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Abstract

Two-phase flow is a common occurrence in pipes of oil and gas developments. Current predictive tools are
based on the mechanistic two-fluid model, which requires the use of closure relations to predict integral
flow parameters such as liquid holdup (or void fraction) and pressure gradient. However, these closure
relations carry the highest uncertainties in the model. In particular, significant discrepancies have been
found between experimental data and closure relations for the Taylor bubble velocity in slug flow, which has
been determined to strongly affect the mechanistic model predictions (Lizarraga-García, 2016). In this work,
we study the behavior of Taylor bubbles in vertical and inclined pipes with upward and downward flow using
a validated 3D Computational Fluid Dynamics (CFD) approach with Level Set (LS) method implemented
in a commercial code. A total of 56 cases are simulated covering a wide range of fluid properties, and pipe
diameters and inclination angles (Eo ∈ [10, 700], Mo ∈ [1 ·10−6, 5 ·103], ReSL ∈ [−40, 10], θ ∈ [5◦, 90◦]). For
bubbles in vertical upward flows, the simulated distribution parameter, C0, is successfully compared with
an existing model. However, the C0 values of downward and inclined slug flows where the bubble becomes
asymmetric are shown to be significantly different from their respective vertical upward flow ones, and no
current model exists for the fluids simulated here. The main contributions of this work are (i) the relatively
large 3D numerical database generated for this type of flow, (ii) the study of the asymmetric nature of
inclined and some vertical downward slug flows, and (iii) the analysis of its impact on the distribution
parameter, C0.

Introduction

Two-phase slug flow is a common occurrence in wells, riser pipes and pipelines of crude oil and natural
gas systems. Current predictive tools for two-phase flow are based on either the mixture model or the
mechanistic two-fluid model (Brill and Mukherjee, 1999). In the latter, slug flow is modeled as a sequence
of fundamental units, also called slug units. Each unit contains a long bullet-shaped bubble, known as
Taylor bubble, and a liquid portion with smaller homogeneously distributed bubbles, known as liquid slug.
Thorough studies about the modeling of two-phase slug flow can be found in Taitel and Barnea (1990);
Fabre and Liné (1992); Bendiksen et al. (1996). The mechanistic model requires the use of closure relations
to capture the transfer of mass, momentum and energy between the phases, in their respective conservation
equations, so that integral flow parameters such as liquid holdup (or void fraction) and pressure gradient can
be predicted. However, these closure relations typically carry the highest uncertainties in the model, since
they are obtained empirically or through the use of overly simplified assumptions, and are applied beyond
their range of applicability. In particular, significant discrepancies have been found between experimental
data and closure relations for the Taylor bubble velocity in slug flow. For example, the drift velocity
of Petalas and Aziz (2000) mechanistic model is predicted by the model of Bendiksen (1984) which was
obtained based on air/water experiments; or the distribution parameter C0 used by Gomez et al. (2000) is
independent from inclination angle, and also based on the air/water experiments performed by Bendiksen
(1984). Furthermore, the Taylor bubble velocity has been determined to strongly affect the pressure gradient
and liquid holdup predicted by the mechanistic models of Ansari et al. (1994); Orell and Rembrand (1986);
Petalas and Aziz (2000), as shown by Lizarraga-García (2016).

Taylor bubble velocity, vTB, in slug flow is generally modeled based on the drift flux approach of Nicklin
et al. (1962),

vTB = C0 · vm + vd, [1]

where vd is the drift velocity of the bubble in a stagnant liquid, and C0 · vm is the contribution of the
mixture velocity, vm, which is the sum of the liquid and gas superficial velocities, vm = vSL + vSg. The
distribution parameter, C0, is a dimensionless coefficient that captures the effect of nonuniform flow and void
concentration profiles, and is generally approximated as the ratio of the maximum to the mean velocity in
vertical pipes. Our previous published work focused on the Taylor bubble in stagnant liquid, i.e., the second
term of the right hand side (RHS) of equation 1, vd: in Lizarraga-Garcia et al. (2017), we proposed a new
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Table 1 – Approximate Mo ranges for various oils based on British Petroleum (2011).

ρL [kg/m3] σ [N/m] µL [Pa·s] Mo

Heavy oil 1100 0.03 2 5·103

High viscous oil 1100 0.03 0.15 2·10−1

Medium viscous oil 1000 0.03 0.03 3·10−4

Light oil 900 0.03 0.007 1·10−6

Very light oil 800 0.03 0.001 5·10−10

closure relation for inclined pipes based on numerical results generated by the same approach followed in
the present article, and whose higher accuracy compared to other literature correlations has been recently
highlighted (Massoud, 2019; Mitchell, 2019; de Azevedo et al., 2020). The present manuscript investigates
numerically the velocity and dynamics of Taylor bubbles in vertical and inclined pipes with imposed fluid
flow, and analyzes the current prediction tools for C0.

Taylor bubble’s dynamics are influenced by the viscous, inertial, gravitational, and interfacial forces
acting on it. If one assumes that the liquid transport properties are dominant (ρg/ρL � 1, µg/µL � 1,
where the subscripts g and L indicate the gas and liquid phases, respectively, ρ is the density, and µ is the
dynamic viscosity), dimensional analysis indicates the model of Nicklin et al. (1962) (equation 1) can be
expressed as

FrTB = C0(Eo,Mo,ReSL, θ)FrSL + Frd(Eo,Mo, θ), [2]

where Fr is the Froude number, Fr = v/
√
gd, where g is the gravitational acceleration and d is the pipe

diameter; Eo is the Eötvös number, Eo = ρLgd
2/σ, where σ is the surface tension; Mo is the Morton

number, Mo = gµ4
L/ρLσ

3; ReSL is the liquid flow Reynolds number, ReSL = ρLvSLd/µL; and θ is the pipe
inclination angle measured from the horizontal. In this case, vm = vSL since we only impose liquid flow in
our simulations, as described later. Note that the choice of the pi-groups is not unique and the inverse
viscosity number, Nf , a combination of both Eo and Mo, Nf = (Eo3/Mo)1/4, can also be employed.

Table 1 shows the approximateMo ranges for different types of oil. In this work, we focus onMo ≥ 1·10−6

as ample work has been done using water, which has similar properties to very light oil.
In this manuscript, we first perform a literature review of the work centered on the first term of equation

1, i.e. the distribution parameter C0 (for a more ample literature review on the study of Taylor bubbles
in stagnant pipes, the interested reader is referred to Lizarraga-Garcia et al. (2017)). Then, we cover the
mathematical model, test matrix and simulations setup, followed by the results and discussion. Finally, we
present the conclusions.

Literature review

The literature on Taylor bubbles in vertical pipes with imposed fluid flow is ample. Shortly after Nicklin
et al. (1962), Zuber and Findlay (1965) proposed a general expression for two-phase flow systems that took
into account both the effect of nonuniform flow and void concentration profiles as well as the effect of local
relative velocity between the phases. The authors defined the distribution parameter C0 as

C0 = 〈αvm〉
〈α〉〈vm〉

, [3]

where α is the local void fraction, and the operator 〈x〉 indicates the average value of a quantity x over
the cross-sectional area of the pipe. In vertical slug flow, the Taylor bubble occupies almost the entire
pipe thus 〈α〉 ≈ 1. Furthermore, since the Taylor bubble occupies the center part of the pipe where the
velocity is higher, C0 > 1. Experiments with air/water (Nicklin et al., 1962; Bendiksen, 1984; Polonsky
et al., 1999), theory (Collins et al., 1978; Bendiksen, 1985), and numerical simulations (Mao and Dukler,
1990, 1991) have shown that C0 ≈ 2 for laminar flow and C0 ≈ 1.2 for turbulent flow are good engineering

E. Lizarraga-Garcia, Projects & Technology, Shell Global Solutions (US) Inc., Department of
Mechanical Engineering, MIT; J. Buongiorno, Department of Nuclear Science and Engineering, MIT;
and E. Al-Safran, Department of Petroleum Engineering, Kuwait University

3 of 27



Table 2 – Distribution parameter C0 correlations for Taylor bubbles in vertical pipes with upward flow.

Model Correlation

Bendiksen
(1985) C0 = 2.29

(
1 −

20
Eo

(
1 − e−0.0125Eo

))
, for laminar flow [4a]

C0 = logReSL + 0.309
logReSL − 0.743

(
1 −

2
Eo

(
3 − e−0.025Eo logReSL

))
, for turbulent flow [4b]

Fréchou (1986)
C0 = 1.2 + 0.8

1 + 1 · 10−8Re2.55
SL

[5]

Petalas and
Aziz (2000)

C0a = (1.64 + 0.12 sin θ)Re−0.031
SL [6]

Tomiyama et al.
(2001)

C0 = 1.5 − 0.5e−4·10−4Eo2.36
, for ReSL < 2, 000 [7a]

C0 = 1.18 + 0.32e1.7·10−3(2,300−ReSL), for ReSL > 2, 300 [7b]

Rattner and
Garimella
(2015)

C0 = fLSC0,LS + (1 − fLS)C0,Ca [8a]

fLS =

(
1

1 + 4, 840Re−0.163
SL

)0.816/Eo

[8b]

C0,LS = 1.20 + 1.09
1 + (ReSL/805)4 [8c]

C0,Ca = 1
1 − 0.61Ca0.33 [8d]

a
Also applicable to inclined pipes

approximations for vertical upward flow. More detailed literature correlations for the distribution parameter,
C0, are shown in table 2. Bendiksen (1985) proposed two different correlations for upward vertical laminar
and turbulent flow when Eo > 40. Fréchou (1986) provided a correlation dependent only on ReSL. Later,
in his mechanistic model, Petalas and Aziz (2000) used a correlation that could also be applied to inclined
pipes, which depends on both ReSL and θ. Unfortunately, no details about the correlation derivation
were included. Shortly after, and based on air/water experiments, Tomiyama et al. (2001) presented two
correlations for laminar and turbulent flow, however the authors mentioned that the laminar expression
is preliminary due to lack of sufficient experimental data. Finally, and using also air/water as the fluids,
Rattner and Garimella (2015) studied experimentally the so-called intermediate scale Taylor flow (defined
as 5 ≤ Eo ≤ 40), for ranges 480 ≤ ReSL ≤ 4, 460 and 4.9 ≤ Eo ≤ 12.2 in upward vertical pipes. The
authors proposed a blended capillary-to-large scale distribution parameter, C0, for this transitional regime
with two contributions: the large scale, C0,LS , and the capillary scale, C0,Ca, where the latter is obtained
from Liu et al. (2005), and Ca = µLvSL/σ. The two contributions are combined with a large scale fraction
function, fLS , equation 8b.

Published research on vertical downward flow is more limited. In general, if the bubble remains
axisymmetric, its velocity follows equation 1 with the value of C0 being that of the upward flow for the same
liquid and regime (Martin, 1976; Figueroa-Espinoza and Fabre, 2011; Fershtman et al., 2017). However,
several experimental studies observed that in some downward flow cases the bubble nose begins to distort
and the bubble becomes asymmetric (Griffith and Wallis, 1961; Nicklin et al., 1962; Polonsky et al., 1999).

4 of 27 E. Lizarraga-Garcia, Projects & Technology, Shell Global Solutions (US) Inc., Department of
Mechanical Engineering, MIT; J. Buongiorno, Department of Nuclear Science and Engineering, MIT;

and E. Al-Safran, Department of Petroleum Engineering, Kuwait University



In those cases, the value of C0 is lower than unity. Martin (1976) performed a comprehensive study focused
on downward water flow for three different pipe diameters (estimated Eo = 92; 1, 410; 2, 670), and obtained
C0 < 1 for the asymmetric bubble cases. The first attempt to theoretically analyzed this problem was done
by Lu and Prosperetti (2006), who performed an approximate linear stability analysis neglecting surface
tension effects, and “found that the major factor underlying the instability is the flattening of the bubble nose
as the liquid flows downward”. The authors proposed a critical downward liquid velocity, FrSL ≈ −0.135,
at which the bubble loses the symmetric shape. These authors published later a computational study of
2D axisymmetric Taylor bubbles in vertical pipes with upward and downward liquid flow where they also
proposed an approximate criterion for the bubble tail shape (Lu and Prosperetti, 2009). Figueroa-Espinoza
and Fabre (2011) studied through 2D channel simulations the transition from an axisymmetric to an
asymmetric bubble shape in downward laminar liquid flow, and proposed a critical liquid velocity dependent
on surface tension. Later, these authors also performed Taylor bubble experiments in a vertical pipe with
downward flow (Fabre and Figueroa-Espinoza, 2014). They proposed a new critical velocity criterion based
on the vorticity-to-radius ratio of the liquid on the pipe axis, (ω/r)0, and dependent again on surface
tension. Fershtman et al. (2017) studied experimentally the Taylor bubble motion in vertical downward
water flow and identified three distinct modes of bubble motion for downward liquid velocities exceeding
FrSL = −0.13, which corresponds to the criterion of Lu and Prosperetti (2006).

Literature of Taylor bubbles in inclined pipes with imposed flow is somehow more scarce. Bendiksen
(1984) included inclined upward and downward water flow experiments (θ = 90◦ to −30◦), and reported
C0 ∈ [1.00, 1.20] for all upward flow inclinations, and C0 < 1 for downward flow. Roumazeilles et al. (1996)
performed experiments of air/kerosene downward turbulent slug flow for those same inclination angles
(θ = 0◦ to −30◦), and reported that the Taylor bubble velocity was not affected by the inclination angle in
their experiments yielding C0 ≈ 1.2. Ha-Ngoc and Fabre (2004) provided analytical and numerical solutions
for the velocity and shape of 2D long bubbles, both plane and axisymmetric, for upward inclined flow.
As pointed out by Taha and Cui (2006), “the difficulty in handling the 3D nature of the flow limits the
existence of experimental data”, as the axisymmetry of slug flow is breached when the tube is tilted away
from the vertical. The authors simulated an air/water system with diameter d = 0.2 m (Eo = 55) using
Volume of Fluid (VOF) as the interface tracking method for a number of upward flow vertical cases, and
provided a feasibility case study for one inclined pipe example. Later, Hua et al. (2012) used Fluent (VOF)
to study water and SF6 fluids in inclined pipes for Eo = 1, 350 and 1 · 104 ≤ ReSL ≤ 3 · 105.

The present work attempts to shed some light in the 3D nature of Taylor bubbles in vertical and inclined
pipes with upward and downward flow through 3D CFD simulations of a wide range of fluid properties, and
pipe diameters and inclination angles (Eo ∈ [10, 700], Mo ∈ [1 ·10−6, 5 ·103], ReSL ∈ [−40, 10], θ ∈ [5◦, 90◦]).
The main focus of this work is to analyze the effect of those parameters on the distribution parameter, C0,
in order to predict the Taylor bubble velocity, which strongly affects the pressure gradient and liquid holdup
prediction of mechanistic models (Lizarraga-García, 2016). Results highlight the need for improvement of
the current models for inclined and downward slug flows where the axisymmetry is lost for fluids relevant to
oil and gas systems. It should be stressed the numerical complexity of Taylor bubble 3D CFD simulations.
This study presents, to the best of our knowledge, the first published numerical simulations for vertical
downward flows where the 3D Taylor bubble becomes asymmetric.

CFD simulations

Mathematical model.Three dimensional CFD Direct Numerical Simulations (DNS) are performed with the
CFD code TransAT® (2014), a finite-volume software developed at ASCOMP. The code uses structured
meshes and Message Passing Interface (MPI) parallel-based algorithm to solve multi-fluid Navier-Stokes
equations. Computer resources for this work include the supercomputers Titan and Eos of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory.

The code uses the one-fluid formulation approach, where the flow is described by one fluid with variable
material properties, which vary according to a color function advected by the flow. In the absence of phase
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change phenomena, the mass and momentum conservation equations are

∂ρ

∂t
+∇ · (ρv) = 0 [9a]

∂(ρv)
∂t

+∇ · (ρvv) = −∇p+∇ · σ + ρg + Fs, [9b]

where t is the time, v is the velocity vector, p is the pressure, σ = µ(∇v + ∇Tv) is the viscous stress
tensor, g is the gravity vector, and Fs = σκnδ(φ) is the surface tension term where κ = ∇ · (∇φ/|∇φ|) is
the surface curvature, n is the vector normal to the interface, and δ is a smoothed delta function centered
at the interface. In this work, the color function used is based on the Level Set (LS) method (Osher and
Sethian, 1988; Sussman et al., 1994), where the interface is represented by a continuous and monotonous
function φ that represents the distance to the interface at φ = 0. The LS advection equation is given by

∂φ

∂t
+ v · ∇φ = 0, [10]

and material properties such as density and viscosity are updated locally based on φ, and smoothed across
the interface using a smooth Heaviside function. Furthermore, the pipe is modeled as an embedded surface
and represented in the fluid by the so-called Solid Level Set function φs = 0, i.e. the Immersed Surfaces
Technology (IST) technique (Chung, 2001; Labois et al., 2010). The mesh is locally refined near the pipe
walls.

Simulations are carried out using the 2nd-order Hybrid Linear/Parabolic Approximation (HLPA) scheme
(Zhu, 1991) for the discretization of the convective fluxes. An implicit 1st-order scheme is used for the
time marching, where the time-step is adaptive and bounded by a Courant number fixed between 0.5 and
0.9 to guarantee stability of the simulations. The SIMPLEC (Semi-Implicit Method for Pressure Linked
Equations-Consistent) algorithm is used for the pressure-velocity coupling (Doormaal and Raithby, 1984).
For the LS, a 3rd-order Weighted Essentially Non-Oscillatory (WENO) scheme is used for re-distancing,
and mass conservation is enforced using global and local mass-conservation schemes (Lakehal et al., 2002).
Finally, the solvers used depend on the simulation. For high viscosity cases where the Navier-Stokes
equations tend to elliptic, the R-cycle adaptive Algebraic Multigrid (AMG) method is used (R-cycle, 2016).
Otherwise, either the incomplete lower-upper decomposition method Strongly Implicit Procedure (SIP)
(Stone, 1968) or the Generalized Minimum Residual method (GMRES) (Saad and Schultz, 1986) are used,
the latter with hypre AMG preconditioning (Falgout et al., 2006) of the parallel PETSc (Portable, Extensible
Toolkit for Scientific Computation) library (Balay et al., 1997).

The code has been validated using in-house and literature experimental data for the Taylor bubble
terminal velocities and bubble shapes in vertical and inclined pipes, and velocity vectors in vertical pipes.
Those results are reported in Lizarraga-Garcia et al. (2017) and more details can be found in Lizarraga-Garcia
et al. (2015); Lizarraga-García (2016).

Test matrix and simulations setup. In the present work, we simulate individual Taylor bubbles in pipes
with imposed fluid flow. We study different fluid properties and pipe geometries, corresponding to the
seven cases located in figure 1 and summarized in table 3. These are based on the database generated for
Taylor bubble in stagnant liquid described in Lizarraga-Garcia et al. (2017), and cover an ample range of
fluid properties and pipe geometries. For cases 1 to 7 of figure 1, upward and downward vertical flows
are simulated. Moreover, for cases 5 to 7, upward and downward inclined flow are also studied for two
additional inclination angles: θ = 45◦, 5◦. Note that equation 2 can also be written using the liquid flow
Reynolds number, ReSL, as

FrTB = C0
ReSL
Nf

+ Frd. [11]

ReSL is the parameter included in table 3, where positive value means upward flow, and negative value
means downward flow. A total of 56 cases are simulated.
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Table 3 – Test matrix for simulations of Taylor bubble motion in pipes with imposed liquid flow.

Case Eo Mo Nf ReSL θ (◦)

1 10 1·10−6 178 10, 1, 0, -1 90

2 10 7.07·10−2 10.9 10, 1, 0 90

3 28.9 5·103 1.48 0.1, 0, -0.1 90

4 83.7 18.8 13.3 10, 1, 0, -1 90

5 28.9 7.07·10−2 24.2 10, 1, 0, -1, -10 90, 45, 5

6 242 7.07·10−2 119 10, 1, 0, -1, -10, -40 90, 45, 5

7 700 5·103 16.2 1, 0, -1 90, 45, 5

The simulations start with a single bubble in still liquid and finish when the bubble reaches its terminal
velocity. The bubble is placed inside a pipe with both ends open and embedded in the numerical domain.
The boundary conditions of the numerical domain are an inflow plane at the pipe inlet, an outflow plane at
the pipe outlet, and symmetry planes at the other four planes parallel to the pipe longitudinal axis. At the
inflow plane, the velocity is set to a transient profile that evolves from zero at the simulation start to the
Hagen-Poiseuille profile. At the outflow plane, the stream-wise gradients of all variables are set to zero,
that is, fully developed flow condition. Finally, at the symmetry planes, the normal velocity and pressure
gradient components are set to zero. The no-slip condition at the wall is imposed through a relaxation term
which acts as a distributed momentum sink reducing the fluid velocity as the indicator function goes to zero
(Beckermann et al., 1999). The structured mesh size is dependent on the case study and is refined until
the terminal velocity converges. In order to capture the Kolmogorov scale, η, estimated as η ∼ d ·Re−3/4

TB ,
cell sizes used are smaller than those estimates. ReTB magnitude ranges from 0.1 to 60, and thus the
Kolmogorov scale, η, from 0.1 to 0.001 m. Number of cells ranges from 1 million up to 6.5 million, with
mesh refinement at the pipe wall and a maximum cell aspect ratio of 3.

Finally, the results are analyzed based on two validated assumptions: the Taylor bubble length does not
affect its rising velocity, and there exists a lubricating film between the Taylor bubble and the pipe wall at
all inclinations. The first assumption is confirmed by simulating different bubble volumes for several cases,
and is consistent with what has been widely reported in the literature (e.g. Tomiyama et al. (2001); Taha
and Cui (2006); Lizarraga-Garcia et al. (2017)). Furthermore, the length of the bubbles simulated is well
below the critical length required for the liquid film to drain and breakup based on the criterion proposed
by Lizarraga-Garcia et al. (2016).

Results and discussion

In this section, we first present and discuss the results for vertical pipes for both upward and downward flow.
Then, we cover the inclined pipe cases. The entire set of results are captured in table 6 of the appendix.

Vertical pipes.Figure 2 shows representative results from the three dimensional simulations. There, the
numerically obtained Taylor bubble shapes and liquid streamlines for case 4 with imposed flow of ReSL = 1
and ReSL = −1, and case 6 with imposed flow of ReSL = 10 and ReSL = −40, respectively, are depicted. It
can be observed that the Taylor bubble remains axisymmetric for the upward flow cases, whereas it becomes
asymmetric for the downward flow cases. This phenomenon is further discussed later in the section.

First, the numerical results of Taylor bubble velocity in vertical pipes with upward flow are compared
with the literature correlations of table 2. The parameters used for that comparison are the absolute average
relative error, AAR, and the coefficient of determination, R2, respectively defined as

AAR =
(

1
N

N∑
i

|C0,pred,i − C0,CFD,i|
C0,CFD,i

)
· 100, [12]
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Fig. 1 – Numerical cases with imposed liquid flow studied in this article (•) located in the map of White and
Beardmore (1962).

(a) (b) (c) (d)

Fig. 2 – Three dimensional Taylor bubble shape and liquid streamlines in vertical pipes for case 4 with imposed
flow of ReSL = 1 (a) and ReSL = −1 (b), and case 6 with imposed flow of ReSL = 10 (c) and ReSL = −40 (d).
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Table 4 – Upward vertical flow simulations comparison with respect to the literature correlations from table 2:
absolute average relative error, AAR, and determination coefficient, R2.

Rattner and
Garimella (2015)

Bendiksen (1985) Fréchou (1986) Petalas and Aziz
(2000)

Tomiyama et al.
(2001)

AAR 9.0 17 16 22 36

R2 0.66 -0.043 -0.055 -0.97 -4.4

where N is the number of points, C0,pred,i is the predicted C0 value of case i using a correlation, and
C0,CFD,i is the numerically obtained C0 value of case i, and

R2 = 1−
∑N
i (C0,CFD,i − C0,pred,i)2∑N
i

(
C0,CFD,i − C0,CFD

)2 , [13]

where the numerator is the sum of squares of the residuals, the denominator is the total sum of squares
which is proportional to the variance of the data, and C0,sim is the mean of the simulated results,
C0,CFD =

∑N
i C0,CFD,i/N .

Table 4 shows the comparison results. It can be observed that the correlation from Rattner and Garimella
(2015) (equations 8) provides the best fit. It should be highlighted again that Bendiksen (1985)’s model
was developed for Eo > 40, and that Tomiyama et al. (2001) mentioned that the laminar expression
is preliminary due to lack of sufficient experimental data. The purpose of the present comparison is to
evaluate the predictions of current published correlations for the cases analyzed in this manuscript, not a
comprehensive model performance study. Figure 3 shows those C0,CFD simulation results against Rattner
and Garimella (2015)’s model predictions. The majority of the results shows an difference lower than 10%,
with all results lying within the 25% difference bandwidth. The standard error of the calculated C0,CFD,
included in the figure bars, is obtained based on equation 2, i.e.,

σC0,CF D
=
√
σ2
FrT B

+ σ2
Frd

/
|FrSL|, [14]

where σFrT B
and σFrd

are the standard errors of the numerically obtained FrTB and Frd, respectively,
associated with the mesh convergence criterion used in the study: less than 1% relative error. Thus, as an
estimate, we use 2σFrT B

= 0.01FrTB and 2σFrd
= 0.01Frd. As shown in Figure 3, the estimated numerical

error is relatively low. The two cases with the larger standard error correspond to relative low imposed
FrSL where the difference between the simulated FrTB and Frd is correspondingly low.

In the case of downward flow, as explained in section , the situation can be more complex due to bubble
instabilities that break the symmetry. Figure 4a shows the FrTB against the downward imposed flow, FrSL,
for the simulated cases. The solid lines are obtained based on the mean value of C0 for the corresponding
upward flow cases, which would approximately predict the C0 values for downward flows if the bubble
would remain axisymmetric (e.g. figure 6c of Figueroa-Espinoza and Fabre (2011) or figure 2 of Fershtman
et al. (2017)). The shaded areas of the figure correspond to the 95% confidence intervals based on the
estimated error of the mean. Figure 4b compares the simulated C0,CFD versus those C0 values. In general
terms, it can be observed that the simulated FrTB follow the lines and that C0,CFD could be approximated
by the corresponding case for upward flow. However, the three cases circled in red are clear outliers. In
these cases, the Taylor bubble becomes asymmetric, as shown in figures 2 and 5, with its tip moving closer
to the wall where the absolute liquid velocity is lower. That results in a significant lower C0 value than for
an axisymmetric bubble. What drives that phenomenon?

Figure 5 shows the Taylor bubble nose shape for all the vertical cases, where its dependence on the
imposed flow, ReSL, can be observed. For the upward flow cases (ReSL > 0), the bubble shape becomes
more pointed as the imposed fluid flow increases. For downward flow (ReSL < 0), the behavior is slightly
more intricate. On the one hand, for some cases (cases 1, 5), the bubble remains axisymmetric as the
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Table 5 – Conditions at symmetry breaking for the present simulations.

Case Eo Σ Mo Nf −Ω∗
0,c,i,min −Ω∗

0,c,i,max

1 10 0.4 1·10−6 178 0.022 na

3 28.9 0.138 5·103 1.48 0.27 na

4 83.7 0.0478 18.8 13.3 0 0.30

5 28.9 0.138 7.07·10−2 24.2 1.6 na

6 242 0.0165 7.07·10−2 119 0.34 1.4

7 700 0.00571 5·103 16.2 0 0.25

downward liquid flow increases in absolute value. On the other hand, for the three cases mentioned above
(cases 4, 6, 7), the bubble becomes asymmetric. In case 6, the bubble nose flattens as the downward flow
increases until it becomes asymmetric. This would confirm the finding of Lu and Prosperetti (2006): the
major factor underlying the bubble instability in vertical downward flows is the flattening of the bubble
nose as the liquid flows downward. To the best of our knowledge, this is the first time this phenomenon has
been observed in 3D numerical simulations. It is worth noting that the same asymmetric bubble shape
is obtained for different bubble initial conditions in the three cases, thus confirming the stability of that
solution.

We now analyze the transition liquid flow at which the symmetry is broken. In order to compare them
to literature values, we use the vorticity-to-radius ratio of the liquid on the pipe axis, −Ω0 = (ω/r)0, based
on Fabre and Figueroa-Espinoza (2014). For laminar flows, its nondimensional value is Ω∗

0 = 2Fr0, where
Fr0 is the Froude number of the liquid on the pipe axis, Fr0 = v0/

√
gd. I.e., Ω∗

0 = 4FrSL. Our simulations
are performed at limited imposed flow values, thus we provide a range of critical vorticity-to-radius ratios,
[−Ω∗

0,c,i,min, −Ω∗
0,c,i,max], for each case i = 1, 3, 4, 5, 6, 7, shown in table 5. Note that −Ω∗

0,c,i,max= na
denotes that the asymmetric bubble is not obtained in the simulations performed. In the literature, Griffith
and Wallis (1961) measured the instability onset for water in three pipe diameters. The theoretical study of
Lu and Prosperetti (2006), which neglected surface tension, proposed a critical downward liquid velocity
FrSL ≈ −0.135, i.e., −Ω∗

0,c ≈ 0.54. Fabre and Figueroa-Espinoza (2014) studied experimentally four laminar
flow cases, and also proposed a critical Ω∗

0,c dependent linearly on the surface tension parameter, Σ,

Ω∗
0,c = −(7.5Σ + 0.06)± 0.07, [15]

where Σ is an inverse Eötvös number, Σ = 4σ/ρLgd2 = 4/Eo.
Figure 6 depicts the present and literature results. It shows that the predicted value of Lu and Prosperetti

(2006) is a good initial attempt to theoretically study these instabilities. In general, it is observed that
the critical −Ω∗

0,c increases with Σ (decreases with Eo). That is, for the same fluid, as the pipe diameter
decreases, the instability onset requires higher downward liquid velocities due to surface tension effects
increasing and preventing the bubble deformation. E.g. for cases 5 and 6, which have the same Mo number
but Σ5 > Σ6, −Ω∗

0,c,5 > −Ω∗
0,c,6. This trend is captured by equation 15. Furthermore, case 7 results also

fall within the equation range prediction. However, the equation does not completely capture some of
the results. For example, −Ω∗

0,c,6 > −Ω∗
0,c,4 even though Σ6 < Σ4, and −Ω∗

0,c,5 is also well outside the
equation ranges. This suggests that viscosity may also have an effect in the instability, and that more work
is required to further understand this phenomenon. It should be noted that the literature studies are based
on relatively low viscosity fluids like water, with Mo ∈ [1 · 10−11, 1 · 10−8]. That is outside the Mo range
of the liquids studied here, Mo ∈ [1 · 10−6, 5 · 103], thus reinforcing the need for further work with liquids
more relevant to oil and gas systems. Finally, it should also be mentioned that case 1 is not included in
figure 6. Σ1 is relatively high, which would require the corresponding high downward liquid flows to be able
to flatten the bubble and initiate the instability. However, the imposed flows simulated here barely deform
the bubble, as shown in figure 5a, and −Ω∗

0,c,1,min is too low to represent a meaningful lower bound.
Finally, we analyze the bubble tail shape, as it has a strong impact on the wake. For example, figure 7
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Fig. 5 – Taylor bubble shape dependence on fluid flow in vertical pipes (θ = 90◦) for cases 1 (a), 2 (b), 3 (c),
4 (d), 5 (e), 6 (f) and 7 (h). The legend numbers correspond to the imposed flow ReSL, where ReSL > 0 is
upward flow, and ReSL < 0 is downward flow.
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depicts the cross sectional bubble shape, streamlines and upstream velocity distribution with the bubble
as the moving reference frame, for four cases: case 5 with imposed flow of ReSL = 10 and ReSL = 1, and
case 6 with imposed flow of ReSL = 10 and ReSL = −10, respectively. There, it can be seen that the wake
depends on the tail shape: the convex tail case (case 5, ReSL = 1, figure 7b) shows a fairly small wake,
whereas that of case 6, ReSL = 10 (figure 7c), which has a pronounce concave tail, is the largest. Araújo
et al. (2012) studied this characteristic for Taylor bubbles in vertical pipes of stagnant liquid. In order to
predict if the bubble tail is convex or concave, the authors proposed a correlation based on data fitting that
matched well the present code’s results (see figure 6-13 of Lizarraga-García (2016)). For Taylor bubbles
in pipes with imposed flow, Lu and Prosperetti (2009) studied the bubble tail shape based on physical
phenomena. They proposed an approximate criterion for the bubble tail to be convex by observing that
surface tension should be large enough to overcome the stagnant pressure below itself. As the latter can be
approximated by the dynamic pressure, the following Weber number is obtained:

We = ρL(vTB − vSL)2d

σ
= Eo(FrTB − FrSL)2. [16]

On the one hand, for low We, the surface tension force is higher than the stagnant pressure force and the
tail is convex to the liquid. On the other hand, when We is high, the stagnant pressure on the tail is high
enough so that the tail is concave to the liquid. Based on their simulations, Lu and Prosperetti (2009)
established the criterion at Wec ≈ 5.

Figure 8 depicts cases 5 and 6 vertical pipe bubble tails for different upward and downward flows,
respectively. In case 5 (figure 8a), as We increases, the tail shape transitions from convex to concave. In
case 6 (figure 8b), the bubble tail is concave for all flows, but its concavity is again related with We. For
the cases simulated, figure 9 shows the distribution of bubble tail shapes in the Eo-We diagram, where
c denotes convexity and nc denotes nonconvexity or concavity. The criteria of Lu and Prosperetti (2009)
and Lizarraga-García (2016) are also included, where the later just added a Wec transition region where
the tail was approximately flat and thus difficult to classify. It can be observed that bubble tail shapes
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Fig. 7 – Cross sectional Taylor bubble shape, streamlines and upstream velocity distribution for case 5 with
imposed flow of ReSL = 10 (a) and ReSL = 1 (b), and case 6 with imposed flow of ReSL = 10 (c) and
ReSL = −10 (d).

are generally well predicted by the We defined in equation 16. When We > 5, every simulated tail is
concave. When We < 1, every simulated tail but one is convex. In the transition region 1 < We < 5, the
two cases simulated are slightly concave. The one case that does not follow this criterion is the case 3
upward flow. Case 3 represents a very high viscosity liquid (figure 1) where viscous effects may have an
effect not captured by equation 16. Nevertheless, based on the results presented here, we think that We of
equation 16 can be a good indicator of bubble tail shape.

Inclined pipes. Inclined pipe simulations are performed for cases 5, 6, and 7, including upward and downward
flows for θ = 45◦ and 5◦ (table 3). In order to analyze the impact of pipe inclination angle on C0, figure
10 shows those simulated C0 values compared to the simulated C0 results obtained for the corresponding
vertical pipe cases, θ = 90◦, with the same imposed flow, FrSL.

Figure 10a depicts the cases for θ = 45◦, where it can be seen that C0,45◦ values are significantly lower
than C0,90◦ ones. This is explained by the bubble tip migration toward the pipe wall due to lateral buoyancy
in an inclined pipe. In that location, the absolute liquid velocity value is lower than in the pipe axis, thus
reducing the liquid flow effect on the bubble velocity. This behavior can be seen in figures 11 to 13, where
the Taylor bubble shape dependence on inclination angle is shown for various imposed flows. Furthermore,
there are two outliers in figure 10 highlighted by red circles. They correspond to the vertical pipe cases with
downward flow where the bubble becomes asymmetric, as shown in figures 12d and 13c. There, the bubble
shape and tip location do not change significantly with respect to the vertical case, thus their C0 values are
comparable. Without those outliers, the average of C0,45◦ results is 31% lower than that of C0,90◦ ones.

Figure 10b depicts the cases for θ = 5◦, where similar behavior is observed: on average, C0,5◦ is 37%
lower than C0,90◦ for those cases where the bubble remains axisymmetric in the vertical pipe. However,
for the two outliers, C0,5◦ values are actually significantly higher than their C0,90◦ ones. This result is
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Fig. 10 – Comparison of the simulated C0 results for θ = 45◦ (a) and θ = 5◦ (b), respectively, against the
simulated C0 results for vertical pipes, θ = 90◦. Red circled cases (◦) correspond to asymmetric bubble results
in the vertical pipe case.

elucidated by the corresponding bubble shapes. As shown in figures 12d and 13c, while their bubble tip
locations remain approximately constant, their bubble shapes change significantly. In the θ = 5◦ case, the
cross sectional area is reduced considerably, thus reducing its drag when compared with the vertical pipe
case which leads to C0,5◦ > C0,90◦ .

Furthermore, it is also worth noting that the C0 values of case 5 do not change as significantly as in the
other two cases. This behavior can be explained by its lower Eo number (28.7 versus 242 or 700), i.e. its
higher surface tension effects. That translates into a lower bubble deformation in the inclined pipe cases
where the bubble tip movement toward the pipe wall is reduced. This observation is consistent with the
experiments of Bendiksen (1984) at relatively small Eo number (Eo = 80), where a C0 value reduction of
just up to 15% was reported for inclined upward flows when compared to the vertical pipe case (see figure
11 of Bendiksen (1984)).

Figures 14 and 15 exhibit the flow structure of case 7 simulations for imposed flows of ReSL = 1 and
ReSL = −1, respectively. In particular, the figures show the cross sectional Taylor bubble shape, streamlines
and upstream velocity distribution with the bubble as the reference frame for the three inclination angles
analyzed. In the upward flow case, figure 14, the clear transition from the axisymmetric bubble in the
vertical pipe case to the asymmetric bubble that has migrated toward the pipe wall in the inclined pipe
cases can be observed. In the latter, the majority of the liquid passes the bubble through the bottom part
of the pipe where the flow resistance is lower. In the downward flow case, figure 15, the bubble is already
asymmetric in the vertical pipe simulation, and its shape and streamlines are comparable with the θ = 45◦

case’s. Finally, it is worth noting the different flow structure of case θ = 5◦, figure 15c, with respect to
the others depicted in detail. In this case, the bubble is moving downward, and the upstream velocity
distribution with the bubble as the reference frame shows a recirculation: in the pipe center, the liquid
moves downward, whereas in the section close to the pipe wall, it moves upward. This creates a vortex in
the bottom part of the pipe while the bubble passes.
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Fig. 11 – Case 5 Taylor bubble shape dependence on inclination angle for imposed flow of ReSL = 10 (a),
ReSL = 0 (b), and ReSL = −10 (c).
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Fig. 12 – Case 6 Taylor bubble shape dependence on inclination angle for imposed flow of ReSL = 10 (a),
ReSL = 0 (b), ReSL = −10 (c), and ReSL = −40 (d).
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Fig. 13 – Case 7 Taylor bubble shape dependence on inclination angle for imposed flow of ReSL = 1 (a),
ReSL = 0 (b), and ReSL = −1 (c).
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Fig. 14 – Cross sectional Taylor bubble shape, streamlines and upstream velocity distribution for case 7 with
imposed flow of ReSL = 1 for θ = 90◦ (a), θ = 45◦ (b), and θ = 5◦ (c).
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Fig. 15 – Cross sectional Taylor bubble shape, streamlines and upstream velocity distribution for case 7 with
imposed flow of ReSL = −1 for θ = 90◦ (a), θ = 45◦ (b), and θ = 5◦ (c).
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Conclusions

In this work, we studied the behavior of Taylor bubbles in vertical and inclined pipes with upward and
downward flow through 3D CFD simulations that covered a wide range of fluid properties, and pipe
diameters and inclination angles (Eo ∈ [10, 700], Mo ∈ [1 · 10−6, 5 · 103], ReSL ∈ [−40, 10], θ ∈ [5◦, 90◦]).
The main objective was to analyze the effect of those parameters on the distribution parameter, C0. The
latter is critical to predict the Taylor bubble velocity that strongly affects the pressure gradient and liquid
holdup prediction of mechanistic models (Lizarraga-García, 2016), and has been scarcely studied in the
literature for vertical downward flows, and also upward and downward flows in inclined pipes. For bubbles
in vertical upward flows, C0 is successfully compared with an existing model. However, it was shown
numerically that the asymmetric nature of all inclined slug flows and some vertical downward slug flows
where the bubble tip does not occupy the pipe axis altered significantly the C0 values when compared
to their respective symmetric vertical upward flow ones. Further work is required to predict the critical
downward flow in vertical pipes at which the bubble becomes asymmetric and the viscosity influence on
that phenomenon, as published literature has focused on fluids with lower viscosity than those more often
found in oil and gas systems. Finally, pipe inclination angle was shown to have a significant impact on C0,
for which no predictive model currently exists for the fluids studied in this manuscript.
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Nomenclature

AAR = absolute average relative error
AMG = Algebraic Multigrid
CFD = Computational Fluid Dynamics
DNS = Direct Numerical Simulation

GMRES = Generalized Minimum Residual method
HLPA = Hybrid Linear/Parabolic Approximation
IST = Immersed Surfaces Technology
MPI = Message Passing Interface
LS = Level Set

PETSc = Portable, Extensible Toolkit for Scientific Computation
SIMPLEC = Semi-Implicit Method for Pressure Linked Equations-Consistent

SIP = Strongly Implicit Procedure
V OF = Volume of Fluid

WENO = Weighted Essentially Non-Oscillatory
Ca = capillary number. µLvSL/σ
Eo = Eötvös number. Eo = ρLgd

2/σ

Fr = Froude number. Fr = v/
√
gd

Mo = Morton number. Mo = gµ4
L/ρLσ

3

Nf = inverse viscosity number. Nf = (Eo3/Mo)1/4

Re = Reynolds number. Re = ρLvd/µL

Σ = inverse Eötvös number. Σ = 4σ/ρLgd2 = 4/Eo
We = Weber number. We = (ρL(vTB − vSL)2d)/σ = Eo(FrTB − FrSL)2

C0 = distribution parameter
d = pipe diameter
g = gravitational acceleration

R2 = coefficient of determination
vd = drift velocity
vm = mixture velocity. vm = vSL + vSg

vSg = gas superficial velocity
vSL = liquid superficial velocity
vTB = Taylor bubble velocity

g = gas phase (subscript)
L = liquid phase (subscript)

TB = Taylor bubble (subscript)
α = void fraction
η = Kolmogorov scale
θ = pipe inclination with respect to the horizontal
µ = viscosity
ρ = density
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σ = standard error
σ = surface tension

−Ω0 = vorticity-to-radius ratio . −Ω0 = (ω/r)0
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Numerical database results

Table 6 – Numerical database results

Case Eo Mo Nf θ (◦) ReSL FrSL FrT B ReT B C0

1 10 1·10−6 178 90 0 0 0.130 23.1 -
1 10 1·10−6 178 90 1 0.00562 0.139 24.7 1.5±0.2
1 10 1·10−6 178 90 10 0.0562 0.204 36.4 1.32±0.03
1 10 1·10−6 178 90 -1 -0.00562 0.122 21.8 1.4±0.2
2 10 7.07·10−2 10.9 90 0 0 0.0186 0.203 -
2 10 7.07·10−2 10.9 90 1 0.0917 0.205 2.24 2.04±0.02
2 10 7.07·10−2 10.9 90 10 0.917 2.01 21.9 2.17±0.02
3 28.9 5·103 1.48 90 0 0 0.00953 0.0141 -
3 28.9 5·103 1.48 90 0.1 0.0674 0.177 0.262 2.48±0.02
3 28.9 5·103 1.48 90 -0.1 -0.0674 -0.124 -0.184 1.98±0.01
4 83.7 18.8 13 90 0 0 0.111 1.47 -
4 83.7 18.8 13 90 1 0.0753 0.287 3.80 2.33±0.03
4 83.7 18.8 13 90 10 0.753 1.79 23.7 2.22±0.02
4 83.7 18.8 13 90 -1 -0.0753 0.00929 0.123 1.35±0.01
5 28.9 7.07·10−2 24.2 90 0 0 0.133 3.22 -
5 28.9 7.07·10−2 24.2 90 1 0.0413 0.218 5.27 2.05±0.04
5 28.9 7.07·10−2 24.2 90 10 0.413 0.990 24.0 2.07±0.02
5 28.9 7.07·10−2 24.2 90 -1 -0.0413 0.0454 1.10 2.12±0.02
5 28.9 7.07·10−2 24.2 90 -10 -0.413 -0.612 -14.8 1.80±0.02
5 28.9 7.07·10−2 24.2 45 0 0 0.200 4.84 -
5 28.9 7.07·10−2 24.2 45 1 0.0413 0.260 6.30 1.45±0.06
5 28.9 7.07·10−2 24.2 45 10 0.413 0.955 23.1 1.82±0.02
5 28.9 7.07·10−2 24.2 45 -1 -0.0413 0.138 3.35 1.50±0.04
5 28.9 7.07·10−2 24.2 45 -10 -0.413 -0.353 -8.53 1.34±0.01
5 28.9 7.07·10−2 24.2 5 0 0 0.0706 1.71 -
5 28.9 7.07·10−2 24.2 5 1 0.0413 0.140 3.39 1.68±0.03
5 28.9 7.07·10−2 24.2 5 10 0.413 0.850 20.6 1.88±0.01
5 28.9 7.07·10−2 24.2 5 -1 -0.0413 -0.000470 -0.0114 1.72±0.01
5 28.9 7.07·10−2 24.2 5 -10 -0.413 -0.816 -19.7 2.14±0.01
6 242 7.07·10−2 119 90 0 0 0.307 36.6 -
6 242 7.07·10−2 119 90 1 0.00840 0.328 39.0 2.5±0.4
6 242 7.07·10−2 119 90 10 0.0840 0.465 55.3 1.87±0.05
6 242 7.07·10−2 119 90 -1 -0.00840 0.294 35.0 1.5±0.4
6 242 7.07·10−2 119 90 -10 -0.0840 0.133 15.8 2.08±0.03
6 242 7.07·10−2 119 90 -40 -0.339 0.0646 7.69 0.72±0.01
6 242 7.07·10−2 119 45 0 0 0.432 51.4 -
6 242 7.07·10−2 119 45 1 0.00840 0.444 52.8 1.5±0.5
6 242 7.07·10−2 119 45 10 0.0840 0.516 61.3 1.00±0.06
6 242 7.07·10−2 119 45 -1 -0.00840 0.418 49.8 1.6±0.5
6 242 7.07·10−2 119 45 -10 -0.0840 0.361 42.9 0.85±0.05
6 242 7.07·10−2 119 45 -40 -0.339 0.189 22.5 0.72±0.01
6 242 7.07·10−2 119 5 0 0 0.336 40.0 -
6 242 7.07·10−2 119 5 1 0.00840 0.337 40.1 0.1±0.4
6 242 7.07·10−2 119 5 10 0.0840 0.420 50.0 1.00±0.05
6 242 7.07·10−2 119 5 -1 -0.00840 0.334 39.8 0.2±0.4
6 242 7.07·10−2 119 5 -10 -0.0840 0.251 29.8 1.01±0.04
6 242 7.07·10−2 119 5 -40 -0.339 -0.0108 -1.29 1.02±0.01
7 700 5·103 16.2 90 0 0 0.146 2.37 -
7 700 5·103 16.2 90 1 0.0618 0.298 4.83 2.46±0.04
7 700 5·103 16.2 90 -1 -0.0618 0.0649 1.05 1.32±0.02
7 700 5·103 16.2 45 0 0 0.215 3.48 -
7 700 5·103 16.2 45 1 0.0618 0.311 5.03 1.55±0.04
7 700 5·103 16.2 45 -1 -0.0618 0.119 1.93 1.55±0.03
7 700 5·103 16.2 5 0 0 0.0985 1.59 -
7 700 5·103 16.2 5 1 0.0618 0.212 3.42 1.83±0.03
7 700 5·103 16.2 5 -1 -0.0618 -0.0488 -0.790 2.38±0.01
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