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Abstract—Nowadays, most services are delivered through the
web and thus heavily rely on JavaScript (JS). To accommodate
the need for more performance, JS runtimes integrated Just-In-
Time (JIT) compilation engines, which compile frequently-called
portions of code for faster execution. To produce efficient machine
code, the JIT applies complex optimization passes on the code
in question. However, inadequate modeling of the side effects
of these optimizations can introduce vulnerabilities in certain
optimization passes. Such vulnerabilities are regularly discovered,
and often have a high impact. Once a vulnerability is identified,
it is eventually patched, but not without involving several steps
(development, testing, release, user consent), leaving the system
vulnerable for a relatively long period: the vulnerability window.

We propose JITBULL, a solution that secures the JIT engines
of JS runtimes during the vulnerability window by leveraging
a vulnerability’s demonstrator codes. To that end, JITBULL
extracts the effects of JIT compiler optimization passes on said
vulnerability demonstrator codes. For every subsequent JITed
code, JITBULL compares the effects of its optimization passes
with those on the demonstrator codes. If similarities are detected,
JITBULL assumes that the currently executing script may be
malicious and disables the related optimization passes, or if that’s
not possible, the whole JIT engine.

We implemented JITBULL in Firefox’s JS runtime (SpiderMon-
key) and tested it against several known vulnerabilities with public
demonstrator codes. Our results demonstrate that JITBULL
consistently safeguards the JIT engine against exploitation by
a variant of a known vulnerability. Moreover, we show that
JITBULL exhibits a false positive rate of less than 5% on the JS
Octane benchmark suite, while causing an acceptable overhead
of less than 20%.

I. INTRODUCTION

Today, many complex services are provided through user-

friendly web interfaces, which places a significant security

responsibility on the web. Initially, all business processing

was done on web servers using programming languages like

PHP. In 1996, the JavaScript (JS) programming language was

introduced [1], enabling rich client-side business processing.

Since then, browsers have been equipped with a JS runtime [2]

responsible for interpreting the JS script used to modify

page content without requiring server interaction. Part of the

workload is therefore relocated to the client machine. In order

to be faster, JS runtimes have integrated a Just-In-Time (JIT)

compiler [3]. The principle behind a JIT compiler is to compile

frequently-called code portions into machine code on-the-fly to

benefit from the faster execution of compiled code compared

to interpreted code. Due to its performance impact [4], the JIT

compiler is a crucial component of the JS runtime. However,

despite all the efforts made by JS runtime developers to secure

this component, it remains susceptible to vulnerabilities. Our

work thus focuses on vulnerabilities in the JIT engine.
Before diving into JIT engine vulnerabilities, it’s essential

to understand how JIT engines work. They define a threshold

of the number of times a function must be invoked before it is

considered frequently-invoked. If a function is executed more

times than as specified by the threshold, it will be compiled into

machine code. The JIT engines of the three most widely used

JS runtimes (V8, JavaScriptCore and SpiderMonkey) utilize

an Intermediate Representation (IR) generated from scripts to

perform successive optimizations on the code before producing

machine code. Each optimization pass applies various modifica-

tions to the code, which can involve renumbering, reorganizing,

modifying, moving, or deleting instructions.
By analyzing recent vulnerabilities over the 2015-2021

period targeting V8 and SpiderMonkey, we discovered that

most flaws resulted from the optimization passes performed
by the JIT engine. In fact, in some cases, optimization passes

modify the original code without proper control over side

effects, which opens up exploitable security vulnerabilities to

compromise the JS runtime. For an example, let us look at the

CVE-2019-17026 vulnerability [5] affecting SpiderMonkey.

For this vulnerability, the Global Value Numbering (GVN)

optimization pass, which aims to eliminate redundant code,

removes a boundcheck instruction, which checks if an index

is within the bounds of an array, from the IR. Poor modeling

of the instruction’s side effects leads this pass to remove this

instruction in conditions where it is essential. Without this

check, an attacker is able to exploit JS arrays to obtain read and

write primitives on memory areas. These primitives will allow

redirecting the execution to previously injected malicious code.

We also noted that the vast majority of these vulnerabilities

targeting JIT have a very high CVSS (Common Vulnerability

Scoring System) score1 (greater than or equal to 8.8), which

means they have a significant impact on JIT engines’ security.
The typical approach to address a software vulnerability is

to apply a security patch. In practice, patching is a long process

beginning with the vulnerability’s discovery, which is often

done by a security specialist who submits it to the software

authors for analysis, along with a vulnerability demonstrator
code (VDC). The software authors then have a duty to notify

users of the vulnerability’s existence and to work on producing a

1CVSS is a metric for assessing the severity of vulnerabilities. The CVSS
score ranges from 0 to 10, with 0 for the least critical vulnerability and 10
for the most critical.
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patch. Producing a patch involves a development phase followed

by careful testing to ensure that the patch does not impact

the product’s operation or cause a regression in its security,

as it was the case with Log4j [6]. In other words, the cure

should not be more harmful than the disease. When performed

with all the recommended precautions, this stage can be time-

consuming [7]. Next, the development team selects a release

method for the patch. Typically, to prevent overwhelming users

with updates, patches are grouped into batches. Finally, once the

update is available, applying the patch may be delayed as user

consent is often required before proceeding with the update.

This period from vulnerability discovery to system update is

known as the vulnerability window [7]; it corresponds to

the period when the vulnerability is known, but the system

is still vulnerable. This period of insecurity is a significant

problem given that the majority of services and applications

are now accessed through the web. As the browser serves as

the primary point of entry for these services, it is therefore

crucial to ensure a high level of security for its JS runtime,

and especially JIT engine during a vulnerability window.
In this work, we introduce the JITBULL system, which

protects the JS runtime from known attacks exploiting the

JIT component until a security patch is applied. JITBULL

secures the JS runtime during a vulnerability window using

vulnerability demonstrator codes provided by the vulnerability’s

reporter. The intuition behind JITBULL is that if a vulnerability

occurs due to incorrect optimization, as shown by a demon-

strator code, then all other scripts that intend to exploit this

vulnerability should demonstrate the same pattern of effect on

the optimization process. Therefore, we can detect attempts to

exploit bad optimizations from any script by comparing the

impact of optimization passes between said script and a set of

VDCs. In other words, the basic principle of JITBULL is to:

firstly, extract the effects of the JIT compiler’s optimization

passes on the JITed codes from a set of VDCs; and secondly,

compare them to those of running scripts. JITBULL’s unique

strength is its response when strong similarities are detected

in an optimization pass: instead of completely disabling the

JIT, JITBULL only disables a specific optimization pass on the

JITed code, while still benefiting from other speedups granted

by JIT.
Before presenting the workflow of JITBULL, let us formalize

several core concepts. Denote Δi the modifications on a JITed

code’s intermediate representation (IR) made by optimization

pass i ∈ [1..n], n being the total number of passes. We call

IRi−1 the IR prior to the optimizations of pass i and IRi the

IR code in the post-optimization, therefore loosely speaking

Δi = IRi − IRi−1. We consider the vector (Δ1,Δ2, ...Δn)
of a JITed code as its JIT DNA (or simply DNA). The two

steps of JITBULL are as follows:

1) For each vulnerability’s demonstrator code, JITBULL

executes it while extracting its DNA vectors for all

optimization passes, i.e. (Δ
′
1,Δ

′
2, ...Δ

′
n), and saves them

in a database.

2) For every attempt to JIT-compile a code script, JITBULL

extracts the DNA vector for all optimization passes from

the executed code, (Δ1,Δ2, ...Δn), and compares it with

all vectors from the demonstrator code, i.e. comparing

the (Δ1,Δ2, ...Δn) with all (Δ
′
1,Δ

′
2, ...Δ

′
n) vectors. If a

strong similarity is found for certain passes, i.e. loosely

speaking Δi ≈ Δ
′
i, then JITBULL disables these passes

to prevent them from being used as entry points for a

vulnerability for this specific JITed code.

The strength of JITBULL lies in two factors. Firstly, it

does not completely disable the JIT engine; through its

analysis, JITBULL targets modifications made by each pass and

determines which passes are dangerous. Furthermore, the pass

is disabled just for specific risky JITed codes. This secures

the JIT engine while keeping it functional until a patch is

available and applied. Secondly, unlike other security solutions,

JITBULL does not require any prior work on demonstrator

codes to identify the parts that are responsible for the flaw. Nor

is there any need to tell JITBULL which passes are potentially

dangerous, as JITBULL finds them by comparing the outcomes

of optimization passes.
JITBULL’s architecture consists of two components: the

Δ extractor and the Δ comparator. The role of the Δ
extractor is to extract the DNA vectors of JITed codes. It is

used preemptively to extract the DNAs of demonstrator codes

mentioned in step 1, as well as each time a JS code is JITed as

stated in step 2. The Δ extractor uses the IR to generate an

instruction dependency graph and uses this graph to identify the

modifications after each pass. The Δ comparator compares

two DNA vectors Δi and Δ
′
i, and determines whether they

are similar to each other. Upon a confirmed similarity, the Δ
comparator disables the pass i in the JIT engine.

We implemented JITBULL on SpiderMonkey [8], Mozilla

Firefox’s JS runtime, but the approach used is valid for all

recent JS runtimes. We evaluated JITBULL on two criteria:

security and performance. In terms of security, we found

that once a demonstrator code is integrated into its database,

JITBULL always manages to detect variants seeking to exploit

the same flaw. In particular, using four vulnerabilities in

SpiderMonkey, with four demonstrator code variants for each

vulnerability, we achieved a 100% detection rate. This implies

that JITBULL was able to identify the dangerous optimization

passes and disable them on all exploit variants. We also

evaluated JITBULL with the Octane JS benchmark [9], which

contains no malicious code. Under this scenario, we found that

the proportion of functions that JITBULL wrongly considered

dangerous ranges between 0 to 5% for most scripts. Next,

we evaluated the impact of JITBULL on JS performance.

An evaluation using the Octane benchmark suite shows that

JITBULL introduced an additional performance cost ranging

from 1% to 20% on the benchmarks when four vulnerabilities

are built into JITBULL’s exploit database. However, it’s worth

noting that this performance impact is significantly less than

what would result from a complete deactivation of the JIT

engine. Additionally, this overhead is nil when there are no

vulnerabilities in the database.
We provide the background the reader needs to understand

our work in Section II. Subsequently, Section III presents an
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analysis of vulnerabilities, including their origin, and impact

and methodology, to explain the motivations behind our work.

Section IV describes the workflow and main concepts of our

solution JITBULL. Section V gives details of JITBULL’s

implementation. Then, in Section VI, we evaluate JITBULL

using the scenarios described above. Section VII discusses the

related works and compares them to our approach. Finally,

Section VIII concludes our article.

II. BACKGROUND

In this section, we introduce the prerequisites for understand-

ing our contribution by presenting how a JS runtime and its

JIT engine work.

To optimize the execution of JS code, runtimes today make

use of several optimization layers, often integrated into the JIT

compiler. The role of the JIT engine is to compile frequently

invoked code portions in order to execute them more quickly. It

is known that compiled code is faster than interpreted code. The

idea behind the JIT compilation is that it is more advantageous

to waste some time compiling a code and reuse this code

several times than to rely solely on interpretation to execute a

frequently called code. To pay back the compilation cost, the

compiled code must be invoked several times. This is why JS

runtimes define an invocation threshold beyond which the code

is JITed. To make the machine code as efficient as possible,

it is optimized through several optimization phases. In the

rest of the section, we focus on Mozilla Firefox’s JS runtime,

SpiderMonkey and its JIT engine IonMonkey [10].

Figure 1 illustrates the principle of compiling a JS code

using JIT. Within SpiderMonkey, JS code is first compiled into

bytecode (step � in Figure 1), which is initially interpreted.

When a function is executed very frequently, it can either be

compiled with Baseline JIT, which produces unoptimized binary

code, or with IonMonkey JIT, which produces optimized code.

Baseline JIT produces machine code without any optimization,

and is called after 100 invocations of a function (step �). Ion

JIT (IonMonkey), on the other hand, performs optimizations

on the code and is called after 1500 or more executions of the

function. In this situation, the bytecode is sent to IonMonkey

to be transformed into a mid-level intermediate representation

(MIR) by the compiler (step �). The MIR is a graph made up

of blocks, each of which corresponds to a possible branch of the

execution flow. A block consists of instructions in static single-

assignment form (SSA), meaning that there are no variables.

Each instruction returns an object with a type and value, and

can take other instructions as operands, referencing them with

their line number and opcode.

Over this intermediate representation, IonMonkey applies 32

optimization steps that we call passes (step � in Figure 1). Each

pass performs complex modifications designed to optimize

the execution of the binary code that will be produced at

the end of the process. For example, the GVN (global value

numbering) pass is a classic method of eliminating redundant

instructions and is responsible for the vulnerability we will

discuss in section III. The LICM (loop-invariant code motion)

pass searches for instructions that produce the same result in

Fig. 1: SpiderMonkey JIT compilation steps.

any iteration of a loop, and removes them to execute them

only once beforehand. Some passes have a more basic role,

such as eliminating empty blocks or renumbering instructions.

IonMonkey then transforms the optimized MIR (MIR’ on

Figure 1) into a LIR (low-level intermediate representation)

in step �. This representation is similar to the MIR, and also

undergoes optimization passes (step �), but focuses on binary

code generation and can be supplemented by platform-specific

instructions. Finally, the optimized LIR code (LIR’ on Figure 1)

is transformed into binary code (step �). V8, the most widely

used JS engine also uses the principle of optimizations that

we observe in step �.

III. MOTIVATION

In this section, we analyze past vulnerabilities in JIT engines

and discuss current solutions that act during a JIT runtime’s

vulnerability window.

A. Analysis of JIT Engine Vulnerabilities

We surveyed vulnerabilities that impact JIT engines, specifi-

cally V8’s Turbofan, SpiderMonkey’s IonMonkey, and Chakra’s

nameless JIT engine (as used in Microsoft Internet Explorer)

during the period from 2015 to 2021. Table I displays the

vulnerabilities that we identified.

TABLE I: List of vulnerabilities in the JIT engines of V8,

SpiderMonkey, and Chakra runtimes. Vulnerabilities with a

demonstrator code are bolded.

Target Vulnerabilities

TurboFan
CVE-2021-30632 , CVE-2021-30551
CVE-2020-16009 , CVE-2020-6418
CVE-2019-2208 , CVE-2018-17463
CVE-2017-5121

IonMonkey

CVE-2021-29982 , CVE-2020-26952
CVE-2020-15656 , CVE-2019-17026
CVE-2019-11707 , CVE-2019-9813
CVE-2019-9810 , CVE-2019-9795
CVE-2019-9792 , CVE-2019-9791
CVE-2018-12387 , CVE-2017-5400
CVE-2017-5375 , CVE-2015-4484
CVE-2015-0817

Chakra JIT CVE-2021-34480 , CVE-2020-1380

Following is a description of our analysis procedure. We

searched for all the vulnerabilities affecting these JIT engines
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on the NIST National Vulnerability Database web site [11].

For each identified vulnerability, we thoroughly examined its

description to understand its operation. Additionally, when

available, we sought out demonstrator code that could exploit

the vulnerability. In Table I, we listed all the vulnerabilities

targeting these platforms, and highlighted in bold those for

which there is one or more demonstrator codes available or a

white paper explaining how they work. Our analysis has led

us to draw two key conclusions:

1) Vulnerabilities affecting JIT engines have high CVSS

scores, averaging 8.8 on a scale of 10. This demonstrates

the dangerous nature of these vulnerabilities, which gen-

erally attack all three aspects of security: confidentiality,

integrity, and availability.

2) Concerning the vulnerability exploitation mechanisms: as

we mentioned in section II, current JIT engines operate in

a very similar way, with a sequence of optimization passes

over an intermediate code representation. In general, we

observe that these vulnerabilities originate from optimiza-

tion passes which, for the most part, remove portions

of code for performance reasons, without appropriately

taking into account their side effects.

JIT compilers typically optimize programs by deleting

control instructions to speed up execution. However, as stated

above, they often make logic errors like incorrect assumptions

on optimized code, leading to flaws such as type confusion or

incorrect bounds checking. To illustrate this, let us investigate

the mechanisms behind a particular vulnerability in IonMonkey.

B. IonMonkey vulnerability: CVE-2019-17026

CVE-2019-17026 stems from an error when manipulating

JavaScript array objects. In JavaScript, an array is represented

as an object with various properties, especially the array

length. The length is used to limit accesses to the array’s

elements, and it can change during the array object’s lifetime,

either by increasing or decreasing. When the array size is

decreased, SpiderMonkey reclaims memory areas that no

longer belong to the array. During optimization passes applied

by IonMonkey, more specifically during the Global Value

Numbering (GVN) pass, the array bounds check is eliminated

under certain conditions. However, a vulnerability is introduced

by an incorrect check elimination resulting from an incor-

rect dependency analysis. The available proof-of-concept for

CVE-2019-17026 exploits this weakness by first allocating

two adjacent arrays in memory, then reducing the size of

the first array to force the elimination of the bounds check.

This means accesses to the first array can overflow into the

second array’s memory region. As a result, using the first

array, one can influence the properties of the second array,

thus introducing a pair of arbitrary read/write primitives. The

subsequent step involves utilizing JIT spraying [12] to inject

executable malicious binary code into the JIT engine’s memory.

To elaborate, the read primitive can be used to obtain the

shellcode’s address, and then the write primitive changes the

address of a function’s JIT pointer to redirect the execution flow

to this code. Note that the CVE-2020-1380 [13] vulnerability

in Chakra uses a similar approach on the GlobOpt optimization

pass.

Furthermore, some of these vulnerabilities rely on

the same flaw. For instance, CVE-2019-9810 and

CVE-2019-17026 rely on the same system bug, despite

their differences in the time of discovery. This implies that

some attackers are, in fact, repeatedly using variant analysis

methodologies to successfully identify similar bugs missed by

the original reporters and fixers. Hence the need to build a

system that protects the JIT engine once the vulnerability is

known while waiting for an effective patch to be produced.

C. Handling Vulnerabilities in JS Runtimes

As with most other vulnerabilities, a vulnerability that

targets JIT engines is remediated by applying a software patch.

However, the time from patch production to its application,

corresponding to a period during which the system remains

vulnerable (referred to as the vulnerability window) can be

very lengthy. Generally, it is challenging to determine the

vulnerability window duration for JIT engine vulnerabilities

because it is difficult to establish the discovery dates of

vulnerabilities from the websites that reference them. But,

through Mozilla’s bug tracker[14], we were able to determine

the date of reporting vulnerabilities in IonMonkey and the

date when the security patches were available. In the list of

vulnerabilities presented in Table I, we observed an average

duration of 9 days between the discovery of the vulnerability

and the availability of the patch. This duration varies depending

on the vulnerabilities. It is lengthy for some; for instance,

CVE-2019-11707 was reported on April 15th, 2019, and

the patch became available on May 8th, 2019 (23 days).

However, it is shorter for others; CVE-2020-26952 was

discovered on September 27th, 2020, and the patch was

issued on October 2nd, 2020 (5 days). Depending on the

difficulty of writing a functional patch with proper security

and reliability guarantees, the production of patches can be

short or long. More importantly, the patch should not cause

additional problems when solving the original one, as observed

with the initial fix of the Log4j vulnerability [6]. Furthermore,

another factor contributing to delays in companies is the

necessity to thoroughly test patches before deployment. This

precaution is taken to mitigate the potentially significant costs

associated with recovering from a flawed patch. Research

indicates that a substantial majority of attacks exploit known

vulnerabilities [15]. Therefore, we conclude that it is necessary
to define reliable methods for safeguarding the JS runtime
during a vulnerability window.

The straightforward approach to mitigate a JIT vulnerability

during a vulnerability window is to disable the JIT engine

completely. Many browsers already contain a setting to this

effect, and it is specified as a way to reduce the JS runtime’s

attack surface [16], [17]. Unfortunately, this mitigation comes

with two major limitations that curtail its use. Firstly, current

browsers offer a global no-JIT option with per-site customiza-

tion but do not provide a fine-grained mechanism to select

which scripts to apply the mitigation to. Such a policy risks
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being too wide (i.e. not covering malicious scripts injected

into “trusted” sites) while being too narrow at the same time

(i.e. disabling JIT on otherwise safe sites). Secondly, running

without the JIT engine has an impact on the performance of

executed scripts, by falling back to the interpreter for all code

fragments. As we demonstrate later in our evaluation, disabling

the JIT engine can double or even triple script execution times.

In other words, a no-JIT solution would protect the JS runtime

against JIT vulnerabilities at the cost of significant performance

impacts. It is therefore important to provide a sustainable

solution that can protect the JIT engine during a vulnerability

window.

IV. JITBULL: GO/NO-GO POLICY FOR JIT ENGINES

In this section, we present the architecture of our solution

JITBULL. We start by introducing our threat model, followed

by the definitions of JITBULL’s core concepts, and finally a

detailed overview of its architecture.

A. Threat Model

JIT compilers are complex software systems, like other

categories of compilers. Combined with their tendency to

process untrusted code from online sources, they are therefore

prone to containing security-critical bugs. As mentioned by

Bernhard et al. [18], JIT compiler bugs are logic bugs primarily

caused by incorrect optimizations based on bad assumption

about the optimized code, or in other words, poor modeling of

the effects of code modifications carried out by optimizations.

JITBULL aims to protect a JS runtime during its vulnerability

window, a period which extends from the discovery of the

vulnerability to the application of a security patch. It specifically

does so by addressing the vulnerabilities that arise in its JIT

engine’s optimization passes. In other words, we focus on

vulnerabilities stemming from the JIT compiler. Note that

JITBULL doesn’t address attacks such as JIT spraying, code

reuse, or heap spraying that affect the JS runtime; these JIT

vulnerabilities are generally an attack’s entry points rather than

its root cause.

In our scenario, we assume that each discovered vulnerability

comes with a demonstrator code. This code can be produced

by the computer scientist who identifies the vulnerability or by

the application maintainers. It is the cornerstone of JITBULL’s

operation; JITBULL only prevents a vulnerability if it has

knowledge of its demonstrator code. However, note that VDCs

do not need to originate from human experts; one way to use

JITBULL is to feed the output of JIT fuzzers directly to its

database. In this way, as soon as a crashing code example

is detected, JITBULL will be able to automatically prevent

similar exploit codes from running.

B. Concept Definitions and Formalization

Before explaining in more detail how JITBULL works, we

need to define some notations that we will use throughout our

contribution. We denote f to be a JITed function (or a JITed

code) of a script being executed by the JS runtime. Let n be

the number of optimization passes of a JIT engine (e.g. 32

passes in SpiderMonkey). We denote IRf
i as the intermediate

representation (IR) of the function f when the optimization

pass i is applied, with i ∈ [0..n]. In other words, IRf
0 is the

initial IR before the application of any optimization pass and

IRf
n the IR after the final optimization pass.

SpiderMonkey’s intermediate representations are represented

as an instruction graph, comprising an opcode and a list of

operands. The operands are references to other instructions.

Listing 1 shows an example of IR code, specifically targeting

SpiderMonkey’s MIR. We can see that an instruction is of the

form: num opcode operand1 operand2, where each operand can

be a literal value or a reference to the corresponding numbered

instruction. In the given example, instruction number 8 has

opcode boundscheck and takes as operands instruction number

2 having opcode unbox and instruction number 7 having opcode

initializedlength.

Let us note as Δf
i the modifications made by pass i to

IRf
i−1 to produce IRf

i for the function f . Loosely speaking,

Δf
i = IRf

i − IRf
i−1. We thus define the JIT DNA of a JITed

function f to be the vector Δf =(Δf
1 ,Δ

f
2 ,Δ

f
3 , ...Δ

f
n).

Listing 1: An example of IR code, SpiderMonkey’s MIR code

00 parameter THIS_SLOT
01 parameter 0
02 unbox parameter01 to Int32
03 constant object 7f532cf8e060
04 slots constant03
05 loadslot slots04 452
06 elements loadslot05
07 initializedlength elements06
08 boundscheck unbox02 initalizedlength07

C. JITBULL General Architecture and Overview

Fig. 2: JITBULL workflow.

To address the issues raised in the previous sections, we

introduce JITBULL, a mechanism that is integrated into JIT

engines to defend against attacks exploiting JIT vulnerabilities

during the vulnerability window. As outlined in the introduction,

JITBULL operates by comparing JITed functions from running

scripts with JITed functions from vulnerability demonstrator

codes. The two-step principle behind JITBULL is depicted in

Figure 2.
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– Step 1. As soon as a demonstrator code of a vulnerability

v is available, JITBULL compiles this demonstrator code and

extracts for each included JITed function f ′ its DNA vector
Δf ′

= (Δf ′
1 ,Δf ′

2 , ...Δf ′
n ). The resulting DNA vectors are

stored in a database (step � in Figure 2). When the security

patch for v is applied, the associated DNA vectors can be

removed from the DB.

– Step 2. When a JS script is executed, each time a function

f is JITed (step � in Figure 2), JITBULL extracts its DNA

vector Δf (step �) and compares it with the vectors Δf ′

in the DB (step �). If an optimization pass’s DNA vector

element does not match any known elements of the same

pass (Δf
i �≈ Δf ′

i ) then that pass is considered not dangerous.

Otherwise, if there exists Δf
i ≈ Δf ′

i , then the optimization

pass i may be dangerous. Thus, JITBULL builds a list of

optimization passes that could be dangerous for a given JS

function. If all of the passes in said list can be disabled in the

JIT compiler, then JITBULL instructs the JIT engine to compile

the function without these optimization passes. Otherwise, if

at least one optimization pass in the list cannot be disabled,

JITBULL applies a conservative approach and disables the JIT

compilation for that particular function. This approach allows

for the fine-grained deactivation of specific optimization passes

that might be the root cause of the flaw while keeping the JIT

engine operational otherwise.

Our next topic is the management of demonstrator codes and

their transformation into JITBULL database elements. In the

current process of vulnerability reporting and patch production,

when a security researcher discovers a potential vulnerability,

they submit it to the software maintainer, often including a

demonstrator code to show that their described vulnerability

is repeatable. The software maintainer has the responsibility

to notify users about the presence of the vulnerability before

proceeding with the patch production. Two approaches are

possible for adding a vulnerability to the database: either it

is done by the user by submitting the demonstrator code to

JITBULL, or it is done by the software maintainer through an

update (the DNA vectors are already extracted and they are

sent to the users). To give a demonstrator code to a user is like

giving them a weapon that can be used against others. That’s

why in our model, we recommend that the extraction of DNA
vectors is done by the maintainer and provided to users as

an update for a new vulnerability. Once the patch is available

and proposed to the user, the DNA vector associated with the

vulnerability is removed from the DB by applying the patch.

One should note that the DB might contain at any moment

multiple vulnerabilities. Consequently, any JITed code will be

checked against all of the VDCs’ DNA vectors in the database.

As described previously, JITBULL verifies each optimization

passes of a JIT engine (step � in Figure 3). We divide JIT-

BULL’s architecture into two components, which we describe

in the following sections: a Δ extractor (step � in Figure 3),

and a Δ comparator (step � in Figure 3).

Fig. 3: JITBULL Δ extractor and Δ comparator in action.

D. Δ Extractor

The Δ extractor is used to extract a JIT DNA vector when

compiling a JS function. It is used in the two steps mentioned

in the previous section: in step 1, to generate the DNA vectors

of the JITed functions of the demonstrator code, and in step
2, to generate the DNA vectors of the JITed functions of the

executed code. Generating Δf
i for an arbitrary JITed code f

for pass i involves several phases, which we describe below

in Algorithm 1.

The first phase in generating Δf
i for pass i involves gener-

ating an instruction dependency graph from IRi−1 and IRi

that we call Gi−1 and Gi respectively (function BUILDGRAPH

and lines 23 and 24 of Algorithm 1). This transformation

simply involves turning the JIT intermediate representation

into a form suitable for our DNA vector comparisons. This

form is a directed graph that represents all of the function’s

instruction dependencies starting from a set of root nodes. Any

instruction B used as an operand of another instruction A of

the intermediate representation is represented as a dependency

of A in this form. To generate such a graph G from an

intermediate representation IR, for each instruction V of IR
having operands, if V does not belong to G then we add it as

a root node (line 5). Then, for each operand V ′ of V , if it is

a root node of G, we remove it (line 9), and we add it to G
as a dependency of V anyway (line 11). This creates a graph

where the root nodes are instructions that are not dependencies

of any other instruction. Once the Δ extractor has generated

the graphs Gi−1 and Gi, we next traverse them to extract all

possible paths between root nodes and leaves, resulting in a

set of instruction dependency chains (function MAKECHAINS

and lines 25 and 26). In short, for each node present in our

dependency graph, we recursively extend the chain set using

its dependencies (line 20) until we reach the chain’s leaf node

(line 18). We note these chains as Cj
i in our algorithm (line

29), with j varying according to the number of chains that can

be extracted from the graphs.

The second phase of the Δ extractor involves comparing

the equivalent instruction dependency chains Cj
i−1 and Cj

i in

the chain sets of pass i. We compute the removed sub-chains
δ−i =

⋃{Cj
i−1 − Cj

i }, which represents all sub-chains that
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were removed by the pass (line 30); and the added sub-chains
δ+i =

⋃{Cj
i − Cj

i−1}, which represents the sub-chains that

were added (line 31). For example, consider two chains of pass

i: Cj
i−1 = A→ B → C → D and Cj

i = B → C → E. Then

δ−i = {A→ B,C → D} and δ+i = {C → E}. Finally, Δf
i is

simply the pair (δ−i , δ+i ) (line 33).

Algorithm 1 Δ extractor with a function f for pass i.

Input: IRf
i−1, IR

f
i

Output: Δf
i

1: function BUILDGRAPH(IR)

2: G← ∅
3: for all V ∈ IR having OPERANDS(V ) �= ∅ do
4: if V /∈ G then
5: Add V to G as a root node: V ∈ ROOTS(G)
6: end if
7: for all V ′ ∈ OPERANDS(V ) do
8: if V ′ ∈ ROOTS(G) then
9: Remove V ′ from G

10: end if
11: Add V ′ to G as a dependency of V
12: end for
13: end for
14: return G
15: end function

16: function MAKECHAINS(V1 → · · · → VN )

17: if DEPENDENCIES(VN ) = ∅ then
18: return {V1 → · · · → VN}
19: else
20: return

⋃
MAKECHAINS(V1 → · · · → VN → W ) |

W ∈ DEPENDENCIES(VN )
21: end if
22: end function

23: Gi−1 ← BUILDGRAPH(IRf
i−1)

24: Gi ← BUILDGRAPH(IRf
i )

25: Chainsi−1 ←
⋃

MAKECHAINS(R) |
R ∈ ROOTS(Gi−1)

26: Chainsi ←
⋃

MAKECHAINS(R) | R ∈ ROOTS(Gi)
27: δ−i ← ∅
28: δ+i ← ∅
29: for all (Cj

i−1, C
j
i ) ∈ Chainsi−1 × Chainsi do

30: δ−i ← δ−i ∪ {Cj
i−1 − Cj

i }
31: δ+i ← δ+i ∪ {Cj

i − Cj
i−1}

32: end for
33: Δf

i ← (δ−i , δ+i )

E. Δ Comparator

The Δ comparator is used to compare a DNA vector of a

JITed function with those of exploits in the DB. We can observe

in Figure 3, step �, that the Δ comparator uses the DNA

vectors produced by the Δ extractor and those from the DB

to compute similarities. The Δ comparator operates according

to Algorithm 2. Let’s consider f as a JITed function from an

arbitrary script and f ′ a JITed function from a vulnerability

demonstrator code. Therefore, the DNA vectors of f and

f ′ are Δf = (Δf
1 ,Δ

f
2 , ...Δ

f
n) and Δf ′

= (Δf ′
1 ,Δf ′

2 , ...Δf ′
n )

respectively. The goal of our Δ comparator is to check if

Δf
i ≈ Δf ′

i .

For any JITed function f , the Δ comparator extracts from the

JITBULL DB all vulnerability DNA vectors Δf ′
stored within

and compares them to Δf . Recall that Δf
i is made up of the

set of removed sub-chains δf−i and the set of added sub-chains

δf+i for optimization pass i (lines 14 and 15 of Algorithm 2).

Therefore, the Δ comparator needs to compare all the removed

sub-chains δf−i of f with those δf
′−

i of f ′ for every demonstra-

tor code in the database (function COMPARECHAINS and line

14). In order to exclude insignificant similarities between δf−i
and δf

′−
i , we consider that δf−i �≈ δf

′−
i if the number of sub-

chains in common is below a predefined threshold Thr (line 7,

first condition). Otherwise, we consider that δf−i ≈ δf
′−

i only

if the actual number of sub-chains in common EqChains is

above the maximum possible number of sub-chains in common

MaxEqChains multiplied by a predefined ratio setting Ratio
(line 7, second condition). We chose a threshold of 3 and a ratio

of 50% to optimize for a high detection rate, thanks to our low

overhead in case of a false positive detection. MaxEqChains
is derived from the sub-chains sets compared (line 2). The

same comparison operation is applied to the added sub-chains

sets δf+i and δf
′+

i (function COMPARECHAINS and line 15).

If either δf−i ≈ δf
′−

i or δf+i ≈ δf
′+

i , then we consider that

Δf
i ≈ Δf ′

i and we add the pass i to the list of disabled passes

DisPass (line 17).

To summarize, the above algorithm defines, given a database

of VDCs’ DNA vectors and a JITed function f , a list of all

the optimization passes that match the VDCs in its database.

JITBULL first attempts to disable all passes if possible; if

not, it completely disables the JIT engine, but only for the

particular function f .

V. IMPLEMENTATION

We implemented JITBULL on the SpiderMonkey JS runtime

of Firefox 65. However, JITBULL’s principle can be applied to

all JIT engines that implement optimization passes, meaning it

is applicable to all modern browser JIT engines. In Section II,

we provided an overview of the general functioning of Spider-

Monkey. In this section, we will detail the implementation of

JITBULL in SpiderMonkey. We directly integrated JITBULL

into the IonMonkey code, specifically within the optimization

passes for MIR code (step � in Figure 1). Initially, we planned

to include JITBULL as an extension to SpiderMonkey without

the need for integration into the JIT engine. However, to

minimize the performance overhead of JITBULL, we chose to

directly modify the JIT engine. As a result, our implementation

is in C++, the same language as SpiderMonkey.

JITBULL implementation consists of 6,000 lines of code

(LOC), mainly located within the OptimizeMIR function,

which is the function in which optimization passes are per-
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Algorithm 2 Comparing a DNA vector Δf of a JITed function

f with VDC DNA vectors Δf ′
in the JITBULL database DB.

Input: Δf , DB, Ratio, Thr
Output: DisPass

1: function COMPARECHAINS(δf , δf
′
, Ratio, Thr)

2: MaxEqChains = MIN(|δf |, |δf ′ |)
3: EqChains← 0
4: for all C ∈ δf ∩ δf

′
do

5: EqChains← EqChains+ 1
6: end for
7: return EqChains ≥ Thr and

EqChains ≥ Ratio ∗MaxEqChains
8: end function

9: DisPass← ∅
10: for all Δf ′ ∈ DB do
11: for all (Δf

i ,Δ
f ′
i ) ∈ Δf ×Δf ′

do
12: (δf−i , δf+i )← Δf

i

13: (δf
′−

i , δf
′+

i )← Δf ′
i

14: δ−similar ← COMPARECHAINS(δf−i , δf
′−

i , Ratio, Thr)

15: δ+similar ← COMPARECHAINS(δf+i , δf
′+

i , Ratio, Thr)
16: if δ−similar or δ+similar then
17: DisPass← DisPass ∪ i
18: end if
19: end for
20: end for

formed. This function returns either SUCCESS or FAILURE: if

OptimizeMIR returns SUCCESS the compilation will go on,

and the machine code generated will be used by the JS runtime,

otherwise, if the return value equals FAILURE, the compilation

is abandoned and the runtime continues with interpreted code.

To implement the Δ extractor, we modified the code of the

OptimizeMIR function to generate a Δf vector, i.e. a Δf
i for

each optimization pass i, following the two-phase procedure

outlined in section IV-D. At the end of OptimizeMIR, we

added the Δ comparator code to compare the DNA vector
of the JITed code with the DNA vectors from the DB. Note

that JITBULL preloads the VDC DNA vector database into

memory as soon as the JS runtime is loaded. If the DNA vector

database is empty, JITBULL will not extract DNA vectors for

running scripts. This allows us to have no overhead when there

are no vulnerabilities in the DB (more details in Section VI).

The Δ comparator builds the list of dangerous optimization

passes after DNA vector comparison, i.e. passes that should

be disabled. Three scenarios are possible: (1) the list is empty,

(2) all the optimization passes in the list can be disabled,

and (3) there is at least one optimization pass in the list

that is mandatory and cannot be disabled. SpiderMonkey

provides means to disable optimization passes, but some passes

cannot be disabled and are mandatory. To handle all these

three scenarios, we introduce a boolean called Recompile that

guides us in the decision-making process. The boolean is

initialized to False. In scenario (1), if there are no dangerous

passes, we return SUCCESS for OptimizeMIR and keep

Recompile set to False. The next step is for the JIT

engine to complete its activity and hand it over to the runtime,

which will use the code generated. For scenario (2), where

there are dangerous passes that can be fully deactivated, we

return FAILURE with OptimizeMIR and set Recompile
to True. We instrumented the JS runtime behavior to always

retry a compilation when Recompile is True. Therefore,

SpiderMonkey retries a compilation but this time with the

dangerous passes disabled. In scenario (3), we return FAILURE
from our function and let the JS runtime continue its execution

as usual with no JITed code. As our evaluation in the next

section will demonstrate, these modifications to the JIT engine

do not generate a significant overhead on script performance

and the observed performance with JITBULL is better than

completely disabling the JIT engine.

We believe that JITBULL can be implemented in other

JIT engines such as TurboFan, which also relies on complex

optimization passes to generate machine code [19]. As we

specified in Section III, TurboFan also faces bugs related to its

optimizer. Therefore, it is possible and interesting to implement

JITBULL in such a system by incorporating the computation

of IR differences between optimization passes.

VI. EVALUATION

In this section, we present our evaluation of JITBULL. We

focus on two main aspects: security and performance. The

security evaluation of JITBULL aims to verify if JITBULL

ensures the security of the JIT engine against variants of a

vulnerability for which a demonstrator code is present in

its database. The questions we will answer in the security

evaluation will be:

– Can JITBULL identify dangerous optimization passes

corresponding to a demonstrator code?

– Can JITBULL disable these dangerous passes efficiently?

– Are the malicious codes harmless after JITBULL opera-

tions?

Regarding performance, the objective of our evaluation is to

answer the following questions:

– What is the overhead of JITBULL on script performance?

– What is JITBULL’s false positive rate? And how does it

impact performance?

– How does the performance of JITBULL compare with

completely disabling the JIT engine?

A. Experimental Setup

a) Hardware and software: We evaluated JITBULL on a

computer with the characteristics described in Table II. The

computer was fully dedicated to the JS runtime during our

evaluation.

b) Benchmarks: Our evaluation relies on two micro-

benchmarks and the Octane benchmark suite. We implemented

a first micro-benchmark called Microbench1 that performs an

arithmetic operation on variables within a for loop; and a

second benchmark that does the same but manipulates the

size of an array, called Microbench2. Our evaluation is also
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TABLE II: Hardware configuration.

Component Characteristics
CPU 11th Gen Intel Core i7-11850H 2.50GHz
Memory 32 GB
Ethernet USB Ethernet 1Gbit/s
Storage Micron 2300 NVMe 1.0 TB
OS Ubuntu 20.04.6 LTS

conducted with the Octane benchmark suite [9]. Octane is a

benchmark that measures a JavaScript runtime’s performance

by running a suite of tests representative of certain use cases in

JavaScript applications. We used these benchmarks to determine

the impact of JITBULL on application performance and also

to assess the error rate of JITBULL.

B. JITBULL security evaluation

We obtained vulnerability demonstrator codes for the evalu-

ation of JITBULL. After research, we were able to obtain the

demonstrator codes for the following four vulnerabilities in

IonMonkey: CVE-2019-9791 [20], CVE-2019-9810 [21],

CVE-2019-11707 [22] and CVE-2019-17026 [5]. To

validate these demonstrator codes, we executed these exploits

on the versions of SpiderMonkey affected by the vulnerability.

Out of these 4 vulnerabilities, 2 lead to a crash (the first two in

our list), and the last two result in the execution of a payload.

Subsequently, we tested whether JITBULL can detect exploit

variants from these demonstrator codes. To validate the proper

functioning of our solution, for the first two vulnerabilities,

we ensure that there is no crash of the JS engine, and for the

other two, we check that the shellcode is not executed.

a) Variants of vulnerability CVE-2019-17026: We

could only find one vulnerability having multiple demon-

strator code variants, meaning two implementations of the

same vulnerability produced by different developers [23]

and [24], and this is the vulnerability CVE-2019-17026.

These codes exploit the same security flaw but are implemented

by different developers. Our evaluation involves placing one

of the implementations of CVE-2019-17026 in JITBULL’s

DB, then checking whether JITBULL can detect the other

implementation as dangerous and disable the corresponding

optimization passes. The execution of the variant was indeed

perceived as dangerous by JITBULL. Furthermore, JITBULL

managed to detect that the common optimization modification

between the two implementations was the suppression of the

BoundCheck in the GVN optimization phase. Thus, JITBULL

disabled this optimization pass and therefore neutralized the

vulnerability’s variant.

b) Variant generation: Without having demonstrator code

variants available for testing, we decided to generate variants

to evaluate JITBULL’s ability to detect exploit similarities. The

variants were generated using 4 approaches:

• Renaming script variables. The first approach involves

renaming the variables in our demonstrator codes. The

goal here is to demonstrate that JITBULL is not tied to a

syntactic analysis of the script. To rename the variables,

we used Terser [25], a JavaScript code minifier. It reduces

variable names, eliminates whitespace and comments, and

discards unused code. We used it to rename the variables

of the demonstrator codes and thus generated what we

consider a variant.

• Minifying code. We also used Terser to generate new

exploit variants by minifying demonstrator codes. In this

case, the use of Terser involved code factorization and

compression to make the variant as small as possible.

• Mixing independent instructions and adding JITed func-
tions. Our third approach was manual, meaning that code

modification was done by us. This approach involved man-

ually reordering independent instructions in the demon-

strator codes while keeping the exploit’s functionality.

The goal here is to validate that JITBULL can identify

modifications made by optimizations even if the order of

instructions is no longer the same. Additionally, we added

functions in the codes that are JITed but do not participate

in the vulnerability setup.

• Adding sub-functions. In this final approach, the idea is to

split the JITed functions used to exploit the vulnerability

into sub-functions. This operation increases the number

of JITed functions since the JITed code is divided into

multiple functions. The goal is to obfuscate the step of

exploitation in the demonstrator code.

For each of the four aforementioned vulnerabilities, we

generated variants using these four approaches and verified that

the security vulnerability was still exploitable with the variants.

Our experimental procedure is as follows: for each vulnerability,

we only integrated its demonstrator code into the database, and

we executed the four generated variants. The goal is to validate

if the vulnerability was still exploitable under JITBULL. From

these executions, we observed that none of these variants were

able to exploit the vulnerability once the demonstrator code has

been added to the database. Thus, for all the variants, JITBULL

was always able to disable all the passes that could potentially

be the cause of the vulnerability, and that JITBULL protected

the system against all these vulnerabilities. For example, with

the variants of vulnerability CVE-2019-17026, the GVN

optimization pass was consistently detected as potentially

dangerous for the variants, and completely disabled.
c) Evaluating JITBULL precision: The goal of our next

evaluation is to determine the error rate of JITBULL, i.e., the

number of times JITBULL considers a code malicious when

it is not, given a set of demonstrator codes in its DB. For this

purpose, we used the Octane benchmark suite [9] which consists

of a series of test programs representing different use cases by

JS applications. In this evaluation, Octane serves as a repertoire

of safe applications. We tested two different scenarios in this

evaluation: firstly, we included only one demonstrator code in

the DB, that of the CVE-2019-17026 vulnerability, and for

the second, all demonstrator codes from the 4 vulnerabilities

are in the DB. Secondly, we collected for each benchmark

the number of JITed functions (called NrJIT ), the number

of JITed functions with one or more passes disabled (called

NrDisJIT ), and finally, the number of JITed function with the

JIT engine disabled (called NrNoJIT ).
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Fig. 4: False positive rates of JITBULL on a set of harmless benchmarks. “#1” and “#4” represent the number of VDCs

installed into the JITBULL database (1 versus 4 VDCs respectively).

Fig. 5: Execution times for disabled JIT, normal JIT and JITBULL on a set of benchmarks.

Figure 4 shows the results obtained. The graph represents the

proportion of functions considered safe (named %Safe Code
on the figure), the proportion of functions with at least 1 pass

deactivated (%Pass Dis.), and finally, the proportion of code

with the JIT engine disabled (%No JIT ). These proportions

are calculated using the following formulas:

% Pass Dis. =
NrDisJIT × 100

NrJIT

% No JIT =
NrNoJIT × 100

NrJIT

The numbers on the bars in the figures represent the number of

JITed functions when the script is executed without JITBULL.

This provides an idea of how many times JITBULL needs to

perform Δ extraction and comparison.

With a DB containing a single demonstrator code, the

proportion of functions with optimization passes disabled is

very low, varying from 0% to 5% (bar with the xlabel #1).

We observe practically no JITBULL match for all Octane

benchmarks except TypeScript, where it shows a similarity

with a vulnerability in the DB (CVE-2019-17026). Given

that JITBULL does not perform any analysis of the execution

context and focuses on analyzing changes to the IR, it is

perfectly normal for similarities to exist between VDCs and

innocent code. Nevertheless, JITBULL does not completely

disable the JIT engine; it only disables the optimization passes,

which leads to interesting performance results (more details

in the next section). Moreover, the JIT engine never gets

completely disabled with 1 vulnerability in the DB.

To recall, vulnerabilities are installed into the DB only during

a vulnerability window, therefore the DB will likely contain

most of the time 1 or 2 vulnerabilities. This result is satisfying

as it corresponds to the most likely use case for JITBULL.

With 4 vulnerabilities in the DB, the results are not the same.

We can observe that the proportion of JITed functions with

deactivated optimization passes varies, from 10% with some

benchmarks (Box2D, Deltablue, Raytrace, TypeScript) to 65%

with others (Splay, Navier-Stokes). Nevertheless, as we will see

in the next section, despite this seemingly high false positive

rate with a large number of vulnerabilities in the database, the

impact on performance is quite reasonable.

C. Performance evaluation of JITBULL

In this section, we are interested in the overhead of JITBULL

on script performance. As with the previous evaluations, we

used the Octane benchmark and our two micro-benchmarks

and measured the execution time in different scenarios: (1)

No JITBULL (named JIT on the figure), (2) JIT engine

is completely disabled (NoJIT ), (3) JITBULL with no

vulnerability in the DB (#0), (4) a single vulnerability in

the DB (#1) and (5) 4 vulnerabilities in the DB (#4).

Figure 5 presents the obtained results. The first observation

in the case with 0 vulnerabilities (bars labelled #0) is that

JITBULL induces no overhead compared to the normal JIT

engine. This is simply because JITBULL mechanics is used
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Fig. 6: Scalability evaluation of JITBULL, with various numbers of vulnerabilities in the DB, ranging from #1 to #8.

if there are vulnerabilities in the DB as we described in

Section V. If there are no vulnerabilities, no processing is

done by JITBULL, which explains the zero overhead. We can

also observe that, overall, the degradation induced by JITBULL

is between 1% and 20% with 1 to 4 vulnerabilities in the DB.

We can note that with benchmarks like Box2D, Navier-Stokes,

Pdfjs, and TypeScript, which involve a large number of JITed

functions (see Figure 4), the overhead of JITBULL is most

significant, reaching up to 20%. This is expected because the

more JITed functions there are, the more work JITBULL has

to do for DNA extraction and comparison. In contrast, with

benchmarks having fewer JITed functions, the overhead is

less significant, around 1%. Note that this overhead is much

lower than what is observed when the JIT engine is disabled.

Finally, with no JIT engine, the overhead ranges from 136%

for Box2D to 3700% for DeltaBlue, which is very substantial.

This demonstrates that the overhead induced by JITBULL is

acceptable and far below the overhead of completely disabling

the JIT engine. Moreover, it’s important to note that JITBULL

is designed to be used only during the vulnerability window.

Therefore, the introduced overhead is temporary and will only

be present until the patch is produced and applied.

D. JITBULL scalability evaluation

In this section, the goal is to evaluate the overhead of

JITBULL with an increasing number of vulnerabilities in the

DB. Before presenting the results, it is important to analyze

the maximum number of vulnerabilities that could be present

simultaneously in JITBULL. We focused on SpiderMonkey

vulnerabilities of 2019 (see Table I) and studied the report

date and patch availability date from the Mozilla Bug tracker.

The idea is to analyze the overlapping period between vul-

nerabilities and therefore estimate the maximum number of

vulnerabilities in JITBULL DB during that year. We found

that at most 2 vulnerabilities throughout the year 2019 have

overlapping time intervals, which are CVE-2019-9813 and

CVE-2019-9810. Therefore, during 2019, maximum of 2

vulnerabilities would have been in JITBULL DB. This allows

us to conclude that in general, JITBULL will not have many

vulnerabilities in its DB.

For the scalability analysis, we implemented 4 other

vulnerabilities demonstrator codes based on the Mozilla

Bug tracker descriptions. These vulnerabilities are

CVE-2019-9792, CVE-2019-9795, CVE-2019-9813
and CVE-2020-26952. We added them to JITBULL DB

and reran the evaluation with the Octane benchmark suite.

Fig 6 presents the execution times with various numbers of

vulnerabilities in the database. We analyzed the degradation

when having 1 vulnerability in the DB (noted #1) vs 8

vulnerabilities in the DB (noted #8). We observed that the

maximum overhead is 22% with Typescript and the minimum

is 5% with Splay, which we considered acceptable knowing

JITBULL is a temporary solution used only until the patch

is available and applied. Furthermore, we notice that for all

the benchmarks, this overhead tends to stabilize beyond 4

vulnerabilities in the DB.

VII. RELATED WORK

In this section, we present an overview of the techniques

employed to safeguard JIT engines. We will begin by intro-

ducing the various classes of attacks that target JIT engines

and the responses proposed by existing research. Lastly, we

will contextualize our work in relation to the current existing

research works.

Over the years, JIT engines have turned to a central

component of JS runtime, leading to the development of

numerous approaches to bypass the security measures adopted

by JITs [12]. Heap spray [26], [27] is a widely used attack

approach against JIT. It involves injecting malicious code into

the heap and redirecting the execution flow to it. Because

the exact location of the injected code is not predictable,

traditional heap-spraying attacks require the injection of a

substantial amount of executable code to enhance the chances

of success. Various defense mechanisms have been developed

to counter heap-spraying attacks. The first approach involves

the detection of shellcode by identifying common patterns

associated with it [28]. The second defense approach involves

analyzing the control flow structure of heap objects to recognize

common structures employed in heap-spraying attacks. For

instance, NOZZLE [26] disassembles potential x86 instructions

within the object and constructs a control flow graph (CFG).

Based on this CFG, NOZZLE computes the surface area of

the entire heap and identify heap-spraying attack if most of

the object redirects to a specific memory region. The third
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mechanism and popular countermeasure for heap-spraying is

W ⊕ X (Writable xor eXecutable), also known as DEP (Data

Execution Protection) [29]. This mechanism involves forcing

any memory region to be either executable or writable, but

never both. Successfully writing malicious code to a writable

region becomes pointless for an attacker since it becomes

impossible to execute that code later, rendering heap-spray

ineffective. In response, a second class of attacks emerged,

known as code-reuse.

The general principle of any code reuse attack involves

redirecting the logical program flow to instructions already

present in memory and subsequently utilizing those instructions

to introduce alternative program logic. By combining individual

harmless pieces of existing code, the attacker manages to

reconstruct malicious behavior. As an illustration, ROP (Return-

Oriented Programming) [30] assembles code snippets situated

at the end of functions by leveraging the return instruction and

writing their addresses to the stack. An approach to mitigate

this class of attack involves memory randomization, specifically

using ASLR (Address Space Layout Randomization) [31]. The

fundamental concept of ASLR involves a new stack memory

allocator that introduces a random pad for stack objects. This

results in the relocation of the start address of an executable

between successive runs of the application. Consequently,

an adversary must guess the location of the functions and

instruction sequences needed for the successful deployment of

her code reuse attack.

JIT-Spray [12], [32], [33] is a new class of attack that

bypasses DEP and ASLR. It leverages JIT compilation of

expressions with constant values from a high-level language

into native code, allowing for the injection of malicious

code bytes at runtime. This bypasses DEP because data

is (indirectly) injected as code. Moreover, if the attacker

successfully creates numerous regions of this code, the locations

become predictable. Hence, by dispersing numerous code

regions, they can anticipate the address of one region to

circumvent ASLR. Ultimately, only control over the instruction

pointer is needed to redirect the control flow to the injected code.

Certain works propose countermeasures against JIT spraying.

The aim of these studies is to prevent malicious code from being

present in a program’s variables. An example would be RIM

[34], a technique that obfuscates arithmetic operations in the

JIT-compiled code, thereby preventing attackers from reusing

the native code to construct malicious code. However, all these

vulnerabilities presented by the JIT engine are exploitable only

if it is possible to obtain read and write primitives on the

memory of the code generated by the JIT engine.

JIT compilers, like other compilers, are complex software

systems. Therefore, it is natural that they may contain security-

critical bugs. As mentioned in [18], these bugs often arise

from subtle logic errors and miscalculations that result from

optimization passes in JIT engines, and they persistently escape

state-of-the-art testing methods. A popular approach to prevent

these vulnerabilities remains fuzzing [18], [35], [36], [37]. The

goal is to detect vulnerabilities/bugs in the software before the

release. Unfortunately, despite all these efforts, vulnerabilities

are still present in JIT engines. JIT compiler bugs are mainly

caused by incorrect speculation or wrong optimization based

on logic errors, and these bugs are challenging to detect with

current fuzzers.

Several other research works have focused on securing the

JS runtime. Notably, NOJITSU [38] proposes isolation of

JIT engine components such as bytecode interpreters with

controlled accesses to prevent the execution of unauthorized

code. This is accomplished by utilizing hardware components

like Intel’s Memory-Protection Keys. While this solution

effectively prevents unauthorized code execution, it does not

address vulnerabilities that do not involve code execution as

their primary purpose. For example, an attack aiming to crash

the runtime due to JIT’s poor optimization can succeed because

the generated code is stored in executable memory. Furthermore,

using such a solution requires hardware extension not available

to all users. BrowserShield [39] addresses security during the

vulnerability window. It involves rewriting page scripts to

prevent malicious operations from being hidden. This rewriting

relies on policies derived from known vulnerabilities. The

limitations of this solution lie in the complexity of the policies,

which requires expertise to implement, and imposes overhead

on page execution due to the necessity of regenerating the entire

page’s script. On the other hand, JShield [40] addresses drive-by

download attacks by generating a signature for vulnerabilities

based on opcodes and comparing this signature with all

downloaded JS scripts. The drawback of this approach again

lies in the expertise required to generate the signature, which

involves several complex steps.

JITBULL, the solution we propose, complements all the

existing protection mechanisms for the JIT engine. Knowing

that fuzzers are not capable of detecting all types of bugs, it is

important to implement tools that will secure the JIT engine

when a vulnerability is detected. Applying a patch in this case

remains the only solution, but this solution does not guarantee

the security of the JIT engine during the vulnerability window.

VIII. CONCLUSION

We presented JITBULL, a system that improves the security

of web browsers by addressing JIT engines vulnerabilities in JS

runtimes. We explained that JITBULL scope applies to known

vulnerabilities for which a code demonstrator is available and

that have not been patched yet. We showed that this could be

achieved thanks to a two-steps strategy that relies on indirect

comparison between code demonstrators and the running code.

We discussed the generalization of our solution that can be

applied to any recent JS runtime. We tested it on variants of

demonstrator codes and showed that it effectively neutralized

the exploitation of the vulnerabilities and noticed that the false

positive rate was very much acceptable in a typical case. We

also found that JITBULL’s overhead was negligible compared

to using the vanilla JIT engine. We emphasized that JITBULL

is a tool that does not replace, and instead complements existing

solutions to secure the JIT engine.
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