/BFb0054166 (cit. on p. 271).

[Sti95] Colin Stirling. “Lokal Model Checking Games”. In: CONCUR ’95: Con-
currency Theory, 6th International Conference, Philadelphia, PA, USA,
August 21-24, 1995, Proceedings. Ed. by Insup Lee and Scott A. Smolka.
Vol. 962. Lecture Notes in Computer Science. Springer, 1995, pp. 1–11.
doi: 10.1007/3-540-60218-6_1 (cit. on pp. 18, 225, 264, 269, 270,
276).

[Sti99] Colin Stirling. “Bisimulation, Modal Logic and Model Checking Games”.
In: Logic Journal of the IGPL 7.1 (1999), pp. 103–124. doi: 10.1093/

jigpal/7.1.103 (cit. on pp. 13–15, 71, 73, 74, 90, 125).

[SW91] Colin Stirling and David Walker. “Local Model Checking in the Modal
mu-Calculus”. In: Theoretical Computer Science 89.1 (1991), pp. 161–
177 (cit. on p. 263).

328

https://doi.org/10.1016/j.tcs.2011.05.008
https://doi.org/10.1016/j.tcs.2011.05.008
https://doi.org/10.1007/978-3-030-00389-0_11
https://doi.org/10.1007/978-3-030-00389-0_11
https://doi.org/10.1007/978-3-642-03741-2_14
https://doi.org/10.1007/BFb0054166
https://doi.org/10.1007/3-540-60218-6_1
https://doi.org/10.1093/jigpal/7.1.103
https://doi.org/10.1093/jigpal/7.1.103

Bibliography

[Tar55] Alfred Tarski. “A lattice-theoretical theorem and its applications”. In:
Pacific Journal of Mathematics 5 (1955), pp. 285–309. url: https:

//projecteuclid.org:443/euclid.pjm/1103044538 (cit. on pp. 27,
36, 232).

[Trn80] Věra Trnková. “General theory of relational automata”. In: Fundamenta
Informaticae 3 (1980), pp. 189–234 (cit. on pp. 76, 77).

[TR98] Daniele Turi and Jan J. M. M. Rutten. “On the foundations of final
coalgebra semantics: non-well-founded sets, partial orders, metric spaces”.
In: Mathematical Structures in Computer Science 8.5 (1998), pp. 481–
540. doi: 10.1017/S0960129598002588 (cit. on pp. 17, 136, 150, 161,
180, 275).

[Tur37] Alan M. Turing. “Computability and λ-definability”. In: Journal of
Symbolic Logic 2.4 (1937), pp. 153–163. doi: 10.2307/2268280 (cit. on
p. 225).

[Van13] Peter Vankúš. Didactic Games in Mathematics. Faculty of Mathematics,
Physics and Informatics, Comenius University Bratislava, Dec. 2013,
pp. 8, 18. isbn: 978-80-8147-007-3. doi: 10.13140/2.1.3138.9120

(cit. on p. 13).

[Vel17] Jiri Velebil. Categorical methods in universal coalgebra. TACL 2017
Summer School Lecture Notes. 2017 (cit. on pp. 58, 59).

[Ven08] Yde Venema. Lectures on the modal µ-calculus. Lecture notes, Institute
for Logic, Language and Computation, University of Amsterdam. 2008
(cit. on pp. 226, 246, 264).

[Ver06] Anatoly Vershik. “Kantorovich Metric: Initial History and Little-Known
Applications”. In: Journal of Mathematical Sciences 133 (Mar. 2006),
pp. 1410–1417. doi: 10.1007/s10958-006-0056-3 (cit. on p. 145).

[Vil09] Cédric Villani. “Optimal transport – Old and new”. In: Grundlehren der
mathematischen Wissenschaften. Vol. 338. Springer Berlin Heidelberg,
2009, pp. xxii+973. doi: 10.1007/978-3-540-71050-9 (cit. on pp. 139,
145, 156, 274).

[WS21] Paul Wild and Lutz Schröder. “A Quantified Coalgebraic van Ben-
them Theorem”. In: Foundations of Software Science and Computation
Structures - 24th International Conference, FOSSACS 2021, Held as
Part of the European Joint Conferences on Theory and Practice of

329

https://projecteuclid.org:443/euclid.pjm/1103044538
https://projecteuclid.org:443/euclid.pjm/1103044538
https://doi.org/10.1017/S0960129598002588
https://doi.org/10.2307/2268280
https://doi.org/10.13140/2.1.3138.9120
https://doi.org/10.1007/s10958-006-0056-3
https://doi.org/10.1007/978-3-540-71050-9

Bibliography

Software, ETAPS 2021, Luxembourg City, March 27 - April 1, 2021,
Proceedings. Ed. by Stefan Kiefer and Christine Tasson. Vol. 12650.
Lecture Notes in Computer Science. Springer, 2021, pp. 551–571. doi:
10.1007/978-3-030-71995-1_28 (cit. on p. 180).

[WS+18a] Paul Wild, Lutz Schröder, Dirk Pattinson, and Barbara König. “A van
Benthem Theorem for Fuzzy Modal Logic”. In: Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar and Erich
Grädel. ACM, 2018, pp. 909–918. doi: 10.1145/3209108.3209180

(cit. on pp. 18, 137, 165, 167, 180).

[WS+18b] Paul Wild, Lutz Schröder, Dirk Pattinson, and Barbara König. “A
van Benthem Theorem for Quantitative Probabilistic Modal Logic”. In:
CoRR abs/1810.04722 (2018). url: http://arxiv.org/abs/1810.

04722 (cit. on pp. 181, 275).

[Wiß] Thorsten Wißmann. Personal Communication (cit. on p. 110).

[WD+18] Thorsten Wißmann, Ulrich Dorsch, Stefan Milius, and Lutz Schröder.
“Efficient and Modular Coalgebraic Partition Refinement”. In: CoRR
abs/1806.05654 (2018). url: http://arxiv.org/abs/1806.05654

(cit. on p. 17).

[WD+20] Thorsten Wißmann, Ulrich Dorsch, Stefan Milius, and Lutz Schröder.
“Efficient and Modular Coalgebraic Partition Refinement”. In: Logical
Methods in Computer Science Volume 16, Issue 1 (2020). doi: 10.23638/

LMCS-16(1:8)2020 (cit. on pp. 55, 100, 101, 134).

[WMS21] Thorsten Wißmann, Stefan Milius, and Lutz Schröder. “Explaining
Behavioural Inequivalence Generically in Quasilinear Time”. In: 32nd
International Conference on Concurrency Theory, CONCUR 2021, Au-
gust 24-27, 2021, Virtual Conference. Ed. by Serge Haddad and Daniele
Varacca. Vol. 203. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2021, 32:1–32:18. doi: 10.4230/LIPIcs.CONCUR.2021.32

(cit. on pp. 102, 112, 126).

[Wor05] James Worrell. “On the final sequence of a finitary Set functor”. In:
Theoretical Computer Science 338.1-3 (2005), pp. 184–199. doi: 10.

1016/j.tcs.2004.12.009 (cit. on pp. 54, 55, 80, 98).

330

https://doi.org/10.1007/978-3-030-71995-1_28
https://doi.org/10.1145/3209108.3209180
http://arxiv.org/abs/1810.04722
http://arxiv.org/abs/1810.04722
http://arxiv.org/abs/1806.05654
https://doi.org/10.23638/LMCS-16(1:8)2020
https://doi.org/10.23638/LMCS-16(1:8)2020
https://doi.org/10.4230/LIPIcs.CONCUR.2021.32
https://doi.org/10.1016/j.tcs.2004.12.009
https://doi.org/10.1016/j.tcs.2004.12.009

Bibliography

[Yan96] Wuu Yang. “Mealy Machines are a Better Model of Lexical Analyzers”.
In: Computer Languages 22.1 (1996), pp. 27–38. doi: 10.1016/0096-

0551(96)00003-3 (cit. on p. 33).

[Zie98] Wieslaw Zielonka. “Infinite Games on Finitely Coloured Graphs with
Applications to Automata on Infinite Trees”. In: Theoretical Computer
Science 200.1-2 (1998), pp. 135–183. doi: 10.1016/S0304-3975(98)

00009-7 (cit. on p. 247).

331

https://doi.org/10.1016/0096-0551(96)00003-3
https://doi.org/10.1016/0096-0551(96)00003-3
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

Bibliography

332

C

List of Symbols

Symbol Description
S Spoiler, p. 14
D Duplicator, p. 14
N,N0 natural numbers, p. 25
Q,R rational and real numbers, p. 25
Q0,R0 rational and real numbers including 0, p. 25
+ disjoint union, p. 16
∼ we write x ∼ y if x, y are bisimilar. p. 35
2 we write 2 for {0, 1}, p. 77
• 1 = {•}, usually associated with termination, p. 16
p̂ to denote the subset of a characteristic function p : X → 2, p. 78
[x]R equivalence class [x] for an equivalence relation R, p. 26
X/R equivalence classes based on an equivalence relation R, p. 26
≡ to denote an equivalence relation

LTS Labelled transition system, p. 13
NDA non-deterministic automata, p. 62
DFA deterministic finite automata, p. 31
MTS metric transition system, p. 140
Set the category of sets and functions, p. 40
Rel the category of sets and relations, p. 40
Kℓ(T) the Kleisli category induced by a monad (T, η, µ), p. 61
Cop opposite category, p. 42
Cat category of small categories, p. 65
E(Φ) category of elements aka the Grothendieck construction, p. 67
cBA∧ category of complete Boolean algebras, p. 210
idC identity morphism over the object C, p. 25
IdF identity natural transformation over a functor F , p. 45
IDC identity functor over a category C

333

List of Symbols

|_| forgetful functor C→ Set, p. 185
P the powerset functor, p. 43
Pf the finite powerset functor, p. 43
Q, Q̃ the contravariant powerset functors, p. 65, 78
D the distribution functor, p. 43
MF multiset functor over a semiring S, p. 60
M the monotone neighbourhood functor, p. 108
⊣ to denote an adjunction, p. 56
f∗ for Φf with Φ : Cop → Cat, p. 65
HM Hennessy-Milner logic, p. 74
2,3 the modal operators of HM, p. 15
Λ a set of predicate liftings, p. 80
ev, evF an evaluation map F2→ 2 for a functor F , p. 79
γ a quantitative evaluation map F [0,⊤]→ [0,⊤] for a functor F , p. 146
λ predicate lifting as natural transformation, p.78
M(Γ) quantitative coalgebraic modal logic, p. 162
MΛ coalgebraic modal logic beyond Set, p. 208
JφK semantic of some formula φ, p. 84, 162
md(φ) modal depth, p. 162
dL

α logical distance, p. 162
dG

α game distance, p. 171
≤F lifted order, p.76
d↑F the Kantorovich pseudometric, p. 146
F̃γf γ ◦ Ff , p. 146
de, d⊖ euclidean metric, directed metric, p. 139
1−→ non-expansive function, p. 139
Bε(xi) an ε-ball around xi, p. 165
⊂ - inclusion arrow, p. 202
↑ l upward-closure for l ∈ L where L is a lattice, p. 227
P partial ordered set, p. 26⊔
, ⊔ join and meet of a subset X ⊆ P , p. 26
⊤,⊥ top and bottom of an lattice L, p. 26
µ, ν standard notation for the least and greatest fixpoint (respectively), p. 233
η ∈ {µ, ν} , p. 233
≪ way-below (relation), p. 228

↠

l the sets of elements way below l, p. 229

334

List of Symbols

n integer interval {1, . . . , n}, p. 230
(Pn,⪯) lexicographical order with P a partial order, p. 231
⪯i truncated lexicographical order, p. 231
x =η f(x) system of fixpoint equations, p. 233
sol (E) solution of a system of fixpoint equations E, p. 234
E(),A() possible moves of ∃ and ∀, p. 247
T-Beg Tool for behavioural equivalence games, p. 127
Paws Tool for the analysis of weighted systems, p. 127

335

Index

F -bisimulation, 51
F -coalgebra, 49
F -homomorphism, 50
PMet(category), 149
Rel (category), 43
Set(category), 43
Meas(category), 70
Pred (category), 192
ε-ball, 169
≡G, 220
≡L, 208
κ-accessible, 82
Graph(category), 43
Poset (category), 47
µ-approximant, 231, 254
ν-approximant, 231, 255
σ-algebra, 30
T-Beg, 23, 129

abstract game, 216
adjunction, 189
adjunction, adjoint functor, 58
Algorithm 3.1, 106
antisymmetry, 28
approximants, 242, 244
Arzelà-Ascoli theorem, 169
ascending chain, 29
ascending, descending chains, 29
Ash’s theorem, 171
associativity, 30

Banach fixpoint theorem, 164
Barr extension, 78
basis, 232
behavioural distance, 161
bifibration, 69
bisimilarity, 38
bisimulation (LTS), 37
bisimulation game LTS, 75
bisimulation Mealy machines, 39
Boolean algebra, 30
bounded lattice, 28
bounded powerset functors (Pκ), 45

cardinal number, 45
category, 42
class, 42
classical case, 75
classical triad, 22, 75
coalgebraic behavioural equivalence, 52,

77
coalgebraic game, 87, 216
coalgebraic modal logic, 86, 165, 212
coequalizer, 51
compact element, algebraic lattice, 234
complemented lattice, 28
complete lattice, 29
completely distributive, 29
completely join-irreducible, 232
composition of functors, 46
concrete category, 47

337

Index

concurrency, 31
cone, 48
conformance-testing, 145
continuous lattices, 233
continuous variable, 145
contravariant functor, 67

deterministic finite automata (DFA), 32
diagram, 48
Dirac distribution, 120
discrete probabilistic system, 34
distinguishing formula, 76, 117, 129, 181,

216, 224
distribution functor (D), 45
distributive law, 64

Egli-Milner, 78
Ehrenfeucht-Fraïssé games, 17
endofunctor, 45
equivalence relation, 28
Euclidean distance, 143

faithfull, full functor, 46
fibration, 69
fibre, 69
final chain, 57
finitely-branching, 76
fixpoint game, 251
functor, 44

game distance, 175
Grothendieck construction, 69

Hausdorff metric, 146
Hennessy-Milner logic, 76
Hennessy-Milner theorem, 76, 165
hybrid systems, 144

identity element, 30

indexed categories, 67, 191
infimum, 29
input functor, 151

join, 28
jointly injective, 82

Kantorovich lifting on Set, 150
kernel, 54
Kleene’s iteration, 29
Kleene’s theorem 29
Kleisli category, 63

labelled transition system (LTS), 31
lattice, 28
lexicographic order, 235
limit, colimit, 48
linear functors, 45
Lipschitz constant, 153
locally small category, 43
logical distance, 166
logical semantic, 86, 191

Mealy machine, 35, 133
meet, 28
metric transition system (MTS), 144, 145
modal depht, 166
model checking, 245
monad, 61
monoid, 29
monotone function, 29
monotone neighbourhood Functor, 285

natural transformation, 47
Non-deterministic automata (NDA), 65
non-expansive function, 143

opfibration, 69
opposite functor, category, 45

338

Index

ordinal, 29

P-cartesian, 68
parity games, 20, 236
partial ordered set, 27
partition refinement, 98
pointwise order, 235
poset, 27
post-fixpoint, 29
powerset functors (P), 45
pre-fixpoint, 29
pre-solution, 238
predicate lifting, 80
preorder, 28
preorder lifting, 78
probabilistic bisimulation, 38
probabilistic distance, 148
probabilistic system (PB), 144
properties of evaluation maps, 153
pseudometric, pseudometric space, 142
pullback, weak pullback, 54, 77

quantitative game, 175

reflexivity, 28
relation, 27

Scott-continuity, 154
separable by singletons, 108
separation, separating set, 82, 194
solution, 238
span, cospan, 48
splitter, 100
strongly separating, 122
substitution, 238
supremum, 29
supremum metric, 153
system of equations, 237

terminal object, 57
total-boundedness, 169
transitivity, 28
triad LTS, 77
truncated lexicographic order, 236

universal, 48
upward-closure, 232

Wasserstein lifting, 184
way-below, 233
well-ordered, 28
winning strategy, 104, 106, 177, 181, 220,

273

339

	Introduction
	Motivation
	Structure, Contributions and Publications

	Mathematical Foundations
	Notations and Elementary Definitions
	State-Based Systems
	Three Different State-Based Systems
	Behavioural Equivalence

	Category Theory – Joy with Cats
	Categories and Morphisms
	Functors, Natural Transformations and Limits
	Behaviour Coalgebraically
	Adjunctions and Monads
	(Bi)fibrations and Indexed Categories

	Behavioural Equivalence:Games over Set
	Introduction
	Foundations for the Classical Case
	The Triad for Labelled Transition Systems
	Categorical Foundations for the Classical Case
	Coalgebraic Modal Logics for the Classical Case

	Coalgebraic Games for the Classical Case
	Coalgebraic Games
	The Coalgebraic Triad: Bisimulation, Modal Logics & Games

	Explaining Non-Bisimilarity in a Coalgebraic Approach
	An Introduction into Coalgebraic Partition Refinement Algorithms
	Computation of Spoiler Winning Strategies
	From Winning Strategies to Distinguishing Formulas
	Recoding Modalities

	Conclusion and Discussion

	Tools and Case Studies
	T-BEG: A Generic Tool for Behavioural Equivalence Games
	Design
	Functor Interface

	Case Study on Mealy Machines
	Conclusion

	Behavioural Distances: Modal Logic and Games over Set
	Introduction
	Foundations
	Two Quantitative Models
	Behavioural Distance Coalgebraically

	Modal Logics for the Metric Case
	Behavioural Distance Games over Set
	Formulation of the Game
	Spoiler Strategy for the Metric Case

	Conclusion and Discussion

	Behavioural Equivalence: Coalgebraic Modal Logic and Games Beyond Set
	Introduction
	Foundations
	Kleisli Extension of Predicate Liftings
	Coalgebraic Modal Logic and Games Beyond Set
	The Witnessing Coalgebra Homomorphisms
	Logic
	The Game-Theoretical Perspective
	The Relation between Logic and Games

	Conclusion and Discussion

	Parity Games over Continuous Lattices
	Introduction
	Foundations
	Fixpoint Equations: Solutions and Approximants
	Application Scenarios
	Modal -Calculus
	Data Flow Analysis

	Fixpoint Games over Continuous Lattices
	Definition of the Game
	Correctness and Completeness
	Comparison with Other Games

	Winning Strategies and Progress Measures
	Conclusion and Discussion

	Conclusion and Future Work
	Additional Material
	Games for Non-Weak Pullback preserving Functors
	Our Coalgebraic Game over Two Coalgebras
	Additional Material for Chapter 3
	Proofs for Chapter 6

	Bibliography
	List of Symbols
	Index

