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Abstract—Self-driving labs are transforming scientific research
and accelerating experimentation using software-controlled lab
equipment. These labs are exposed to human errors by inexperi-
enced researchers working in the lab (e.g., setting incorrect target
location could cause a robot arm to collide with an expensive
piece of equipment). We present RABIT, a Robot Arm Bug
Intervention Tool, which (i) allows systematically specifying safety
rules across diverse devices and (ii) evaluates and enforces these
rules using simulation, a low-fidelity testbed, and a production
environment. We report our experience adapting RABIT for the
Hein Lab, a state-of-the-art research lab that blends advanced
robotics with synthetic organic chemistry.

Index Terms—self-driving labs, rule-based anomaly detection

I. INTRODUCTION

Manufacturing and material synthesis research involves re-

peated physical experiments that iterate through the parameter

search space. Self-driving labs automate every step of this

process using robot arms and software-controlled equipment,

allowing researchers to accelerate discovery. Such labs are

emerging across diverse fields, such as chemistry [18, 40],

nanotechnology [39], and energy technology [20, 30]. Exam-

ples include Polybot [11] at the Argonne National Laboratory,

the Matter Lab [7] at the University of Toronto, and the Hein

Lab [4] at the University of British Columbia.

Fig. 1(a) illustrates a prototypical experiment deck in the

Hein Lab. Each robot arm and lab device can be individually

programmed using device-specific APIs. However, lab engi-

neers typically write lightweight python wrappers over these

APIs, providing an easy-to-use programming environment, as

in Fig. 1(b). Hence, even students and young researchers with

no experience in computer networking or hardware interfacing

can quickly learn to automate their research.

While self-driving labs revolutionize research and experi-

mentation, with increased automation there is the risk that even

small, inadvertent programming errors can cause nontrivial

damage to humans or expensive equipment in the lab.1 Since

self-driving labs are perennially in prototyping mode, such

errors are more likely than in large-scale industrial manufac-

turing plants. Our goal is to defend self-driving research labs

1For example, the dosing device shown in Fig. 1(a) has a software-
controlled glass door; there have been instances of the door breaking be-
cause the programmer forgot to call open_door(), i.e., Line 13 in the
doseSolid(amount) definition in Fig. 1(b) was omitted. Similarly, if, say,
Line 15 in the doseSolid(amount) definition is omitted inadvertently, the
robot arm does not collect the vial back from the dosing device, which then
collides with the new vial in the subsequent iteration.

(a) An experiment deck in the Hein Lab

(b) Python experiment script for automated solubility measurement

Fig. 1. An experiment deck and its corresponding programming environment
at Hein Lab [4]. The object dosing_device in the main script points to the
Python class Dosing_Device. The Python class exports convenient APIs
for many common operations involving the dosing device and the robot arm
(shown in the top figure) – such as doseSolid(amount) – while hiding
low-level device communication details from the users.

against misconfigurations and programming errors that can
lead to unsafe behaviors, without affecting programmer pro-
ductivity and without slowing down prototyping capabilities.

Currently, the effect of potentially unsafe commands is

mitigated to some extent by (i) device-specific thresholds

embedded inside device firmware, e.g., the hotplate in Fig. 1(a)

allows setting a safe temperature limit [6], and (ii) checks

added by programmers to their experiment scripts, e.g., Lines

10-11 in Fig. 1(b) ensure that the dosing amount does not ex-

ceed 10mg. Device-specific thresholds cannot prevent unsafe

behaviors that result from interaction between two devices,

e.g., a robot arm may not accept coordinates that will force

its arm to hit the ground, but its firmware may not prevent
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TABLE I
COMPARING THE CAPABILITIES OF RABIT’S THREE STAGES

Capabilities Simulator Testbed Production

Speed of exploration / testing High Medium Low
Device precision and quality Low Medium High
Accuracy of results Low Medium High
Risk of damage Low Medium High

a collision with another robot arm. In contrast, checks inside

programming scripts can be more comprehensive, as program-

mers derive these from their holistic knowledge. Unfortunately,

such checks are added ad hoc, scattered all over the program,

making this approach both error-prone and cumbersome.
We present RABIT, a Robot Arm Bug Intervention Tool

for systematically specifying rules, testing experiment scripts,

and enforcing safe execution. We summarize RABIT’s key

ideas and contributions below. Although we design RABIT in

consultation with the Hein Lab, the ideas apply to self-driving

labs, particularly those containing diverse equipment.
Gathering rules. Identifying an exhaustive set of rules that

define unsafe behavior over all possible executions across all

devices is nontrivial. To address this challenge, we formulated

rules using information gathered from three sources: an exist-

ing robotic arm dataset (RAD) [12], the Hein Lab experiment

scripts, and researchers in the Hein Lab. Together, these allow

us to identify both general-purpose rules that apply to a broad

class of self-driving labs and custom rules that are specific to

an individual self-driving lab, such as the Hein Lab.
Enforcing rules. As our goal is to avoid unsafe behavior,

we need to actually attempt to execute such unsafe behaviors

to determine if our system detects them. However, a bug

in the detection could have devastating consequences. To

avoid this, we use a three-stage framework for detecting rule

violations: (i) simulation, for quick testing of individual robot

arm movements; (ii) a low-fidelity, inexpensive testbed for

testing physical actions without damaging side effects; and

lastly, (iii) testing in the production environment. Table I

provides a quick summary of their capabilities.
Contributions. Our main contribution is demonstrating

how the aforementioned key ideas can be realized in a pro-

duction and fully operational state-of-the-art self-driving lab.

Specifically, we present a report summarizing our experience

adopting RABIT in the Hein Lab (see Sections II to IV). We

also discuss RABIT’s usability and broader applicability to

other self-driving labs (see Section V).

II. RABIT

We consider the Hein Lab’s experiment deck shown in

Fig. 1(a) as our production environment. It consists of a

lab computer, a six-axis robot arm [16], and five automation

devices: a solid dosing device [8], an automated syringe pump

[13], a centrifuge [3], a thermoshaker [5], and a hotplate [5].

A. Construction of the Rulebase
We first examined the Robot Arm Dataset (RAD), which

includes three months of command trace data captured in the

Hein Lab [12]. We mined the dataset to identify rules implied

by the sequences of commands. We identified rules that ought

to apply to all self-driving labs, e.g., device doors must be

opened before a robot arm can enter them, as well as rules that

seemed unique to the lab from which the data were collected,

e.g., solids must be added to containers before liquids.

Next, we consulted with the Hein Lab researchers, who

emphasized the need to avoid collisions of robot arms with

nearby equipment or people, and that the temperature of the

hotplate must never exceed the specified threshold. When their

safety criteria conflicted with RAD-inferred rules, we used the

rules suggested by our collaborators.

Finally, we examined their experiment scripts, looking for

explicit checks. We retained the distinction observed in RAD

that rules fall into two categories: general-purpose rules that

apply to most labs and custom rules specific to a particular lab.

This design makes it easier to adapt to a new environment by

describing only the items specific to that environment.

Based on the three sources discussed above, we classified

each device (robot arms or software-controlled devices) into

one of four types. (1) Container: any object that can contain

a substance (solid, liquid etc.) and typically has a stopper

through which the substance goes in or out. (2) Robot Arm:
a system that moves from one location to another and has

the ability to pick up, move, and place objects. (3) Dosing
System: any system used for adding substances into a con-

tainer during the experiment. (4) Action Device: any system

with ‘active/inactive’ states, where the active state refers to

the system performing an action, such as heating, stirring, or

shaking. Both dosing systems and action devices might have

doors preventing an object from entering or exiting.

For each device type, we identify state variables that fully

describe the device, e.g., deviceDoorStatus indicates if a

device’s door is open or closed and robotArmHolding indicates

if the robot arm gripper is holding an object. We also identify,

for each device type, actions, which can modify the associated

state variables. Each action has a set of preconditions, which

must hold for the action to be allowed, and postconditions,

which must hold after the action completes (e.g., see Table II).

The complete set of all such descriptions constitutes the

RABIT rulebase. Tables III and IV show all the general-

purpose and custom, lab-specific rules (respectively).

B. Detecting Rule Violations

The algorithm in Fig. 2 describes RABIT’s execution. In

short, RABIT intercepts each action; if the preconditions are

not met, it stops the experiment (to prevent execution of unsafe

actions) and alerts the user; and after each action, checks for

device malfunctions. RABIT stops an experiment preemptively

based on the Hein Lab’s recommendation. However, this can

be dangerous at times, e.g., if a robot arm is left holding a

volatile substance, a person can bump into it. In such cases, a

fail-safe scenario may be recommended instead.

Lines 1-3. When RABIT starts, it acquires the initial state

of all devices, Sinitial, using a set of status commands. It then

sets Scurrent, which denotes the current state, to Sinitial.

354



TABLE II
EXAMPLE ACTIONS, PRECONDITIONS, AND POSTCONDITIONS ASSOCIATED WITH A ROBOT ARM DEVICE TYPE

Example actions associated with a robot arm device Preconditions Action labels Postconditions

Moving a robot arm inside a specific device deviceDoorStatus[device] = 1 move robot inside robotArmInside[robot][device] = 1
Using a robot arm to pick up an object (a vial in this case) robotArmHolding[robot] = 0 pick object robotArmHolding[robot] = 1
Using a robot arm to place an object (a vial in this case) robotArmHolding[robot] = 1 place object robotArmHolding[robot] = 0

TABLE III
GENERAL RULES FOR SELF-DRIVING LABS

No. General rules

1 Robot arm cannot move into a device whose door is closed
2 Device door cannot be closed when the robot is inside the device
3 Robot arm can move to any location not occupied by any object
4 Robot arm can pick up an object when it isn’t holding something
5 Action device can perform actions when a container is inside it
6 Action device can perform actions when a container is not empty
7 A substance can be transferred from a delivering container to a

receiving container when neither has a stopper on it
8 A substance can be transferred from a filled delivering container to

an empty or partially filled receiving container
9 Dosing systems or action devices with doors should start dosing or

performing an action, respectively, only when their doors are closed
10 The door of the dosing systems or action devices with doors should

be closed when they are running
11 The action value, such as temperature or stirring speed, for a given

action device should not exceed its predefined threshold

TABLE IV
CUSTOMIZED RULES FOR THE HEIN LAB

No. Customized rules

1 Add liquid to a container only if the container already has solid
2 Place the container in the centrifuge only if the container contains

both a solid and a liquid
3 Place the container in the centrifuge only if the red dot on centrifuge

faces North
4 Place the container in the centrifuge only if the container has a

stopper on it

Lines 5-7. The system transitions from one state to another

via a single command, denoted anext, which is responsible for

executing an action. Each action has a precondition that must

hold before the command can be executed (e.g., see Table II).

If Scurrent does not satisfy anext’s precondition, RABIT consid-

ers the state-action pair invalid and raises an alert.

Lines 8-10. If anext is a move command for a robot arm,

RABIT checks if the robot arm can move without colliding

with other devices or bumping into walls or the ground. We

designed an Extended Simulator (see Section III) that models

other automation devices as 3D stationary objects and checks

if the robot arm’s trajectory causes a collision. In the absence

of such a simulator, only the target location is checked for

potential collisions; the precondition for every move command

requires that there be no object in the target location.

Lines 11-15. RABIT computes the expected state, Sexpected,

using the current state, Scurrent, and the action’s postconditions.

It then executes anext and afterwards acquires the actual state

of all devices, i.e., Sactual (using status commands, like at the

1: Input: Initial state of the self-driving lab Sinitial

2: Output: Alert, if a safety violation is detected

3: Scurrent ← SetState(Sinitial)

4: while ¬SystemReboot do
5: Fetch the next command anext

6: if ¬Valid(Scurrent, anext) then
7: alertAndStop(“Invalid Command!”)

8: if isRobotCommand(anext) then
9: if SimAvailable and ¬ValidTrajectory(anext)

then
10: alertAndStop(“Invalid trajectory!”)

11: Sexpected ← UpdateState(Scurrent, anext)

12: Execute command anext

13: Sactual ← FetchState()

14: if Sactual �= Sexpected then
15: alertAndStop(“Device malfunction!”)

16: Scurrent ← SetState(Sactual)

Fig. 2. RABIT’s Execution Algorithm

initialization time). If Sactual �= Sexpected, RABIT assumes that

at least one device malfunctioned and raises an alert.

C. Implementation

The lab researcher configures RABIT for their lab by

instantiating their devices in the JSON files that we provide.

They must categorize each device into its device type and

enter its properties, including the class name that provides the

device’s APIs and additional properties (such as the presence

and position of a door). Additionally, for each device, they

should add the commands responsible for executing actions

and for retrieving the device’s state. They can also define lab-

specific rules that become part of the custom rulebase and new

device categories, if they have devices that do not belong to

any of the four specified device types.

The JSON format provides a simple and standardized way to

represent information, making it easy for researchers to modify

and update the device information. We use the information

from the JSON files to populate a state transition table, which

is a two-dimensional labeled data structure similar to Table II.

We use an open-source tracing framework RATracer [22],

which instruments the Python experiment scripts to intercept

and trace all device commands at run time. We reconfigure

RATracer such that every time it traces a command, it first

checks with RABIT if the command is safe to run: if RABIT

raises an alert, the experiment is halted (RATracer raises a
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Fig. 3. Extended Simulator

Python exception in this case); otherwise, the command is

forwarded to the device and executed.

RABIT also maintains a list of device connection parame-

ters, which are extracted from the programming scripts. It uses

these parameters to fetch the state of all devices, i.e., as part

of the FetchState() function on Line 13 in the algorithm.

We evaluated the latency overhead due to RABIT. With-

out the Extended Simulator, RABIT incurs approximately

0.03s overhead (1.5%), which is generally imperceptible to

humans [26]. However, with the Extended Simulator, RABIT

incurs approximately 2s overhead (112%). The simulator over-

head arises mainly from its Graphical User Interface (GUI),

which runs in a virtual machine and is invoked each time

RABIT checks for collisions. The overhead is acceptable

during testing, but for deployment, we plan to bypass the GUI

entirely when interacting with the simulator.

III. TESTING PLATFORMS

Extended simulator. The Hein Lab uses the six-axis UR3e

robot arm [16], which comes with an accurate simulator UR-

Sim [1]. However, URSim does not model other automation

devices. It also does not account for collisions when the robot

arm moves through its mounting platform or hits the walls.

We augmented URSim to develop an Extended Simulator.

In the augmented version, we model each device on the

experiment deck as a 3D cuboid object (as shown in Fig. 3).

Further, by continuously polling the robot arm’s trajectory and

comparing it with the 3D objects’ coordinates, the Extended

Simulator can detect if the robot arm is likely to collide with

one of the automation devices and alert the user.

Testbed. The testbed emulates the Hein Lab using lower

precision robot arms and low-fidelity device mockups. It

provides an environment for executing potentially unsafe pro-

grams, so that the chances of these programs causing a damage

when deployed in a production environment are significantly

reduced. The testbed also lets us experiment with intentionally

unsafe workflows to check if RABIT detects them.

Fig. 4. Testbed

Our testbed setup (Fig. 4) consists of a lab computer that

controls five low-fidelity objects and two robot arms: a six-

axis ViperX [17] and a six-axis Ned2 [9]. Both robot arms are

designed for educational and research purposes. They have the

same degree of freedom as the UR3e, but limited capabilities

and precision. The low-fidelity objects resemble the shapes

and functionalities of their counterparts in the Hein Lab and

are realized using cardboard mockups or toy devices.

The testbed allows us to test scenarios for which the

simulator is insufficient, such as using multiple robot arms

or checking for collisions that occur if a robot arm is holding

a vial and the vial (not the arm itself) collides with a device.

IV. EVALUATION

We assess whether the rules are accurately programmed in

RABIT by checking if RABIT successfully detects every rule

violation. We did not disable any existing safety mechanisms

built into the devices or any ad-hoc safety checks added in

the experiment scripts by the lab researchers; these worked in

tandem with RABIT. For evaluation, we ensure that there are

no intentional bugs in the JSON configurations. We first con-

ducted controlled experiments on both the Extended Simulator

and the testbed. We deliberately executed unsafe scenarios

designed to trigger each rule in the rulebase. For example,

in the simulator, we attempted to move UR3e inside the grid,

violating rule 3 in Table III. On the testbed, we attempted

to move ViperX inside the dosing device while its door was

closed, violating rule 1 in Table III. RABIT successfully
detected unsafe behavior in all these scenarios.

Next, we conducted uncontrolled experiments, where we

asked one of our collaborators to modify the experiment scripts

(examples are shown in Fig. 5 and Fig. 6) and introduce bugs

in them, as if they were a naive programmer. They were given

access only to the programming scripts on the lab computer but

were not allowed to manually reposition robot arms or move

equipment. Hence, they could easily change the arguments of
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Fig. 5. The example (without the annotations) illustrates a safe tesbed
workflow based on the automated solutbility experiment shown in Fig. 1(b).
The annotated bugs represent the different categories of unsafe behavior
introduced by adding, deleting, or updating one or two lines in the code.
Bug A is introduced by omitting Line 23; hence, when ViperX goes to the
dosing device to pick up the vial (Line 25), it collides with the door. Bug B
introduces Lines 28 and 29, which asks Ned2 to move to a location close to
the grid, while ViperX is also stationed there (after Line 26), causing the two
robot arms to collide. Bug C is introduced by omitting Line 15; ViperX in
this case continues the remaining experiment without a vial.

commands (e.g., enter incorrect coordinates for robot arms),

delete commands (e.g., remove a command to close the door of

a device), or change the order of commands (such as altering

the sequence of locations to which a robot arm was supposed

to move). These experiments (see [15] for details) resulted in

four categories of unsafe behavior.

1. Interactions with the dosing device door. This category

deals with improper handling of device doors, e.g., attempting

to close the door while ViperX is still inside the device or

attempting to move ViperX inside the dosing device while the

door is closed (Bug A in Fig. 5 illustrates the latter scenario).

RABIT raised an alert in all such scenarios.
2. Collisions between two robot arms. Consider Bug B in

Fig. 5. ViperX is stationed just above the grid after placing a

vial. The programmer moves Ned2 to a random_location
close to the grid but different from ViperX’s position. This

resulted in a collision. RABIT did not raise an alarm.

Fig. 6. The above snippet, which is part of a utilities file, contains hard-
coded device-specific location coordinates. Bug D is introduced by changing
the z-axis coordinate of the pickup location (Line 26) from 0.10 to 0.08.
These coordinates are used by viperx_place_object(...) in Fig. 5
(see Lines 8 and 16). Since the new z-axis coordinate is close to 0, when
ViperX is holding a vial, the vial crashes to the ground and breaks.

To detect collision between two robot arms, RABIT requires

a common frame of reference. Since Ned2 and ViperX are

sourced from different vendors, and have varying gripper

sizes and low precision, this is challenging. For example,

transforming both robot arms’ coordinate systems to a global

coordinate system using a transformation matrix [14] resulted

in an average error of 3cm between the expected and com-

puted positions. Hence, we continue using separate coordinate

systems (the de facto approach in the Hein Lab) but adopt a

workaround for preventing such collisions in the first place:

we multiplex robot arm movements in either time or space.
To multiplex in time, we ensure that, at any given time,

only one robot is in motion whereas other robot arms are

in their sleep position and modeled as 3D cuboid spaces

(identically to other devices). For our testbed, we specify

Ned2’s shape and sleep position in ViperX’s environment (and

vice versa) and modify RABIT to add preconditions to enforce

this behavior. For space multiplexing, we add a software-

defined wall between the two robot arms in their environments,

providing each robot with its own dedicated space in which it

can move, while allowing to let them move concurrently.

Our workaround mimics common safety practices in self-

driving labs. However, RABIT provides lab researchers the

ability to formally express these safety practices and enforce

them at runtime, while pushing for more concurrency in their

experiments. External monitoring tools such as 3D cameras

can also help with safety monitoring in such scenarios.
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3. Experiments without a vial. Consider Bug C in Fig. 5.

ViperX does not pick up the vial because the call to func-

tion viperx_pick_up_object() is omitted. ViperX may

also not pick up the vial if there is a bug in the func-

tion definition, e.g., if commands open_gripper() and

close_gripper are reordered. In both cases, RABIT did
not raise an alarm, and the remaining experiment continued

without a vial. Currently, we cannot detect if the robot arm

gripper is holding an object, since we do not have a gripper

pressure sensor or cameras for external monitoring.

4. Changing position coordinates. The robot arms were

asked to move to seemingly infeasible locations, e.g., by

replacing one or more device coordinates with a very high

or a very low value. This resulted in varied behavior.
Bug D in Fig. 6 demonstrates one such scenario where

ViperX’s arm is made to collide with the platform. RABIT

raised an alarm when ViperX was not holding any object.

When ViperX’s gripper was holding a vial, the vial collided

with the platform before RABIT could raise an alarm. RABIT

failed to account that a robot arm’s dimensions may change

if it is holding an object. We modified RABIT to account for

these changes, which successfully detects such collisions.

When ViperX was moved to a very high, clearly infeasible,

position, it failed to compute the trajectory and silently ignored

the command. RABIT did not raise an alarm, even though

silently skipping a command can be potentially unsafe.2 With

Ned2, this was not an issue as it throws an exception and halts

immediately if it cannot compute the trajectory.

Summary. Our collaborator, the “naive” programmer, car-

ried out 16 program changes with potentially unsafe conse-

quences. Initially, RABIT detected 8 of them, resulting in a

detection rate of 50%. After modifying RABIT, it successfully

detected 12 scenarios, resulting in a detection rate of 75%.

With the Extended Simulator on the side, we were able to

detect one more scenario, improving RABIT’s detection rate

to 81%. While the evaluation results are encouraging, without

more practical deployment experience in multiple self-driving

labs and without exhaustive testing (which requires generating

large bug datasets – a challenging task in itself), we do not

know if these numbers are representative of what we might

see in practice. Hence, RABIT’s detection rate reported in the

paper should not be mistaken for its likelihood to detect unsafe

behavior in the wild. Importantly, throughout testing, RABIT

never produced any false positives (i.e., false alarms). This

is important for programmer productivity, i.e., RABIT does

not run the risk of producing alarm fatigue, where researchers

start ignoring alarms because they are raised frequently and

unnecessarily. Table V further categorizes the introduced bugs

based on increasing severity and the potential damage they

2Suppose ViperX needs to move from location A to B and then to C. The
approach via B is intentionally chosen to avoid collision with a nearby object.
However, if the location coordinates for B are accidentally changed to B’ and
ViperX cannot compute the trajectory from A to B’, it skips this move, and
proceeds to move directly from A to C, resulting in a collision. RABIT raised
an alarm when this scenario was replayed in the Extended Simulator, as the
Extended Simulator is able to detect collisions between robot arm trajectories
and other devices, and signal it back to RABIT.

TABLE V
SEVERITY OF BUGS WITH THE TOTAL NUMBER OF BUGS IN EACH

CATEGORY AND THE NUMBER OF BUGS DETECTED BY RABIT

Severity of Bugs Total Detected

Low: Wasting chemical materials 3 1
(e.g., spilling solid out of the vial)

Medium-Low: Breakage of glassware 1 1
(e.g., robot arm dropping a test tube)

Medium-High: Robot arm causing harm to
the environment or inexpensive nearby objects
i.e., platform it is mounted on, the nearby
walls, or the grids that hold the vials

6 4

(e.g., robot arm making holes in a wall)

High: Robot arm breaking the expensive
equipment inside the lab

6 6

(e.g., robot arm breaking a dosing device)

could cause. It includes the total number of bugs in each

category and the number of bugs detected by RABIT.

Due to lack of prior work on security and safety of self-

driving labs, we do not have baselines against which to

compare RABIT or any data on quantitative measures. Before

adopting RABIT, we expect researchers in other self-driving

labs to carry out a qualitative analysis of potentially unsafe

scenarios in their lab, compare those to our test suite, and

determine if RABIT is suitable for their environment.

V. DISCUSSION

We report on RABIT’s usability based on our experience

of deploying it in the Hein Lab. We discuss if RABIT can be

generalized to other self-driving labs and, if customization is

required, the effort needed and the problems encountered when

customizing it for a specific self-driving lab. We also discuss

the open challenges associated with deploying RABIT.

A. Pilot Study with the Hein Lab

We evaluate RABIT’s usability via an informal pilot user

study. Briefly, we provided a 30-minute one-on-one training

session to one of the Hein Lab researchers, participant P. The

training session included an overview of RABIT, the device

configuration files (in JSON format) it uses, and the user study.

After the training session, we provided participant P with

the configuration file templates and asked them to enter all

details to describe their experimental platform. It took them

approximately three hours to enter device-specific information

and a custom rule. In addition, we spent around four hours

debugging the entered information, before we could execute

one of the experiment workflows using RABIT. For example,

participant P accidentally entered a negative sign instead of

a positive sign in a location. There were few JSON syntax

errors as a result of which RABIT misinterpreted some device

information. In hindsight, using a JSON-aware editor [10]

could have helped avoid syntax errors, and more precise JSON

schema specifications could have helped avoid sign errors.

After successfully setting up RABIT, participant P executed

a series of unsafe scenarios in a controlled setting. Some of
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these scenarios were suggested by us and some were done at

participant P’s discretion. For instance, to induce a collision

with the grid, P reduced the height of the location at which

UR3e is supposed to be when picking up the vial from the

grid. In another scenario, P tried to have the dosing device

add more solid than the vial could hold. All unsafe scenarios
attempted by P were detected successfully by RABIT.

After completing the user study, we asked participant P a set

of questions about their experience using RABIT, the strengths

and limitations they identified in RABIT, and suggestions for

improvements they would like to see. P described their overall

experience as challenging yet rewarding. They found entering

information in the JSON files challenging, mainly due to their

unfamiliarity with certain action and status commands for

specific devices. They informed that they would not have been

able to set up RABIT without assistance. At the same time,

they said, “The set up did take a lot of work; now that it is
up I imagine the maintenance is relatively simple”.

Participant P found the capabilities of RABIT to be valu-

able, especially in terms of adding specific properties to

devices. For instance, they highlighted the usefulness of being

able to configure doors for certain devices or stoppers for

containers, which can then be used to detect rule violations.

They also highlighted RABIT’s ability to identify potential

collisions and prevent accidents before they occur, noting its

usefulness in training new users and avoiding damage to com-

ponents. Further, after sharing their experiences where they

collided the robot arm into nearby equipment, P stated, “I see
a lot of benefit for using this when constructing new workflows
or making changes or even adding new components.”

Participant P also mentioned certain limitations or missing

features in the system that affected their experience. RABIT

forced them to simplify certain aspects, for instance, making

a choice between multiple commands for robot movement,

selecting between two different commands used for dosing

liquid with an automated syringe pump. P mentioned that the

complexity of device shapes posed a challenge, as the shape

of many devices do not comply with RABIT’s cuboid spec-

ification. For example, a centrifuge resembles a hemisphere

more than a cuboid and the thermoshaker has a bump at the

top. They suggested that incorporating more detailed shape

descriptions would enhance RABIT’s flexibility.

Based on their overall experience, P stated that they would

likely recommend RABIT to others. As per them, RABIT

is currently suitable for users with relatively simple systems

involving just robot arm movements between locations. How-

ever, before recommending RABIT to users with complex

setups involving multiple components, they suggested making

RABIT more adaptable: “In its current state, I would recom-
mend it for training new graduates on the systems without
risking breakage.” They also said, “I think it’s a great tool
for setting-up or changing workflows in its current iteration
(especially in locations), but with more adaptability to complex
systems it could later be used in full workflows.”

Evaluating RABIT’s usability is at a preliminary stage. We

have currently deployed RABIT in the Hein Lab, with whom

we have a long-standing partnership and trust.

B. Generalizing RABIT to the Berlinguette Lab

We visited another self-driving lab – the Berlinguette Lab

[2] in the University of British Columbia, which performs

cutting-edge research in materials science and chemistry. Our

goal was to evaluate the adaptability of RABIT to this lab,

determining if we could categorize the devices in the lab

according to the four predefined device types and whether the

rules in our rulebase are generalizable to the workflows they

run. This assessment was based on observations, discussions

with personnel, and an examination of their lab setup.

The Berlinguette Lab also has a central workstation running

Python experiment scripts to control robot arms and software-

controlled devices for each automated experiment platform.

The devices that are part of their research and development

experiment platform included the UR3e robot arm, a dosing

device with a door similar to that in the Hein Lab, and a

decapper responsible for capping and uncapping vials. As per

our categorization, the dosing device can be identified as a

dosing system, while the decapper can be classified as an

action device due to its specific capping and uncapping actions.

Another automated experimental platform in the lab was

composed of multiple individual stations, each enclosed with

walls, platforms, and ceilings, and served by a central six-

axis UR5e robot arm. This arm is used for transferring vials

and materials between different stations. Noteworthy stations

included a precursor mixing station with an N9 robot arm and

a spin coater (this can be categorized as an action device as

its primary actions include starting and stopping spinning).

Additionally, there was a spray coating station that has a

hotplate (which can be categorized as an action device), an

automated syringe pump for drawing solvent (which can be

categorized as a dosing system), and ultrasonic nozzles (which

can be categorized as action devices with spraying and not

spraying being their primary actions). The lab also has an

XRF microscopy device emitting x-rays and injecting photons

onto film. We can categorize this device as a set of multiple

action devices in our custom rulebase, or in future expand the

definition of action devices to consider multiple actions.

During discussions with lab personnel, safety concerns were

raised regarding both human and expensive equipment safety.

For safety concerns, they used sensors earlier, but due to the

possibility of frequent false alarms and malfunction, they do

not use them anymore. Therefore, they emphasized the need

for additional safety measures.

RABIT ensures equipment safety, such as collisions of

robot arms with equipment, considering doors. However, in

its current state, RABIT does not consider nearby humans.

However, by incorporating sensors, which could be treated

as a new device class, one could imagine enhancing RABIT

to respond to sensor inputs that indicate a robot arm is

approaching the area that is occupied.

In conclusion, we are able to categorize most of the devices

as part of our four defined device types. We can generalize the

rules defined as most workflows involve adding substances to
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vials, drawing substances from vials, moving vials around,

heating, and spraying. However, there are remaining chal-

lenges posed by the advanced nature of the lab, specifically

limitations related to shape and the complexity of action

devices performing multiple actions simultaneously.

C. Open Challenges

Despite RABIT’s promising capabilities, there are open

challenges to deploying it in more advanced labs. The primary

areas for improvement are ease of use and generalizability.

Real-life, software-controlled devices come in different

shapes and sizes, so we need to expand our device descriptions

to easily handle objects other than cuboids. In a perfect

world, we might photograph the device and use image analysis

to derive its geometry. More fundamentally, our Extended

Simulator is currently designed as an add-on to one specific

robot arm simulator. We would like to examine other robot

arm simulators to determine how best to revise the extensions

to integrate with a wide range of simulators.

Another challenge arises when multiple robot arms move

within the same physical space, which is common in a real-

life setting. We initially addressed this issue by mapping to a

common frame of reference. However, this approach proved

to be impractical due to multiple sources of noise, including

the large margin of errors caused by the lower precision of

testbed robots and variations in their gripper sizes.

Devices might have multiple doors, for instance, for two

robot arms to approach the device simultaneously. In its

current state, RABIT does not handle this. Furthermore, there

is a possibility that multiple commands could be used to

execute a specific action. For instance, there might be two

commands for moving a robot from one location to another.

RABIT currently allows only one command per action.

In conclusion, despite the valuable contributions of RABIT,

open challenges remain. Addressing these challenges is crucial

for realizing the full potential of this technology.

VI. RELATED WORK

The existing literature in the domain of self-driving labs

focuses on making self-driving labs more automated and

autonomous. There is no prior work on security and safety

of self-driving labs. Hence, we discuss prior work on rule-

based/specification-based intrusion detection systems (IDS)

and safety monitoring in cyber-physical systems (CPS) en-

vironments that is closest to our work.

Rule-based/Specification-based IDS for CPS have been

applied in various domains, including medical systems, smart

grids, industrial control systems, unmanned aircraft systems

[32], and network protocols [31, 41]. Specialized IDSs [19,

33–35, 37] rely on either reference models, which describe

the expected behavior and properties of a system as defined

by domain experts, or observed behavior, which involves

capturing and analyzing real-world monitoring data to define

correct system behavior. RABIT’s rulebase uses both expert

knowledge of self-driving lab researchers (as its reference

model) and the robot arm dataset (as the observed behavior).

Mitchell and Chen [33] propose a rule-based IDS for med-

ical CPS, converting behavior rules to state machines. They

further extend their IDS to smart grids [35] and unmanned

air vehicles [34] with domain-specific rules. Unlike RABIT,

they do not monitor commands before execution, but evaluate

only post-conditions using sensor/actuator readings. Our work

is also different in that it formalizes rules for interactions

between heterogeneous devices in self-driving labs.

Mitchell and Chen [33–36] also use Monte Carlo simulation

for evaluating their IDS. Similarly, Pan et al. [37] test their IDS

using a testbed that emulates an electrical transmission system.

Testbeds and simulators are common when validating an IDS

[23, 25, 27, 28], as they provide flexibility in exploring various

parameters and conditions that cannot be tested in real-world

environment. However, simulations and testbeds can be rather

simplistic and may not fully account for the complexities of

real-world scenarios. Real-world validation is hence necessary.

We validate RABIT using simulation and testbed, as well as

in a production environment at the Hein Lab, which subjects

it to a multitude of realistic conditions.

Safety Monitoring in CPS has been explored for au-

tonomous systems. SOTER [21] is a robotics programming

framework that uses sensor data to monitor the robot and

its environment at runtime, and switches the robot to a safe

operating mode if a safety violation is detected. SOTER and

other similar frameworks [24, 29, 38] are programmed to

consider a single device, e.g., a single robot or an autonomous

system. They do not consider rules involving interactions

between multiple devices, such as the rule ‘Action device can
perform actions when a container is inside it’.

VII. CONCLUSION

We presented RABIT, a tool for detecting and preventing

unsafe behaviors in self-driving labs. We identified eleven

general-purpose rules that can be augmented with a few

custom rules to detect unsafe behavior when diverse devices

in self-driving lab interact in complex ways. We introduced

a three-stage deployment framework that allows researchers

to safely test both their experiment workflows and RABIT’s

ability to prevent errors before deploying experiments in

production. Our work is the first to consider rules spanning

multiple heterogeneous devices in a self-driving lab, to rely on

monitoring command sequences instead of sensor data, and to

monitor unsafe behavior in a self-driving lab.
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