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Abstract
For mass deployment of RFID systems, cheap and accurate item level identification and tracking

are profoundly needed. Fortunately, unlike conventional chip-based RFID, chipless RFID

systems offers low-cost printable tags holding a better chance to enter the era of penny-cost tags.

This dissertation concentrated on solving three challenges in the detection of the chipless tag

inside an indoor environment.

The first aspect discussed in the thesis are the chipless RFID clutter removal techniques.

In chipless RFID the environmental clutter response is defined as the signal reflected from

the environment, that does not interact with the tag. This signal has higher power than the

backscattered signal from the tag, rendering the tag signature undetectable. Two algorithms to

overcome this problem was used, the first is empty room calibration. The first algorithm is based

on subtracting the measurement with the tag from the one without. The second algorithm is Rake

receiver using PN sequence; this algorithm requires no pre-measurement calibration.

The second aspect is notch detection and identification which is a critical part of the chipless

system. This part is responsible for converting the notches into bits. For effective detection, a

windowing operation is proposed, where each window may contain a notch or not. Three novel

techniques are implemented to detect the notch. The first is matched filter were a reference notch

is compared with the incoming signal. The second is window based singular value decomposition,

where a constellation is created to detect not only the existence of a notch but also the bandwidth

of the notch. The third notch detection technique is dynamic frequency warping. This technique

utilizes non-linear warping to detect the notch and the frequency shifts that occurs on the notch.

The third aspect discussed in the thesis is tag localization. In this aspect, two algorithms are

implemented and explained. The first is trilateration which requires three different readers. The

second localization algorithm exploits received signal strength and angle of arrival to detect the

location of the tag accurately.

All the algorithms were tested using a real testbed to validate the reliability of the techniques.

The measurements were done using fabricated tags in an indoor environment using Software

Defines Radio (SDR).





Abstrakt

Für die weitere Massenverbreitung von RFID Systemen ist ein günstiges und genaues Verfahren

zur Objektlokalisierung und –verfolgung zwingend erforderlich. Chiplose RFID Systeme

erlauben im Gegensatz zu herkömmlichen chipbehafteten RFID Systemen den Einsatz von

einfachen, druckbaren RFID Tags, eine Möglichkeit zum Einstieg in die Ära von extrem billigen

RFID Tags. Diese Dissertation konzentriert sich auf die Lösung von drei Herausforderungen bei

der Erkennung von chiplosen RFID Tags innerhalb geschlossener Räume.

Der erste in der vorliegenden Arbeit diskutierte Aspekt beschäftigt sich mit Methoden zum

Eliminieren des Störechos der Umgebung (clutter removal techniques). Im chiplosen RFID

System ist das Umgebungsstörecho definiert durch das von der Umgebung reflektierte Signal, das

nicht mit dem RFID Tag interagiert. Die Stärke dieses Signals ist in jedem Fall größer als die des

vom RFID Tag zurückgestrahlten (backscattered) Signals, was die Signaturerkennung des RFID

Tags unmöglich macht. Zur Lösung dieses Problems schlage ich zwei Algorithmen vor. Der

erste ist die Leerraum-Kalibrierung (empty room calibration). Bei diesem Algorithmus werden

die Messungen mit RFID Tag von denen ohne RFID Tags abgezogen. Der zweite Algorithmus

basiert auf dem Rake-Receiver unter Nutzung einer Zufallsfolge (PN sequence), er erfordert

keine zusätzliche Kalibrierung.

Der zweite Aspekt betrifft die Notch Erkennung und Identifikation, ein sehr wichtiger

Bereich des chiplosen RFID Systems. Er ist dafür verantwortlich, die Notchs in Bits

umzuwandeln. Für eine effektive Detektion werden Windowing (Fenster) Verfahren

vorgeschlagen, wobei jedes Fenster einen oder auch keinen Notch beinhalten kann. Insgesamt

drei neue Verfahren zur Notch Erkennung wurden implementiert. Als erstes ein Matched Filter

(MF), in dem der einkommende Notch mit einem Referenz Notch verglichen wird. Das zweite

Verfahren basiert auf einer gefensterten Singulärwertzerlegung, damit kann sowohl der Notch

erkannt werden, als auch seine Bandbreite bestimmt werden. Als drittes Verfahren wird das

dynamische Frequency Warping vorgestellt. Diese Technik nutzt nichtlineare um die Notche und



die Frequenzverschiebungen, die an den Notches auftreten, zu erkennen.

Als dritter Aspekt wird die Lokalisierung der RFID Tags in dieser Dissertation diskutiert.

Dazu werden zwei Algorithmen erklärt und implementiert. Der erste Algorithmus beruht auf

der Triangulation durch drei getrennte RFID Lesegeräte, während sich der zweite die Position

des RFID Tags aus der Signalstärke und dem Winkel des vom RFID Tag kommenden Signals

berechnet.

Alle genannten Algorithmen und Verfahren wurden in einer realen Innenraum Testumgebung

mit RFID Tags und einer Software Defined Radio (SDR) Plattform vermessen, um die

Zuverlässigkeit der Algorithmen unter normalen Bedingungen zu überprüfen.
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1 | Introduction

Radio Frequency Identification (RFID) has undergone significant development, regarding ap-

plications, in the past decade. It now has a large number of tag families, each family serving a

specific market and fulfilling very special needs. However, since the adoption of the retailers to

RFID tags for shelf-level stock replenishment, the number of tags is expected to grow from 7 to

25 billion in 2020 [2]. Experts also anticipate rapid growth of RFID use in the pharmaceutical

market for anti-counterfeiting applications [3]. This extremely wide variety of applications has

yielded a significant number of limitations, which differ according to the intended field of use,

necessitating the creation of tags of various sizes, able (or not) to resist high mechanical- or

temperature-based stresses or to ensure secure data exchange [4].

To meet this exponential rising needs, new RFID technologies have appeared over time,

where better tags and systems are developed. This thesis will concentrate on passive tags, which

are tags which need no internal batteries to operate. This type of tags is cheap and small, which

makes them ideal candidates for mass deployment.

The first passive technology was High Frequency (HF) tags. These tags relied on coupling

for identification, which leads to a very low reading range. This was all replaced by Ultra High

Frequency (UHF) RFID tags, where the signal is exchanged by wave propagation. Now tags are

not only limited to the domain of identification, but new domains are open. Passive RFID are now

used for sensing, even integrating with other wireless technologies like WiFi [5], Bluetooth [6]

or Zigbee [7]. This is only the beginning, new standards and technologies are emerging every

day to achieve full replacement of the optical barcodes and smooth the transition to the age of

Internet of Things (IoT). In IoT, all devices will have the capability to sense the environment and

interact with it.

In passive UHF RFID, the absence of the battery in the tag results in a lower cost than the

active tags. However, when considering the concept of the tag cost, barcodes will always be the
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benchmark reference. These led to the introduction of chipless RFID or RF barcodes. These tags

do not contain any chip, which makes them much cheaper than the UHF tags. To understand

the development of chipless RFID, it is important to view it in comparison to the UHF RFID

and barcodes. As mentioned above the RFID has the advantage of having high functionality

given by the use of electromagnetic waves for data exchange. These functions are not possible to

implement using optical barcodes. Even though, till now 70% of all items are equipped with

barcodes [4]. The reason for this is that the optical reader and barcode are extremely cheap. Due

to the presence of electronic circuits, UHF tags have a non-negligible cost much higher than that

of barcodes. Therefore, the logical step is to produce tags that do not contain chips. The chipless

RFID have the advantage of having increased reading range and the possibility to detect multiple

’barcodes’ at the same time, which is not possible by using optical barcodes.

1.1 Motivation and Scope

Chipless tags are most often composed of a substrate (like paper) on which specific conductive

patterns are placed. The interaction of the indecent electromagnetic wave with the geometry and

shape of these patterns will give the tag ID or signature, thus eliminating the need for a chip.

This hard coded read-only signature will make the tag hard to tamper with making the tag more

secure. The chipless tag may vary in its shape or design which makes the possibility to design

any signature possible. Depending on the design of the tag, the signature could be found in either

the time response or the frequency response. Each has its features and disadvantages, in this

thesis, we will concentrate on the Frequency Coded (FC) tags.

There is much work done related to the design of the FC chipless tags. It FC chipless tags

consists of frequency resonators that absorb certain frequencies from the incident Ultra Wide

Band (UWB) signal, creating a notch. This notched signal is then reflected back to the reader

where it is detected and decoded, just like a radar system. Unfortunately, all the research is

focused on the tag side, and little work has been done on the reader side.

The efficiency of the reader will make or break the chipless RFID system. Certain detection

challenges must be addressed like:

1. Reader transmitted signal: Since the tags are FC, the transmitted signal should have

high bandwidth to cover the operation bandwidth of the tag. Ideally a time impulse should

include the whole bandwidth needed, but unfortunately, its power has to be under the UWB
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Federal Communication Commission (FCC) regulation mask. This means that the signal

power should be less than the noise power. Considering that the reflected power from

the tag is very low, using the pulse signal will be useless. An investigation on alternative

signals must be studied, and the efficiency of the system should be analyzed.

2. Radar Cross Section (RCS) of the tag: Its frequency response describes every tag

investigated in the literature. Which makes sense, since the objective is to study the

efficiency of the resonators at different frequencies. In a real scenario, the tag’s RCS has a

spacial correlation. Which means that the tag has an RCS radiation pattern, making it hard

to detect at certain angles. Therefore, to calculate the interrogation zone both the radiation

pattern of the reader antenna and the tag has to be considered.

3. The channel and clutter effects: Unlike other wireless systems where the base-station

and the users are using different communication domains to communicate (like frequency

or time), the reader and the tag use the same frequency and time. This will lead to one

of the biggest problems in chipless RFID , which is clutter. Clutter or self-interference is

the signal generated by the reader and reflected back from the environment. The clutter

response power is usually higher than the signal backscattered from the tag.

4. Notch detection: After the reader receives the signal, a notch detection should be applied.

This is important to develop an efficient detection algorithm that could detect the notches.

This should algorithm should be fast and reliable.

5. Localization: More and more applications require localization. For localization to be

done accurately, all the above problems have to be addressed.

1.2 Dissertation Contributions and Organization

In this dissertation, each reader aspect mentioned above will be considered. Each problem will

be intensively simulated and modeled. Moreover, real-time measurements will be done using

conventional measurement equipment and a commercial Software Defined Radio (SDR). The

main contribution and chapter organization could be summarized as follows.

1. Chapter 2: Background on Chipless RFID

This chapter presents an introduction to RFID. It begins by categorizing different types of

RFID and their related applications. It briefly shows the UHF system and the ON/OFF
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keying used. It then goes to explain the chipless system and the gives a short description on

the limitation of the reader in the chipless RFID system. It also gives a brief introduction

on the test-bed used.

2. Chapter 3: RFID Channel Modeling, Estimation and Equalization

Chapter 3 starts by formulating the chipless RFID channel. It clearly shows the effect

of the clutter response on the received signal. Moreover, the equations clearly show

the spatial dependence of tag’s RCS. It also introduces a novel way, using a ray tracing

tool Wireless Insite (WI), to simulate the EM designed tag. The WI uses the frequency

dependent RCS radiation pattern to calculate what will the reader detect in an indoor

environment. These results are compared with the real measurements taken using an

SDR platform. Different techniques are then used to mitigate the clutter effect. The

first technique introduced is the empty room calibration, where an empty measurement

is subtracted from a tag measurement. Pseudo Noise (PN) sequence and Rake receiver

technique were also introduced to remove the environmental effect of the measurement.

All techniques are simulated and measured using fabricated FC tags. Both techniques are

compared at the end of the chapter.

3. Chapter 4: Novel Identification Techniques in Multipath Channel

Chapter 4 introduces information theory and notch detection techniques to the chipless

RFID. The chapter starts by introducing windowing; this technique will allow the detection

one notch at a time. A mathematical framework is then introduced of three signal process-

ing algorithm which we will utilize for notch detection. The algorithms introduced are

matched filter, Singular Value Decomposition (SVD) and Dynamic Time Warping (DTW).

An investigation was made, using the mentioned algorithms, on some key performance

issues. These issues include ideal notch width, where various notch widths are tested.

This simulation was done to answer a major question, Should a wide or a narrow notch

be used?! This issue will be vital when trying to increase the notch capacity. We also

investigated the system performance, represented by the probability of detection Pd , when

the notch is wider than the window size. The next investigation was single notch detection

where every notch represented a logical 1 or a 0. Furthermore, the ability of the techniques

to detect notch bandwidth was also studied and the recommendation for the best technique

is given. The last contribution in this chapter was the effect of the notch frequency shift,

due to tag manufacturing imperfection or uncalibrated reader.
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4. Chapter 5: Localization in Chipless RFID

In this chapter, chipless localization is introduced. First different localization techniques

will be discussed in details. Then chipless RFID link budget is formulated. A simulation

using WI was also created to calculate the interrogation zone of the tag. Two techniques

were investigated, the first is the trilateration estimation. It was proved that using this

algorithm will not be efficient in all cases. Moreover, a new technique using Matrix Pencil

Method (MPM) and Received Signal Strength (RSS) is simulated and measured.

5. Chapter 6: Conclusions and Future Work

This chapter the conclusion to the whole thesis and future work will be discussed.

For convenience, a schematic diagram showing the contributions within the chapters is

presented in Fig. (1.1)

Notch 
Detection 

Localization

Channel 
Detection 

Equalization 

Indoor Clutter 

Removal
Matched Filter 

Time Warping

SVD

2 D using DoA

1 D using RSS 

and ToA

Figure 1.1: Representation of the contribution and the chapters.
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In this chapter the background and the basics of chipless RFID is presented. An overview of

different types and application of RFID is also stated. Furthermore, the system components of

the chipless RFID are categorized, and their respective function is clearly illustrated. At the end

of the chapter, a system diagram with all the Chipless RFID reader components is shown.

2.1 Introduction

The need for identification and localization is growing rapidly in recent years. It started from the

punch card [8], the barcode to the invention of RFID technology in 1949. All technologies had

one aim was to identify the objects it was attached to. This made it very popular in many service

industries, purchasing and distribution logistics, industry, manufacturing companies and material

flow systems [9].

There are two broad categories of RFID systems as described in Fig. (2.1), passive and

active systems. Active tags have their transmitter and a power source which makes them ideal

for long distance tracking or on large assets like containers. They usually operate at VHF and

UHF frequency as shown in Fig. (2.2), and they typically have a read range of 20 meters to 100

meters. For a large scale deployment, active RFID will prove to be costly. This advantage leads

to the use of passive RFID.

Passive RFID tags do not have a transmitter; they reflect back energy (radio waves) coming

from the reader antenna. They are cheaper than active tags and require no maintenance, which is

why for massive tagging it is much more efficient. Passive tags can operate at low frequency,

high and ultra-high frequency but they have a much shorter read range than active tags. In passive

RFID there is two main type chipped and chipless.

In chipped tags, the tag contains a Application-Specific Integrated Circuit (ASIC) chipset
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RFID

Passive Active

Chipless RFID Chipped RFID

Figure 2.1: Classification of RFID systems.
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Figure 2.2: Frequency spectrum used by RFID systems.

in the tag [10]. In the chipped system the reader sends a Continues Wave (CW) the modulator

inside the chip directly adjusts the antenna load to represent the backscattered data [11] as shown

in Fig. (2.3).

Reader

Transmitted CW

C
h
ip
p
ed

T
ag

Backscattered Signal

Figure 2.3: Chipped RFID system.

The reader receives and decodes this backscattered signal to identify and detect the tag.
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At the chipped RFID technology’s early days only internationally available ISM frequencies

and the frequency range below 135 kHz could be used due to the nonassignment of separate

frequencies [9]. Due to the growing commercial importance of RFID systems and the increasingly

liberal frequency regulation in Europe and other regions, new frequencies and standards were

created. The most popular standard is the UHF EPC standard, where the tag operates in the 865

and 868 MHz frequency range. Chipped RFID tags have since dominated the market with the

ability to detect multiple tags and the range was acceptable. It quit did not replace the barcode

system since the cost of the tag was still high for mass deployment.

The other passive solution that will prove to be promising is chipless RFID. A chipless

tag costs less than a cent, and these have the potential for mass deployment for low-cost, item-

level tagging as the replacement technology for optical barcodes [10]. Chipless RFID tags

could be printable just like regular barcodes. It also has more or less the advantage of its

chipped counterpart. In the following sections, a full description about the chipless RFID will be

explained.

2.2 Chipless RFID

Given the high cost of silicon chip RFID tags (compared to the printable barcodes), efforts to

design low-cost RFID tags was the main target of the research community. The idea was to

remove the silicon chip and use the tag electromagnetic properties of materials and/or design

various conductor layouts/shapes to achieve particular electromagnetic properties/behavior [12].

There are two main types of chipless RFID:

• TDR-based chipless

• Spectral-based chipless RFID

TDR-based chipless: these RFID tags are interrogated by sending a signal from the reader

in the form of a pulse and listening to the echoes of the pulse sent by the tag as shown in Fig.

(2.4). A train of pulses is then created which can be used to encode data [12]. These tags are

sometimes called SAW tags or delay line based tags. The signature of the tag is determined by

the time delay [13–15]. Some disadvantage of such tags is the size of the tag and the inaccuracy

of the delay concept in a real channel.

The second type of chipless RFID and the one discussed in this thesis is spectral based

RFID. In the spectral based RFID, the data is encoded using resonators. Each resonator absorbs
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SAW tag

Reader

Figure 2.4: SAW tags RFID system.

some of the transmitted power at a certain frequency. To get the full signature of the tag, the

reader has to transmit an UWB signal. The tag the creates notches at the required frequency.

Unlike the chipped RFID, the chipless RFID does not need any charging to work.

Chipless Tag

R
ea
d
er

Transmitted Signal

f

f

Figure 2.5: Spectrum based chipless RFID system

To replace the barcode for item level labeling, the chipless tag has to have the advantages

of both the chipped tag and the optical barcode. This will require the chipless tag to be able to

detect multi tags, high reading range, high capacity and high probability of detection. Chipless

tags could be categorized into two broad categories:

2.2.1 Spectral Signature based tags

Several attempts were done to design the chipless tag [16–22]. All of the tags have the same

functionality but with different designs. Every new design was made to solve a disadvantage in

the chipless system.

• Multiresonator based tags

• Multiscatterer based tags
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Multiresonator based tags

The multi resonating chipless tag comprises three main components. The transmitting and

receiving antennas and multi-resonating circuit as shown in Fig. (2.6). The transmitter and

the receiving antenna must be UWB antennas to receive all the incoming frequency range.

The resonator circuit is designed to absorb certain frequencies representing the notch. The

signal is then passed to the transmitter where it retransmits the signal in a different polarization.

The receiving and retransmitting tag antennas are cross-polarized to minimize interference

between the interrogation signal and the retransmitted encoded signal containing the spectral

signature [16–19].

R1 R2 Rn

UWB Rx
Antenna

UWB Tx
Antenna

Mmultiresonator Circuit

Figure 2.6: Spectrum based chipless RFID system

Multiscatterer based tags

Multi scatterer based tag consists only of scatterers with different dimensions [22–24]. Each

scatterer serves as a receiving antenna, a filter and a transmitting antenna as shown in Fig. (2.7).

These scatterers act like radar targets, and they will generate a unique spectral ID to encode

data. This type of tags has an advantage of being smaller since it does not require the use of

antennas for reception and retransmission. The identity of the tag will be presented by its RCS.

Understanding the RCS behavior is important for the efficient design and detection of chipless

RFID tags. This thesis will all be based on this type of tags.
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Figure 2.7: Two Multiscatterer based tags

2.2.2 Spectral Signature Based Reader

To replace the barcode and have the same performance as the chipped RFID system, the reader

should be able to detect and decode the tag efficiently and reliably in any environment. Another

requirement is that the reader be cheap and small. Moreover, it should be able to operate

effectively in all the UWB frequency range of the tag. It also has a very low reading sensitivity

and high antenna gain to detect long range tags. To achieve all those targets every aspect and

function of the reader should be optimized to give the best performance The following sections

will provide a short description of each function.

Reader Antenna

Reader antenna must support the UWB frequency range. There are two choices for the selection

of the reader antenna, either omni-direction or directional antenna. As later explained in chapter 5,

omnidirectional will yield in much lower range than the directional. So it is always recommended

to use a high gain directional antenna since the reflected signal power is low. The frequency

response of the antenna should almost be constant over the whole range of the UWB frequency

to avoid fluctuating result, which might be considered as a notch by the detector.

Transmitted Signal

The first task of the reader is to interrogate the tag with an UWB signal. This signal could be a

pulse that covers the whole frequency or a sinusoidal like Linear Frequency Modulation (LFM)

signal. UWB pulses have the disadvantage of needing high sampling rate at the reader side

for detection. This will require the reader to be expensive. Another challenge is in the FCC
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regulations, the power transmitted should be less than the noise level which will lead to low

detection range.

One of the most widely used pulse compression waveforms is LFM waveform or the chirp

waveform. The frequency of LFM linearly increases (up-chirp) with time. LFM function sweeps

linearly across a total bandwidth of b Hz during the t-second pulse duration. Therefore, the

waveform is feasible to be achieved by the simple analog circuits.

Detection

If the tag is in the interrogation zone of the reader, the tag will reflect the incoming signal with

its signature. The second requirement of the reader is to analyses this signal to be able to detect

and identify the tag.

The signal received by the reader antenna includes the scattered signal from the chipless

RFID tag located in the interrogation zone, reflections from background objects (clutter), the

reader antenna transfer function and noise. Therefore, the detection process is a challenging

aspect of the design of chipless RFID systems. In most situations, the reflections from background

objects are stronger than the tag response [11]. Therefore an effective clutter equalization

technique could be applied to suppress all the unwanted signals.

After the signal is cleared Fourier Transform (FT) should be applied to the signal to detect

the existence of a notch or not. This is a major function of the detector. The whole detection

chain is shown in Fig. (2.8)

Channel equalizer Notch Detector Decoder

LFM Transmitter

Chipless Reader

Figure 2.8: Chipless RFID block Diagram
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ization

In this chapter, FC chipless RFID channel modeling and equalization is presented. The chipless

tag is modeled by its 3D RCS and using ray-tracing tools, an analysis of the received signal is

calculated. Moreover, a test bed is created using SDR to detect the backscattered signal from the

tag. Thus creating a measurement platform for online channel measurement and equalization.

In this chapter two algorithms is introduced, empty room calibration and Rake Receiver with

PN-Sequence. Both algorithms mathematical framework and results are shown and discussed.

3.1 Introduction

RFID systems are expected to provide both identification and high-definition localization of

objects with improved reliability and security while maintaining low power consumption and

cost. UWB FC chipless systems are a promising solution for next generation RFID systems to

overcome most of the limitations of the current narrow band chipped UHF RFID technology

such as high tag cost and complexity, insufficient ranging resolution for accurate localization,

sensitivity to interference and scarce multiple-access capability [25]. The main performance

criteria for RFID tags are the reading range, speed and accuracy. For many applications,

such as warehouses, the read range should be maximized to reduce the number of readers

required [26] [27]. The tag selected is FC orientation independent, small in size and easy cheap

to fabricate and using UWB signals, the reader can rapidly detect the code of the tag dependent

on the RCS of the tag at a selected frequency.

However, in a practical environment, there are multi-path interferences in the intercepted

signals [28]. The multi-path interferences will change the amplitude, phase and frequency of the

transmitted signals, which will lead the decrease of correct recognition of the tag [29]. Several
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attempts to mitigate channel effects in UHF Gen2 chipped RFID, has been investigated [30] [31].

In [26], the authors attempt to increase the reading range of a UHF RFID system, by considering

a stochastic model to describe the surrounding environment effects based on a simple two-

slope path-loss model. A multiple antenna based RFID system was investigated in [32] using

switch-controlled phase shifter in the feeding of a double antenna configuration. Blind filtering

equalization using stochastic multipath Rician fading channel based on the successive interference

cancellation was investigated in [33]. However, these channel mitigation models restrict the use

of single band UHF RFID system. The goal of this chapter is to maximize the UWB chipless

tag identification percentage in a real-time environment. This goal is achieved by using chipless

RFID system which mitigates the environment effects on the tag and the reader using channel

equalizers.

3.2 Channel Simulation and Ray Tracing Analysis

In a chipless RFID system, a tag reflects the UWB signal sent from the reader transceiver. The

ID information of the RF tag depends on the RCS of the tag. As illustrated in Fig. 3.1, the

channel- frequency response is the summation of 3 terms, one due purely on the background

(clutter), the clutter and the other due to the presence of the tag.

To fully understand the problem, the complete frequency domain chipless RFID scheme

is shown in Fig. 3.2. The transmitter – receiver setup, in this case, is quasi-monostatic. The

signal X( f ) is transmitted via the transmit antenna HT x( f ,θT x,φT x). The interrogation signal

X( f ) could be a pulse that covers all the frequency range, or a narrow band signal that sweeps all

the operating frequency. This interrogation signal propagates via the forward channel HF( f ,R)

to the tag with a 3D RCS pattern Γ( f ,θRCS,φRCS). The scattered signal arrives at the receiver

antenna HRx( f ,θRx) via the backward channel HB( f ,R), in this work the backward and the

forward channels are assumed to have a reciprocity property, as described in subsection 3.2.1.

In addition to the signal received from the tag, two unwanted signals arrive at the receiver side.

The first is due to coupling between the transmitting and the receiving antenna Hcoupl( f ,θ ,φ).

This could be mitigated by increasing the distance between both antenna, using high beam width

antennas or changing the position of the transmitter and the receiver. The other additive signal is

clutter HC( f ,θ ,φ). Clutter usually has a higher signal strength than the one reflected back from

the tag.

In RFID environment the received signal at the reader end is given by (3.1). [34] [35]
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Figure 3.1: Simplified 2D backscattering channel representation.
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Figure 3.2: Chipless RFID frequency domain, quasi-monostatic radar system

Y ( f ) = HT
Rx( f ,θRx,φRx)

.{Hcoupl( f ,θ ,φ)+HC( f ,θ ,φ)+HF( f ,R).Γ( f ,θRCS,φRCS).HB( f ,R)}

.HT x( f ,θT x,φT x)X( f )+N( f )

(3.1)

where N(t) is the additive noise added at the receiver side.

3.2.1 Channel Reciprocity

In this work the forward and the backward channel is considered as reciprocal. In a time-

dependent environment, the channel changes over time which causes loss of reciprocity. To

counter the loss of reciprocity, it is assumed that the backward tag reflection occurs within the

coherence time of the channel as shown in (3.2).
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HF( f ) = HB( f )T (3.2)

where Ht f ( f ) is the forward channel and Htb( f ) is the backward channel.

3.2.2 Tag Radar Cross Section

The selected tag was designed by [36], to resonate at selected frequency causing it not to appear

in the backscattered signal. The number of bits representing the tag may vary depending on the

number of rings (resonators). This creates the frequency coding in the chipless RFID and that

could be represented using the RCS, a 3-bit RCS is illustrated in Fig.3.3. RCS of a radar target is

a far-field quantity and is defined as the scattered over the incident power.

Γ = lim
r→∞

4πr2 |Es|2

|E i|2
(3.3)

where E i is the incident electric field and Es is the scattered electric field.

The total tag scattered RCS is given by:

Γt =
1

4π

∫ 2π

φs=0

∫
π

θs=0
Γ(θs,φs)sinθsdθsdφs (3.4)

were the angles (θs,φs) define the direction of propagation of the scattered waves. In theory Γt

represents the total amount of scattered waves. In real world scenario, various factors affect

the amount of waves received by the reader antenna. These factors include polarization and the

sensitivity of the reader antenna and the amount of resolvable paths from the tag to the receiver

antenna.

Figure 3.3: 2D RCS plot at a selected angle.
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3.2.3 Ray-Tracing

Investigating the indoor chipless RFID channel properties are imperative for the design of the

equalizer. Various factors have to be taken into consideration when simulating the tag channel.

The most important factor is that the FC chipless RFID operates in the UWB frequency range

where the channel and tag properties change according to the frequency. More factors like

receiver and tag location; orientation and the high number of multipath created in an indoor

environment must be taken into consideration. All these properties will be analyzed using

ray tracing, which allows full signal analysis and environment specification; therefore it can

facilitate more comprehensive channel characterization, with the additional benefit of efficiency

and convenience.

The backscattered radio channel from the tag experienced at a receiver’s location LI =

(xI,yI,zI) and tag location LT
n = (xTn,yTn,zTn) ,in a given environment is modeled as a time-

invariant linear filter with location-dependent impulse response, hb(t,LI,LT
n). In the same

prospective, the forward channel from the reader at the tag is modeled as h f (t,LI,LT
n). The

impulse response provides the characterization of the propagation channel and contains the

necessary information to analyze any type of signal transmission over that channel [37].

In a typical wireless system, the UWB impulse response of the channel a transmitted

signal x(t) whose spectrum, X( f ) is considered. X( f ) is sampled at the discrete frequencies

[ f1, ...., fn f ], where n f is the number of frequency points at a given bandwidth B. The received

signal Y ( f ) is given by:

Y ( fk) = X( fk)H( fk) (3.5)

The samples frequency response, H( fk), can be determined by employing a Ray Tracing (RT)

simulator, where the signal source is a CW at frequency fk.

The RT tool "Wireless InSite 2.5" is used in this work as a three-dimension (3-D) simulator

based on Full 3D indoor propagation model. In the model, ray paths are identified using the

Shooting and Bouncing Ray method (SBR).A complex vector electromagnetic field components

are evaluated in terms of plane waves undergoing multiple phenomena of reflection, transmission

and diffraction. The reflected field is evaluated through optical geometry based on the objects

placed in the indoor model. Moreover, the first order diffracting edges are found by searching for

adjacent rays which follow different paths through the building geometry, since such occurrences

identify discontinuities in the fields.Apparently, the procedure described above can be highly

CPU-intensive, depending on the number, n f , of frequency samples. Therefore in this work, the
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Material Conductivity [S/m] Permittivity Thickness [cm]
Ceiling (concrete) 0.01 9 15
Floor (concrete) 0.01 9 -
Wall (concrete) 0.01 9 15
Benches, door, table (wood) 10−5 13 3
Window (glass) 10−12 7.6 3

Table 3.1: Material electric properties

samples of only one window (a single notch) is taken into consideration when simulating the

channel on the RT tool.

Frequency-domain UWB channel measurements were conducted in a typical indoor envi-

ronment, with dimensions of 10m×10m×2.6m. The scenario has been reconstructed in WI as

shown in Fig. 3.4 Particular care has been used for including windows, doors and furniture with

appropriate electrical properties, as summarized in Table 3.1. An assumption has been made in

this study that the electrical properties do not depend appreciably on the frequency.

In this setup, a horn antenna was used as the reader antenna with a 12 dB gain. The choice

of the interrogating antenna is critical and directly affects the amount of clutter received and the

reading range. The selection of a narrow-beam antenna like horn [38] or Reflect Array (RA) [39]

antennas, will dramatically decrease the clutter and the range will increase since the antenna

gain will be high. On the other hand, the number of tags that could be interrogated will decrease.

The transmitted power was set to 0 dBm with a reader sensitivity of -70 dBm. It should be

noted that although a low transmitted power of 0 dBm from the reader’s transmitting antenna

was used, the reading range could not be increased by using a higher transmitted power. As the

transmitted power increase, the clutter power will increment causing the tag detection to become

more challenging. The number of rays are set to 10 and diffractions to 3. Understandably as the

number of rays and diffraction increase, the computation complexity will increase. An example

of an indoor scenario is shown in Fig.(3.4). In WI, the tag side could not be simply be placed as

an object in the environment. This is because of its frequency-dependent backscattering property.

Our approach, described in Algorithm 3.1, is to set the position of the tag as a receiver in the

backscattering mode; in this mode, the reader is in the transmission mode. Furthermore, when

the reader is in the receiving mode, the tag will be in the transmission mode. These modes will

be executed every frequency point, where each point will have its RCS radiation pattern. These

RCS patterns are extracted from the CST software. Although WI is advanced software, it does

not support frequency scanning and mode changing. Matlab was used as a controlling software,
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3.2. Channel Simulation and Ray Tracing Analysis

Algorithm 3.1 Simulate tag response in an indoor environment

1: procedure WI TXMODE(LI ,LT ,RCS, f )
2: Re f lections = 10
3: Di f f ractions = 1
4: Set Reader Antenna = ARP
5: Set Tag RP = RCS
6: Set Operating Frequency = f
7: Set Tx Signal= sin(2π f )
8: Calculate Forward Ray Model
9: Return h f (t)

10: Return Received Signal
11: end procedure
12: procedure WI RXMODE(LI ,LT ,RCS,Received Signal, f )
13: Re f lections = 10
14: Di f f ractions = 1
15: Set Reader Antenna = RCS
16: Set Tag RP = RP
17: Set Operating Frequency = f
18: Set Tx Signal= Received Signal
19: Calculate Forward Backward Model
20: Return hb(t)
21: end procedure . Main Code
22: Frequencies = [ fl, ..., fh]
23: LI = [xI,yI,zI]
24: LT = [xT,yT,zT]
25: Extract RCS from CST-MS
26: for each Frequency f in Frequencies do
27: WI Txmode (LI ,LT ,RCS, f )
28: Calculate h f (t)
29: WI Rxmode (LI ,LT ,RCS,Received Signal, f )
30: Calculate hb(t)
31: end for
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Figure 3.4: Top view of the WI office environment.

where it could change the operating frequency of the WI and organize the output data in a matrix

format.

3.3 Chipless RFID Test-Bed

In this work all the proposed algorithms and signal processing techniques must be verified using

real tags. This proves that the all the techniques are valid in a real environment where clutter

and interference from other sources exists. Unlike other latest work in the same field [40] [41],

a testbed in a real environment was performed not in an iconic chamber. The device that were

used as the reader was USRP N210.

USRP N210, shown in Fig.(4.28), is an SDR platform designed by Ettus Research. An

interesting feature it incorporates is that it can be connected to an RF front end equipment, thus

enabling wireless communication. An advantage of such system is that every aspect of the

reader could be controlled such as the transmitted signal modulation, sampling rate, bandwidth,

carrier frequency and power. It also offers real time signal processing, which gives an incite on

the execution time of the algorithm. Unlike measurement systems like spectrum analyzers and

generators, USRP is cheap and the chips on the USRP will be similar as a commercial reader.
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3.3. Chipless RFID Test-Bed

Figure 3.5: USRP without its top cover showing the RF front end and the motherboard under it.

As shown in Fig. (3.6), the first step in the USRP is the down-conversion. The frequency

is determined by a Voltage Controlled Oscillator (VCO). In the tag detection process, the

Frequency-Controller (F-C) in the PC sweeps the operating frequency. In the receiver side, the

time samples are converted to a digital signal via the Analog to Digital Converter (ADC). Since

the amount of data converted is high, the Field Programmable Gate Array (FPGA) is responsible

for down-sampling the data. The samples is then sent to the PC via USB or Ethernet. In the

transmitter side a continuous wave it transmitted over all the frequencies. The time duration of

the CW is 10ms at each frequency. This number is chosen based on the recommendation from

Ettus research, as it is the minimum delay time for frequency shifts to have a stable performance.

The transmitting and the receiving process is chosen to be performed by a single USRP for

synchronization. If more than one antenna is needed (as will be described in Chapter 5) multiple

antennae will be used with an external clocking system. Furthermore, the signal processing is

done in the PC side.

Since the tag ID is in the frequency response, the arriving signal is converted to the frequency

domain using FFT. At the same time, an equalization process happens to remove clutter effects

and USRP effects. In this work the equalization is done using two techniques:

• Empty Room Calibration.
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• Rake receiver using PN-Sequence.

Empty room calibration is based on performing measurements without the tag first, while

the Rake receiver does not need a predetermined information about the channel. Both have their

advantages and their disadvantages depending on the application. Both are explained in details

in the following sections.

VCO

ADC

DAC

FPGA

FPGAUSB

USB

Signal Generator

Frequency Controller

FFTEqualizationNotch Detection

Rx

Tx

USRPPC

Figure 3.6: Block diagram of USRP testbed including the connection between the PC and
USRP.

After equalization process, the frequency response is analyzed using signal processing tools

described in Chapter 4. Furthermore, at the transmitter side, a CW signal is generated which is

later up-converted to the operating frequency.

3.4 Empty Room Calibration

The detection of a chipless tag in a clutter environments is much more challenging in chipless

RFID than in UHF RFID due to the absence of modulation in time, i.e., the absence of two

different states in the backscattering signal [42]. The first method suggested is empty room

calibration.

Empty room calibration is subtracting the value of the measurements with the tag from the

without tag scenario. Equation (3.6) represents the received signal without the tag. This signal

contains the value of the clutter and the coupling plus the effect of the transmitting and receiving
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3.4. Empty Room Calibration

antenna.

Ynotag( f ) = HT
Rx( f ,θRx,φRx)

.{Hcoupl( f ,θ ,φ)

.HT x( f ,θT x,φT x).X( f )+N(t)

(3.6)

To get the response of the tag without the noise and clutter, equation (3.1) will be subtracted

from (3.6). In a real world scenario averaging is needed to calculate the channel and remove the

noise accurately.

Since the response of the system is periodic, it is possible to reduce the noise and enhance

the signal using the statistical technique of signal averaging [43] as represented in (3.7). Fig(3.7)

shows a simulated tag, with code [10101010]. The SNR value chosen was 0 dB, the idea is to see

how much averaging of the signal is needed to get an accurate reading. Six different averaging

was done on the signal 2,20,40,80,100,200. It is shown that as averaging increases the signal

becomes clearer and therefore easy to be detected. The difference in the clarity of the signal

between 100 averages and 200 is not that great, so in the real time measurements, one hundred

averages are chosen.

Γ̂( f ) =
∑

A
a=1Y ( f )−Ynotag( f )

A
(3.7)

To evaluate the empty room calibration algorithm, a test bed is created. The test bed is made

using USRP N210 using the algorithm described in (3.2). The frequency chosen is based on the

CPX daughter board frequency range. The transmitter gain is set to the maximum to increase the

tag illumination. The receiver gain is chosen in 0 dB to decrease the noise added to the signal by

the receiver.

The results in Fig. (3.8) (3.9) shows the results of an all ones tag without and with calibration

respectively. It is clear that the clutter and noise are dominant over the tag response. After

applying averaging and empty room calibration, the results tag response is now more clearer. It

has the disadvantage of having very low notch amplitude of −2 dBm on average. This is due of

inaccurate removal of the clutter response. Another factor that is evident is the inconsistency

of the notch. This is due to the USRP carrier synchronization, even though one USRP is used

but there is some misalignment in the carrier response. Another factor is the inconsistency of
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Algorithm 3.2 Measuring tags in an indoor environment using Empty Room Calibration tech-
nique

1: Frequencies = 3.9 GHz : 10 MHz : 6 GHz
2: Sampling rate = 1 MS/sec
3: Transmitter gain= 31.5 dB
4: Receiver gain= 0 dB
5: No tag measurements
6: for a=1:A do
7: for each Frequency f in Frequencies do
8: Transmit a CW at frequency f
9: Hold transmission for 10 ms

10: Receive a signal at frequency f
11: Calculate power of signal
12: Save value in PA
13: end for
14: end for
15: Calculate average of PA
16: Store in PC
17: With tag measurements
18: for a=1:A do
19: for each Frequency f in Frequencies do
20: Transmit a CW at frequency f
21: Hold transmission for 10 ms
22: Receive a signal at frequency f
23: Calculate power of signal
24: Save value in Pr
25: end for
26: end for
27: Calculate average of Pr
28: Store in PR
29: Tag Response= PR-PC
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Figure 3.7: Averaging effect on the received signal.
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Figure 3.8: Measurements using USRP 210 before calibration.
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Figure 3.9: Measurements using USRP 210 after calibration.

the transmitted power along the frequency access, where the frequency response is not constant

along the frequency access. This could be solved by increasing the averaging but on the cost of

elongating the reading time.

The calibration process before any tag reading makes it impracticable in many applications.

The calibration process should be done if any position change of the transmitting or the receiving

antenna. Furthermore, during the calibration process, the environment os assumed to be constant,

which is not a valid assumption in a real scenario. In the following section, we will investigate

another clutter removal technique that will not need any calibration and could work in any

environment by using PN-sequence and rake receivers.

Parameter Value
Sampling Rate 1 M samples / second
Transmitter Gain 31.5 dB
Receiver Gain 0 dB
Start Frequency 3.9 GHz
End Frequency 6 GHz
Frequency Step 10 MHz

Frequency Sweep
Averaging 100

Table 3.2: USRP parameters
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3.5. PN-Sequence

3.5 PN-Sequence

Different techniques are reported in the literature for the detection of single FC chipless RFID

by analyzing the backscattered signal. In [38], [44] and [45] a threshold based detection aided by

calibration values is used for determining the existence of a tag resonance at a certain frequency.

However, this approach is based on fixed thresholds, which will proof to be insufficient to variant

clutter and environmental effects. Furthermore, the cross polarization response of the tag is

exploited for removing the clutter effects [46] [47]. In this detection technique, the tag response

will vary when the orientation of the tag is altered. In [48] clutter is suppressed by choosing

a data sequence with zero mean (or quasi-zero mean) this assumption assumes perfect pulse

synchronization. In the radar community, Moving Target Indicator (MTD) was investigated

in [49] [50] where clutter is removed from Doppler readings by advanced filtering techniques.

The empty-room technique, used in [51] [52] subtracts the channel response measured in the

absence of the target from any received signal comprising of both target response and clutter.

Unfortunately, this technique is sensitive to environment changes since any change renders the

previously measured empty-room response inappropriate.

In this section a novel PN random sequence transmitter and Rake receiver design is imple-

mented, as presented in Fig.3.10, to detect an omni-directional RCS chipless tag. This setup

excludes the clutter response created by the environment by considering the Line of Site (LoS)

component scattered from the tag. Unlike previous work done in chipless RFID, no calibration

or empty room subtraction needed to successfully detect the tag. This approach is more realistic,

since there will be no need to remove the tags from the room to measure the no-tag response.

Furthermore, there will be successful detection at any tag orientation, since the tag used is

orientation independent.

3.5.1 Clutter Description

In this subsection, clutter response is further described. As illustrated in Eq.(3.8) the received

signal consists of the summation of two components, one due purely on the background (clutter)

and the other due to the RCS generated in response to the transmitter microwave excitation [53].

Y [ f ] = X [ f ] (Γ[ f ] HT[ f ]+HC[ f ])+N (3.8)
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Figure 3.10: Proposed chipless RFID system model.

Where X [ f ] is the transmitted signal and N is additive white Gaussian noise. HT[ f ] and HC[ f ] are

the tag and clutter channel response respectively. HT[ f ] could be discretized into M frequency

samples.

HT[ f ] =
[
RT

1 RT
2 ... RT

M

]
(3.9)

Where every sample is the summation of all the time invariant paths received from the tag at

frequency fm as shown in Fig.3.11.

RT
m = ∑

i
aT

i e− j2π fmτT
i (3.10)

Where aT
i (t)and τT

i (t) are respectively the attenuation and propagation delay from the tag to the

receiver on path i. Similarly the clutter could be presented by Eq. (3.11) and Eq. (3.12).

HC[ f ] =
[
RC

1 RC
2 ... RC

M

]
(3.11)

RC
m = ∑

i
aC

i e− j2π fmτC
i (3.12)

Where aC
i (t)and τC

i (t) are the attenuation and propagation delay from the environment to

the receiver.
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Figure 3.11: CIR in a chipless RFID system.

3.5.2 Tag Design

The tag consists of Coplanar Waveguide (CPW) slot ring resonators without ground plane as

presented in [54]. An 8-bit three different single and array tags are designed and simulated

using CST-Microwave Studio 2014. The substrate employed in the design is RO4003C with

a permittivity of 3.38, a loss tangent of 0.0027 and a thickness of 1.52 mm. Furthermore, the

no-resonance 3-D RCS shown in Fig.3.13 shows a gain of more than 17 dB from its resonance

state shown in Fig. 3.12. Moreover, the 3-D RCS radiation pattern illustrating the angular

dependency of the tags, which should be considered in the ray-tracer to simulate the CIR [55]

accurately.

3.5.3 PN Sequence Transmitter

In this paper a modulated PN random sequence is used as the interrogation signal x(t). An

important characteristic of a PN sequence, is its periodic autocorrelation property as shown in

Fig. 3.14. Similar to white noise, the autocorrelation of a PN N-sequence has a single very sharp

peak at the zero shift point [56]. In Eq. (3.13) Rss(τ) represents the autocorrelation of the PN

sequence.

Rss(τ) =

1− N+1
NTb
|τ| ,τ = Ts

− 1
N ,τ 6= Ts

(3.13)

where Tb and Ts is the bit and whole N sequence duration respectively, N is the number of bits in

the PN sequence and τ represents the correlation shift. This property allows the receiver to detect
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Figure 3.12: 3D RCS radiation pattern of the tag at resonance frequency.

each multipath component separately using the Conventional Matched-Filter (CMF) technique

[57] as illustrated in Eq.(3.14). In this equation y(t) will be the superposition, attenuated, phase

shifted and delayed copies of the transmitted PN sequence s(t).

r(t) =
∫

∞

−∞

s(λ ) hMF(τ) dλ = ∑
i

aie jθiRss(t− τi) (3.14)

where the impulse response of the matched filter in the receiver is given by

hMF(τ) = s(−τ) (3.15)

In the interrogator a Galois Linear Feedback Shift Register (GLFSR) [58] generator is

implemented with a degree n of 10 and length N = 1023 where N = 2n−1. Since the chipless

RFID is an UWB technology, the synchronized integrator transmits a modulated PN sequence

at every frequency fm. The number of samples M determines the resolution accuracy of the

detected tag’s frequency signature.

3.5.4 Rake Receiver

A Rake receiver consists of a number of channels, also referred to as fingers or branches each

of which tracks and selects power from one of the received multipath components [59]. In a

normal communication system an ideal Rake will combine all resolvable multipath. This ideal
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Figure 3.13: 3D RCS radiation pattern of the tag at no resonance frequency.

configuration is often unrealistic due to the complexity and the huge number of channel paths.

Usually, a subset of the best Ls paths out of all L resolved path is taken, this is known as SRake.

Since we are concerned with the LoS scenario, a first arrival local maxima search algorithm

is implemented to identify the tag’s frequency signature. A proof of concept to validate this

hypothesis was implemented using a ray tracing software WI, for channel and Matlab for system

design.

3.6 Simulation Results

3.6.1 Ray Tracer

Deterministic channel simulation was done using WI software to measure the deterministic

channel as illustrated in Fig. 3.15.

In this WI simulation a 4.5 x 4 meter 3D office model was designed so simulate the real

testbed setup shown in Fig.3.19. Two horn antennas were placed in the model to simulate the Tx

and the Rx antenna respectively at a distance of 35 cm, with a transmitting power of 0 dBm. The

tag was represented by a frequency dependent 3D RCS radiation pattern imported from CST.

Since WI is a ray tracing tool, the CIR resulted was exported to Matlab where a Rake receiver

selects the maximum first path. For simplicity only the frequency range of 4.8 to 5.2 GHz was

taken into consideration as illustrated in Fig.3.16
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Figure 3.14: Autocorrelation property of PN sequence.

Figure 3.15: Ray-tracer system setup considering multipath and clutter effects.

3.6.2 Phase

Detecting the frequency signature of a chipless tag by extracting the phase information from

the backscattered signal is discussed in [60] [61] [62]. This subsection illustrates the effect of

multi-path channel at the performance of notch phase property.

Consequently, a chipless tag is implemented using a bank of notch filters and then a Rayleigh

channel is defined as a statistical channel with ten paths. It is observed, from Fig. 3.17, that the

phase response is significantly affected by the environmental multi-path. Any phase detection

technique will fail to detect the presence of the notches in this case, without using an extra step

to remove the effects of multi-path. By applying PN-sequence with Rake receiver the phase
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Figure 3.16: Received power using ray-tracer simulation for the indoor environment.

information, similar to the magnitude, will be easily retrieved as shown in Fig. 3.18.
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Figure 3.17: Magnituderesponse of tag frequency signature before applying Selective Rake

3.7 Measurement Results

The hardware platform used in the measurement setup is the Universal Software Radio Peripheral

2 (USRP2) developed by Ettus Research. The daughter board used was CBX with a frequency

range of 1 to 6 GHz. Since the USRP2 is a narrow band transponder, the generated baseband

transmitted signal is multiplied by the variable carrier frequency. The setup of the antennas is
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Figure 3.18: Magnitude response of tag frequency signature after applying Selective Rake

illustrated in Fig. 3.19, the two horn antenna are in the LoS setup to ensure that the first received

channel component from the tag is the maximum and the first to arrive.

Figure 3.19: USRP test-bed designed to in an indoor office setup.

In this measurement two scenarios are implemented to test the efficiency of the proposed

system. The first was done using a regular frequency sweep code where all the multi-path

components are summed up to calculate the frequency response of the tag. In this setup averaging

was done to minimize the effect of the additive noise caused by the USRP hardware. The second

setup is the implementation of PN sequence transmitter with the LoS selection Rake receiver. In

both scenarios no calibration or empty room subtraction was done. The simulation parameters of

both scenarios are described in Table (3.3).
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Parameter Value
Sampling Rate 1 M samples / second
Transmitter Gain 31.5 dB
Receiver Gain 0 dB
Start Frequency 3.9 GHz
End Frequency 6 GHz
Frequency Step 10 MHz

Frequency Sweep
Averaging 100

GLFSR PN Sequence
Degree 10
Mask 0

Table 3.3: USRP parameters

Figure 3.20: USRP results for Tag 1 and Tag 2 using frequency sweep code.

The result of the frequency sweep implementation is shown in Fig. 3.20. As shown in the

figure, it is impossible to detect the tag without using post-processing algorithms. The result

proves that the clutter and the environmental effects cause the received signal to be distorted and

the tag to be undetectable.
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Figure 3.21: USRP results for Tag 1 and Tag 2 using PN sequence implementation.

As expected, Fig. (3.21) depicts the results of the algorithm proposed in this paper. The

measurement result show the detection of tag 1 and 2 using an open source low cost SDR. The

fluctuations shown in the results are caused by the inconsistency of the transmitted power by the

USRP. Utilizing notch detection algorithms, like the one described in the following chapter, will

detect the deformed notches.

In the next chapter, the notch detection will be discussed. The next chapter will describe

how the system will detect the notches and translate them into bits.
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4 | Novel Identification Techniques in Multipath

Channel

Notch detection and identification is presented in this chapter. In this chapter, three algorithms

are used to detect the notch. The three algorithms are matched filter, WB-SVD, and DTW. To

investigate the efficiency of all algorithms for notch detection, different real cases is analyzed.

Those cases include notch width, bandwidth, and frequency shift. The results of all algorithms

are presented, and a comparison with a real-time test bed is shown at the end of the chapter.

4.1 Introduction

The FC chipless RFID system relies on a frequency signature induced by the tag on the excitation

of UWB transmitted signal. The chipless RFID tag is detected by analyzing the backscattered

signal. The signal processing involved in the detection is quite challenging, since the received

signal power is very weak and dramatically affected by undesired interference, environmental

clutter and noise caused by the receiver. Furthermore, manufacturing defects on the tag’s side

may cause the notch to shift its frequency position or even change its shape. Another factor is

the transmitting and/or the receiving antenna frequency response which is superimposed on the

received signal, and this also could modify the notch shape. All the mentioned factors could

render the chipless RFID tag undetectable. In this chapter, notch detection techniques will

be introduced to detect the ID of the interrogated tag accurately. Each algorithm is tested by

comparing its probability of error (Pe) against the received Signal to Noise Ratio (SNR). It will

be shown that having an efficient notch detection algorithm could boost the encoding capacity of

the chipless RFID system.

Different techniques are reported in the literature for the detection of single FC chipless

RFID by analyzing the backscattered signal. In [38], [44] and [45] a threshold based detection
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aided by calibration values is used for determining the existence of a tag resonance at a particular

frequency. However, this approach will give inaccurate results due to any tag fabrication and

calibration errors. Short-Time Matrix Pencil Method (STMPM) is presented in [63] [64] [65]

to distinguish the late-time of the scattered signal. This method requires time synchronization

and efficient channel equalization algorithms. Furthermore, the cross polarization response of

the tag is exploited for removing the clutter effects [46]. In this detection technique, the tag

will not be detected if its orientation is altered. Moreover, signal space representation is used

in [66] for identifying different tag frequency signatures. Using singular value decomposition a

set of orthonormal basis functions, which are capable of describing all combinations of the tag

signatures. Unfortunately, if the tag has a high number of notches (greater than 3), the training

sequence will be large, thus making this algorithm very computationally expensive.

4.2 Windowing

Windowing is a vital process in all proposed detection techniques. In this work windowing is

done in the frequency domain by multiplying the received signal Y ( f ) by a shifting window

function as illustrated in Eq. (4.1) and Fig. 4.1.

r = Y ( f ).rect(
N

fmax− fmin
− k.N) where k = 1, ..,K (4.1)

Where N is the number of samples in the window, K is the total number of windows and

fmax− fmin is the bandwidth of the window. In this work, the window is shifted by N samples.

fmin fmax

f

Fr

k = 1 k = K

Figure 4.1: Windowing process of the received signal Y ( f ).
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Figure 4.2: Matched filter detection block diagram.

The number of samples are determined by the bandwidth of the largest notch.

4.3 Matched Filter

Matched filter is an ideal filter which calculates the maximum SNR of a received signal in the

presence of additive stochastic noise [67]. It is commonly used in radar [68] [69] and digital

communication systems [70], where the original waveform is known and the objective is to

detect the presence of this signal against the background noise. The transfer function of the

matched filter, in the frequency domain, at sampling frequency f0 may be stated as:

H( f ) = κ
γ∗( f )
P( f )

e− jwt0 (4.2)

where γ( f ) is the complex conjugate of a known notch response extracted from the fabricated

tags. P( f ) is the Power Spectral Density (PSD) of the noise associated with an input windowed

signal and κ is an arbitrary constant. Assuming an AWGN and selecting a convenient value of κ

to represent the operating environment, P( f ) could be removed from the matched filter transfer

function shown in 4.2. The output of the filter M is given by

M = H( f )? r( f ) =
∫ fmax

fmin

H(τ)r( f − τ)dτ (4.3)

4.3.1 Decision in Matched Filter

The detection problem is to distinguish between the hypothesis

H1 : r[n] = γ[ f ]+w[ f ] (4.4)

H0 : r[n] = w( f ) (4.5)
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where w[n] is a wide-sense stationary random process which represents the noise. The received

windowed signal that contains a notch is represented by H1 and the absence by H0.

The decision is done based on Neyman Pearson (NP) detector, where it decides H1 if

likelihood ratio exceeds a threshold λ as shown in Eq.(4.6),

L =
p(r;H1)

p(r;H0)
> λ (4.6)

where p(r;H1) and p(r;H0) is described in Eq. (4.7) and (4.8) respectively.

p(r;H1) =
1

2πσ2 exp[− 1
2π

N−1

∑
n=0

(r[n]− γ[n])2] (4.7)

p(r;H0) =
1

2πσ2 exp[− 1
2π

N−1

∑
n=0

r2[n]] (4.8)
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Figure 4.3: Simulated PDFs of the two hypothesis

Fig. (4.3) makes evident that the performance of the detection is determined by the received

signal energy versus the noise variance. Using Fig. (4.3) the threshold (λ ) could be calculated

by the intersection between the two curves.
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4.4. Window Based Singular Value Decomposition

4.4 Window Based Singular Value Decomposition

The SVD algorithm mentioned in [66] used 2b combination to create the detection constellation

points, where b is the total number of notches. When the number of notches increment, the

number of constellation points will directly rise thus decreasing the probability of detection.

Moreover, the size of the matrix used to calculate the constellation coordinates will rapidly

expand thus making the detection computationally expensive.

Window Based Signal Variable Decomposition (WB-SVD), is a fast and enhanced method

to detect the notch using Signal Space Representation (SSR). In WB-SVD only four training

sequence are taken for any amount of notches, creating a rank 4 matrix Γ as illustrated in Eq.

(4.9).

Γ = UΣVT = [γ1,γ2,γ3,γ4]m×4 (4.9)

Where [γ1,γ2,γ3] represents three predefined notches with different pattern bandwidth and γ4

constitutes a no-notch representation. U and V are unitary matrices composed of orthonormal

column vectors ui and vi. Moreover, Σ is a diagonal matrix consisting of 4 constant values of σi

as presented in Eq. (4.10).

Γ =
[
u1 ... u4

]
N×4


σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4


4×4



vT
1

.

.

.

vT
4


4×4

(4.10)

Further simplification of (4.10) gives the inner product between vectors γk and ui.

γ
T
k ui = σivi

k (4.11)

where vi
k is the k-th element in the column vector vi. It could be shown that,

γk =
4

∑
i=1
〈hk,ui〉ui =

4

∑
i=1

(σivi
k)ui (4.12)

Since,ui, where i = 1, ..,4 serves as a basis for each notch state. This will construct a signal

subspace C where the 4 notch states shown in 4.4 are represented by 4 constellation points ck
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Figure 4.4: 4 notch bandwidth states represented by the constellation

where

sk = [ck
1, ...,c

k
4] with ck

i = 〈γk,ui〉 (4.13)

These 4 points C will serve as a base for the detection of the unknown FC chipless RFID

signature. As shown in Fig. (4.6), the constellation points will be calculated off-line from the

predefined γ retrieved from the notch properties of the manufactured tags. In this work four

notches with different bandwidths have been considered. As shown in Fig. (4.6.4) the selected

bandwidths are

• Smallest bandwidth(BW 1).

• Intermediate bandwidth(BW 2).

• largest bandwidth (BW 3).

• Zero Notch.

Let Y ( f ) represent the tag backscattered signal which is affected by noise, clutter, multipath,

path-loss and even fabrication errors. As shown in Fig. (4.7), the signal Y ( f ) is windowed into a

fixed bandwidth signal r. Then the received signal points are calculated using the inner product

between r and the matrix U . Using Eq.(4.14) the Minimum Distance Vector Criterion (MDVC)

between the received point and the precalculated constellation C coordinate is calculated. In the

end, a decision is taken based on the type of coding methodology.
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Figure 4.7: WB-SVD block diagram.

dk = min
{
|| 〈Yk( f ),U〉− c j||2

}
j = 1..4 (4.14)
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Figure 4.8: Example of DTW cost matrix X (vertical axis) and Y (horizontal axis)

4.5 Dynamic Time Warping

The objective of DTW is to compare two dependent sequences. The sequences are warped in a

nonlinear fashion to match each other. A non-linear alignment produces a more intuitive similarity

measure, allowing similar shapes to match even if they are shifted time or frequency axis.

Originally, DTW has been used to compare different patterns in automatic speech recognition

[71], handwriting matching [72].

Let’s consider two sequences X := (x1,x2, ....xN) of length N and Y := (y1,y2, ....yM) of

length M. These sequences are discrete and represent the reference notch and the received

windowed signal respectively. A cost matrix C of size N×M is obtained by evaluating the cost

measure for each element of the sequences X and Y . The goal is to find an alignment between X

and Y that has the minimum total cost as shown in Fig. (4.8).

The next definition formalizes the notion of an alignment [73]. An(N,M)-warping path is

a sequence p = (p1, ..., pL) with pl = (nl,ml) ∈ [1 : N]× [1 : M] for l ∈ [1 : L] satisfying the

following three conditions.

1. Boundary condition: p1 = (1,1) and Pl = (N,M).

2. Monotonicity condition: n1 ≤ n2 ≤ ...≤ nL and m1 ≤ m2 ≤ ...≤ mL.
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3. Step size condition: pl+1− pl ∈ (1,0),(0,1),(1,1) for l ∈ [1 : L−1]

An (N,M) warping path p defines an alignment between two sequences X and Y by assigning

the element xnl of X to the element yml of Y .The total cost cp(X ,Y ) of a warping path p between

X and Y with respect to the local cost measure c is defined as:

cp(X ,Y ) =
L

∑
l=1

c(xnl ,yml) (4.15)

Furthermore, an optimal warping path between X and Y is a warping path p? having minimal

total cost among all possible warping paths. Such an optimal path runs along a “valley” of low

cost within the matrix C with the optimal warping path p? is shown in the red line as seen in Fig.

4.9b.Optimal alignment of the sequence X with a subsequence of Y aligned points are indicated

by the red lines shown in Fig. 4.9a.

The operation of the DTW detection method will be performed by comparing the widowed

received signal with the stored notch. The cost matrix and the optimal path p? will be calculated.

The total value of the cost will be compared to the threshold λDTW to decide code of the received

signal.

4.5.1 Decision in DTW

Similar to the matched filter, the value of the threshold was calculated using the PDFs derived

from equations (4.7) (4.8). The selected value for the threshold is determined by the intersection

between the two PDFs as shown in Fig. 4.10. Unlike the matched filter method, the cost value

for p(r;H1) is expected to be lower than p(r;H0). This is also illustrated in Fig. 4.9d.

4.6 Simulation Results and Performance Analysis

The performance of WB-SVD, MF and DTW detection algorithms are analyzed through MAT-

LAB simulations. The objective is to analyze the performance of each algorithm for:

• Robustness against notch shape distortion caused by channel effects and noise.

• Ability of the algorithm to detect and identify the variation of the notch bandwidth for

Notch Width Coding (NWC) [74].
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Figure 4.9: (a) A non-linear alignment of the received signal (SNR=20 dB) and the reference
notch (b) Cost matrix C of the two signals X (received signal) and Y (reference notch) Regions
of low cost are indicated by blue and regions of high cost are indicated by red (c) No notch
received signal compared with the reference notch (d) Applying the DTW algorithm between
No notch (X) and the reference (Y).

• Notch detection efficiency in the change of the resonance frequency caused by fabrication

errors.

The tag backscattering responses, needed for evaluating the detection efficiency, are ex-

tracted from the output of cascaded notch filters each representing a notch frequency with a

specific resonance and 3 dB bandwidth as represented in Fig. (4.11) and equation (4.16). Another

source is the RCS response of a tag designed in a microwave simulation tool CST. Both sources

accurately mimics the backscattered signal from the tag after channel equalization. The variation

of the SNR values for the detection algorithm validation, are used to alter the shape of the notch.

The distortion of the notch shape after equalization simulates:

• Errors in channel equalization at a specific band.
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Figure 4.10: PDF of the two hypothesis using DTW algorithm

• Low backscattered power from the tag due to the distance from the reader.

• Fabrication errors in the tag causing the notch shape to change from the design.

• Noise from the receiver due to over heating.

Hc(k) =
K

∏
k=1

Hk(z) =
K

∏
k=1

1−2cos(wk)z−1 + z−2

1−2bcos(wk)z−1 + r2z−2 (4.16)

H1(z) H2(z) HK(z)

Hc(z)

x(n) yb(n)

Figure 4.11: Cascaded notch filter for simulating the tag backscattering response

where xf(n) and yb represent the interrogation after the forward channel and the backscat-

tered signal at the tag respectively. Moreover, Hk(z) is the notch filter representation at resonance

frequency wk where r is the pole radius which controls the notch bandwidth. The choice of the

bandwidth will be discussed in the following subsection.

4.6.1 Ideal Notch Width

The notch bandwidth usually is controlled by the physical construction of the tag [75]. It also

depicts the maximum and the minimum bandwidth of the notch. The question that should be
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answered, in the given bandwidth restrictions; will the wider notch yield in a better probability

of detection than the narrow bandwidth. This information is required not to test the detection

algorithm, but as a design guideline to be considered in the final coding of the chipless RFID tag.

For the sake of increasing the coding capacity of the tag, it is logical to use more narrow notches

to increase the number of notches in a given operating bandwidth.

To answer that question, 5 code words each containing 5 slots was constructed using

equation (4.16). As seen in Table (4.1) there will be one notch present, represented by 1, in each

codeword to avoid any neighboring notch interference. The window size(represented by the

red lines in Fig. (4.12-4.13)) and the total bandwidth of the codeword will be constant in both

cases, wide notch Fig. (4.13) and the narrow notch Fig.(4.12). Both figures show the increase

in bandwidth as frequency increases, this was expected and also simulates real tag resonance

response. This also could be shown by the Quality factor (Q) equation(4.17). For also evaluating

the effect of the detection window, the wide notches was designed to be bigger than the window

size. This will also set design guidelines for the proper window size to be considered in the

detector.

Code 1 1 0 0 0 0 Code 2 0 1 0 0 0
Code 3 0 0 1 0 0 Code 4 0 0 0 1 0
Code 5 0 0 0 0 1

Table 4.1: All code words used for the ideal notch width investigation

Q =
f0

BW
(4.17)

It is seen in that for a designed tag at a fixed resonance frequency ( f0) and Q, which causes the

BW to change.

For the detection, an ideal matched filter was used with an additive white Gaussian noise

as the source of the notch shape distortion. The output codeword of the detector was compared

with the original, where a single bit in error will cause the whole code word to be considered as

wrong.

Fig. (4.14) and (4.15) shows the output of the matched filter for the narrow and wide notch

respectively. Fig. (4.14) shows that Code 5 has a better Pd than any other code. This is because it

has the widest bandwidth size. So this gives the first recommendation, as the notch bandwidth

increases the Pd increases. However, if the bandwidth of the notch increases to the point that

it exceeds the bandwidth of the receiver window, then the probability of detection decreases
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Figure 4.12: The output of 3 codes representing the narrow bandwidths chosen.
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Figure 4.13: The output of 3 codes representing the wide bandwidths chosen, the notches is
wider than the window bandwidth

dramatically as shown in Fig. (4.16). The above conclusion could also be verified mathematically

using equations (4.18) and (4.19). Both equations proofs that as Λ increases the Pe decreases.

P1
e =

1
2

efrc(

√
Λ

No
) (4.18)

P2
e =

1
2

efrc(

√
Λ−Λ1

No
) (4.19)

where Pe = 1−Pd and represents the probability of error. Moreover, Λ is the area of the notch

Λ1 is the area of the notch outside the window. efrc is presented in equation (4.20). P1
e is the Pe

of the narrow notches where all the bandwidth of the notch is in the detection window, unlike P2
e
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Figure 4.14: Probability of detection of the narrow bandwidth codes.
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Figure 4.15: Probability of detection of the wide bandwidth codes.

where the area outside the window has a negative effect on the total Pd .

er f c(a) =
2√
π

∫
∞

a
exp(−x2) dx (4.20)
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Figure 4.16: Probability of detection of Code 3 in both codes.

4.6.2 Notch Detection

A validation of the performance of the proposed detection algorithm is done by a using simulated

tags. A single notch, in both approaches, represents a logical ’1’, while the absence of the notch

represents a ’0’. In all used detection techniques, there is no limitation on the number of bits used.

The detected signal is windowed depending on the number of bits and the maximum bandwidth

of the notch, which is also assumed to be known. This information could be retrieved from the

preamble of a protocol based tag, designed by our team [76]. In this protocol, the algorithm

scans only the preamble frequency and accordingly it determines the number of tags and the

maximum number of notches in the tag. The highest number of notches could also be given by

the tag designer. In all cases, the final output is provided in the form of ones and zeros.

In all simulations, 10 bit tags are used with various codes. In the simulation part, where the

codes are fabricated using equation (4.16). This code will pass through our detector with a variant

SNR to distort the notch shape. The output will be compared with the original code sent, where

a single bit will cause the whole code to be considered as an incorrect code. Future research

could add error correcting capability in chipless RFID technology, but due to the limitation of

the number of bits on the tag, it is currently unavailable.
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In this simulation, LFM signal was used as the transmitted signal.

x(t) = Acos(2π f (t)+φ) (4.21)

where

f (t) =
k
2

t + fo (4.22)

and

k =
f1− f2

T
(4.23)

For LFM If the instantaneous phase θ(t) is constant, the frequency is zero. If θ(t) is linear,

the frequency is fixed (constant), furthermore if θ(t) is quadratic, the frequency changes linearly

with time. In this work, the quadratic phase is used to sweep from the operation band of the tag

as described in Fig. (4.17).
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Figure 4.17: Frequency representation of the transmitted signal from f1 to f2.

Using equation 4.16 all a random ten bits tag are realized. All the algorithm are tested using

the same condition.

For the decision between a logical ′1′ and ′0′ is determined differently in each algorithm. In

the SVD algorithm, the four predefined sequence are defined with three different bandwidths to

counteract the increase of notch width. If the detector chooses any of the three notches, the reader

will decide it is a ’1’. This could be shown in Fig. (4.18) where the gray area represents the

notch. For the other detection algorithms matched filter and DTW are determined by calculating
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Figure 4.18: WB-SVD constellation for BW detection.
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Figure 4.19: Simulated probability of detection for the 3 algorithms.

Fig (4.19) shows the single bit detection of all three algorithms. It is shown that the SVD

has the best performance due to its three-notch predefined training sequence. Comparing the

other two algorithms they seem to have the same performance except at high SNR where the

matched filter proves to be better.
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4.6.3 Notch Bandwidth

It is always a target for chipless RFID tag designers to increase the overall coding capacity of

the tag. Various attempts were done in the literature to exploit every physical aspect of the tag

like angle [77], polarization [78], co/cross properties [79] and tag resonators design [80–82].

Another interesting property is utilizing the notch width and position to boost the total capacity

of the tag [83]. Adding information in the bandwidth of the notch adds an extra challenge in

the detection of the notch. Not only should the detector detect the existence of a notch, but also

identify the bandwidth.

To test the efficiency of the detection algorithm, a tag was designed, using CST, with variable

bandwidths. The bandwidth offered by the tag are fixed, the coder of the tag would place the

different bandwidths of the tag, shown in Fig. (4.20), depending on the final code of the tag.
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Figure 4.20: Three different notch bandwidth designed using CST.

Matched Filter

To evaluate MF for notch bandwidth detection, the received windowed signal would be compared

with four filters. Each filter will represent one of the four states represented in Fig. (4.20).

The correlation results are compared together using equation (4.3). All the results were then

compared together where the highest correlation between the four filters is chosen as the received

width. The width was then compared with the original transmitted signal for the final BER curve.
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Unlike the regular notch detection, there are three states and a zero. The three different BWs

have small variations in energy, which lead to the unsuitability of the results, where the detector

failed to differentiate between the various BWs even at high SNR. The results concluded that

using MF in detecting BW variation is not recommended.

WB-SVD

WB-SVD is based on calculating the constellation points for every notch shape. In this section,

all four constellation points have been computed off-line. The received constellation point have

been calculated using eq.(4.11). Unlike the regular notch detection, the decision is calculated

according to the proximity to each constellation point independently as detected by the colored

regions in Fig. (4.21).

Medium

Small

Large
No Notch

Figure 4.21: WB-SVD constellation for BW detection.

As expected, the results are very promising. The algorithm could easily detect the various

bandwidths efficiently and effectively. Fig. (4.21) shows the results of each bandwidth separately.

The Pd efficiency was all due to the position of the pre-calculated constellation point and its

proximity to its neighboring points. Therefore, the worst performance in all the bandwidths was

the medium and the best was the small bandwidth.
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Figure 4.22: Comparing the Pd of all the possible backscattered notch bandwidths using WB-
SVD

DTW

Similar to the matched filter approach, four predefined sequences were used as the reference

signals. The received signal is compared to each reference signal, and the lowest is considered

as the received BW. The results of the DTW algorithm are shown in figure (4.23).
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Figure 4.23: Results of detecting the notch and the bandwidth using DTW algorithm.
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The results are better than the WB-SVD and the MF. The small BW shows the best results

and the medium and large BWs exhibits similar behavior.

4.6.4 Notch Frequency Shift

In chipless RFID tags, the physical dimensions of the tag determine the properties of the

backscattered signal [84]. These properties include the operating and resonance frequencies,

notch bandwidth and notch width. Usually, the resonant frequencies of the designed notches

in the tag are fixed. Unfortunately, due to fabrication errors, tagging effects and uncalibrated

detectors the notch resonance frequency could shift in the detection window. In this subsection,

the three algorithms would be tested in case of a notch frequency shift.

For this investigation, a variable notch width tag response would be used [75]. The informa-

tion of this tag is in both its bandwidth and resonance frequency position [74]. Fig. () shows

the three bandwidths and the zero level that would be used for the frequency shift investigation,

where the noise level would be constant in all simulation for a fair comparison.

Matched Filter

The results show a good shift property but for one notch bandwidth. In this simulation, only the

medium notch is compared with the no notch. Since matched filter is based on convolution, the

shift in the notch does not affect the response of the system.

WB-SVD

In the WB-SVD the shifted notch constellation point was compared with the other predefined

notch bandwidth points.

Fig. (4.25) shows the performance of the WB-SVD algorithm in case of frequency shifts. It

is clear that the algorithm shows a poor performance when the received notch is shifted.

DTW

DTW algorithm was also tested using shifted notches. Since the algorithm is using non-linear

sequence alignment, it was predicted that the algorithm would have the best performance out

of all the three algorithms. Fig. (4.26d) shows the DTW results when two shifted notches was

compared with a reference notch.
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Figure 4.24: Results of detecting the notch and shift using matched filter algorithm.
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Figure 4.25: Results of detecting the notch and shift using SVD algorithm.

Fig. (4.27) shows an excellent performance for detecting the shift of the notch. According

to the figure, the notch would be successfully detected with a shift up to 60 MHz in one direction.
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Figure 4.26: (a) A small shift detected by the DTW algorithm the red line represents the non-
linear matching of both signals (b) Cost matrix C of the two signals X (shifted received signal)
and Y (reference notch) the red line represent the lowest cost path (c) A much bigger shift where
the algorithm successfully matched the two signals (d) Cost matrix C in case of high shift it
shows a higher cost than (b).

4.7 Comparison of Detection Algorithms

In this chapter, an intensive study was made on the three algorithms. All the algorithms use

windowing to detect the backscattered signal arriving from the tag. Based on the simulation, the

first conclusion derived is that the detection window should not be less than the notch size. If

the notch is bigger than the window the performance of the whole system will decrease by 80%,

since an interference will occur with the neighboring notch.

The second study was done on a single bit detection were one notch represents either ’0’

or ’1’. It was shown that the WB-SVD has the best performance compared to the matched

filter. This is due to the high number of training sequence used (3 notches). Both matched filter
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Figure 4.27: Results of detecting the notch and bandwidth using DTW algorithm.

and DTW show similar performance except at high SNR, where matched filter probability of

detection exceeds the one of the DTW algorithm.

In an effort to increase the capacity the bandwidth of the notch has been utilized. In this

method of coding, it is important to know the bandwidth of the notch. Here a tag was designed

by the team to suit the requirement mentioned above. In the detection matched filter proved to

be unreliable to detect the small difference in the notch bandwidth. Again SVD proved to be the

best in identifying the different bandwidths. The performance of each bandwidth is evaluated

separately. In the SVD the medium notch had the worst performance, this is due to its location in

the constellation.

In the many measurements performed on manufactured tag, using USRP or measurement

equipment. It was noticed that sometimes a shift of resonance occur in the response of tag. This

shift was tested by moving the notch over the window bandwidth. It was concluded that the

SVD performs so poorly in the case of frequency shift. The best detection algorithm was DTW.

Matched filter is applicable for frequency shift for just one bandwidth.

Table (4.2) shows a comparison between all the three algorithms. It also shows the com-

plexity of the algorithm as expected the highest complexity in the DTW and the lowest is the

matched filter. As a conclusion, the algorithm should be chosen based on the application if the

receiver has a fast processor then DTW is recommended. If a moderate complexity is needed,

then SVD but the tags should be well designed and the reader calibration should regularly be

62



4.7. Comparison of Detection Algorithms

Matched Filter WB-SVD DTW
Single bit detection
Bandwidth detection
Notch shift
Complexity Uncomplicated Moderately Complicated Highly Complicated

Table 4.2: comparing performance of all 3 algorithms red means bad performance and green
indicates good while yellow is average

Figure 4.28: USRP Test bed using 2 Log periodic antennas and chipless RFID

performed to avoid notch shift. If a notch represents a single bit, then the recommendation is

matched filter.

To test the efficiency of the detection algorithm, a test-bed was created using Universal

Software Radio Peripheral 2 (USRP2) developed by Ettus Research. The daughter board used

was CBX with a frequency range of 1 to 6 GHz. Since the USRP2 is a narrow band transponder, a

frequency sweep transmission is performed. On the other hand, the receiver calculates the power

received at each frequency. If the tag exists in the interrogation zone of the tag, the received

frequency power spectrum would contain notches representing the ID of the tag.

Fig. (4.28) shows the measurement setup in an indoor environment, where two log periodic

antennas are used as the transmitting and receiving antennas. For clutter removal, which is

necessary for chipless tag detection, PN sequence was used with Rake receiver as explained

in [85]. The USRP parameters could also be found in [85].

As shown in Fig. (4.29) the code of the 7 bit tag is 1010101. The red dotted lines in the

figure represent the virtual window size taken by the notch detector. Furthermore, it could be

seen from the same figure the increase in the notch bandwidth as frequency increase.
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Figure 4.29: Measurement result of the tag using USRP of the 7 bit tag.

1 0 1 0 1 0 1
Matched Filter 0.5 1 1 0.9 1 0.9 1

WB-SVD 0.05 1 1 1 1 1 1
DTW 1 1 1 1 1 1 0.95

Table 4.3: Probability of detection for 20 measurements done using USRP

Table (4.3) shows the probability of detection results of 20 measurements done using USRP.

The reference notches were taken from the CST results. A better results could be achieved

if the references was extracted from a reference measurement, but that requires calibration of

the system. The results show that the first notch was detected successfully using matched and

DTW. Unfortunately due to the notch shift the WB-SVD failed. The rest of the results were very

promising.
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Chipless tag localization techniques and strategies are presented in this chapter. A clear de-

scription of the well-known localization technique is presented. Furthermore, chipless RFID

link budget using ray tracing and 3D RCS is calculated to estimate the interrogation zone. Two

techniques are analyzed for tag localization, trilateration, and AoA based techniques. Both

algorithms are analyzed and a testbed created to measure the efficiency of all algorithms.

5.1 Introduction

Spatial awareness is becoming an essential requirement in many indoor applications. These

application could include locating fire victims [86], finding assets in a warehouse [87], guiding

museum visitors [88], locating patient/elderly in a hospital [89] and motion detection in gaming

[90].

Chipless RFID could be used for indoor localization, since it is easily worn by the people or

attached to the objects to be tracked. Moreover, chipless RFID enjoys the benefit of on-demand

printability on papers with conventional printing methods and conductive inks, which makes it

ideal for mass deployment in low-cost item tagging for a wide range of applications [91].

Even-though chipless RFID has many advantages, detecting and localizing the tags could

prove to be challenging. As described in the past chapters, the indoor signal propagation

environments are often complex because of the presence of obstacles and, of course, any human

occupants. Moreover, the signal backscattered from the tag is weak which adds another challenge

in the localization process.

Another challenge is the UWB RCS property of the FC RFID tag. As described in chapter

3, the chipless RFID tag has a 3D RCS which changes in frequency. This would affect the power

received at the reader side based on its location relative to the tag.
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In this chapter, we will test the performance of the chipless tag using different localization

techniques. First, a 1D tag localization will be performed to get the range of the tag. Using

multiple antennas and AoA signal processing techniques a 2D tag detection will be realized.

5.2 Localization Techniques

In this section, the most common methods which have been proposed in the literature for

localization estimation are presented, and their main properties are emphasized. Fig. (5.1) shows

the classification of localization techniques.

Location System

Lateration Angulation

Received AnglePropagation TimeSignal Strength

RSS ToA AoA

Figure 5.1: Classification of localization techniques

5.2.1 Signal Strength Based Methods

RSS based techniques exploit the distance dependency of the signal to estimate the range. In

general, the received signal power decays with the increase in the distance. Given a reference

signal power Pr,0 at a reference distance dr,0 the received signal power at distance d is usually
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approximated as

Pr = Pr,0−10η log(
d

dr,0
) (5.1)

where the Pr and Pr,0 are calculated in dB.

Unfortunately, Pr strongly depends on the number of multipath in the environment. This will

lead to an increase or a decrease in power depending on constructive or destructive interference.

This requires accurate calibration of the parameters η and Pr,0 for different environments, and a

priori knowledge (or an accurate estimate) of the environment. This affects the accuracy of the

RSS techniques [92–94].

In chipless RFID the backscatter signal will be analyzed for its RSS. Since the received

signal will not only contain the tag ID, additive signals like the clutter response should be

removed. Moreover, the tag must be calibrated to accurately calculate the tag signal strength.

5.2.2 Time Based Methods

Time based positioning techniques rely on the measurement of the travel time of the signal

propagating from the transmitter to the receiver. In a perfect world scenario, the reader will

calculate the time of transmission and the Time of Arrival (ToA) of the backscattered signal

from the tag. The reader then can directly calculate the tag’s distance from the transmitter, by

multiplying the estimated ToA by the speed of light [95].

In chipless RFID many aspects have to be considered before considering using ToA as a

ranging technique. The first is the high sampling rate at the receiver side since the reflection from

the tag is usually fast. Another aspect is the interrogation signal used by the transmitter, which

is preferred to be an UWB pulse. As any other localization algorithm, the channel should be

acquired so that interfering signals could be removed. Other aspects should also be considered,

like the delay caused by the reader hardware. These delays are usually random and hard to

calibrate.

5.2.3 Angle of Arrival Based Method

AoA provides the direction information of an incoming signal. In all AOA techniques, antenna

array must be used at the receiver side. Commonly the algorithms utilize the difference in time

of arrival (phase difference) between the antennas to determine the AOA [96].

In a radar system like the one used in the chipless RFID, the incoming signal is highly
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correlated. This will prove to problematic in most of the AOA algorithms.

5.3 Chipless RFID Link Budget

Link budget calculation in communications specifies the reading range based on power budget

for the transmitter, the antenna gain, and Effective Isotropic Radiated Power (EIRP) of the reader

antenna. Moreover, the link budget helps to calculate the required antenna gain and related

specification to obtain a robust and viable communication in the specific conditions of wireless

communications.

In backscatter radio, the reader communicates wirelessly with the tag by scattering electro-

magnetic waves. This communication system allows the tag to communicate while consuming

very little or no power. Unlike the chipped RFID the chipless does not require charging, it reflects

the incident power. Theoretically, this will increase the reading range [97].

In chipless RFID the system design is challenging because of the complex electromagnetic

interactions between the reader, tag, and the radio channel. As described in the previous chapters,

these interactions limit the amount of power received by the tag and/or the amount of power

backscattered to the reader. If either of these powers drops below a certain threshold, the reader

will be unable to detect the backscattered signal reliably. Therefore, it is imperative for the

design and operation of modulated backscatter systems that these received powers be predicted.

TX/RX

TX

RX

TX RX

r r rf rb

Tag Tag Tag

(a) (b) (c)

Figure 5.2: The three main antenna configurations in the backscatter link:(a)monostatic, (b)
bistatic collocated, and(c) bistatic dislocated [1].

The first link budget in Eq.(5.2), describes the forward channel power flow from the

transmitter of the reader to the chipless tag.

Ptag =
PT GT λ 2X f

(4πr f )2BFb
(5.2)

where
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Ptag= is the power received at the tag

PT = is the power transmitted by the reader (W)

GT = is the gain of the TX antenna

λ= is the is the carrier frequency wavelength (m)

X f = is the forward polarization mismatch

r f = is the reader to tag distance (m)

B f = is the forward blockage loss

Fb= is the power-up link, small-scale multipath fading loss

Equation (5.2) depends on the tag-reader separation distance, antenna gain and transmitted power.

In chipless RFID, unlike the chipped, there is no minimum power Ptag. All the limitation is in

received power at the receiver side, as presented in equation(5.3).

PR =
PT GT GRλ 4X f XbΓ(Θ,Φ)

(4πr)4r f rbB f BbF
(5.3)

where

rb= is the tag-to-reader separation distance (m)

Xb= is the reverse-link polarization mismatch

GR= is the gain of the RX antenna

r f = is the reader to tag distance (m)

Bb= is the backward blockage loss

Fb= is the power-up link, small-scale multipath fading loss

Γ= is the RCS of the tag which depends on angle of arrival θ f ; φband departure θb and φb of

the indecent signal.
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The unit-less loss terms B, F and X that appear in Eq. (5.3) and (5.2) are explained in

details in [97]. These terms and the other will vary depending on the antenna configuration of

the RF tag reader, shown in Fig (5.2). In the monostatic configuration, the reader uses a single

antenna to transmit and receive.In the monostatic case r f = rb, X f = Xb, B f = Bb. Moreover,

this configuration requires a circulator which will add an extra power loss [98].

The FC chipless has two major backscattering states, total reflection and absorption. In the

total reflection state, the tag will reflect back the incident power depending on its RCS (Γ). In

the absorption state, the tag absorbs some of the power and reflects the rest. For the tag to be

detected both states must be above the reader sensitivity as shown in Fig (5.3).

f

N
ot
ch

D
ep
th

Total Reflection

Absorption
Reader Sensitivity

Figure 5.3: A description drawing showing the two backscattering states and the reader sensitiv-
ity

In chipless RFID the notch depth of the tag is determined by the design of the tag. The

notch depth changes depending on the position of the tag relative to the reader. The clarity of the

notch is determined by the RCS radiation pattern of the tag. The reader sensitivity is stated by

the reader. Both the reader sensitivity and the notch depth are important when determining the

maximum range of the tag.

To show the location dependence of the tag a WI simulation was made where a regular

office was designed using the same electric parameters described in Table (3.1). A groundless

tag was used with a backscattering power of 0 dB. As shown in Fig (5.5) (5.4) the tag placed in

the middle in the total reflection state and 3D RCS was extracted from CST.

The tag was surrounded by readers. The simulation was done twice, once by using a high
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Figure 5.4: WI setup for a room with a tag in the middle surrounded by reader 3D view

Figure 5.5: WI setup for a room with a tag in the middle surrounded by reader top view

directive horn antenna and another by using a conventional omni-directional antenna, to show

the effect of the reader gain factor. In the directional antenna case, all the readers were designed

that the maximum gain is directed towards the tag.
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Figure 5.6: Directional antenna case (Horn)

Figure 5.7: omni-Directional antenna case

The color coded results in Fig (5.6) and (5.7), shows the power received from the tag at

each point considering the fully reflection mode where the tag have the highest RCS response.

It is evident from the results that the use of a directive antenna shown in Fig. (5.6) leads to a

higher interrogation area. This is could also be shown in equation (5.3). It must be noted that the

interrogation zone differs at every frequency point, depending on the RCS radiation pattern.
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It is also realized that the interrogation zone of the tag used in front and the back of the tag,

in the directional reader antenna case. The tag does not scatter the incoming electromagnetic on

the left and the right regions of the tag. If a ground based tag was used, as shown in Fig. (5.8),

the ground plane will reflect all the incoming signal leading to only one direction of interrogation,

represented by the red area.

Figure 5.8: Directional antenna case with a ground based tag

5.4 Trilateration Estimation

In the chipless RFID there three main researches done in the localization of the tag. All of them

uses trilateration for the localization of the tag [99–101]. Trilateration uses the distances among

the locations to estimate the coordinate of the unknown location. In trilateration, the distances

between reference locations (reader) and the unknown location (Tag) can be considered as the

radii of many circles with centers at every reference location. Thus, the unknown location is the

intersection of all the sphere surfaces as shown in Fig. (5.9).

Figure 5.9 shows three readers placed at random with known locations (xn,yn) where

n = 1,2,3. the tag is placed in the interrogation zone of all the three readers. The main task of

the localization algorithm is to calculate (x,y) by using (d1,d2,d3). The simplest solution is to
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R1

R2

R3

(x1,y1)

(x2,y2)

(x3,y3)

d1

d2

d3

(x,y)

Figure 5.9: Trilateration estimation using three readers and a tag

use Pythagorean theorem.
d2

1 = (x1− x)2 +(y1− y)2

d2
2 = (x2− x)2 +(y2− y)2

d2
3 = (x3− x)2 +(y3− y)2

(5.4)

Rearrange the equations in 5.4 and solve for x and y, the location coordinate of the tag can

be obtained as shown in the following expression.

x =
AY32 +BY13 +CY21

2(x1Y32 + x2Y13 + x3Y21)
(5.5)

y =
AY32 +BY13 +CY21

2(y1Y32 + y2Y13 + y3Y21)
(5.6)
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where
A = x2

1 + y2
1−d2

1

B = x2
2 + y2

2−d2
2

C = x2
3 + y2

3−d2
3

(5.7)

and

X32 = (x3− x2)

X13 = (x1− x3)

X21 = (x2− x1)

Y32 = (y3− y2)

Y13 = (y1− y3)

Y21 = (y2− y1)

(5.8)

There are three possible scenarios:

• All three readers detect the tag.

• Two readers detect the tag.

• One or no reader detect the tag tags.

To use trilateration techniques, at least three reference nodes are required. The second and

third scenarios are not able to fulfill the requirement [102]. This will prove to be a challenge

in chipless RFID, since the probability of three readers detect the tag is very low. It will be

substantially dependent on the location of the reader relative to the tag. To prove this theory, a

simulation setup was made using WI.

In this setup, 12 readers were placed around the tag. The separation between each reader

and the next is 30◦. Moreover, at each angle 3 reader nodes are placed at distances of 2m, 1m,

20 cm. In this simulation, the tag 3D RCS is changed with the frequency. Two scenarios are

implemented the forward and backward channel. The power received at each reader is monitored

and the results are retrieved.
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Figure 5.10: Trilateration technique setup in WI

The results show that the readers in front and behind the tag could only detect the tag while

other readers failed to do so. This could also be validated using measurements done in the

following subsection.

5.4.1 Measurements of angle dependency

To validate the angle dependency of the chipless tag, a testbed was created using a fabricated tag.

The measurement was performed on three angles; 90, 30, 150. In the 90-degree scenario, the tag

is facing the reader. In all scenarios, a spectrum generator and sensor is used to transmit and

receive a sweeping sinusoidal signal to detect the tag which is 10 cm away.
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Figure 5.11: Measurement results of three tag rotation angles

The results of the measurements are shown in Fig. (5.11). The results clearly show that the

tag was detected and identified in the 90-degree case. If those angles were chosen in a trilateration

algorithm, the tag would be undetectable at two angles. This will lead to the algorithm to fail

when localizing the tag.

5.5 Multiple Antenna Based Localization Techniques

To solve the trilateration limitations, it is proposed to design a localization system based on one

reader with multiple antennas. The implemented system offers 1D localization, which calculates

the range of the tag from the reader. Moreover, multiple antennas are utilized to calculate the

angle of arrival of the backscattered signal, indicating the 2D location of the tag as shown in Fig.

(5.12). In all techniques, both detection and localization are important, since any object from the

environment could also reflect the signal. If there is no detection, this reflected signal could be

mistaken for a tag.

This section will first highlight the ranging technique RSS. A simulation and measurements

will be done to investigate the maximum distance that could be achieved by the algorithm.

Moreover, the advantage and disadvantage of both techniques will be stated.

For 2D localization, AoA techniques will be utilized to determine the angle of arrival of the

reflected signal. All available techniques will be studied to determine which is the best for our
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application. In all localization techniques, 1D or 2D, only one notch will be considered.

Detection and Localization

D

θ

Figure 5.12: The use of multiple antennas for localizing the tag.

5.5.1 Reading Range Calculation

The first step in tag ranging is to calculate the achievable range for the recommended setup. For

that, a simulation using WI and measurement using a function generator and a spectrum analyzer

was used. In this setup, the tags are distributed in front of the reader. The antennas used for the

readers are horn antennas for maximum gain, with an angle of 45 degrees.
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Figure 5.13: Forward channel power allocation

Algorithm 5.1 Algorithm for calculating the tag range
1: procedure WI FORWARD(x,y)
2: Set Tx1 as the transmitter
3: Transmit sine wave at power=20 dBm
4: Set tag grid as the receiver
5: Set received signal at each tag = FORSignal(x,y)
6: Return FORSignal(x,y)
7: end procedure
8: procedure WI BACKWARD(FORSignal(x,y))
9: Set tags as the transmitters

10: Transmit FORSignal(x,y)
11: Return RXSignal(x,y)
12: end procedure . Main Code
13: Get Tag grid size= [x,y]
14: FORSignal=WI Forward(x,y)
15: RXSignal=WI Backward(FORSignal(x,y))
16: Remove clutter response
17: Set Reader Sensitivity =-110
18: Set RXSignal< Reader Sensitivity = -310
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Figure 5.14: The detected tags after applying forward and backward channel.

For ranging calculation which includes environmental effects, channel gain, path loss and

the chipless tag RCS pattern. An algorithm (5.1)was implemented to include the forward channel,

shown in Fig. (5.13), and the backward channel. It was calculated that the tag could be detected

in a range of 1 m. This includes the removal of clutter, transmission power of 20 dBm a reader

sensitivity of -110 dBm. A greater range could be achieved if both a higher gain antenna, or a

tag with a higher RCS value are used. Moreover, a more sensitive reader could provide a higher

reading range.

5.5.2 RSS Measurements Using Chipless RFID

To calculate the range of the tag, RSS techniques should prove to be useful. In this algorithm

a reference tag must be used at a known distance, to estimate the parameters of equation (5.1).

In LOS indoor environments the pathloss exponent (η) ranges from 1.0 to about 2 in office

environments. In NLOS scenarios the pathloss exponent typically ranges from 3 to 7 [103].

Ranging based on the received signal strength is strongly dependent on the estimation of the

parameter the pathloss exponent which is variant in every environment. Therefore an accurate

calibration is needed for the reference and no tag scenario. Equation (5.1) could be expressed in

terms of the distance in the following equation:

d̂ = d0(
P0

Pr
)

1
η (5.9)
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In the all the localization algorithms one notch was considered for efficiency. All the

measurements were done using a function generator and a spectrum analyzer, where one tag was

used and interrogated with a sweeping sinusoidal wave from 2 GHz to 3 GHz.

Figure 5.15: Localization test-bed designed in an indoor office setup.

The first task was to identify the best distance for the calibration process. Too close and

we may risk being in the near field region of the reader antenna too far and we may risk having

clutter and self-interference affect the measurements.
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Figure 5.16: Calibrated tag measurements at 5 cm to 30 cm distance

Fig. (5.15) shows the measurement setup used and Fig. (5.16) are the calibrated results
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extracted from the spectrum analyzer in sweep mode at a distance of 5 cm to 30 cm. Fig. (5.16)

shows a peak where the tag is at full reflection mode at frequency 2.78 GHz and a notch at 2.9

GHz. These frequencies was chosen to fit our measurement equipment and the tag operation

frequency.

In the ranging algorithm (5.2) the reader scans the first notch frequency in this case from

2.75 GHz to 2.95 GHz. Clutter removal techniques are then applied to the received signal to

remove self interference. A notch detection algorithm is then applied to the equalized signal.

This process is vital to avoid using ranging algorithms on any metal structures. The detection

algorithms may vary from match filter; SVD or DTW, explained in chapter 4. The next step in

the ranging process is analyzing the power at the peak. Using equation (5.9) the range could be

determined.

The detection was performed 35 times at various distance. The error is then calculated using

equation (5.10). Fig. (5.17) shows the calculated RSS measured values at η=1.5.

Algorithm 5.2 Algorithm for calculating the tag range using real test bed
1: procedure 5CM CALIBRATION

2: Scan tag from 2.75 GHz to 2.95 GHz.
3: Apply clutter removal technique
4: P0 = Power(2.78)
5: calculate η

6: Return η

7: end procedure
. Main Code

8: Scan tag from 2.75 GHz to 2.95 GHz
9: Apply clutter removal technique

10: Apply detection algorithm
11: η=5cm calibration
12: Calculate Range

ed = d̂−d = d0(
P0

Pr
)

1
η −d (5.10)
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Figure 5.17: Measured vs simulated distance using empty room calibration.

5.5.3 Estimating Angle of Arrival using MPM

The problem of estimating the direction of arrival of the various sources impinging on an antenna

array has received considerable attention in many fields including radar, sonar, radio astronomy,

and mobile communications [104]. Each technology had its challenges and requirements, since

each operates at different frequencies and environments. In chipless RFID using AoA proves to

be quite a challenge, since all the reflected signals are highly correlated which would not work

with many algorithms. Another challenge is in the operating frequency range of the chipless

RFID. This is because the AoA algorithms get more complicated in an UWB scenario. Finally,

the reflected signal is very week which could be undetectable by the array of antennas. These

challenges will all be solved in this section.

Many methods and techniques have been developed to estimate the required parameters of

plane wave signals. These methods can be divided into two broad categories

• Beamforming or Classical Methods

• Subspace Based Method

The main idea of the Classical Methods is to steer the array in one direction at a time and
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measure the output power [105]. Where the received signal y(t) after weighting is described by

y(t) = wHx(t) (5.11)

Two well known algorithms in this category are Bartlett Beam-former: [106] where the spacial

spectrum is obtained by

P(θ) =
aH(θ)R̂a(θ)
aH(θ)a(θ)

(5.12)

and CAPONS is defined by [107]:

P(θ) =
1

aH(θ)R̂−1 a(θ)
(5.13)

where R̂ is the sample covariance matrix, while a(θ) is the steering matrix.

Subspace based methods are most widely used DOA estimation methods due to their

computational simplicity and high resolution. These methods exploit the properties of noise

and/or signal subspaces to estimate the required parameter. Well known algorithms in this

category are:

• Multiple Signal Classification (MUSIC) [108]

• Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) [109]

• Matrix Pencil (MP) method

All above techniques are covariance based algorithms which assume that0 the signals

impinging on the array are not correlated or coherent, except for MP. For coherent or highly

correlated signals the rank of the covariance matrix is reduced and the ability to resolve closely

spaced sources is also dramatically decreased [110]. MP method operates directly on received

data so as to estimate the required parameters and works well in the presence of fully correlated

signals.

Matrix Pencil Method

MP method was first proposed by [52]. For a single measurement the output of the nth antenna

is:

yn =
I

∑
i=1

Aie j(nΨi+ζi)+ν (5.14)
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where Ai and ζ are the ith signal’s amplitude and phase. A Hankel matrix can be constructed

from 5.14. with

Ψi = j
2π

λ
d cos(θi) (5.15)

Y =


y0 y1 · · · yL−1

y1 y2 · · · yL
...

... . . . ...

yN−1 yN−L+1 · · · yN−1

 (5.16)

where L is called the pencil parameter and its value should be between N/3 and N/2 for effective

noise filtering, Where N is the number of antennas. The data matrix Y can be decomposed as

Y = ZaR0Zb (5.17)

where

Za =


1 1 · · · 1

e jΨ1 e jΨ2 · · · e jΨI

...
... . . . ...

e(N−L) jΨ1 e(N−L) jΨ2 e(N−L) jΨI

 (5.18)

and

Za =


1 e jΨ1 · · · e(L−1) jΨ1

1 e jΨ2 · · · e(L−1) jΨI

...
... . . . ...

1 e jΨI e(L−1) jΨI

 (5.19)

R0 =
[
A1e jζ1 A2e jζ2 · · · AIe jζI

]
(5.20)

For noisy data, a SVD can be used to reduce the effect of noise. After SVD,Y can be written

as

SVD(Y) = UΣVH (5.21)

where U and V are unitary matrices whose columns are left and right singular vectors of Y,

respectively, and Σ contains the singular values of Y located on its main diagonal.

SVD(Y) = UsΣsVH
s +UnΣnVH

n (5.22)

where Us and Vs contain the left and right singular vectors of Y corresponding to I largest
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singular values, respectively. Similarly, Un and Vn contain the left and right singular vectors of

Y corresponding to remaining singular values respectively.

U1 = Us : with last row deleted (5.23)

U2 = Us : with first row deleted (5.24)

then the eigenvalues of matrix U†
1U2 yield the angle of arrival of the incoming signals on the

antenna array.

θ1,··· ,I = eigenval(U†
1U2) (5.25)

Using both ranging and DoA algorithms localization was performed on chipless tags at

different locations in the interrogation zone. In Fig. (5.18) MPM algorithm was used to calculate

the angle of the tag. The algorithm located all the tags successfully except one. This is due to

wrong RSS ranging.
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Figure 5.18: localization using ranging and MPM, gray boxes represent wrong detected tags
and black is correct.

5.5.4 Measurement Setup

For real-time measurements, a USRP test bed was created inside an indoor environment. Three

USRP were used, two for the receiver (B210) and one as the transmitter (N210) as shown in Fig.

(5.19). For synchronization of all USRP devices, an Octoclock with a 10 MHz source was used.
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All the signal processing and was performed on a laptop containing GNURadio.

For localization, only one notch was considered. This eliminates the scanning of the full

tag bandwidth making the localization process much faster. The first process done by the reader

was notch detection using algorithms discussed in [111]. The notch and the peak frequency

was recorded, and the localization process starts by applying RSS for the range and the MPM

for AoA detection. Furthermore to remove clutter a spacial filter and the PN-Sequence was

preformed [85].

The results shown in Fig. (5.20), shows the original position of the tag (blue circles) and the

detected position (red triangles) in a 50 cm by 50 cm interrogation zone. The interrogation zone

is precalculated using WI and measurements calibration.
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Figure 5.19: A description drawing showing the measurement setup using USRP

Reader

50 cm

50
cm

Figure 5.20: Chipless RFID tag localization measurement results (blue is the actual position
and red is the calculated position)
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In this chapter, the conclusion achieved throughout the dissertation is summarized, and the future

work is stated.

6.1 Conclusion

This thesis discussed three main points related to FC chipless RFID. The first pint is the clutter

effect and how it greatly affects the tag backscattering response. The second aspect was notch

detection and we proved that without an efficient detection technique the tag will not be identified.

The third aspect was tag localization, were AoA techniques with RSS to determine the location

of the tag.

Chapter 3 starts by formulating the channel and concluded that two signals distort the

backscattered signal from the tag. The two interference signals are the clutter response and

coupling. It was found that to get the actual performance of the tag; the 3D model has to be taken

into consideration. The 3D was exported from an EM simulation tool and inserted in a ray tracer

software. Moreover, to prove our theories, a test bed is created using USRP, where two clutter

removal techniques were investigated. These two algorithms are empty room calibration and PN

sequence using Rake receiver equalizer. In the empty room calibration, it was concluded that

a high number of averaging is required to get an accurate reading from the channel. In empty

room calibration, the environment has to be constant, if there any change in the environment

or the measurement setup the system has to be re-calibrated. As a solution, PN sequence was

introduced to counter the deficiency of empty room calibration. To remove the clutter a Rake

receiver. This method is considered like time gating with CW signals. After simulation and

measurements, it was concluded that the PN sequence shows great results and without the use of

any empty room measurement.
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In Chapter 4 proves that notch detection is an important part of the identification process.

The first conclusion from this chapter is that the operating frequency band should be windowed.

This window should either contain a notch or a full reflection. This concept must be considered

even when designing the tag. The second step is to apply notch detection techniques on this

window. It was also shown that the larger the notch the Pd is, as long as the notch is contained

inside the window. If part of the notch is in the other window, then the overall detection will

be significantly decreased. Three different notch detection algorithms were also presented in

this chapter. The three algorithms are matched filter, SVD and DTW. Each algorithm was

made to solve a disadvantage in the other. It was shown that matched filter, although easy to

implement, could not resolve different notch widths. Resolving different notch widths is essential

for increasing the capacity of the tag, where the information of the tag is in its width and its

position. The algorithm that showed the best success in notch width detection are DTW and SVD

techniques. Although, SVD showed the best performance in a single notch detection, where the

information is only in the frequency position of the notch. Since the tag geometry is necessary

for the response of the notch, any manufacturing errors or wrong reader calibration could cause

the position of the notch to shift. This shift should be studied regarding the decoding. The best

performance for detecting the notch even if there were shifts are the matched filter and DTW.

The SVD showed the worst results for the overall Pd for detecting shifted notches. The last

conclusion taken from this chapter is that the matched filter is the less complicated algorithm

then comes the SVD and then DTW.

Chapter 5 discusses the localization algorithms for chipless RFID. It starts by reinforcing

the conclusion mentioned in chapter 3 that the 3D RCS should always be taken into consideration

when modeling the tag. The interrogation zone is then calculated using the 3D RCS, with a

mathematical presentation of the link budget. The difference in range between an Omni and a

directional antenna was also shown. In this investigation, directional antenna showed a higher

interrogation area. The chapter then investigates two different localization algorithms. The first

is trilateration, where at least three readers are required to detect the location of the tag. This

algorithm was concluded inefficient for some types of tags. Since most of the tags could not be

detected in all the angles. This was when a different approach was introduced. This algorithm

uses the angle of arrival and RSS measurements. To validate this algorithm first, RSS was

measured in 1D ranging. It shows that detecting the full reflection mode of the tag is sufficient for

ranging the tag. The second part is then locating the AoA. All AOA algorithm was investigated

to test their efficiency in an indoor chipless tag localization. It was concluded that MPM is the
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best algorithm to detect the correlated angle of arrivals. In all localization algorithms, the tag

had to be detected using one of the algorithms mentioned in chapter 4.

6.2 Future Work

For future work, it is recommended to design a tool specially designed for chipless RFID. This

tool would include all the properties of the chipless RFID from EM simulation of the tag to the

channel estimation and even protocol design. This tool could take some functionality from other

well-known software. Another recommendation is in the channel chipless RFID modeling. In

this thesis deterministic models were used, it is recommended that a statistical model should be

built. This model has to accurate to decrease the need for real measurements.

For the chipless RFID to replace the signature of the tag should represent more bits. Decod-

ing a large number of bits should be studied and investigated. Moreover, the reading range should

be significantly increased. This could be done by higher sensitive readers and more directive

antenna.
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