
Real-Time Intrusion Detection and Prevention
with Neural Network in Kernel using eBPF

Junyu Zhang∗, Pengfei Chen†, Zilong He∗, Hongyang Chen∗, and Xiaoyun Li∗
∗†School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
∗{zhangjy297, hezlong, chenhy95, lixy223}@mail2.sysu.edu.cn, †chenpf7@mail.sysu.edu.cn

Abstract—With the development of public cloud, real-time
intrusion detection is becoming necessary. Current methods
neither address the overhead of real-time network data capturing,
nor effectively balance security level with performance. These
issues can be addressed by offloading intrusion detection and pre-
vention to the extended Berkeley Packet Filter (eBPF). However,
current eBPF-based methods suffer from shortcomings in model
performance or inference overhead. Moreover, they overlook the
issues of eBPF in real-time scenarios, such as maximum eBPF
instruction limitations. In this paper, we redesign the Neural
Network inference mechanism to address the limitations of eBPF.
Then, we propose a thread-safe parameter hot-updating mech-
anism without explicit spin lock. Evaluations indicate that our
method achieves model performance comparable to the current
best eBPF-based method while reducing memory overhead (5KB)
and inference time (3000-5000ns per flow). Our method achieve
F1-scores of 0.933 and 0.992 on the offline and online datasets,
respectively.

Index Terms—Real-Time Intrusion Detection, eBPF, Deep
Learning, Neural Network Quantization

I. INTRODUCTION

Due to the cost-effective advantages of cloud computing, an

increasing number of companies are migrating their data and

business to the cloud [1]. Tenants access the cloud products

via the internet, thus exposing the cloud services to the threat

of network intrusions [2]. Consequently, it is necessary to

detect and prevent network intrusions in real time before any

potential impact on system performance and functionality [3].

On the one hand, current real-time intrusion detection meth-

ods [4]–[7] focus on the performance of detection models but

overlook the overhead associated with network data capturing

(§II-A). On the other hand, there are tools automatically

generating rules for active defense tools such as iptables [8]

from offline detection models [9], but the performance of these

tools rapidly degrades as the number of rules increases [10].

Conversely, inadequate rules may allow more intrusions to

evade prevention [9]. Therefore, current approaches have not

effectively integrated intrusion detection and prevention in the

real-time scenarios.

The extended Berkeley Packet Filter (eBPF) enables the

dynamic and sandboxed programs execution totally in the

Linux kernel, without any changes to the kernel source code

[11]. Linux kernel hide diverse hardware architectures, which

makes eBPF a suitable programmable network data plane. At

present, there is insufficient research on how to use eBPF for

real-time intrusion detection and prevention (§V-E). Bachl et

al. [12] firstly use eBPF to implement decision tree (DT) for

intrusion detection. However, storing all nodes of DT brings

exponential memory overhead to the kernel. Linear Support

Vector Machine [13] is inadequate for fitting non-linearly

separable intrusion detection problems. Neural networks (NN)

based on int8 quantization [14] not only exhibit high inference

complexity but also introduce significant errors. [12]–[14]

do not consider many important issues in eBPF, such as

race conditions and the maximum eBPF instruction limitation

[15] (§II-B2). Additionally, these works lack an real-time

evaluation of the performance, effectiveness, and reliability.

Insights. In this paper, we implement a real-time intrusion

detection and prevention prototype with eBPF (§IV-A). We

redesign the NN inference mechanism to address the limi-

tation of the integer-only arithmetic (§IV-B) and maximum

instruction number (§IV-C) in eBPF, and reduce the memory

overhead while maintaining the performance. We propose a

thread-safe parameter hot-updating mechanism without termi-

nating the intrusion detection system and explicit eBPF spin

lock [16] (§IV-D).
Recently, deep learning-based intrusion detection systems

have shown outstanding performance on existing and unseen

intrusions [9], while the mainstream of these deep learning-

based systems relies on NN [17]–[19]. Compared with [14],

our NN inference method not only reduces the inference

complexity but also improves the performance. We decompose

the NN inference process into several sequential stages, and

then utilize chain eBPF Tail Calls [20] to implement them,

which overcomes the maximum instruction limitation in a

single eBPF program. We implement an integer-only NN

inference algorithm in eBPF, reducing the required memory

overhead while ensuring high performance.
Concept drift can lead to critical failures in deployed deep

learning-based detection models, and thus it is essential to

update the parameters of the models when concept drift occurs

[21]. If the NN inference program is terminated for parameter

updates, the system is exposed to unprotected risks during

the update. Conversely, if the program is not terminated

when updating parameters (Parameters Hot-Updating), it can

easily lead to read-write race condition issues. We implement

a thread-safe hot-updating algorithm that does not require

explicit eBPF locks.
In this paper, we make the following contributions.

• Study: we identify overlooked issues associated with

integrating real-time intrusion detection and prevention

416

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00048

in existing methods.

• Framework: we redesign NN inference in kernel using

eBPF and propose a thread-safe parameter hot-updating

mechanism.

• Evaluation: our method reduces memory overhead while

maintains the detection performance and time overhead

comparable to the existing methods.

Our code is available in the public repository1.

II. BACKGROUND & MOTIVATION

A. Overhead of Traditional Packet Capturing

Typically, tcpdump [22] is employed for packet capturing,

followed by the utilization of tools like CICFlowMeter [23] for

feature extraction [24]. However, without the programmability,

feature extraction will not start until all network packets are

captured by tcpdump. The time overhead of feature extraction

is significantly affected by the total size of the captured

packets. Table I shows that, as network traffic increases,

feature extraction time changes notably, surpassing the packet

capturing time. Consequently, the serial execution mode of

tcpdump and CICFlowMeter proves unsuitable for real-time

scenarios.

TABLE I: Impact of size on feature extraction time

Traffic Size (MB) 100 200 300 400 500

Packet Capturing Time (s) 4.3 8.4 12.7 17.4 21.1
Feature Extraction Time (s) 21.3 41.9 78.3 93.6 145.4

libpcap [25] is the foundation of tcpdump and provides

the programmability during the real-time data capturing [4].

After libpcap captures each packet, it will execute a callback

function containing the intrusion detection algorithm written

in advance, which avoids the problem that packet capture and

detection can only be executed serially.

However, libpcap introduces significant context switch and

CPU overhead. We use the interfaces [26] provided by libpcap
to implement the callback function. In order to measure the

overhead of real-time packet capturing, the callback function

returns immediately without performing any operation when it

is called. We evaluate libpcap and tcpdump on a 8 core virtual

machine, and use pidstat [27] to measure the overhead.

(a) CPU Overhead (b) Context Switch

Fig. 1: Overhead of libpcap and tcpdump

1https://github.com/IntelligentDDS/NN-eBPF

As shown in Figure 1, with the bandwidth increasing, the

CPU overhead of libpcap grows from 1.53% to 5.00%, while

the CPU overhead of tcpdump grows from 29.49% to 100%.

Since tcpdump performs additional packet parsing, the cpu

overhead is significantly greater than that of libpcap program.

Furthermore, when the bandwidth exceeds 1.2 Gbps, tcpdump
begins to drop packets and the corresponding context switches

decreases significantly to 0. Context switches of libpcap
increases linearly with bandwidth, and can eventually reach

thousands of times per second.

The root cause of the overhead is that traditional packet cap-

turing is based on the user-space programs. Packets captured

in the kernel require frequent context switches and memory

copies before they can reach the user-space.

B. eBPF for real-time intrusion detection and prevention

1) Introduction of the eBPF technique: eBPF enables

programmability in the Linux kernel [11]. User-defined eBPF

program is attached to the kernel hook point like system calls,

function entry/exit and network events. When events on the

corresponding hook point are triggered, the pre-defined eBPF

program is run. For eBPF programs completely in the kernel,

context switches per second can be almost non-existent.

There are two most common network hooks for packet

filtering: XDP and TC [28]. eXpress Data Path (XDP) serves

as the initial hook of the kernel network stack [29]. XDP

hook enables eBPF program to process packets only in RX

direction and decide whether the packets can be received.

Traffic Control (TC) [30] is another hook after the execution

of XDP. Different from XDP hook, TC hook can filter packets

in both RX and TX directions. However, TC hook is slightly

worse than XDP hook because TC hook requires additional

memory allocation or entering software socket queues before

it is triggered [31]. In order to minimize the overhead caused

by packet filtering, we choose XDP as the eBPF hook point.

2) Challenges of employing eBPF for real-time intrusion
detection: The first challenge comes from ensuring feature

extraction time. XDP conducts feature extraction for each

packet upon receipt. If the time taken for feature extraction

is less than the average time interval between two adjacent

packets, then feature extraction is nearly imperceptible to the

network flow to which the packet belongs. However, if the

time equals or exceeds the average time interval, for protocols

like TCP with acknowledgment mechanisms, the transmission

time of the network flow increases. In the case of protocols like

UDP without acknowledgment mechanisms, feature extraction

errors may occur.

The second challenge arises from the selection of features.

XDP offers programmability to implement feature extraction

algorithms. Due to the constraints of the 512 bytes eBPF stack

size and 1M instruction number [20], the number of features

that can be extracted at the XDP layer is limited. Moreover,

XDP is capable of inspecting packets only in the RX direction,

meaning it can filter packets received by itself but is unable

to observe packets sent by itself (TX direction). Therefore,

minimizing the number of features extracted in XDP and

417

determining the most important and effective features only in

the RX direction present another challenge.

The third challenge is race condition. Network interfaces

maintain multiple RX queues, with each RX queue assigned to

a specific CPU core. Upon receiving a packet, each RX queue

executes the XDP program on its allocated CPU core. Hence,

shared data structures within the XDP program give rise to

race conditions [31]. Although eBPF provides a spin lock

mechanism to address race conditions, but using spin locks

indiscriminately can introduce unpredictable latency overhead

to the kernel and eBPF do not allow any function calling

before the lock released. Effectively avoiding or resolving race

conditions requires specific design techniques.

III. THREAT MODEL

The system implemented in this paper is designed for real-

time intrusion detection scenarios. Therefore, it is necessary to

perform benign and intrusion behavior in real-time in a local

environment to validate the effectiveness, reliability, availabil-

ity, and overhead of our system in the real-time scenarios.

Thus, we need to define what constitutes benign behavior and

what constitutes intrusion behavior.

Benign Behavior [32]:

• Using ssh to successfully log in to the system.

• Safe execution of common Linux commands: for exam-

ple, using ping to test reachability, using ps to list all

processes, and using docker to manage containers.

• Normal HTTP requests and TCP traffic.

• Uploading and downloading files using FTP.

Intrusion Behavior [33]:

• Brute-force attacks on SSH and FTP with repeated pass-

word attempts.

• Port Scan: for example, multiple execution of nmap to

scan all network ports.

• Denial of Service (DoS) and Distributed Denial of Ser-

vice (DDoS) attacks.

• Brute-force and Cross-Site Scripting (XSS) attacks on

HTTP applications .

IV. SYSTEM DESIGN & IMPLEMENTATION

We initially provide an overview of how intrusion detection

and prevention are accomplished through NN in the kernel

space. Subsequently, we elucidate the quantization of NN

parameters and inference, and resolve challenges specific to

eBPF implementation. Then, we present the inference based

on the chained eBPF Tail Calls. Finally, we discuss strategies

to mitigate race conditions during the hot update of parameters

from user space to kernel space.

A. Overview

Figure 2 illustrates the overall architecture of the system.

The following analysis delves into the functions of each

module.

Fig. 2: Overview of our system

1) Training and Quantization in User Space: To reduce

the overhead of training NN in kernel space, we relocate the

NN training process to user space, while keeping the inference

in the kernel space. Initially, NN is trained using historical data

on PyTorch, TensorFlow or MXNet. Subsequently, its parame-

ters are quantized from floating-point numbers to integers for

inference in kernel. The basic idea of quantization involves

multiplying a coefficient in order to shift the decimal point

to the right. Then, quantized parameters are loaded into eBPF

program in kernel through module Parameter Hot-Updating.

2) Parameter Hot-Updating: Module Parameter Hot-
Updating addresses the issue of race conditions when updating

parameters from user space to kernel space. The NN quantized

for inference solely using integers has been loaded into the

kernel and it utilizes the hot-updated parameters to conduct

inference.

3) Host Filter: In the real-time scenario, packets are ini-

tially processed by the eBPF program attached to the XDP.

The first module of our eBPF program is Host Filter. Host
Filter checks the source IP of packets. If a packet originates

from a previously identified host performing intrusions, the it

is discarded. Otherwise, it has no detection record yet, and is

passed to module Packet Feature Extraction. Each record is

assigned the same validity period, and it is removed once it

expires.

4) Packet Feature Extraction and Flow Feature Updat-
ing: Module Packet Feature Extraction extracts features from

the packet, such as TCP Header Length, and updates the

corresponding flow features stored in eBPF map, such as

Total Header Length. The selection of flow features is not

418

based on expert knowledge or arbitrary choices. Rather, it is

derived from the intrusion detection task. We calculate the

importance of each feature from historical data, choose the top

6 most important features (Fwd packet length Max, Fwd IAT
Max, Fwd packet length Min, Destination Port, Fwd Header
Length, Total Fwd packets, details are shown in Table IV)

and subsequently implement corresponding feature extraction

algorithms in eBPF.

5) Inference in Kernel Space using eBPF: We implement

an integer-only NN inference algorithm in eBPF. The input to

the Inference module is the normalized flow features stored in

eBPF map flow feature, and the output is a binary classification

result: whether it is an intrusive or normal flow. To reduce

the overhead of kernel-space inference, we perform a binary

classification without distinguishing between different intru-

sion types. Additionally, the inference is only conducted after

the completion of a flow. The indication of flow completion is

marked by setting the FIN and RST flags in the TCP header

to 1.

6) Intrusion Host Record and Correction: Whenever NN

in kernel detects an intrusion, the source IP of the correspond-

ing flow is used in Host Filter, resulting in subsequent packets

from that source to be discarded. To improve the recall of the

model, we have the ability to update host filter by adding or

removing IP addresses.

B. Parameters and NN Inference Quantization

In this paper, the term NN refers to Multilayer Perceptron

(MLP), and ReLU are implemented in all activation layers.

The quantization of NN parameters is performed using a

simple technique called enlargement method. The core idea

is to multiply the floating-point number by an integer s
(enlargement factor) and subsequently round it to the nearest

integer stored in int32. To provide a comprehensive description

of the method, some notations are defined in Table II.

TABLE II: Notations of enlargement method

Notation Meaning

x(k) = [x
(k)
j] ∈ R

n(k−1)
Input of k-th linear layer

y(k) = [y
(k)
i] ∈ R

n(k)
Output of k-th linear layer

W (k) = [w
(k)
ij] ∈ R

n(k)×n(k−1)
Weight matrix of k-th linear layer

n(k)(k ≥ 1) Size of k-th linear layer

n(0) Number of input features

x = [xj] ∈ R
n(0)

Initial input of NN

μ = [μj] ∈ R
n(0)

Mean of x

σ = [σj] ∈ R
n(0)

Standard deviation of x
relu(x) Function ReLU
round(x) = �x� Rounding down x
ars(x, b) Arithmetic right-shift x by b bits

1) Preprocessing (Standardization): If normalization is

performed during the training process, it implies that normal-

ization is also required before real-time inference in the kernel

space.

We employ standard normalization (standardization) for pre-

processing. However, the normalization process may involve

signed division, which is not supported by eBPF. Moreover, if

the data follow a normal distribution, the standardized data

follow the standard normal distribution N (0, 1), with data

concentrated around 0 according to the 3σ rule. Since eBPF

only supports integer division, direct standardization in eBPF

leads to significant precision loss.

To address the issue of precision loss, we incorporate the

enlargement method into the standardization formula, resulting

in the following expression:

x
(1)
j =

⎧⎪⎨
⎪⎩
0 σj = 0

−round(
s·(μj−xj)

σj
) xj < μj , σj �= 0

round(
s·(xj−μj)

σj
) xj ≥ μj , σj �= 0

(1)

s·(xj−μj)
σj

and s · xj−μj

σj
are two different computation

methods. The latter involves division followed by multipli-

cation, and since eBPF performs integer division, significant

precision loss occurs in this case. The former, on the other

hand, involves multiplication followed by division to preserve

precision. Moreover, the above formula first performs unsigned

division and then converts the result into the corresponding

signed number, thereby circumventing the limitations posed

by the lack of support for signed number division in eBPF.

Since eBPF performs integer operations exclusively, the above

formula does not necessitate the use of the round operation.

2) Inference: Parameters of each linear layer need to be

quantized before inference, and the formula is as follows:

W
(k)
E � round(s ·W (k)) = [round(s · w(k)

ij)] (2)

For the k-th (k > 1) linear layer, the input tensor satisfies:

x(k) = relu(y(k−1)) (3)

The output tensor of the k-th layer satisfies the following

formula:

y(k) =
1

s
·W (k)

E · x(k)

=
1

s
· [

n(k−1)∑
j=1

w
(k)
E,ij · x(k)

j]

s=2b
= ars(

n(k−1)∑
j=1

w
(k)
E,ij · x(k)

j , b)

(4)

In the above formula, as we have multiplied each element

in W
(k)
E by s, and the elements in y(k) are obtained by

multiplying corresponding elements of W
(k)
E and x(k) and

then summing them up. Therefore, to eliminate the s from the

result, we need to multiply by 1
s . To reduce the time overhead

associated with multiplication and division instructions, we

utilize shift instructions to perform these operations. Specifi-

cally, let s = 2b, multiplication by s is achieved by left shifting

by b bits, while division by s is achieved by right shifting by

b bits.

419

XDP concurrently filters multiple network flows, and per-

forming parallel inference on these flows may introduce issues

related to race conditions. The primary concern lies in how to

store the hidden layer outputs y(k) in a parallelized manner.

If y(k) is stored using global variables, there inevitably is a

race condition between read and write operations. To address

the race condition problem, we employ local variables for

storing y(k) of each flow. However, local variables may pose

limitations as the maximum stack space is restricted.

3) Classification: We consider intrusion detection as a

binary classification task, where the label for the Intrusion
class is 1, and the label for the Benign class is 0. For the final

linear layer output y(K), the decision criterion is as follows:

prediction =

{
1 y

(K)
1 > y

(K)
0

0 y
(K)
1 ≤ y

(K)
0

(5)

C. Inference based on the chained eBPF Tail Calls

The constraint of 1 million eBPF instructions poses a

significant challenge to the implementation of NN in eBPF. In

practice, we observe that even for a NN with small dimensions

like [6, 32, 32, 2], the compiled number of instructions still

exceeds 1 million, leading to rejection by the eBPF verifier

during loading.

To address the instruction number limitation, we adopt the

eBPF Tail Call mechanism for inference. As illustrated in

Figure 3, the inference process is split into alternating eBPF

programs for the Linear Layer and ReLU. Upon completion of

one program, it uses bpf tail call to invoke the next adjacent

program.

The advantage of using tail call is that each program has an

instruction limit of 1 million, treating Linear Layer and ReLU
as independent programs. For an individual Linear Layer and

ReLU, the number of instructions does not exceed 1 million,

satisfying the conditions of the eBPF verifier.

Fig. 3: Inference using three-layer MLP in eBPF

The stack size limit for the entire tail call chain is set to

256 bytes per subprogram, and the maximum call depth is 33

[20]. The outputs of the Linear Layer and ReLU layer are

stored as int32, with each element occupying 4 bytes. Hence,

the size limit for each layer is 64 (2564 = 64) elements. Since

Linear Layer and ReLU layers appear in pairs except for the

last layer, the maximum depth 17 (33−1
2 + 1 = 17).

D. Parameter Hot-Updating

As shown in Figure 4(a), we utilize an eBPF map named

nn parameters to store NN used for inference in XDP.

nn parameters consists of two elements: one is named Run-
ning, representing the active NN parameters for inference, and

the other is named Idle, reserved for subsequent updating. An

eBPF map named nn index is employed to store the index of

the Running in nn parameters, and thus, nn index comprises

only one element.

(a) Inference (b) NN Updating (c) Index Updating

Fig. 4: Parameter hot-updating

The pinned map nn parameters can be found in the corre-

sponding file located at /sys/fs/bpf. To access nn parameters in

kernel space, the user-space eBPF code can employ the helper

function bpf obj get to load the file /sys/fs/bpf/nn parameters.

In Figure 4(b), the hot-updating process begins by loading the

new NN parameters, named Ready, from user space into Idle
in kernel space. The index of Idle within nn parameters can

be determined using the following formula:

idle index = (running index+ 1) mod 2 (6)

In the above formula, the value of running index is stored

within the nn index pinned map, which can be loaded and

accessed in user space.

In the final step, as depicted in Figure 4(c), updating the

value in nn index with idle index completes the parameter

hot-updating process.

Although the helper function bpf map update elem can be

used to atomically update the NN parameters stored in the

eBPF map, accessing the NN during inference is not atomic,

which can result in potential race condition issues between

reads and writes. Hence, we choose the approach illustrated

in Figure 4 to address the race condition without relying on

spin locks.

V. EVALUATION

In this section, our goal is to evaluate the performance of

NN in eBPF and address the following research questions

(RQs).

• RQ I: Compared to existing methods, what is the effec-

tiveness of the proposed NN in accomplishing intrusion

detection tasks (§V-B)?

• RQ II: When errors occur in real-time detection, to what

extent can the proposed NN maintain the reliability and

availability of the system (§V-C)?

420

• RQ III: How much overhead is caused to the system

by extracting features from the flow in real time and

performing NN inference (§V-D)?

• RQ IV: What are the overlooked issues in the existing

methods (§V-E)?

A. Dataset & Environment Setup

CIC-IDS-2017 [33] is a commonly used benchmark for

evaluating intrusion detection models, and we remove all the

invalid data from the CIC-Flow-2017 dataset. To evaluate the

real-time performance using eBPF, we reproduce intrusion

datasets (eBPF-Reproduction Dataset) for both benign and

intrusion using the feature extraction algorithm in eBPF XDP.

Below are the generation method of each intrusion:

• Benign: use ssh to log in shell and execute various

common commands, including ping, ps, docker, and

curl, among others. Additionally, utilize httperf [34]

for simulating typical HTTP traffic and iperf [35] for

simulating regular TCP traffic. Furthermore, take into

account activities such as logging in, uploading, and

downloading within an FTP application.

• PortScan: utilize the Linux nmap tool to conduct port

scanning.

• Dos GoldenEye and Slowhttptest: implement two dis-

tinct Denial of Service (DoS) attack methods using Gold-

enEye [36] and Slowhttptest [37].

• FTP and SSH Patator: use patator [38] to perform

dictionary-based brute force attack on SSH and FTP

passwords.

zh

• Web Brute Force and XSS: automate Brute Force and

Cross-Site Scripting (XSS) attacks on Damn Vulnerable

Web App (DVWA) [39] using selenium [40].

TABLE III: CIC-IDS-2017 and reproduction dataset

Intrusion Type CIC-IDS-2017 eBPF-Reproduction
Train Test

Benign

FTP Download

2271320

1287 990
FTP Upload 1568 3136
Http Traffic 1024 2048
TCP Traffic 923 1846
SSH 2160 2160

Intrusion

FTP-Patator 7935 1972 1913
SSH-Patator 5897 972 1920
Dos GoldenEye 10293 2807 6772
PortScan 158804 896 896
Dos Slowhttptest 5499 1100 2222
Web Brute Force 967 800 1600
Web XSS 1507 800 1600

Total 2462222 16257 27103

Table III illustrates the datasets used in this study, namely

CIC-IDS-2017 and eBPF-Reproduction dataset. To minimize

the influence of the local environment, the training and testing

datasets of eBPF-Reproduction are collected on different dates.

Some intrusion types from the CIC-IDS-2017 dataset are not

reproduced due to three reasons: outdated intrusion types

(Heartbleed), insufficient quantity of instances (Infiltration,

Web SQL Injection), and similarities to the already reproduced

intrusions (DoS Hulk, DDoS, DoS Slowloris).

We conduct the evaluation using two Linux virtual ma-

chines. Host A deploys the real-time intrusion detection system

proposed in this paper, while host B is responsible for sending

benign and intrusion network traffic to host A according to the

generation methods. Each host is configured with 8 cores, 16

GB memory, 2,000 MHz CPU frequency, and 6.1.43 kernel

version.

B. Effectiveness

We use classical metrics for intrusion detection to

evaluate the model performance, namely Accuracy =
TP+TN

TP+FP+TN+FN , Precision = TP
TP+FP , Recall = TP

TP+FN ,

and F1-score = 2·Precision·Recall
Precision+Recall . True Positive (TP) rep-

resents the instances correctly identified as intrusion, False

Positive (FP) represents the instances incorrectly identified

as intrusion, True Negative (TN) represents the instances

correctly identified as benign, and False Negative (FN) repre-

sents the instances incorrectly identified as benign. We regard

intrusion detection as a binary classification task, that is, the

type of intrusion is not distinguished.

We compare the effectiveness among Decision Tree (DT)

[12], Support Vector Machine (SVM) [13], Neural Network

using int8 quantization (NN-int8) [14], and our method (NN-

int32). Table V demonstrates the evaluation results on the CIC-

IDS-2017 and eBPF-Reproduction dataset.

1) Effectiveness on CIC-IDS-2017: Because CIC-IDS-

2017 is a widely utilized intrusion dataset with a diverse range

of categories, we firstly evaluate the effectiveness of each

method on it. we set the max depth of decision tree to 10,

the same configuration as [12], and the neural network is a

three-layer perceptron, with the sizes of each layer being 32,

32, and 2 respectively. The batch size is set to 512, the learning

rate is set to 0.001, and Nvidia Tesla V100 is used to iteratively

train the NN for 32 times. The enlargement factor s is set to

216.

Due to the linear kernel method used in the implementa-

tion of SVM [13], its non-linear fitting capability is limited.

Consequently, SVM tends to classify all flows as intrusions,

leading to high recall but low precision results. We now focus

on comparing DT, NN-int8, and NN-int32.

We initially train the model (WQ) using all features (ALL),

and subsequently quantize it (Q). Both NN-int8 and NN-int32

employ the same model (WQ) but with different quantization

methods. DT can achieve good performance even without pre-

processing the input data using standardization (WQ+ALL).

Moreover, many features are actually integers, for instance,

Total Fwd Packets (Table IV). Additionally, apart from the

threshold values at each node, the model parameters of DT

are represented using integers [12]. Therefore, the performance

remains consistent before and after quantization (Q+ALL).

The performance of NN before quantization is comparable

to that of DT (WQ+ALL). However, the differences in quan-

tization methods lead to variations in performance (Q+ALL).

421

NN-int8 leads to a decrease in recall, while the decline in other

metrics is smaller. In other words, NN-int8 tends to classify

flows as benign. This is because, compared to the unquantized

model, NN-int8 loses too much information during the quan-

tization process, as 8-bit integers are insufficient to represent

parameters and variables of each layer. Furthermore, NN-int8

requires both quantize and dequantize operations at each layer

[14], both of which involve approximation, leading to further

loss of precision. NN-int32 (Our Method) and NN-int8 use

the same unquantized model, but the performance of NN-

int32 remains consistent with that before quantization. This

is because parameters and inputs of each layers multiplied by

the enlargement factor s do not overflow the representation

range of 32-bit integers, while maintaining precision within

the maximum range.

To further assess if employing solely RX features is suffi-

cient for intrusion detection, features associated with TX and

the overall flow are removed from the CIC-IDS-2017 dataset,

resulting in 24 RX-specific features detailed in Table IV.

TABLE IV: RX-specific features. fwd and forward indicate

“in the forward direction”, which refers to the RX.

Number Feature Description

0 Destination Port Destination Port
2 Total Fwd Packets Total packets
4 Total Length of Fwd Packets Total size of packet
6 Fwd Packet Length Max Maximum size of packet
7 Fwd Packet Length Min Minimum size of packet
8 Fwd Packet Length Std Standard deviation size of packet
9 Fwd Packet Length Mean Mean size of packet
20 Fwd IAT Total Total time between two packets
21 Fwd IAT Mean Mean time between two packets
22 Fwd IAT Std Standard deviation time between two packets
23 Fwd IAT Max Maximum time between two packets
24 fwd IAT Min Minimum time between two packets
30 Fwd PSH Flags Number of PSH flag
32 Fwd URG Flags Number of URG flag
34 Fwd Header Length Total bytes used for headers
36 Fwd Packets/s Number of packets per second
53 Avg Fwd Segment Size Average size observed
56 Fwd Avg Bytes/Bulk Average number of bytes bulk rate
57 Fwd Avg Packets/Bulk Average number of packets bulk rate
58 Fwd Avg Bulk Rate Average number of bulk rate
62 Subflow Fwd Packets The average number of packets in a sub flow
63 Subflow Fwd Bytes The average number of bytes in a sub flow
68 act data pkt fwd Count of packets with at least 1 byte
69 min seg size forward Minimum segment size observed

Before quantization, compared to the model using all fea-

tures (WQ+ALL), both DT and NN experience only a slight

decline in performance when utilizing only RX-specific fea-

tures (WQ+RX). This is attributed to the reduction in features

related to TX and the overal flow, impacting the detection

capability of model. However, due to the strong correlation

between RX and TX-specific features, the decrease in perfor-

mance is minimal. After quantization, both DT and NN-int32

(Q+RX) maintain consistent performance with the unquantized

model (WQ+RX). However, the quantization error of NN-

int8 amplifies the performance decline caused by the reduced

features, resulting in a significant decrease in precision.

Not all features in Table IV contribute to the intrusion

detection model. In other words, it is possible to achieve

similar performance as using all features from Table IV by

choosing the most important subset (Top K) of features. To

provide interpretability to the feature importance, we estimate

the importance of each feature based on the Gini gain of

DT. Then, we compute the cumulative feature performance

to investigate how many of the most important features are

required to achieve optimal performance. We incorporate

features based on their importance in descending order, train

NN, and evaluate the performance metrics. Cumulative results

displayed in Figure 5 indicate that training the model with

only features {6, 23, 7, 0, 34, 2} already achieves performance

comparable to using all features. Consequently, the number of

feature can be reduced from 24 to 6.

Fig. 5: Cumulative feature performance

We select the Top 6 RX-specific features. Before quan-

tization, compared to models using all RX-specific features

(WQ+RX), both NN and DT experience a decrease in per-

formance (WQ+Top K), primarily reflected in precision and

recall. However, the maximum decrease is only 0.0047 (NN-

int32 recall). After quantization, the performance of NN-int32

and DT remains nearly unchanged (Q+Top K), while the per-

formance of NN-int8 decreases by almost 50%, indicating that

the quantization error of NN-int8 is significantly influenced by

the number of features.

Since CIC-IDS-2017 is imbalanced, we also use Matthew

Correlation Coefficient (MCC) [41] to evaluate the perfor-

mance of models with quantization and top 6 features (Q+Top

K). MCC for DT and our method are 0.958 and 0.917,

respectively, indicating optimal agreement between predicted

and actual values. MCC for NN-int8 is 0.344, suggesting

poor classification performance. MCC for SVM is 0.015,

much close to the random guess classifier. Results of PR-

AUC are almost consistent with MCC. DT and our method

perform the best, achieving 0.996 and 0.975, respectively,

while SVM and NN-int8 are close, with values of 0.408 and

0.366, respectively.

2) Effectiveness on eBPF-Reproduction: In §V-B1, we

evaluate the effectiveness utilizing Top K RX-specific fea-

tures (WQ/Q+Top K). Firstly, we implement the extraction

algorithm for the Top 6 features in eBPF XDP. Subsequently,

following the methodology outlined in §V-A, we generate

training and testing data for benign and intrusion, resulting in

the dataset presented in Table III. Afterwards, we implement

NN inference algorithm with eBPF. NN parameters obtained

from the training dataset are loaded after quantization. Results

on the testing dataset are illustrated in Table V.

The performance of SVM (WQ/Q+Top K) is the worst

among the models due to the non-linearity of the data. It is

consistently biased towards classifying flows as benign, which

leads to a high recall but a low precision.

422

TABLE V: Effectiveness evaluation. WQ denotes models implemented in the PyTorch and scikit-learn frameworks without

any quantization, while Q denotes the models quantized from models of WQ and then implemented in eBPF. ALL, RX, and

Top K respectively denote the evaluation results using all features, only the RX-specific features, and only the top K most

important features from the RX-specific set.

Model Offline Evaluation Real-Time Evaluation
Accuarcy Precision Recall F1-score Accuarcy Precision Recall F1-score

DT [12]

WQ + ALL 0.997 0.995 0.989 0.992
WQ + RX 0.993 0.989 0.975 0.982
WQ + Top K 0.987 0.962 0.972 0.967 0.999 0.999 0.999 0.999
Q + ALL 0.988 0.995 0.946 0.970
Q + RX 0.993 0.988 0.975 0.981
Q + Top K 0.987 0.962 0.972 0.967 0.999 0.999 1.000 0.999

SVM [13]

WQ + ALL 0.227 0.201 0.984 0.334
WQ + RX 0.197 0.197 0.999 0.329
WQ + Top K 0.198 0.197 1.000 0.329 0.824 0.788 0.982 0.874
Q + ALL 0.339 0.144 0.477 0.221
Q + RX 0.282 0.158 0.611 0.251
Q + Top K 0.368 0.191 0.686 0.299 0.624 0.624 1.000 0.769

NN-int8 [14]

WQ + ALL 0.994 0.978 0.993 0.985
WQ + RX 0.988 0.952 0.988 0.970
WQ + Top K 0.974 0.927 0.941 0.934 0.991 0.988 0.998 0.993
Q + ALL 0.902 0.956 0.527 0.679
Q + RX 0.864 0.720 0.502 0.592
Q + Top K 0.838 0.622 0.444 0.518 0.671 0.663 0.961 0.785

NN-int32 (Our Method)

WQ + ALL 0.994 0.978 0.993 0.985
WQ + RX 0.988 0.952 0.988 0.970
WQ + Top K 0.974 0.927 0.941 0.934 0.991 0.988 0.998 0.993
Q + ALL 0.994 0.977 0.992 0.985
Q + RX 0.988 0.952 0.988 0.970
Q + Top K 0.974 0.926 0.941 0.933 0.994 0.986 0.999 0.992

NN and DT achieve excellent results before quantization

(WQ+Top K), with performance of NN slightly trailing behind

DT, but the difference is no more than 0.011. After quantiza-

tion, both NN-int32 and DT maintain comparable performance

(Q+Top K), indicating that the quantization process largely

preserves accuracy. However, NN-int8 exhibits a significant

reduction in all metrics except recall after quantization, indi-

cating a substantial decrease in the ability to detect intrusions.

Moreover, when compared to results on the CIC-IDS-2017

dataset, the performance (CIC-IDS-2017, Q+Top K) shows a

higher decline in recall, suggesting that NN-int8 is sensitive

to the choice of the dataset.

We also calculate the MCC on the eBPF reproduction

dataset. We find that both DT and our method still perform the

best, with MCC reaching 0.998 and 0.981 respectively. How-

ever, MMC for NN-int8 degrade to -0.099 and 0, respectively.

SVM predicts all test samples as intrusions, resulting in an

MCC of 0. For PR-AUC, DT and our method achieve 0.999

and 0.966 respectively, while SVM and NN-int8 only reach

0.735 and 0.707 respectively.

3) Hyper-parameter Settings: To investigate the impact of

the NN-int32 (Q+TOP K) structure on performance, experi-

ments are conducted with different depths and sizes of hidden

layers on CIC-IDS-2017. Table VI suggests that modifications

to the structure have minimal impact on performance. There-

fore, to strike an optimal balance between model performance

and complexity, a three-layer neural network with a hidden

layer size of 32 is employed.

TABLE VI: Impact of depth and size of hidden layers

Structure Precision Recall F1-score

Size

[6,16,16,16,2] 0.990 0.926 0.957
[6,32,32,32,2] 0.974 0.926 0.941
[6,64,64,64,2] 0.995 0.937 0.965
[6,128,128,128,2] 0.983 0.969 0.976

Depth

[6,32,32,2] 0.970 0.896 0.932
[6,32,32,32,2] 0.974 0.926 0.941
[6,32,32,32,32,2] 0.979 0.928 0.953
[6,32,32,32,32,32,2] 0.993 0.898 0.943

The enlargement factor s affects the precision of model

quantization. A larger factor leads to higher quantization

precision, but it also comes with increased storage overhead.

For instance, with s = 216, it may be necessary to use int32
for storage, while s = 28 might allow the use of int16, halving

the storage cost. Figure 6(a) indicates that the model achieves

optimal performance only when s = 216.

The reason for using a larger s is that the model parameters

K are very small. Therefore, a larger s is needed to preserve

higher precision during rounding. This heuristic provides a

basis for searching a suitable value of s, where the product of

K and s should be greater than or equal to 1 to avoid becoming

0 during rounding. However, s cannot be too large to avoid

the overflow. Therefore, the most suitable s∗ should minimize

s under the condition that the probability of the product of K
and s being less than 1 is less than a threshold α. This can

be expressed in the formula below:

423

(a) Performance under different s (b) ECDF of NN parameters

Fig. 6: Impact of different s

s∗ = argmin
s

Pr(|K| ≤ 1

s
) ≤ α. (7)

By fitting the empirical cumulative distribution function

(ECDF) of the absolute values of model parameters |K|
through data, the above formula can be expressed as:

s∗ = argmin
s

ECDF (s−1) ≤ α. (8)

The ECDF is shown in Figure 6(b). If the condition is set

to α = 0.005, then s needs to be at least greater than 216.

The error of NN-int32 also depends on the quantization of the

input data. Given α = 0.005 and s = 216 introduced above,

we expect that for each feature xi and its ECDF denoted as

ECDFi, the following formula is satisfied:

ECDFi(s
−1) ≤ α. (9)

When computing the ECDF for each feature, we observe

that, the ECDF of each features all adhere to the formula

mentioned above. Therefore, we can achieve results with NN-

int32 that closely unquantized NN.

C. Availability & Reliability

The accuracy of inference is not guaranteed to be 100%.

In real-time scenarios, dropping packets to terminate intrusion

flow based on the incorrect inference results may have unex-

pected consequences for the system. Therefore, this section

mainly analyzes the reliability and availability of our method.

The dataset used for the analysis is the testing dataset as shown

in Table III.

First, we analyze the availability. In this context, availability

refers to accuracy. Table VII demonstrates that out of the 5

benign categories, 2 have a perfect accuracy of 1.000, while

among the 7 intrusion categories, 5 also achieve a perfect accu-

racy of 1.000. The remaining categories all have an accuracy

of at least 0.950, with the intrusion categories consistently

outperforming the benign categories. These findings indicate

that our method exhibits high availability and is particularly

adept at identifying intrusion instances as compared to benign

ones.

Next, we analyze the reliability. We select the categories

with accuracy less than 1.000 from Table VII, namely FTP
Download, Http Traffic, SSH, SSH-Patator, and Web XSS.

We then visualize the detection results for each flow in each

category in chronological order and calculate the Mean Time
To Failure (MTTF) for each category, which represents the

number of flows between two consecutive incorrect detection

results.

FTP Download, SSH-Patator, and Web XSS demonstrate

robust detection accuracy with minimal errors, as shown in

Figure 7. These errors are sparsely scattered. Conversely, Http
Traffic and SSH exhibit relatively lower detection accuracy,

resulting in a denser distribution of errors. However, when

considering MTTF, Http Traffic and SSH achieve impressive

MTTF values of 1050 and 1021 respectively, implying a high

level of reliability despite the lower accuracy. While FTP
Download, SSH-Patator, and Web XSS have lower MTTF

values, their infrequent occurrence of errors contributes to their

overall strong reliability.

D. Overhead

This section analyzes the overhead of our method in terms

of time, space and CPU.

1) Time: to assess the real-time feature extraction and

NN inference overhead, we utilize iperf [35] to generate

varying numbers of concurrent flows, ranging from 1 to 128.

Each concurrency level is repeated for 8 iterations. Each flow

transmit 10MB TCP traffic at the maximum sending rate, and

all the flows are sent concurrently in one iteration.

As shown in Table VIII, with the increase in the number

of concurrent flows, the average transmission time (WO) also

increases. This is because the system has only 8 cores, and the

network transmission rate is fixed. Therefore, with a constant

amount of data to be transmitted, as the number of concurrent

flows increases, the transmission time also increases. However,

even with the addition of feature extraction and NN inference

(W), the average transmission time for W and WO does

not show a significant difference, with instances where one

is smaller or larger than the other. This suggests that the

implemented feature extraction and NN inference do not

introduce a significant delay to the network.

Due to the latency caused by the network stack and trans-

mission link between two packets, as long as the feature

extraction time is less than the delay time, it has little impact

on the network connection when performing feature extraction

upon receiving a packet. In an ideal scenario where there is

no significant delay in the transmission link, the latency of

the network stack can be approximated using ping 127.0.0.1.

The measured average latency of the network stack on the

experimental machine is 46000 ns, significantly higher than the

values of FEPP (average feature extraction time per packet)

and IPF (average NN inference time per flow). Therefore, this

explains the close results observed between W and WO.

IPF exhibits fluctuations in the range of 3000-5000 ns,

while FEPP shows two stable phases, particularly around

8 concurrent flows. This behavior is attributed to the fact

424

TABLE VII: Effectiveness of real time detection for different benign and intrusion behaviours

Benign Intrusion

FTP
Download

FTP
Upload

Http
Traffic

TCP
Traffic SSH FTP-

Patator
SSH-

Patator
Dos

Goldeneye
Port
Scan

Dos
Slowhttptest

Web
Brute
Force

Web
XSS

Accuracy 0.973 1.000 0.950 1.000 0.964 1.000 0.997 1.000 1.000 1.000 1.000 0.983

Fig. 7: Reliability in real time detection

that inference is performed only at the completion of each

flow, causing IPF to be influenced by other concurrently

processed flows when using eBPF tail call. On the other hand,

feature extraction occurs immediately upon receiving a packet,

resulting in a more stable pattern. Given the limitation of 8

cores in the system, when the number of concurrent flows

exceeds 8, all cores become fully occupied, leading to an

increase in the execution time of FEPP.

TABLE VIII: Time overhead of feature extracting and NN

inference. WO denotes average transmission time without

feature extracting and NN inference. W denotes average

transmission time with feature extracting and NN inference.

FEPP denotes average feature extraction time per packet. IPF
denotes average NN inference time per flow. The units of

WO and W are seconds, and the units of FEPP and IPF
are nanoseconds.

Flows WO (s) W (s) FEPP (ns) IPF (ns)

1 0.38 0.39 96.50 5189.88
2 0.80 0.78 90.69 4570.06
4 1.65 1.60 90.91 3691.25
8 3.33 3.31 134.81 3697.88

16 6.49 6.52 127.90 2945.18
32 13.27 13.19 142.96 3333.93
64 26.07 26.19 145.11 3872.96
128 50.30 50.59 148.28 4306.88

To compare the inference time overhead, we also mea-

sure the IPF of the existing methods, as shown in Figure

8. Linear SVM during inference is equivalent to a single-

layer NN, hence the minimum IPF. Our method and NN-

int8 have similar inference times, but we simplify the NN

inference algorithm implementation. The decision paths of DT

are uncertain and vary with the number of flows. Although

DT is structurally simpler, their implementation is constrained

by eBPF memory access, necessitating the use of eBPF

Maps to store parameters. Accessing parameters through eBPF

helper functions at each layer introduces additional memory

access overhead, resulting in an increased IPF. Overall, our

method reduces inference time overhead while maintaining

performance.

Fig. 8: IPF of the existing methods.

2) Space: Storage overhead comprises of two components.

The initial component comes from storing the features of

presently active flows. Each flow has six features stored as

int64, resulting in a total overhead requirement of 48n bytes,

where n represents the current number of active flows. The

second component involves storing the NN parameters. With

the sizes of the three layers in the NN as 6×32, 32×32, 32×2,

and using int32 for storage, along with the hidden layer output

uniformly represented by an int32 array of 32 elements, a total

of 5248 bytes is needed.
3) CPU: eBPF program is triggered with the XDP hook,

so its impact on the CPU is mixed in the kernel process and

does not exist as a separate process. In order to isolate the

CPU overhead of the eBPF program, we use perf [42] to

instrument CPU performance. We use iperf to send at the

maximum rate for 60 seconds, with the number of concurrent

processes ranging from 1-128. During the first 0-30 seconds of

the network transmission, we randomly start perf to samples

at 99Hz for 30 seconds, and then record the CPU overhead

caused by the eBPF program. Since NN inference starts after

425

each flow ends, the recorded results is the overhead of real-

time feature extraction for each packet.

Fig. 9: CPU Overhead of Feature Extraction

As shown in Figure 9, the CPU overhead remains between

0.54% and 1.64%. If the number of concurrent flows does not

exceed 8 (total CPU cores), the CPU overhead increases as the

number of flows grows because the total bandwidth becomes

larger. After exceeding the limit, each flow not only has to

compete for bandwidth, but also for CPU cores, so the total

bandwidth is declining and the CPU overhead decreases even

the number of flows grows.

E. Overlooked Issues in Existing Methods
The worst-case spatial complexity of DT used in [12] is

O(2n), where n represents the depth [43]. Although tree

pruning can reduce nodes in the training process, the number

of nodes in the trained DT varies even for the same dataset. We

train 1024 DT and the training data comprised 80% randomly

sampled data from each category of CIC-IDS-2017. As shown

in Figure 10, the distribution of the number of nodes is

mainly spread between 300 and 600. In order to hot-update

Fig. 10: Distribution of the number of DT nodes.

parameters, eBPF program has to consider the worst case,

which introduces exponential memory overheads to the kernel.

In addition, the depth of DT also determine its performance.

As shown in Figure IX, when using the Top 6 features, if

the depth is less than 9, the performance of DT is inferior to

our method (NN-int32 Q+Top K). DT implemented in [12]

requires at least 4 int64 arrays. If the depth is set to 10, then

the worst-case memory would reach 4 × 8 × 210 = 32 KB.

However, our method achieves performance close to that of

DT while reducing memory overhead to 5 KB (§ V-D).
Although DT achieves great anomaly detection performance

with a simple structure, it still suffer from the problem

of concept drift. To illustrate this, we remove one type of

intrusion from the training and testing datasets from CIC-IDS-

2017 at a time, then train a DT with a depth of 10 and use

TABLE IX: Impact of DT Depth [12]

Depth Accuracy Precision Recall F1-score

3 0.862 0.599 0.910 0.722
4 0.886 0.990 0.425 0.594
5 0.914 0.829 0.706 0.763
6 0.944 0.799 0.958 0.871
7 0.967 0.898 0.941 0.919
8 0.971 0.966 0.886 0.924
9 0.983 0.964 0.951 0.957

10 0.987 0.962 0.972 0.967

the trained DT to detect the removed intrusions. We find that

although the average F1-score of the DT on the testing dataset

reaches 0.969, the accuracy on each removed intrusion types

is low, as shown in Figure 11. We also find that NN generally

performs better than DT on the removed intrusion types but

still suffer from the problem of concept drift.

Fig. 11: Accuracy on the removed intrusions

When using non-linear SVM, we find that even with the

same training dataset and Top 6 features, the training time

of SVM does not stop even after several hours and is much

longer compared to DT and NN. DT and NN takes 5s and

71s respectively to achieve the effectiveness shown in Table

V. Even we set the maximum number of iterations to 1000

during training, SVM training is still slow. As shown in

Table X, results on the testing dataset indicate that non-

linear kernels do not improve the performance of the model.

Computations involving the exponential function ex in the

RBF and Sigmoid kernels also pose significant challenges for

its integer implementations in eBPF.

TABLE X: Performance of SVM with non-linear kernels

SVM
Kernel Accuracy Precision Recall F1-score Training

Time (s)

Linear 0.262 0.210 0.999 0.348 1289
Polynomial 0.198 0.197 0.999 0.329 1414

RBF 0.222 0.202 0.999 0.336 2147
Sigmoid 0.421 0.196 0.625 0.298 2706

Compared to NN-int8 [14], our method (NN-int32) is not

simply increase the length of quantized integers from 8 bits to

32 bits. Hara et al. [14] use int8 to store the model parameters,

while each layer still use int32 to store the input and output.

Thus, for each layer, the input is first quantized into int8,

then undergoes linear and relu layer, and finally, dequantized

to obtain the output in int32, which serves as the input for

the next layer. The quantization and dequantization steps in

each layer add considerable computation overhead and error to

the real-time inference. Furthermore, the two steps introduce

426

extra memory overhead beyond the model parameters [44].

However, our method essentially stores floating-point numbers

in the form of fixed-point numbers within int32, eliminating

the need for additional quantization and dequantization steps

during inference. We design our NN inference algorithm and

implementation mechanism to accommodate the limitations

of eBPF overlooked in [14]. We significantly improve per-

formance while reducing the computational complexity.

VI. RELATED WORK

Real-time intrusion detection and prevention can protect

system from potential impact on its functionality [3]. However,

current methods [4]–[7] focus on algorithmic improvements

while neglecting the CPU, memory, and context switch over-

head during real-time packet capturing. Unlike these methods,

we utilize eBPF to offload the intrusion detection model into

XDP hook, enabling real-time packet capturing and subsequent

analysis within the kernel. We significantly reduces the kernel-

user context switch overhead and make it compatible with a

wider range of NIC architectures in a cost-effective way.

There are also similar methods that directly use eBPF

for intrusion detection. [12] first implements DT in eBPF,

but the structure of DT becomes unfixed after each training,

presenting challenges in storing and updating it within eBPF.

Linear Support Vector Machine employed by [13] may not

be suitable for intrusion detection, which is not a straight-

forward linearly separable problem. NN has fixed structure

and strong fitting capabilities. Therefore, NN is widely used

in intrusion detection task now [9]. [14] implements NN in

eBPF based on int8 quantization. However, the quantization

method introduces significant errors and unnecessarily compli-

cates the implementation process. Moreover, [12]–[14] neglect

the critical analyses such as feature importance, overlooked

problems like race conditions and limitations in implementing

complex algorithms, and the reproduction real-time intrusions

for evaluation. We redesign a new NN inference mechanism

based on int32 and implement it in eBPF through chained

eBPF tail calls. We then propose a thread-safe parameters

hot-updating mechanism. Through comprehensive evaluations,

we demonstrate that our method achieves performance and

inference overhead comparable to the existing methods while

reducing memory overhead.

VII. LIMITATIONS & DISCUSSIONS

Since the detection occurs only at the end of a flow, our

current implementation is not suitable for intrusions during

persistent connections. Persistent connection means that it

remains open for a long duration without being disconnected.

The detection of intrusions in persistent connections requires

detecting every packet or flow features within a specific time

window. This limitation can be addressed by replacing the

training dataset and conducting detection immediately after

each packet. Since current mainstream intrusion detection

datasets are primarily based on features of the entire flow [33],

and conducting detection for each received packet introduces

excessive computational overhead, we choose to perform de-

tection only after the completion of a flow.

VIII. CONCLUSION

We address the overlooked issues in eBPF such as the max-

imum instructions number, integer-only arithmetic operations,

and race conditions. Subsequently, we implement an efficient

real-time intrusion detection and defense prototype within the

kernel. First, we redesign an NN inference algorithm based on

int32 quantization and integer-only arithmetic. To overcome

the maximum eBPF instruction limitation, we decompose the

algorithm and employ chained eBPF Tail Calls for real-time

inference in XDP. Furthermore, we implement a thread-safe

mechanism for hot-updating model parameters. The evaluation

results show that our methods reduce memory and inference

time overhead while maintains performance comparable to the

existing state-of-the-art method using eBPF.

ACKNOWLEDGMENT

We greatly appreciate the insightful feedback from the

anonymous reviewers. The research is sponsored by the Na-

tional Key Research and Development Program of China

(2019YFB1804002), the National Natural Science Foundation

of China (No.62272495) and the Guangdong Basic and Ap-

plied Basic Research Foundation (No.2023B1515020054), and

sponsored by Huawei. The corresponding author is Pengfei

Chen.

REFERENCES

[1] Shih-Wei Li, John S Koh, and Jason Nieh. Protecting cloud virtual
machines from hypervisor and host operating system exploits. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1357–1374,
2019.

[2] Amazon. Cloud security software. https://aws.amazon.com/marketplace/
solutions/security.

[3] Ravi Sekar and Prem UppuluriR Sekar. Synthesizing fast intrusion
prevention/detection systems from high-level specifications. In 8th
USENIX Security Symposium (USENIX Security 99), 1999.

[4] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
Kitsune: an ensemble of autoencoders for online network intrusion
detection. arXiv preprint arXiv:1802.09089, 2018.

[5] Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal,
Gang Wang, and Bimal Viswanath. Throwing darts in the dark? detecting
bots with limited data using neural data augmentation. In 2020 IEEE
symposium on security and privacy (SP), pages 1190–1206. IEEE, 2020.

[6] HyungBin Seo and MyungKeun Yoon. Generative intrusion detection
and prevention on data stream. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 4319–4335, 2023.

[7] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evange-
los P Markatos, and Sotiris Ioannidis. Gnort: High performance network
intrusion detection using graphics processors. In Recent Advances
in Intrusion Detection: 11th International Symposium, RAID 2008,
Cambridge, MA, USA, September 15-17, 2008. Proceedings 11, pages
116–134. Springer, 2008.

[8] iptables. https://linux.die.net/man/8/iptables.
[9] Feng Wei, Hongda Li, Ziming Zhao, and Hongxin Hu. Xnids: Explaining

deep learning-based network intrusion detection systems for active
intrusion responses. In 32nd USENIX Security Symposium (USENIX
Security 23), Anaheim, CA, USA, 2023.

[10] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo.
Accelerating linux security with ebpf iptables. In Proceedings of the
ACM SIGCOMM 2018 Conference on Posters and Demos, pages 108–
110, 2018.

[11] eBPF. Available at: https://ebpf.io/.

427

[12] Maximilian Bachl, Joachim Fabini, and Tanja Zseby. A flow-based ids
using machine learning in ebpf. arXiv preprint arXiv:2102.09980, 2021.

[13] NEMALIKANTI ANAND, MA SAIFULLA, and Pavan Kumar Aakula.
High-performance intrusion detection systemusing ebpf with machine
learning algorithms. 2023.

[14] Takanori Hara and Masahiro Sasabe. On practicality of kernel packet
processing empowered by lightweight neural network and decision tree.
In 2023 14th International Conference on Network of the Future (NoF),
pages 89–97. IEEE, 2023.

[15] Linux. Bpf design q&a. Available at: https://www.kernel.org/doc/html/
v5.2/bpf/bpf design QA.html.

[16] Jonathan Corbet. Concurrency management in bpf. https://lwn.net/
Articles/779120/.

[17] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A
deep learning approach for network intrusion detection system. In
Proceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies (formerly BIONETICS),
pages 21–26, 2016.

[18] Jihyun Kim, Jaehyun Kim, Huong Le Thi Thu, and Howon Kim. Long
short term memory recurrent neural network classifier for intrusion
detection. In 2016 international conference on platform technology and
service (PlatCon), pages 1–5. IEEE, 2016.

[19] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den
Hengel. Deep learning for anomaly detection: A review. ACM computing
surveys (CSUR), 54(2):1–38, 2021.

[20] Cillium. Bpf and xdp reference guide. Available at: https://docs.cilium.
io/en/latest/bpf/.

[21] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ah-
madzadeh, Xinyu Xing, and Gang Wang. Cade: Detecting and explaining
concept drift samples for security applications. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2327–2344, 2021.

[22] Tcpdump. https://www.tcpdump.org/manpages/tcpdump.1.html.
[23] Mohammad Saiful Islam Mamun Arash Habibi Lashkari, Gerard Draper-

Gil and Ali A. Ghorbani. cicflowmeter. Available at: https://www.unb.
ca/cic/research/applications.html.

[24] Dongzi Jin, Yiqin Lu, Jiancheng Qin, Zhe Cheng, and Zhongshu
Mao. Swiftids: Real-time intrusion detection system based on lightgbm
and parallel intrusion detection mechanism. Computers & Security,
97:101984, 2020.

[25] Libpcap. https://www.tcpdump.org/manpages/pcap-filter.7.html.
[26] Programming with pcap. Available at: https://www.tcpdump.org/pcap.

html.
[27] pidstat. Available at: https://man7.org/linux/man-pages/man1/pidstat.1.

html.
[28] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu.

Electrode: Accelerating distributed protocols with ebpf. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 1391–1407, 2023.

[29] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. The
express data path: Fast programmable packet processing in the operating
system kernel. In Proceedings of the 14th international conference on
emerging networking experiments and technologies, pages 54–66, 2018.

[30] Tc-bpf. Available at: https://man7.org/linux/man-pages/man8/tc-bpf.8.
html.

[31] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo,
and Mauricio Vásquez Bernal. Creating complex network services with
ebpf: Experience and lessons learned. In 2018 IEEE 19th International
Conference on High Performance Switching and Routing (HPSR), pages
1–8. IEEE, 2018.

[32] John H Ring IV, Colin M Van Oort, Samson Durst, Vanessa White,
Joseph P Near, and Christian Skalka. Methods for host-based intrusion
detection with deep learning. Digital Threats: Research and Practice
(DTRAP), 2(4):1–29, 2021.

[33] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-
ward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp, 1:108–116, 2018.

[34] httperf. Available at: https://github.com/httperf/httperf.
[35] iperf. Available at: https://iperf.fr.
[36] GoldenEye. Available at: https://github.com/jseidl/GoldenEye.
[37] Slowhttptest. Available at: https://github.com/shekyan/slowhttptest.
[38] patator. Available at: https://github.com/lanjelot/patator.
[39] DVWA. Damn vulnerable web app. Available at: https://github.com/

digininja/DVWA.

[40] selenium. Available at: https://selenium-python.readthedocs.io/.
[41] Brian W Matthews. Comparison of the predicted and observed secondary

structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451, 1975.

[42] perf. Available at: https://perf.wiki.kernel.org/index.php/Tutorial.
[43] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. Introduction to algorithms. MIT press, 2022.
[44] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius

Micikevicius. Integer quantization for deep learning inference: Principles
and empirical evaluation, 2020.

428

