
PAROLE: Profitable Arbitrage in Optimistic Rollup
with ERC-721 Token Transactions

Alvi Ataur Khalil∗ and Mohammad Ashiqur Rahman∗†
∗Electrical and Computer Engineering, Florida International University, USA

†Knight Foundation School of Computing and Information Sciences, Florida International University, USA

akhal042@fiu.edu, marahman@fiu.edu

Abstract—Optimistic rollup has emerged as a promising
Layer 2 (L2) scaling solution for blockchain; however, its existing
protocols are vulnerable to front/back-running activities, where
an opportunistic rollup operator can strategically alter the trans-
actions’ order to create an arbitrage opportunity. Specifically, in
the limited edition ERC-721 standardized non-fungible tokens
(NFTs), the re-ordering of transactions introduces a lucrative
threat landscape due to its scarcity-driven pricing and market
volatility. In this work, we introduce PAROLE, a novel attack
technique on optimistic rollup systems, where an adversarial
aggregator re-orders the NFT transactions in an optimal way,
leveraging model-free deep reinforcement learning (DRL) to
maximize the balance of a target account. We create our own NFT
called the “PAROLE Token” (PT) and deploy it in the OpenSea
marketplace via Optimism Goerli to validate the attack impact.
Furthermore, we collect NFT snapshots from rollup mainchains
to analyze the impact in real-world NFT marketplaces.

Index Terms—Blockchain, optimistic rollups, profitable arbi-
trage, mempool, non-fungible tokens

I. INTRODUCTION

Cryptocurrencies and blockchain technology have revolu-

tionized the financial industry, with remarkable efficiencies

and applications from 2009 to the present day [1], [2]. How-

ever, mass adoption remains unattainable since no existing

blockchain can efficiently manage global-scale operations [3],

[4]. In the rapidly evolving landscape of blockchain technolo-

gies, optimistic rollup has emerged as a pioneering innovation,

which presents a Layer 2 (L2) scaling solution. Optimistic

rollup shifts a significant portion of transaction processing and

smart contract execution off the main blockchain, similar to

the state-of-the-art L2 scaling solutions, e.g., side chains [5],

plasma [6], payment channel networks [7], [8], etc. This L2 so-

lution optimizes efficiency by batching transactions, reducing

on-chain operations, and minimizing transaction fees. While

it enhances the overall throughput, the confirmation time also

decreases, making blockchain applications more cost-effective

for users. This approach maintains a robust level of security by

leveraging the security model of the underlying main chain [9].

Although perceived as a solution for quicker transaction pro-

cessing, rollup has centralization concerns related to the entity

called “sequencer,” which is responsible for transaction order-

ing [10]. This centralization grants the sequencer significant

power, enabling it to potentially censor transactions and exploit

maximal extractable value (MEV), impacting users financially.

Moreover, the reliance on a central sequencer poses a systemic

risk — if it fails, the entire L2 rollup system can collapse.

Aggregators in the L2 rollup ecosystem can potentially address

some of the concerns associated with a single sequencer, who

collect and bundle transactions from multiple sources (ideally

from Bedrock’s [11] Mempool) before submitting them to the

Ethereum main chain [12]. This approach aims to introduce a

degree of decentralization and mitigate the concentration.

However, this distributed solution is not immune to vul-

nerabilities, particularly within its transaction processing pro-

tocols. A significant risk is the potential for front-running

and back-running activities, allowing opportunistic aggrega-

tors to manipulate transaction orders for profitable arbitrage

opportunities tailored to specific users. While aggregators are

expected to process transactions based on their base and

priority fees [13], they have the flexibility to arrange them

differently if sufficient incentives are present. We exploit this

vulnerability and investigate the kinds of transactions that

frequently provide arbitrage opportunities.

Arbitrage malpractice within the decentralized ecosystem is

a well-established phenomenon. Mclaughlin et al. identified

3.8 million arbitrages in the Ethereum decentralized exchange

(DEXes) ecosystem, generating $321 million in profit [14].

Zhou et al. introduced an SMT-based automatic profit gen-

eration tool for decentralized finance (DeFi) ecosystem [15],

which had an estimated average weekly revenue of 72.44

ETH, demonstrating its effectiveness in arbitrage and complex

settings. Wang et al. presented a theoretical framework for

analyzing cyclic arbitrages in DEXes, which revealed that

traders executed 292,606 cyclic arbitrages, exploiting over

$138 million in revenue over 11 months [16].

While ERC-20 tokens have been extensively studied for

predatory trading practices, the realm of ERC-721, known as

the non-fungible tokens (NFTs), lacks sufficient attention and

research despite its high-value assets. A study [17] revealed

that as high as 3.93% of addresses, processing 2.04% of sale

transactions, trigger suspicions of market abuse through illicit

trading patterns of NFTs. For instance, an individual generated

$100,000 through speculative trading of an NFT and approxi-

mately $8,000 through the operation of an arbitrage bot [18].

In another instance, a sniper bot executed a flashloan attack

by front-running a bid transaction on an NFT, securing 26.25

ETH [19]. Along with this trend of negligence to unethical

behaviors, the NFT market is susceptible to volatile price

spikes [20], due to its uniqueness and scarcity. Specifically,

in the case of the limited edition NFTs, whose value grows

129

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00026

proportional to its digital scarcity [21], the arbitrage opportu-

nity through front/back runnings becomes more prominent.

Exploiting the vulnerability of the optimistic rollup systems

and potential arbitrage scope within limited edition NFT mar-

kets, we propose PAROLE (Profitable Arbitrage in Optimistic

Rollup with ERC-721 token transactions) attack, where an

adversarial aggregator colludes with a user who participates

in NFT transactions. The attacker aggregator checks for ar-

bitrage opportunities with the set of transactions he receives

from Bedrock’s Mempool and re-orders the sequence in a

way that maximizes the colluding user’s balance. However,

given the nature of the limited edition NFT market and the

non-linear patterns of their pricing, traditional deterministic

trading algorithms will fail, both to capture the economic

dynamics and produce a profitable order. On the other hand,

deep reinforcement learning (DRL) is well-suited for solving

problems involving decision-making, and sequential actions,

where an agent needs to learn optimal strategies through

trial and error [22]. Due to DRL’s capacity to adapt to

dynamic environments, handle complex decision-making, and

learn from experience, it has become a very effective tool

for solving non-linear optimization problems. Thus, we utilize

DRL within the attack framework to optimize the re-ordering

task and maximize the profit for the intended colluding user.

Our primary contributions in this work are fourfold:

• We identify an existing vulnerability of an optimistic

rollup system and propose a novel attack technique with

limited edition NFT transactions.

• We introduce the GENTRANSEQ module, designed to

determine the most effective transaction order to optimize

the attack advantages by leveraging DRL.

• We create our own NFT called the ParoleToken (PT) [23],

which is deployed at the OpenSea testnet via Optimism
Goerli. We perform various token transactions using PT

and conducted simulations based on its data and traffic

to validate the effectiveness and impact of the attack.

• We collected NFT snapshots from the optimistic rollups

(Arbitrum and Optimism) and analyzed them to further

validate the attack impact in a real-world NFT market.

We discuss necessary preliminary information in Section II.

The related works are discussed in Section III. We introduce

our proposed PAROLE attack in Section IV. In Section V, we

discuss the technical details of the attack. We analyze three

case studies in VI. In Section VII, we explain the empirical

analysis and findings. Finally, we discuss a potential defense

technique against the PAROLE attack in Section VIII. At last,

we conclude the work in Section IX.

II. BACKGROUND

In this section, we will discuss a few preliminary concepts

that will help explain the proposed PAROLE attack later.

A. Optimistic Rollup

Blockchain systems currently fall significantly short in

providing a service quality equivalent to centralized systems,

Layer 2 (Off-chain) Layer 1 (On-chain)

Main Blockchain

User 1 User 2

Smart
Contract

Deposit L1 coins (CL1)

L2 tokens (tL2)

Aggregators

TX2,CL1

Rollup
data

Verifiers

Validate, execute,
compress, and

bundle TXs
New state root of

L2 Blockchain

Challenge?

No

D
is

pu
te

Ph
as

eYes

TX2,tL2

TX1,tL2

N

Bedrock's
Mempool

Fig. 1. Optimistic rollup workflow.

especially concerning transactions per second [24], [25]. Opti-

mistic rollup is an L2 scaling solution for blockchain networks

that addresses scalability concerns by processing transactions

off-chain and ensuring their validity through an optimistic

approach backed by a challenge mechanism [26]. Rollup

systems are deployed using Layer 1 (L1) smart contracts,

where participants, such as aggregators and verifiers, engage

with this contract. The basic workflow of optimistic rollups is

illustrated in Figure 1, which involves several steps. At first,

a user will need L2 tokens (tL2) to interact with the rollup

operators, which can be exchanged with other cryptocurrencies

(CL1) via the L1 smart contract. The L2 transactions are sent

to Bedrock’s Mempool, from where the aggregators collect

and execute them. A user can send his transactions to the

Bedrock’s Mempool directly (User 1 sending TX 1,tL2), or

he can send the transaction via the L1 smart contract (User

2 sending TX 2,CL1). In this work, we primarily consider the

second approach to generalize the proposed attack for L1 NFT

transactions. Then, the aggregator processes the transactions,

generates a cryptographic aggregate of these transactions along

with the Merkle state root of the L2 chain, and submits them

to the verifiers. The verifiers on L1 monitor these submissions

and can raise challenges if they detect any invalid or fraudulent

transactions within the batch. A challenge period follows, dur-

ing which the fraud-proof is inspected to dispute the optimistic

assumption. The disputed transactions are reverted if fraud

is proven, and the fraudster loses a bonded security deposit.

However, if no valid challenge is raised, the transactions are

considered finalized and are added to blockchain [27].

B. Ethereum Tokens: ERC-20 and ERC-721

Ethereum tokens are digital assets created and managed on

the Ethereum blockchain through the use of smart contracts.

While resembling the cryptocurrency coins, the tokens lack

an independent blockchain of their own; instead, they are

constructed atop an existing one [28]. The predominant stan-

dard, ERC-20, facilitates the creation of fungible tokens, which

are interchangeable and widely employed for purposes like

crowdfunding through initial coin offerings and representing

ownership of various assets [29]. The ERC-721 standard is a

set of rules and protocols for the creation and management of

NFTs. Unlike ERC-20 tokens, which can be exchanged on a

one-to-one basis, ERC-721 tokens are non-fungible, meaning

130

EnvironmentQ Network
State

Target Network

C
op

y
ea

ch
N

 s
te

ps

Replay Memory
Buffer

Loss calculation of Q value

Action: (ARGmaxQ(
state,action|wights))

Store: (state,action,
reward,next state)

next state (state,
action)

reward

Q
(s

ta
te

,
ac

tio
n|

w
ig

ht
s)ARGmaxQ

(next state,
next action|
wightstarget) G

ra
di

en
t

w.
r.t

 lo
ss

Deep Reinforcement Learning

Fig. 2. DQN architecture.

each token is distinct and cannot be exchanged on a like-for-

like basis, rather there will at least be a price difference [20].

The ERC-721 standard ensures that each token has a unique

identifier, making it easily distinguishable from other tokens,

and includes features for managing ownership, transferring

tokens, and retrieving token metadata.

C. Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning

paradigm where an agent learns to make decisions by inter-

acting with an environment [30]. The agent takes actions in

the environment, receives feedback in the form of rewards or

punishments, and uses this information to improve its decision-

making over time. The goal of the agent is to learn a policy, a

mapping from states to actions, that maximizes the cumulative

expected reward [31]. RL algorithms can be categorized into

model-free and model-based approaches, where model-free

methods, like Q-learning, directly learn the optimal policy

or value function from the data. DRL combines RL with

deep learning, using neural networks to approximate complex

policies or value functions [32]. Although a significant portion

of DRL research has been focused on applications in video

games and simulated control scenarios, DRL has demon-

strated potential in acquiring sophisticated real-world skills

(i.e., trading [33]). Unlike traditional Q-learning, where an

agent manages a Q-table, the DRL algorithm deep Q-network

(DQN) utilizes a neural network (Q-network) for learning.

This approach, effective in complex real-world environments,

is illustrated in Figure 2. To train the Q-network, the agent’s

experiences are stored as training data in a repository known as

the replay memory buffer. To enhance the stability of learning,

a supplementary neural network, called the ‘Target network,’ is

included in the DQN framework. Weights from the Q-network

are periodically copied to the target network, and the latter

predicts future Q-values for subsequent states, contributing to

the loss calculation in the Q-network’s predictions.

III. RELATED WORK

The emergence of MEV in DeFi is becoming more promi-

nent [34], where opportunistic traders secure better prices for

their trades and profit by causing the victim’s trade to execute

at a disadvantageous price. Numerous studies explore various

high-frequency trading strategies for ERC-20 tokens. Research

by Qin et al. quantified blockchain extractable value (BEV) in

DeFi smart contracts [35], yielding $540.54M in profit over

32 months. Bartoletti et al. proposed an Automated Market

Makers (AMMs) attack strategy [36], exploiting transaction-

ordering issues. Frontrunning, a prevalent adversarial strategy

in DEXes, was explored by Daian et al. [37] and Eskandari

et al. [38], highlighting risks in decentralized applications

(DApps) and proposing mitigating strategies. Zhou et al.

presented an AMM defense strategy, unifying multiple AMMs

for security and financial benefits [39]. Another noteworthy

attack technique is Cryptocurrency pump and dump (CPD),

which involves manipulating cryptocurrency prices through

false promotions, creating a temporary surge (pump) to attract

unsuspecting investors. This is followed by a quick sell-

off (dump) by orchestrators to capitalize on inflated prices,

leading to significant losses for buyers. Xu et al. conducted an

empirical analysis of 412 pump-and-dump events, developing

a predictive model with high precision [40]. Gandal et al.

exposed deceptive activity on the Mt. Gox Bitcoin exchange

(revealing 600,000 fraudulently acquired bitcoins), resulting

in a spike in the USD-BTC exchange rate in late 2013 [41].

Kamps et al. used anomaly detection to identify potential

pump-and-dump activities, revealing clustering on specific ex-

changes and coins, contributing to research in crime prevention

for this emerging fraud problem [42]. None of these works,

however, concentrated on NFTs, where the dynamics of the

economic behavior resemble real-world assets.

The manipulation of ERC-721 token markets is becoming

more widespread with the emergence of various innovative

attack strategies. One of the more common techniques is the

NFT rug pull (NRP), where the creators or sellers abandon

an NFT project after attracting attention and investments. Roy

et al. found that over 36% of promoted projects on Twitter

were fraudulent, with a majority involving bot activity [43].

To address these issues, a machine learning classifier tool

was introduced to proactively detect 382 new fraudulent NFT

projects. Huang et al. conducted a comprehensive study of

NRPs [44], identifying 253 cases and implementing a rule-

based method to flag 7,487 rug pulls. Sharma et al. analyzed

structural and behavioral properties of NRPs, examining 758

cases across 10 NFT marketplaces [45].

Another prevalent attack strategy is the NFT Ponzi
schemes, where returns to earlier investors come from the

contributions of new investors rather than business profits.

Bartoletti et al. discussed the transition of Ponzi schemes from

offline to digital spaces, particularly their adaptation to cryp-

tocurrency platforms like Ethereum [46]. Chen et al. proposed

a detection approach and an advanced classification model,

identifying over 500 smart Ponzi schemes on Ethereum [47].

There exist other unethical activities in NFT trading, such

as wash trading on the Ethereum NFT market, which affects

5.66% of all NFT collections with a total artificial volume of

$3.4 billion, emphasizing the profitability and prevalence of

wash trading and suggesting the need for protective mecha-

131

Illicitly
favored user

(IFU)

General user 1

...

Bedrock's
Private

Mempool

TX(s)
details

Aggregator 1

Adversarial
Aggregator

General user 2 Aggregator 2...

Collecting
set of TXs

Storing all
the Pending

TXs

Validate, execute,
and bundle TXs

PAROLE

Merkle State Root
as FRAUD Proof

R
ol

lu
p

up
TX

s

Main Blockchain

Dispute
Phase

Verifiers

Challenge

Proof

NoChallengeAdd toChain

Reward

Slash

Invalid

Proof

ValidProof

Ad
d

to
Ch

ain

O
rig

in
al

 T
Xs

' S
eq

ue
nc

e TX1
TX2
TX3

.

.

.

.
TX(N-1)

TXN

IFU wallet
and RPC
node info

GenTranSeq

L2 chain
State Root

No

Yes

TX1, TX2, TX3, .., TXN

TXK, TX4, TX1, .., TX3

Manipulated Sequence

Original Sequence

Final TXs' Sequence

TXi
TXi+1
TXi+2

.

.

.

.
TXi+N-2
TXi+N-1

Rollup Smart
Contract

Check for
Arbitrage

Opportunity

Fig. 3. Proposed PAROLE attack technique.

nisms in NFT markets [48]. Bonifazi et al. provide a novel

“ex-post” analysis of wash trading activities in the NFT

market, offering insights into the profitability of past illicit

actions [49]. Serneels et al. proposed 3 innovative strategies for

flagging suspicious wash trading activities in the NFT market,

addressing the challenge of distorted token valuations [50]. Liu

et al. proposed an approach to detect wash trading transactions

using an algorithm by AnChain.AI [51], while Wen et al.

introduced NFTDisk [52], a novel visualization tool designed

for investors to identify wash trading activities, offering an

intuitive approach through radial and flow-based visualization.

None of the above-discussed works exploited the vul-

nerability of optimistic rollup transaction processing, where

an adversarial aggregator could alter the execution order of

limited edition NFT transactions, providing illicit advantages

to a user, without resorting to NFT market manipulation as

seen in earlier research.

In terms of defense against transaction order manipulation

attacks in the blockchain system, a range of approaches exist.

Optimized trade execution methods, such as A2MM [39],

offer targeted protection against known attacks like sandwich

attacks by optimizing transaction parameters. However, their

applicability is limited to specific applications, necessitating

broader mitigation approaches. Professional Market Maker

(PMM) models [53] introduce fairness to DEXes but face chal-

lenges in security and feasibility. Trusted third-party ordering

schemes like Flashbots [54] and Gnosis [55] Protocol prioritize

privacy and efficiency but compromise decentralization and

security by relying on trusted entities. The eUTXO model [56]

prevents front-running attempts but struggles with throughput

limitations. While each approach offers benefits, none of them

consider the threat of an adversarial validator (i.e., aggregator),

who has the sequencing preference before the execution of the

transaction. As such, these approaches lack the capability to

detect and prevent sophisticated manipulation orchestrated by

adversarial aggregators in L2 optimistic rollup systems.

IV. PAROLE ATTACK: KEY IDEA

Here, we explain the main theoretical idea of the attack.

A. Theoretical Definition of PAROLE

The PAROLE attack occurs through a collusion between

an adversarial aggregator and an illicitly favored user (IFU),

where the inability of Bedrock’s Mempool in ensuring MEV

resilient transaction sequencing is exploited. The Bedrock’s

Mempool serves as a temporary storage space for pending

transactions before they are validated and added to the L2

chain. The legacy network generates a block for each trans-

action, processing them in a first-come-first-serve order, while

Bedrock creates blocks at fixed intervals, necessitating a Mem-

pool to hold pending transactions until they’re incorporated

into a block. Since Bedrock’s Mempool is kept private to

mitigate MEV [13], an adversarial aggregator does not have

the opportunity to choose the eligible set of transactions from

the Mempool to fabricate a profitable arbitrage for the IFU.

Rather, each aggregator has to collect a set of transactions

from the private Mempool according to priority sequence. At

this stage, the aggregator uses the PAROLE module to analyze

the transactions’ order and, if possible, generate a new order

of transactions, which will yield a higher final balance for

the IFU than otherwise. Thus, in spite of Bedrock’s efforts

to mitigate MEV, aggregators’ collection of transactions still

presents opportunities for arbitrage, which poses substantial

risks to market efficiency, liquidity providers, and overall

system trust. Afterward, the transactions are validated and

132

TABLE I
LIST OF NOTATIONS

Symbol Definition
Mi,t

k Token with ID ‘i’ is minted by user ‘k’ as ‘t’-th TX

Bt
k Balance of user ‘k’ after ‘t’-th TX confirmation

Pt Price of NFT after ‘t’-th TX confirmation

P0 Initial price of NFT

T i,t
j,k Token with ID ‘i’ is transferred from user ‘j’ to user ‘k’ as ‘t’-th TX

Oi,t
k Token with ID ‘i’ is owned by user ‘k’ after ‘t’-th TX confirmation

St Available # of tokens to be minted after ‘t’-th TX confirmation

S0 Total supply of tokens specified in the NFT smart contract

Di,t
k Token with ID ‘i’ is burnt by user ‘k’ as ‘t’-th TX

U Set of optimistic rollup users

Uk The ‘k’-th rollup user

A Set of rollup aggregators

Ak The ‘k’-th rollup aggregator

AP The adversarial rollup aggregator committing PAROLE attack

V Set of rollup verifiers

Vk The ‘k’-th rollup verifier

executed in the generated profitable order, meaning there is

no further manipulation of data and/or adversarial activity

during execution by the adversarial aggregator. Thus, all the

aggregators bundle their collected transactions and calculate

the Merkle state root as fraud-proof. Finally, the verifiers will

inspect the fraud-proof and should not initiate the dispute

phase unless there is some adversarial manipulation from the

rest of the aggregators (unrelated to PAROLE attack).

B. Attack Workflow

In this part, we discuss the detailed workflow of the PAROLE

attack, which is presented in Figure 3. The users in L1

send their transactions to the rollup smart contract residing

in the L1. Bedrock generates blocks at regular intervals,

necessitating a buffer to store pending transactions until they

are incorporated into a block [13]. As mentioned before, the

pending transactions of optimistic rollup are stored in a private

Mempool. As shown in the figure, the aggregators collect the

transactions and are supposed to execute them in order of their

base and priority fees. However, the adversarial aggregator

sends the transactions to the PAROLE module, which at first

checks if there is an arbitrage opportunity for the IFU. The

adversarial aggregator provides the private wallet information

of the IFU, along with the remote procedure call (RPC) node

URL used by the IFU at that time. Given the set of transactions

collected by the aggregator and the IFU information, the

potential arbitrage opportunity is checked. If there is a prof-

itable arbitrage opportunity, then the GENTRANSEQ module is

utilized. The same IFU information, along with the state root

of L2’s blockchain, is fed into the GENTRANSEQ module.

This module is comprised of one of the most prevalent model-

free DRL algorithms called the DQN.

The DQN module considers the current sequence of trans-

actions as the initial observation of the environment and trains

itself to predict the order of transactions that will maximize

the balance of the IFU/IFUs. It takes into consideration the

current state of the L2 chain to execute each candidate

solution using an optimistic virtual machine (OVM) [57] and

observe the balance update of the IFU. It also tracks the

price update of the limited edition ERC-721 tokens, which

are minted/transferred/burned during the transactions in con-

sideration. Finally, if there is at least one alternate order that

results in a higher balance for the IFU, the GENTRANSEQ

module returns that order. If multiple candidate orders exist,

then it tries to optimize the sequence to maximize the IFU’s

balance. A detailed technical analysis of the GENTRANSEQ

module is provided later in Section V.

Finally, the adversarial aggregator validates and executes

the transactions in the GENTRANSEQ module produced or-

der. Then, they are bundled together to create the rollup of

transactions. No further adversarial activities are performed

after the altering of the transaction order. Later, the verifiers

check the fraud-proof, and if none of the other aggregators

performed any illegal action, the batch of rollup transactions

is added directly to the main L1 blockchain.

V. TECHNICAL DETAILS

In this section, we present the technical details of the

proposed attack by first formally defining the optimistic rollup

system. Then, we discuss the arbitrage assessment technique

utilized in the PAROLE module, followed by the detailed

analysis of the GENTRANSEQ module’s Markov Decision

Process (MDP) design and the architecture of the DQN model.

A. Formally defining Optimistic Rollup System

To interact with an optimistic rollup system, users must

borrow L2 tokens from the optimistic rollup smart contract

(ORSC) residing in L1. A user can exchange Ethereum coins

(ETH) to get an equivalent amount of the L2 tokens. Each user

Uk (∈ U) sends its transactions to the ORSC for processing

in the off-chain system:

Uk.SubmitTX(TXk) → ORSC;TXk ∈ {M i,t
k , T i,t

k,l, D
i,t
k }

The terms M i,t
k , T i,t

k,l, D
i,t
k represent different types of NFT

transactions (minting, transfer, and burning, respectively),

which are defined in Table I. The ORSC stores the uncon-

firmed transactions in the Bedrock’s Mempool:

ORSC.PrivateStore(T j,1
x,y,, D

l,N
z) → BedRockMemPool

A set of aggregators (A) work as the primary operators of

the rollup system, where they are responsible for transaction

validation and execution. Each aggregator Ak collects a set of

transactions from Bedrock’s Mempool and processes them in

the order of their base and priority fees. Then, the executed

transactions from A’s aggregators are bundled together, and

the new Merkle state root of the L2 chain is computed as the

fraud-proof :

A.AggregateTX(BedRockMemPool) → RollupTX, Proof

Afterward, the set of verifiers (V) is responsible for checking

the validity of the executed transactions by checking the

generated fraud-proof, within a predefined challenge period.

If no verifier challenges the proof, then:

A.SubmitBlock(RollupTX) → ORSC

ORSC.ConfirmBlock(RollupTX) → Etherium

133

If at least one verifier Vk challenges the fraud-proof, and

the proof was indeed invalid, then the responsible aggregator

Ak’s bond will be slashed:

Vk.Challenge(A.Proof) → Success
Ak.Bond = Ak.Bond −Ak.SlashBond()

If Vk challenges the fraud-proof, however, the proof was valid,

then Vk’s bond will be slashed:

Vk.Challenge(A.Proof) → Fail
Vk.Bond = Vk.Bond − Vk.SlashBond()

The above discussion formally summarizes the workflow

of an optimistic rollup system. In the next section, we will

discuss PAROLE attack using the notations introduced here.

B. Assessment of Potential Arbitrage Opportunity
As mentioned in Section IV, the adversarial aggregator AP

processes the collected set of transactions through the PAROLE

module. At first, the potential arbitrage opportunity is checked

by analyzing the different types of transactions and IFU’s

involvement in those transactions. There can be three types

of NFT transactions:
1) Minting: Refers to the creation of a new NFT using

the NFT’s smart contract. Each NFT has a unique identifier

or ID, that distinguishes it from other tokens from the same

NFT. Minting of NFT with ID i is possible only if:

M i,t
k → (Bt−1

k ≥ Pt−1) ∧ (St−1 ≥ 1) (1)

which means user Uk’s minting request of i-th NFT can be

executed as the t-th transaction, only if: (i) following the

confirmation of (t − 1)-th transaction, Uk’s balance Bt−1
k is

greater or equal to the price of the NFT (Pt−1), and (ii)

available NFTs to be minted St−1 is greater or equal to 1.

If both the constraints are satisfied, then:

Oi,t
k = True

Bt
k = Bt−1

k − Pt−1

St = St−1 − 1 (2)
The above operations are performed when the minting trans-

action gets executed.
2) Transfer: Refers to the transfer of ownership of a

particular instance of the NFT. In simple terms, one user sells

an NFT that he owns to another user. The transfer of NFT

with ID i from user Uk to user Uj is possible, only if:

T i,t
k,j → (Bt−1

j ≥ Pt−1) ∧Oi,t−1
k (3)

meaning the transfer request of the i-th NFT can be executed

as the t-th transaction, only if: (i) following the confirmation

of (t−1)-th transaction, Uj’s balance Bt−1
j is greater or equal

to the price of the NFT (Pt−1), and (ii) the token with ID i
is owned by user Uk (Oi,t−1

k). If both are satisfied, then:

Oi,t
j = True

Bt
j = Bt−1

j − Pt−1

Bt
k = Bt−1

k + Pt−1 (4)

The above operations are performed when the transfer trans-

action gets executed.

Algorithm 1: PAROLE Algorithm

1 Function PAROLE(UIFU ,ChainL2 ,TxSeqOriginal):
2 if Arbitrage(UIFU ,TxSeqOriginal) then
3 (γ, ε, d, α) ← Set
4 for ep ∈ Episodes do
5 State ← TxSeqOriginal ; Env ← {UIFU ,ChainL2}
6 for sp ∈ MaxSteps do
7 if rand(0, 1) ≥ ε then
8 action ← QNet(State)
9 end

10 else
11 action ← rand(Actions)
12 end
13 {rsp, State′, Profit} ← Env.Act(action, State)

14 QNet .update(LossTD = TargetNet(State))
15 State ← State′; Rep ← Rep + rsp
16 TargetNet .copy(QNet) if Profit
17 end
18 TxSeqFinal ← State
19 end
20 end
21 else
22 TxSeqFinal ← TxSeqOriginal

23 end
24 return TxSeqFinal ;

3) Burning: Refers to the destroying of an already minted

NFT using the NFT smart contract. A user Uk can burn its

token with ID i, only if:

Di,t
k → Oi,t−1

k (5)

which means if Uk owned i-th NFT after the confirmation of

(t − 1)-th transaction, then he can burn the NFT as the t-th
transaction. If the above constraint is satisfied, then:

Oi,t
k = False

St = St−1 + 1 (6)

The above operations are performed when the burning trans-

action gets executed.
By analyzing the set of transactions collected by AP , the

potential for arbitrage opportunity is assessed. Since there can

be three kinds of transactions, the order of their execution can

significantly influence the final outcome of the system. The

minting and burning transactions change the price per unit

NFT, since these transactions decrease/increase the available

number of NFTs still to be minted (Equation 2 and 6), in

the case of the limited edition variant of ERC-721 token.

Importantly, specific transactions can only be executed when

positioned at a particular point in the sequence, and their

execution is precluded if placed at other points due to the

transaction constraints being unsatisfied (Equation 1, 3, and

5). Thus, during the assessment, it is crucial to verify the

execution of specific transactions, all of which would have

satisfied the constraints in the original sequence.
There is potential for profitable arbitrage for the IFU,

if he is involved in multiple transactions within the set of

transactions collected by AP . Ideally, he should at least be

involved in a pair of minting and transfer transactions, while

being involved in more transactions increases the chance for

potential arbitrage opportunities. In the next section, we will

discuss how the GENTRANSEQ module processes the original

sequence, given the IFU and L2 chain state information.

134

C
ur

re
nt

 T
Xs

' S
eq

ue
nc

e TX1
TX2
TX3

.

.

.

.
TX(N-1)

TXN

Final TXs' Sequence

TXi
TXi+1
TXi+2

.

.

.

.
TXi+N-2
TXi+N-1

[TX1's attributes as features]
[TX2's attributes as features]
[TX3's attributes as features]

.

.

.

.
[TX(N-1)'s attributes as features]

[TXN's attributes as features]

Environment Observation
(Current State: St)

The sequential aggregation
of the below tensors make

the t-th training sample (2D tensor)

Fl
at

te
ni

ng
 L

ay
er

Flatten into 1D
sample tensor

Input
Layer

Hidden
Layers

Output Layer
(NC2 PEs)

[Swap(TX1, TX2), Qi]

[Swap(TX1, TX3), Qj]

[Swap(TXN-2, TXN), Qk]

[Swap(TXN-1, TXN), Qm]

[Actions, Q-values]

Ar
gM

ax
(A

ct
io

ns
,

Fu
tu

re
_S

at
es

, R
ew

ar
ds

)

Next State:
St+1

Exploit

D
Q

N

Fig. 4. The Pre-processing and deep Q-network architecture of the GENTRANSEQ module.

C. Analysis of the GENTRANSEQ Module

In this part, we discuss the GENTRANSEQ module in detail

by first illustrating the modeling of the MDP for the transaction

re-ordering problem and then discussing the DQN architecture.

1) Designing the MDP: We conceptualize the problem as a

Markov game, an extension of the MDP. Specifically, in DRL,

an MDP is typically represented as a tuple comprising states,

actions, transition probabilities, rewards, and a discount factor.

We designed an advanced MDP to represent the transaction re-

ordering environment, where a DQN agent will be trained for a

certain number of episodes (an “episode” referring to a single

run or instance of the agent interacting with the environment

from start to finish). In each episode, the agent receives a fresh

set of transactions in their original sequence, and the agent is

tasked with executing a certain number of actions (limited by a

predefined maximum bound, i.e., maximum steps) to produce

an altered sequence that meets the attack objective. This MDP

is expressed as a six-tuple: {States, Actions, Reward, Policy

(π), Discount Factor (γ), Exploration (ε)}. Each component of

this tuple will be explored in detail in the following sections.

States: The set of states represents all the possible ob-

servations an agent can experience within the environment.

In this case, an observation is a sequence of transactions.

Thus, the DQN agent observes the current state, i.e., the

current order of the transactions collected by AP and takes an

appropriate action. We consider the number of transactions an

aggregator collects for processing purposes as the individual

“Mempool” size of that aggregator (distinct from Bedrock’s

Mempool). In the evaluation section (Section VII), we use the

term “Mempool” to refer to the aggregator’s Mempool.

The environment consists of all the possible states an

agent can be in. If the “Mempool” size of the aggregator

is N (collects N number of transactions from Bedrock’s

Mempool), then the total number of possible states for the

agent will be ‘N!’. There can be multiple candidate states

(i.e., order of transactions) that result in a higher final balance

for the IFU. However, the maximum possible balance can

be achieved through a subset of those candidate states. The

DQN agent, by solving this non-linear optimization problem,

learns the intelligent ordering of those transactions and ensures

maximum final balance for the IFU.

Action: The set of actions represents the range of activities

an agent can perform to interact with the environment. Since

a DRL agent solves problems by making sequential decisions

over time, a solution involves taking a set of actions. For

this problem, an action is swapping two transactions from the

current sequence of transactions (i.e., current state). During

the initial stage of training, an agent might perform a lot of

swappings to reach the goal state; however, with a sufficient

amount of training, the number of swaps (i.e., actions) will be

optimized. For example, in a grid world, to reach a goal cell,

an untrained agent will take many moves (action: moving in

all possible directions in the grid world); however, as it is more

trained, the path length (number of actions) will be optimized.

If the “Mempool” size of the aggregator is N (collects N
number of transactions from Bedrock’s Mempool), then the

total number of possible actions for the DQN agent will

be NC2, i.e., choice of any two transactions form the N
transactions.

Reward: The reward function, shaped by the rewards, gov-

erns the learning process of the agent. Achieving an order that

results in a better final balance for the IFU results in positive

rewards, while producing an order that results in a worse final

balance for the IFU results in penalties. Additionally, an agent

is penalized if it takes an action that fails to guide the agent

towards an increasing final balance for the IFU. If the reward

of i-th episode is Ri, then:

Ri =

m∑

k=1

rk units (7)

here, m is the total number of steps per episode, and rk is the

reward achieved at that step. The reward for the k-th step is

calculated by:

rk = W × (BN,k
IFU −BN,0

IFU) (8)

where, BN,0
IFU and BN,k

IFU presents the balance of IFU after N -

th transaction execution with the original sequence and the

altered sequence after k-th action, respectively. The weight

factor W is set to a high positive value for penalizable action,

while it is set to ‘1’ for other cases.

Policy (π): Policy is the learning of agents through inter-

action and exploration within the environment, specifying the

action an agent will undertake in a given state. In this scenario,

135

the policy is simply determined by the weights and biases of

the Q-network, dictating the action an agent takes based on

observations of the state.

Discount Factor (γ): The discount factor plays a crucial

role in determining the extent to which DQN agents prioritize

rewards in the distant future relative to those in the immediate

future. Ranging from zero to one, this parameter influences the

agent’s level of foresight. Setting γ to zero renders the agent

fully myopic, focusing solely on immediate rewards. A reward

ri in the future that occurs after X steps will be discounted

by a factor of X (i.e., the reward will be (ri)
X).

Exploration (ε): The exploration parameter governs the

agent’s action behavior, typically initialized close to 1, indi-

cating that there is an almost certain probability that the agent

will take random actions to interact with the environment as

exploration behavior. Those actions shape the learning of the

Q-network. As the episode advances through additional steps,

the value of ε decays, reducing the probability of random

actions. A lower ε value signifies a higher probability of the

agent choosing actions based on the Q-network, representing

exploitation behavior. The ε in GENTRANSEQ module is

reduced each episode with the following equation:

εi = εmin + (εmax − εmin)
−(d×i) (9)

where, εi is exploration parameter of i-th episode, and d
represents the decay parameter.

2) Architecture of the DQN: This part discusses the DQN

model (Figure 4) utilized in the GENTRANSEQ module.

Whenever the exploitation behavior is chosen for a step, the

DQN is utilized for determining the next action. At first, the

original transaction set is passed as the initial input to the

GENTRANSEQ module, where each transaction is converted

into a 1-dimensional (1D) tensor by encoding each attribute

of the transaction. Generally, it is an eight-element tensor,

including flags like the involvement of IFU in the transaction,

the type of the transaction (i.e., transfer/minting/burning), and

values like current token price, available tokens to be minted,

etc. Aggregating all the tensors from the transaction list makes

the 2D tensor input to the DQN model. The first layer is

the flattening layer, converting the input into a 1D vector

and passing it to the input layer, where there will be 8 × N
processing elements (PEs), given the transactions’ sequence

length is N . After multiple hidden layers, the output layer

predicts the action and the associated Q-value (given the

next state). As mentioned earlier, NC2 actions are possible

with transactions’ sequence length of N , indicating that the

output layer will have NC2 PEs. Finally, the action with the

maximum Q-value is selected, and corresponding transactions

are swapped to create an alternate sequence as the next state.

The same steps are performed for the next step.

For updating the Q-network through backpropagation, the

temporal difference (TD) error is calculated as the prediction

loss. This is actually the difference between the true Q-value of

a state-action pair and the value estimated by the Q-network.

The target network is utilized for the estimated true Q-value

prediction, which utilizes the Bellman equation [58] and the

TABLE II
MODELING PARAMETERS OF GENTRANSEQ MODULE

Parameter Name Assigned Values
Exploration parameter (ε) 0.95
Epsilon decay (d) 0.05
Discount factor (γ) 0.618
Episodes 100
Steps (Each episode) 200
Learning rate (α) 0.7
Reply memory buffer size 5,000
Q-network update Every 5 steps
Target network update Every 30 steps

discounted future rewards. All the values of different hyperpa-

rameters used in the DQN are summarized in Table II. Initially,

the agent explores extensively with a high exploration rate

(ε) of 0.95, gradually decreasing exploration over time (with

d set to 0.05) for maintaining adaptability. Experimentation

with learning rates (α) ranging from 0.05 to 0.75 shows 0.7 as

favorable for rapid learning and stability. After investigating,

we found a discount factor of 0.618 balances short-term and

long-term rewards effectively. Limiting the training to 100

episodes prevents overfitting, while setting 200 steps within

an episode are found to be adequate. A large reply memory

buffer aids generalization, and updating the Q-network every 5

steps and target network every 30 steps stabilizes training and

accelerates learning. The PAROLE attack’s steps are shown in

Algorithm 1 in a simplified way using the notations introduced

in this section.

VI. CASE STUDIES

In this section, we quantify the attack benefit for the IFU

through three case studies, as shown in Figure 5. The first

case illustrates the original order of the transaction execution,

while the latter cases show two alternative orders of transaction

execution and the corresponding attack benefits.

A. Status of the System:

For all the case studies, the IFU of the adversarial aggregator

has an initial L2 token balance of 1.5 ETH and owns 2

PAROLE tokens. The current price of one unit limited edition

PAROLE token is 0.4 ETH, which varies according to scarcity

(demand/supply). Accordingly, only the minting and burning

transactions update the price of each unit of PAROLE token,

while transfer transactions keep the price as is. The price of the

PAROLE token is updated according to the following equation:

Pt
PT =

S0
PT

St
PT

× P0
PT (10)

Here, Pt
PT represents the price of the PAROLE token after

the t-th transaction is executed, and P0
PT represents the initial

price of the same. The maximum number of PAROLE tokens

that could be minted, i.e., S0
PT is set to 10, and the initial price,

P0
PT is set to 0.2 ETH. Among the maximum supply of 10,

5 PAROLE tokens are already minted (i.e., remaining tokens

to be minted, St
PT is 5), and the price per unit has increased

to 0.4 ETH, according to Equation 10. Only the balance of

IFU is calculated in the case studies since the GENTRANSEQ

module alters the order of transactions for maximizing the IFU

136

Transfer PT: U1 → U2

Original TX Sequence
(TXs involving PT)

PT Price
(1 unit)

0.4 ETH

IFU Total Balance
L2 balance+(PTs owned)*Price

1.5 + (2*0.4) = 2.3 ETH

Mint PT: U19 0.5 ETH

Transfer PT: IFU → U11 0.5 ETH

Transfer PT: U19 → U6 0.5 ETH

Mint PT: IFU 0.66 ETH

Transfer PT: U13 → U3 0.66 ETH

Burn PT: U2 0.5 ETH

Transfer PT: U1 → IFU 0.5 ETH

1.5 + (2*0.5) = 2.5 ETH

2.0 + (1*0.5) = 2.5 ETH

2.0 + (1*0.5) = 2.5 ETH

1.5 + (2*0.66) = 2.82 ETH

1.5 + (2*0.66) = 2.82 ETH

1.5 + (2*0.5) = 2.5 ETH

1.0 + (3*0.5) = 2.5 ETH

TX1

TX2

TX3

TX4

TX5

TX6

TX7

TX8

(a)

Transfer PT: U1 → U2

Altered TX Sequence
(TXs involving PT)

PT Price
(1 unit)

0.4 ETH

IFU Total Balance
L2 balance+(PTs owned)*Price

1.5 + (2*0.4) = 2.3 ETH

Burn PT: U2 0.33 ETH

Mint PT: IFU 0.4 ETH

Transfer PT: U19 → U6 0.4 ETH

Transfer PT: IFU → U11 0.4 ETH

Transfer PT: U13 → U3 0.4 ETH

Mint PT: U19 0.5 ETH

Transfer PT: U1 → IFU 0.5 ETH

1.5 + (2*0.33) = 2.16 ETH

1.17 + (3*0.4) = 2.37 ETH

1.17 + (3*0.4) = 2.37 ETH

1.57 + (2*0.4) = 2.37 ETH

1.57 + (2*0.4) = 2.37 ETH

1.57 + (2*0.5) = 2.57 ETH

1.07 + (3*0.5) = 2.57 ETH

TX1

TX7

TX5

TX4

TX3

TX6

TX2

TX8

(b)

Transfer PT: U1 → U2

Altered TX Sequence
(TXs involving PT)

PT Price
(1 unit)

0.4 ETH

IFU Total Balance
L2 balance+(PTs owned)*Price

1.5 + (2*0.4) = 2.3 ETH

Burn PT: U2 0.33 ETH

Transfer PT: U1 → IFU 0.33 ETH

Mint PT: IFU 0.4 ETH

Transfer PT: U19 → U6 0.4 ETH

Transfer PT: IFU → U11 0.4 ETH

Transfer PT: U13 → U3 0.4 ETH

Mint PT: U19 0.5 ETH

1.5 + (2*0.33) = 2.16 ETH

1.17 + (3*0.33) = 2.16 ETH

0.84 + (4*0.4) = 2.44 ETH

0.84 + (4*0.4) = 2.44 ETH

1.24 + (3*0.4) = 2.44 ETH

1.24 + (3*0.4) = 2.44 ETH

1.24 + (3*0.5) = 2.74 ETH

TX1

TX7

TX8

TX5

TX4

TX3

TX6

TX2

(c)

Fig. 5. Case Studies: a) Case 1: The resultant PT price and IFU balance
update with the original transaction sequence. b) Case 2: The resultant PT
price and IFU balance update with a candidate altered transaction sequence
yielding better IFU final balance. c) Case 3: The resultant PT price and IFU
balance update with optimally altered transaction sequence yielding maximum
IFU final balance.

balance. The total balance of the IFU is the summation of the

L2 token balance and the price of the PAROLE tokens he owns.

In all the cases in the subsequent sections, the transactions are

numbered in the order of the original sequence.

Case 1: In the first case, as shown in Figure 5(a), the IFU

has an initial balance of 2.3 ETH. He is involved in three

transactions, two of which are transfer transactions, and one

is a minting transaction (all colored red). After the first

transaction, the IFU’s balance remains unchanged since it was

a transfer transaction. The second transaction is a minting

transaction performed by user U19, which changes the price

of a unit PAROLE token from 0.4 ETH to 0.5 ETH (as per

Equation 10). The IFU’s balance is updated since the price of

PAROLE token has increased. His L2 token balance remains

the same, while PAROLE portion valuation increases from 0.8

ETH to 1.0 ETH. Although the third transaction involved the

IFU, it did not update the IFU’s balance since it was a transfer

transaction. As he sold one of his PAROLE tokens, he now

has an L2 token balance of 2.0 ETH, and PAROLE portion

valuation decreases to 0.5 ETH. The fourth transaction keeps

the IFU’s balance the same since it was a transfer transaction.

The IFU mints in the fifth transaction, which increases the per

unit price of PAROLE token. His balance has also increased

to 2.82 ETH due to the price update. The sixth transaction

also did not update the IFU’s balance since it is a transfer

transaction. The seventh transaction is a burning transaction

by user U2, which increases the supply of PAROLE token. As

a result, the per unit price reduces to 0.5 ETH from 0.66 ETH

(Equation 10). Thus, IFU’s balance is reduced to 2.5 ETH,

where his L2 token balance remains the same (1.5 ETH), while

PAROLE portion valuation decreases to 1.0 ETH from 1.32

ETH. Finally, in the eighth transaction, IFU buys a PAROLE

token from user U1, which does not update his total balance;

however, his L2 token balance becomes 1.0 ETH, and PAROLE

portion valuation becomes 1.5 ETH.

Case 2: The second case, as presented in Figure 5(b),

demonstrates an altered order of transactions generated by

the GENTRANSEQ module, resulting in a higher final total

balance for the IFU. Like the previous case, the IFU has an

initial balance of 2.3 ETH. After the first transaction, the IFU’s

balance remains unchanged since it was a transfer transaction.

However, this time, the burning transaction by user U2 takes

place as the second transaction, which increases the supply of

PAROLE token. As a result, the per unit price reduces to 0.33

ETH from 0.4 ETH. Thus, IFU’s balance is reduced to 2.16

ETH from 2.3 ETH, where his L2 token balance remains the

same (1.5 ETH), while PAROLE portion valuation decreases.

This time, the IFU mints at the third transaction, which

increases the per unit price of PAROLE token. His balance has

also increased to 2.37 ETH due to the price update, where his

L2 token balance becomes 1.17 ETH, and the PAROLE portion

valuation increases from 0.66 ETH to 1.2 ETH. The fourth

transaction, as before, keeps the IFU’s balance the same since

it was a transfer transaction. Although the fifth transaction

involved the IFU, it did not update the IFU’s balance since

it was a transfer transaction. As he sold one of his PAROLE

tokens, he now has an L2 token balance of 1.57 ETH, and

PAROLE portion valuation decreases to 0.8 ETH. The sixth

transaction also did not update the IFU’s balance since it is

a transfer transaction. The seventh transaction is a minting

transaction performed by user U19, which changes the price

of a unit PAROLE token from 0.4 ETH to 0.5 ETH (as per

Equation 10). The IFU’s balance is updated since the price of

PAROLE token has increased. His L2 token balance remains

137

(a) (b)
Fig. 6. Comparing the average attack profit while serving different numbers
of IFUs, with variable Mempool sizes: (a) 10% of the aggregators were
adversarial, and (b) 50% of the aggregators were adversarial.

the same, while PAROLE portion valuation increases from 0.8

ETH to 1.0 ETH. Finally, in the eighth transaction, IFU buys

a PAROLE token from user U1, which does not update his total

balance; however, his L2 token balance becomes 1.07 ETH,

and PAROLE portion valuation becomes 1.5 ETH.

Case 3: The third case, as presented in Figure 5(c), demon-

strates the optimal altered order of transactions generated by

the GENTRANSEQ module, resulting in the maximum final

total balance for the IFU. Like case 1, the IFU has an initial

balance of 2.3 ETH. After the first transaction, the IFU’s

balance remains unchanged since it was a transfer transaction.

Similar to case 2, the burning transaction by user U2 takes

place as the second transaction, which increases the supply of

PAROLE token. As a result, the per unit price reduces to 0.33

ETH from 0.4 ETH. Thus, IFU’s balance is reduced to 2.16

ETH from 2.3 ETH, where his L2 token balance remains the

same (1.5 ETH), while PAROLE portion valuation decreases.

In the third transaction, IFU buys a PAROLE token from user

U1, which does not update his total balance; however, his

L2 token balance becomes 1.17 ETH, and PAROLE portion

valuation becomes 0.99 ETH. This time, the IFU mints at

the fourth transaction, which increases the per unit price of

PAROLE token. His balance has also increased to 2.44 ETH

due to the price update, where his L2 token balance becomes

0.84 ETH, and the PAROLE portion valuation increases from

0.99 ETH to 1.6 ETH. The fifth transaction, as before, keeps

the IFU’s balance the same since it was a transfer transaction.

Although the sixth transaction involved the IFU, it did not

update the IFU’s balance since it was a transfer transaction.

As he sold one of his PAROLE tokens, he now has an L2 token

balance of 1.24 ETH, and PAROLE portion valuation decreases

to 1.2 ETH. The seventh transaction also did not update the

IFU’s balance since it is a transfer transaction. Finally, the

eighth transaction is a minting transaction performed by user

U19, which changes the price of a unit PAROLE token from 0.4

ETH to 0.5 ETH (as per Equation 10). The IFU’s balance is

updated since the price of PAROLE token has increased. His

L2 token balance remains the same, while PAROLE portion

valuation increases from 1.2 ETH to 1.5 ETH.

B. Discussion on Findings

We observe that, in all three cases, the IFU’s PAROLE token

portion of the balance has a valuation of 1.5 ETH (three

(a) (b)
Fig. 7. Contrasting the attack’s impact in terms of total profit augmentation
with different percentages of aggregators as adversary (with variable Mempool
sizes): (a) Serving 1 IFU, and (b) Serving 2 IFUs.

tokens priced at 0.5 ETH each). However, the beauty of the

GENTRANSEQ module is displayed through the increased L2

token balance, which is increased in Case 2 (by 7%) and

maximized in Case 3 (increased by 24%). The L2 token

portion of the balance is the non-volatile part of the balance,

meaning that it will not decrease with the burning of tokens

(increased supply). Again, Case 2 will occur in the initial phase

of the training, where the DQN agent only looks for a better

final balance for the IFU. As the agent moves to new episodes,

the rewards function is tuned toward maximizing profit for the

IFU. Consequently, Case 3 takes place after the model is fully

trained to optimize the altered sequence of transactions.

TABLE III
BEHAVIOR OF PAROLE TOKEN IN OPENSEA TRANSACTIONS

TX Type TX Hash Block
Number

L1 state
index

Gas
usage TX fees

Minting 0x8..f56 17934499 115922 90.91% 253 Gwei
Transfer 0x3..5f3 18183117 117994 69.84% 142k Gwei
Burning 0xe..cf2 18184325 118004 69.82% 141k Gwei

VII. EVALUATION

In this section, we conduct experimental analysis using our

own real ERC-721 token PT [23] deployed at the OpenSea
testnet via the Optimism Goerli. We conducted different

token transactions with PT (one instance from each type of

transaction is presented in Table III) and performed its data

and traffic-based simulations to validate the effectiveness and

impact of the attack. First, we analyze the model’s efficiency

in augmenting the IFU’s balance. Then, we investigate the

learning performance of the DQN model. Later, we assess

the attack’s impact in the real-world via NFT snapshots.

Finally, we contrast the performance of the DQN model with

well-known non-linear programming (NLP) solvers. All the

experiments were performed on a computer with an 11th Gen

Intel(R) Core (TM) i7-1195G7 @2.90GHz processor and 16

GB of memory.

A. Influence of IFUs on Attack Profit

In this part, we investigate the influence of the number

of IFUs served on the profit achieved through the PAROLE

attack, as shown in Figure 6. Specifically, we show the average

amount of profit achieved for each IFU. In the first case

(Figure 6(a)), we assume that 10% of the aggregators are

adversarial, i.e., launch the PAROLE attack. As mentioned

138

(a) (b)
Fig. 8. The moving average of the episode rewards accumulated by the DQN
agent with variable ε parameter values, serving (a) 1 IFU, and (b) 2 IFUs.

before in Section V, “Mempool” size indicates the number

of transactions an aggregator collects for processing (different

from Bedrock’s Mempool). We observe that serving less

number of IFUs incurs better results in terms of average profit

per IFU, which is due to the fact that the transactions can only

be re-ordered in ‘N !’ number of ways, and very few alternate

orders could increase the final balance for multiple IFUs. Thus,

as we increase the number of IFUs to be served, the average

profit amount keeps decreasing. We also vary the size of the

Mempool and observe that a larger Mempool helps achieve

better average profit. This is due to the fact that having more

transactions to be ordered gives the DQN agent more flexibility

in terms of possible alternate sequencing to serve the intended

number of IFUs. However, the profit does not linearly increase

as we keep enlarging the Mempool. The profit convergence

can be observed through the lesser difference in profit for

Mempool sizes 50 and 100, compared to the difference with

Mempool sizes 25 and 50. We increase the portion of the

adversarial aggregators in Figure 6(b) to 50% and observe

that the profit per IFU has increased substantially. However,

the first case would be more realistic in real-world optimistic

rollup system. We will further analyze the effect of different

adversarial aggregators’ portions in the next section.

B. Validating Attack Impact w.r.t. Adversarial Proportion

In this section, we experiment with different percentages of

the aggregators as adversarial and observe the corresponding

summations of total profits for all the IFUs, as shown in

Figure 7. Initially, we consider 1 IFU to be served by the ad-

versarial aggregators, illustrated in Figure 7(a). It is observed

that the total profit increases as the proportion of adversarial

aggregators is increased; however, in the case of Mempool size

of 50, the trend of increase somewhat converges around 110k

Satoshis (from 20% to 40%). Conversely, a linear increase is

observed with a Mempool size of 100. The reason behind this

is with a smaller Mempool, there are fewer alternate sequences

to increase the total profit, even if there is a higher percentage

of attackers. With a larger Mempool, each attacker finds more

solutions and moves towards the optimal one. In Figure 7(b),

2 IFUs are served; however, the total profit increase is not

linear. This refers back to the observation we achieved in the

previous section.

C. Performance Assessment of the DQN Model

In this section, we observe the reward accumulation

throughout the training episodes of the DQN agent, as shown

(a) (b)
Fig. 9. Kernel Density Estimate curves for solution size in terms of the
number of swaps performed by the DQN agent to find the first candidate
solution: with (a) Mempool size = 50, and (b) Mempool size = 100.

in Figure 8. We specifically present the moving average of

the reward units with a window size of 9. In the first case

(Figure 8(a)), we set the number of IFUs to one and observe

the reward accumulation with different ε values. It is observed

that when training starts with ε being set to ‘0’, the average

moving reward does not increase that much, even after being

close to termination episodes. This is due to the fact that the

agent always exploits the Q-network for action decisions. As

a result, much of the environment (e.g., potential solutions

with higher rewards) is left unexplored. The agent learns a

few swapping behaviors and gets trapped in a local optimum.

On the other hand, with ε being set to ‘1’, the agent explores

the solution space and performs significantly better. Even the

first moving average (of the first nine episodes) is higher

than the previous case. The choice of ε being set to ‘0.5’

also derives intelligent behavior; however, the learning is a

bit slow in terms of episode number compared to the ‘1’

case. We further experiment with IFUs being set to two in

Figure 8(b), and observe similar results. However, in this case,

the rewards are in the range of approximately -30K to 1K units,

which is worse compared to the one IFU case (approximately

-18K to 5K units). It is evident that finding the sequence of

transactions that serve more IFUs requires more exploration of

the environment, causing more penalizable actions. Further, it

is observed that the choice of ‘1’ does not increase the reward

prominently after around 70 episodes since the maximum

achievable reward is reached.

Fig. 10. Analyzing real-world monetary impact via NFT snapshots.

D. Distribution of Solution Sizes

In this section, we discuss the distribution of solution

sizes with different numbers of IFUs to serve, using Kernel

Density Estimate (KDE) curves (Figure 9). In the first case

(Figure 9(a)), we set the Mempool size to 50 and observe that

the solutions with approximately five actions have the highest

probability when only one IFU is served. This means that with

a trained DQN agent, in most cases, five swaps will outcome

a sequence that will maximize the balance of the only IFU.

139

(a) (b)
Fig. 11. Contrasting the DQN inference performance with non-linear pro-
gramming solvers in terms of, (a) the execution times of the solvers, and (b)
the memory usage by the solvers.

As we keep increasing the number of IFUs to be served, we

observe the distribution to be more spread in larger ranges.

We observe similar trends in Figure 9(b), where the Mempool

size is increased to 100. However, this time, the three IFUs and

four IFUs are concentrated on multiple peaked regions, which

is due to the fact that with the increased Mempool size, the

agent finds multiple candidate strategies with potentially larger

solution space.

E. Attack impact in Real-world NFTs

In this section, we analyze the impact of the PAROLE attack

in real-world NFT marketplaces in terms of profit gain. We

investigate historical snapshots of NFTs (deployed through

optimistic rollup mainchains), including details such as prices,

transaction volumes, and other relevant information (through

wallet address and NFT minting contract address lookups via

websites such as “holders.at” [59]). We searched for instances

where the same NFT was priced differently at different times

and looked for arbitrage opportunities among the transactions.

As shown in Figure 10, we divide the NFTs into three

categories according to the frequency of their transactions

(FT): i. less than 100 ownerships (e.g., 0x7A..c8e deployed

via Optimism) as low FT (LFT), ii. ownerships between 101

to 3000 (e.g., 0xCE..791 deployed via Arbitrum) as medium

FT (MFT), and iii. more than 3000 ownerships as high FT

(HFT). We observe that there is a higher arbitrage opportunity

with the NFTs deployed via the Arbitrum chain compared to

Optimism. We also calculate the total profit opportunity by

deriving the relation we obtained through our simulation-based

experiments. We want to emphasize that this analysis is solely

based on our observation of the snapshots and experiments.

F. Contrasting DQN performance with NLP Solvers

In this part, we contrast the DQN’s inference performance

(since IFU trains the model offline) with other existing solvers.

As the NFT transaction re-ordering task is a non-linear opti-

mization problem (discussed in Section I), we contrast with

the well-known NLP solvers: Advanced Process OPTimizer

(APOPT), Modular In-core Non-linear Optimization System

(MINOS), and Sparse Non-linear OPTimizer (SNOPT). First,

we compare the execution times of each solver with the

DQN inference time, as shown in Figure 11(a). We observe

that DQN consumes the minimal time among all the solvers

compared. Although, for 5 transactions in the Mempool, we

observe SNOPT performed slightly better than DQN, as we

increased the number of transactions resembling real-world

scenarios, SNOPT performance got worse, following a similar

trend as the other NLP solvers. DQN, on the other hand,

showed a rather linear increase with the larger sizes of

Mempool. We also compare the memory usage of the solvers

(Figure 11(b)) and observe that DQN inference consumed

minimal memory, even if we keep increasing the Mempool

size. These experiments validate the choice of utilizing DQN

instead of the NLP solvers since time is critical in off-

chain transaction processing, while memory usage directly

influences the attack cost.

VIII. POTENTIAL DEFENSE TECHNIQUE

The aggregators periodically interact with the Bedrock

nodes to gather transactions from Bedrock’s Mempool [13].

The problem with the current sequencing technique of

Bedrock’s Mempool is it prioritizes the transactions according

to only the base and priority fees, which allows the opportunity

for arbitrage. While in the pending state, if newer transactions

with higher fees are received, the general approach that

Mempools follow is to send the transactions with the lowest

fees to the block behind [60].

As a potential defense technique to address the PAROLE

attack, we propose to include the GENTRANSEQ module as an

attack detection mechanism in Bedrock’s Mempool. Initially,

the order with the base and priority fee will be considered

and sent to the GENTRANSEQ module to observe the worst

case (maximum profit for any of the users involved in the

pending transactions). If the worst case is below a predefined

threshold (depending on the priority fee), then no action will

be performed since the arbitrage is negligible, considering

the priority of the transactions. However, if the worst case

is above the calculated threshold, then the minimal number

of involved transactions to avoid arbitrage will be sent to

the block behind. In our future work, we will demonstrate

the approach in detail and validate the effectiveness of the

proposed defense technique.

IX. CONCLUSION

In this work, we introduced a novel attack technique in op-

timistic rollup systems, enabling an adversarial aggregator to

achieve profitable arbitrage by rearranging NFT transactions.

We conducted a comprehensive analysis of the attack along

with a detailed explanation of the DQN model utilized by

the GENTRANSEQ module. We discussed a few case studies

that explained how the PAROLE attack augments the non-

volatile part of the IFU balance. Through our own test NFT-

based simulations, we demonstrated the specific impacts of the

attack, including monetary gains with variable environment

setups. We found that serving less number of IFUs incurs

better profit per IFU while having a larger Mempool makes

it convenient for the attacker to look for an optimal solution

with a potentially better solution space. Finally, we validated

the attack’s impact using real-world rollup NFT snapshots,

analyzing the monetary benefits through the PAROLE attack.

140

REFERENCES

[1] S. Nakamoto, “Bitcoin whitepaper,” URL: https://bitcoin. org/bitcoin.
pdf-(: 17.07. 2019), 2008.

[2] A. A. Khalil, J. Franco, I. Parvez, S. Uluagac, H. Shahriar, and
M. A. Rahman, “A literature review on blockchain-enabled security
and operation of cyber-physical systems,” in 2022 IEEE 46th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE,
2022, pp. 1774–1779.

[3] D. Yang, C. Long, H. Xu, and S. Peng, “A review on scalability
of blockchain,” in Proceedings of the 2020 the 2nd International
Conference on Blockchain Technology, 2020, pp. 1–6.

[4] T. Rajabi, A. A. Khalil, M. H. Manshaei, M. A. Rahman, M. Dakhilalian,
M. Ngouen, M. Jadliwala, and A. S. Uluagac, “Feasibility analysis for
sybil attacks in shard-based permissionless blockchains,” Distributed
Ledger Technologies: Research and Practice, vol. 2, no. 4, pp. 1–21,
2023.

[5] A. Singh et al., “Sidechain technologies in blockchain networks: An
examination and state-of-the-art review,” Journal of Network and Com-
puter Applications.

[6] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”
White paper, pp. 1–47, 2017.

[7] A. A. Khalil, M. A. Rahman, and H. A. Kholidy, “Fakey: Fake hashed
key attack on payment channel networks,” in 2023 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2023, pp. 1–9.

[8] A. A. Khalil and M. A. Rahman, “Ship: Securing hashed timelock
contracts in payment channel networks,” in 2023 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2023, pp. 1–2.

[9] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain scaling using
rollups: A comprehensive survey,” IEEE Access, 2022.

[10] J. Hamid, “Binance: All ethereum rollups are centralized,” https://www.
cryptopolitan.com/binance-all-ethereum-rollups-are-centralized/.

[11] Optimism-Documentation, “Bedrock explainer,” https://community.
optimism.io/docs/developers/bedrock/explainer/.

[12] R. Coll Aumatell, “Analysis and development of blockchain rollups,”
Master’s thesis, Universitat Politècnica de Catalunya, 2021.

[13] Optimism-Documentation, “Mempool,” https://community.optimism.io/
docs/developers/bedrock/differences/#mempool.

[14] R. McLaughlin et al., “A large scale study of the ethereum arbitrage
ecosystem,” in USENIX Security 2023.

[15] L. Zhou et al., “On the just-in-time discovery of profit-generating
transactions in defi protocols,” in 2021 IEEE SP.

[16] Y. Wang et al., “Cyclic arbitrage in decentralized exchanges,” in Com-
panion Proceedings of the Web Conference 2022.

[17] V. von Wachter et al., “Nft wash trading: Quantifying suspicious
behaviour in nft markets,” arXiv preprint arXiv:2202.03866, 2022.

[18] I. Bogatyy, “How we made $100k trading
cryptokitties.” https://medium.com/@ivanbogatyy/
how-we-made-100k-trading-cryptokitties-2d69aebe715b.

[19] S. Malwa, “Did an “art heist” just happen on an
ethereum cryptopunks nft?” https://cryptoslate.com/
did-an-art-heist-just-happen-on-an-ethereum-cryptopunks-nft.

[20] B. White, A. Mahanti, and K. Passi, “Characterizing the opensea nft
marketplace,” in Companion Proceedings of the Web Conference 2022.

[21] R. Chohan and J. Paschen, “Nft marketing: How marketers can use
nonfungible tokens in their campaigns,” Business Horizons, 2023.

[22] V. François-Lavet et al., “An introduction to deep reinforcement learn-
ing,” Foundations and Trends® in Machine Learning, 2018.

[23] PARolE, “Paroletoken (pt) at opensea market-
place,” https://testnets.opensea.io/assets/optimism-goerli/
0xd27e14457926495bcf06a3c029ef3ef43a2c4a93/0.

[24] K. Croman et al., “On scaling decentralized blockchains: (a position
paper),” in International conference on financial cryptography and data
security. Springer, 2016.

[25] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, pp. 2–1, 2014.

[26] T. Yu et al., “Dual-blockchain-based p2p energy trading system with an
improved optimistic rollup mechanism,” IET Smart Grid, 2022.

[27] T. Schaffner, “Scaling public blockchains,” A comprehensive analysis of
optimistic and zero-knowledge rollups. University of Basel, 2021.

[28] M. Di Angelo and G. Salzer, “Tokens, types, and standards: identification
and utilization in ethereum,” in 2020 IEEE DAPP.

[29] P. Cuffe, “The role of the erc-20 token standard in a financial revolution:
the case of initial coin offerings,” 2018.

[30] M. A. Wiering and M. Van Otterlo, “Reinforcement learning,” Adapta-
tion, learning, and optimization, vol. 12, no. 3, p. 729, 2012.

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[32] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[33] Z. Xiong et al., “Practical deep reinforcement learning approach for
stock trading,” arXiv preprint arXiv:1811.07522, 2018.

[34] J. Piet et al., “Extracting godl [sic] from the salt mines: Ethereum miners
extracting value,” arXiv preprint arXiv:2203.15930, 2022.

[35] K. Qin et al., “Quantifying blockchain extractable value: How dark is
the forest?” in 2022 IEEE SP.

[36] M. Bartoletti, J. H.-y. Chiang, and A. Lluch Lafuente, “Maximizing
extractable value from automated market makers,” in Conference on
Financial Cryptography and Data Security. Springer 2022, 2022.

[37] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

[38] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty:
front-running attacks on blockchain,” in Financial Cryptography and
Data Security: FC 2019 International Workshops, VOTING and WTSC,
St. Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised Selected
Papers 23. Springer, 2020, pp. 170–189.

[39] L. Zhou, K. Qin, and A. Gervais, “A2mm: Mitigating frontrunning,
transaction reordering and consensus instability in decentralized ex-
changes,” arXiv preprint arXiv:2106.07371, 2021.

[40] J. Xu and B. Livshits, “The anatomy of a cryptocurrency {Pump-
and-Dump} scheme,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1609–1625.

[41] N. Gandal, J. Hamrick, T. Moore, and T. Oberman, “Price manipulation
in the bitcoin ecosystem,” Journal of Monetary Economics, 2018.

[42] J. Kamps and B. Kleinberg, “To the moon: defining and detecting
cryptocurrency pump-and-dumps,” Crime Science, 2018.

[43] S. S. Roy, D. Das, P. Bose, C. Kruegel, G. Vigna, and S. Nilizadeh,
“Demystifying nft promotion and phishing scams,” arXiv preprint
arXiv:2301.09806, 2023.

[44] J. Huang, N. He, K. Ma, J. Xiao, and H. Wang, “A deep dive into nft
rug pulls,” arXiv preprint arXiv:2305.06108, 2023.

[45] T. Sharma, R. Agarwal, and S. K. Shukla, “Understanding rug pulls: An
in-depth behavioral analysis of fraudulent nft creators,” arXiv preprint
arXiv:2304.07598, 2023.

[46] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: identification, analysis, and impact,” Future
Generation Computer Systems, vol. 102, pp. 259–277, 2020.

[47] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, and Y. Zhou, “Exploiting
blockchain data to detect smart ponzi schemes on ethereum,” IEEE
Access, vol. 7, pp. 37 575–37 586, 2019.

[48] M. La Morgia et al., “A game of nfts: Characterizing nft wash trading
in the ethereum blockchain,” in 2023 IEEE ICDCS.

[49] G. Bonifazi et al., “Performing wash trading on nfts: Is the game worth
the candle?” Big Data and Cognitive Computing, 2023.

[50] S. Serneels, “Detecting wash trading for nonfungible tokens,” Finance
Research Letters, vol. 52, p. 103374, 2023.

[51] D. Liu, F. Piccoli, K. Chen, A. Tang, and V. Fang, “Nft wash trading
detection,” arXiv preprint arXiv:2305.01543, 2023.

[52] X. Wen, Y. Wang, X. Yue, F. Zhu, and M. Zhu, “Nftdisk: Visual
detection of wash trading in nft markets,” in Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems, 2023.

[53] M. Ciampi et al., “Fairmm: A fast and frontrunning-resistant crypto
market-maker,” in International Symposium on Cyber Security, Cryptol-
ogy, and Machine Learning. Springer, 2022.

[54] 2022, “Flashbots,” https://docs.flashbots.net/.
[55] Gnosis, “Gnosis protocol,” https://gnosis.io/.
[56] M. M. Chakravarty et al., “The extended utxo model,” in Financial

Cryptography and Data Security: FC 2020 International Workshops.
[57] Alchemy-Documentation, “What is the optimistic virtual

machine (ovm)?” https://www.alchemy.com/overviews/
optimistic-virtual-machine.

[58] E. Barron and H. Ishii, “The bellman equation for minimizing the
maximum cost.” NONLIN. ANAL. THEORY METHODS APPLIC., 1989.

[59] J. Quack, “holders.at,” https://holders.at/.
[60] M. O. S. Project, “mempool.space,” https://mempool.space/.

141

