
A Fast Low-Level Error Detection Technique

Zhengyang He†, Hui Xu‡, Guanpeng Li†
† University of Iowa, Iowa City, IA, USA

‡ Fudan University, Shanghai, China

zhengyang-he@uiowa.edu, xuh@fudan.edu.cn, guanpeng-li@uiowa.edu

Abstract—As transistors continue to shrink in size, the soft
error rate in computer systems is rising, posing a critical threat of
severe failures. error detection by duplicating instruction (EDDI)
has been proposed as a prominent software-based technique
for detecting soft errors. However, utilizing EDDI specifically at
the assembly level has not been well explored in the literature.
Towards this end, the paper introduces FERRUM, an innovative
assembly level EDDI, which is a boosted version compared with
the original assembly level EDDI by using SIMD and other
compiler-level transformations. We evaluate FERRUM in both
fault coverage and runtime performance compared with IR level
EDDI and original assembly level EDDI. The results show that
FERRUM not only ensures 100% protection coverage at the
assembly level but also surpasses baseline techniques by more
than 50% in runtime performance overhead.

Keywords—Silent Data Corruption, Error Resilience, Fault
Injection, Instruction Duplication

I. INTRODUCTION

Transient hardware faults, commonly known as soft errors,

have been increasingly prevalent due to ongoing trends in

hardware design, including the reduction in the sizes of

transistors and operating voltages [1], [2]. These faults, often

triggered by atmospheric particles such as alpha or neutron

particles, pose a significant risk of silent data corruptions

(SDCs) which potentially lead to incorrect program outputs,

seriously compromising the dependability of modern com-

puter systems [3]–[5]. Traditional hardware-based protection

strategies, such as voltage guard bands, hardware redundancy,

and circuit hardening methods, though effective in mitigating

these faults, have become less viable due to their substantial

overheads in performance and energy consumption [6], [7].

To overcome the challenges, researchers have proposed

software solutions [5], [8]–[11]. To date, error detection by

duplicating instructions, or EDDI, is a particularly popular

technique that has been applied in many application scenar-

ios [5], [8], [12]. EDDI duplicates instructions at compile

time and detects mismatch at runtime if any of the two

copies is corrupted due to errors. The technique requires no

modifications to hardware and thereby provides a more flexible

and often less resource-intensive alternative compared with

traditional hardware-based solutions.

Instruction duplication can be deployed across various

system levels. However, a vast number of existing methods

are implemented at LLVM intermediate representation (IR)

level [5], [8], [12]–[16], whereas it is rare that the technique

is engineered from lower layer such as assembly level. The

reasons are threefold: First, LLVM IR benefits from a well-

established set of openly available compiler tools and libraries

supported by many communities from both academia and

industry to facilitate the implementation [17], [18]. Secondly,

the IR excels in conducting detailed program analysis, offering

the advantage of application-specific designs. Finally, there

has been a substantial body of existing research and open

library on instruction duplication, supplying the basic building

blocks for implementing the technique [8], [13], [14]. As a

result, implementing EDDI at assembly level remains largely

underexplored.

In the past, there have been studies that show existing

EDDI techniques in the literature, that is, those implemented

at IR level, suffer from non-negligible loss of error coverage

in the protection [13], [19]. The technique often shorts on

the error detection coverage of SDC even though a program

is fully protected by duplicating all the IR instructions. The

issues are acute especially when the protected programs are

evaluated with a more realistic fault injection technique such

as those conducted at assembly level, not to mention using

more representative methods such as beam testing [20]. As

a result, there is a strong demand to explore EDDI at lower

layer of software stack where is close to the occurrence of

hardware faults

In this paper, we propose a method that implements, op-

timizes and evaluates EDDI at assembly level, which will

support research and engineering studies in the area. We

observe that there is possible potential to improve EDDI

coverage and performance at assembly level via exploring the

under-utilization in CPUs with x86 ISA as well as compiler-

level optimizations. We carefully engineer the technique,

FERRUM, that duplicates and protects assembly instructions

of a program. Our evaluation shows that FERRUM provides

100% SDC coverage at assembly level in contrast to 72%

provided by existing IR-level EDDI, with nearly 52% speed-

up in runtime performance overhead. To our best knowledge,
we are the first ones who dive into the optimization of the
assembly-level EDDI at the lower layer, conducting an end-
to-end evaluation and analysis of the protections with existing
state-of-the-arts for both performance and fault coverage.

Our main findings are as follows:

• We evaluate existing IR-level EDDI technique and ob-

serve there is a non-negligible gap (28% on average)

between the anticipated SDC coverage and the actual

measured one when evaluating at a lower layer such as

assembly level.

90

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00023

• By studying the working principle of EDDI, we replicate

an implementation of existing EDDI at assembly level.

In our evaluation, we observe that the SDC coverage

reaches 100% when evaluating at assembly level. The

observation confirms that the protection at lower layer can

be much more effective in terms of fault coverage due to

the absence of uncertainty from the backend cross-layer

compilation process.

• However, the performance overhead of assembly-level

EDDI is higher compared with existing IR-level EDDI

(by 30% on average). We analyze the root causes and

find that the source of the additional overheads is mainly

from the additional unprotected footprint generated by the

backend compiler when compiling from IR to assembly.

• We further explore the optimization opportunities at

assembly level when designing EDDI. We find that it

is possible to leverage under-utilized resources such as

SIMD capability of modern processors to optimally en-

gineer EDDI at assembly level in order to improve the

performance and space overhead.

• Based on the findings, we deliver our technique, FER-

RUM. Our evaluation shows that FERRUM achieves an

average of 52% speed-up in runtime performance while

maintaining full SDC coverage compared with existing

IR-level EDDI. The results show that FERRUM is superior

over existing state-of-the-art EDDI technique in both

SDC coverage and performance.

II. BACKGROUND

In this section, we first introduce the fault model and fault

injection method in our study, followed by a description of

working principle of EDDI. Finally, we discuss the compiler

and platform we use.

A. Fault Model

We focus on single bit-flip transient hardware faults in

processor computing components, including pipeline stages,

arithmetic components, and load/store units, etc. We do not

consider faults in the memory or caches, as we assume they

have already been protected by ECC [6]. This is a common

fault model used in related studies where EDDI techniques are

applied [5], [8], [9], [21]. There are recent studies showing

that multiple bit-flips are limited in current systems but may

become a concern in the future [14], [22]. However, the

majority of current work in the literature focuses on single

bit-flip faults. Hence, we do so as well in this study. Exploring

multiple bit-flips are our future work.

B. Choice of Fault Simulation

Fault simulation, commonly referred to as fault injection,

is a procedure to replicate the fault occurrence process. It is

frequently used in studies that investigate program-level fault

tolerance. EDDI techniques have been also evaluated using

similar methods in the past [13], [14].

Fault simulations can be done at different levels. For ex-

ample, program level, architectural level, beam testing etc.

Among all, beam testings are believed to be the most rep-

resentative methods as they are close to how soft errors are

naturally triggered [20]. However, due to the limited resources

and facilities available to the public, there are only a few

experts in the area who may access the technique [20], [23],

[24], hence we cannot use beam testing in our work. On the

other hand, micro-architectural level fault injections can be

used [25], [26]. However, due to the proprietary nature of CPU

designs, it remains a question whether publicly available archi-

tectural simulators can be representative to emulate the faults.

Finally, program-level fault simulations can be conducted at

both LLVM IR and assembly levels [18], [27]. Tools at this

point are much more accessible, there are openly available

fault injectors at both LLVM and assembly levels, such as

LLFI [27] and PINFI [18]. There are ongoing debate on which

layers are more accurate [18], [28]. To be conservative, we

choose to conduct our fault injection at assembly instruction

level as there is a wide acceptance and numerous precedents

on injecting faults at assembly level in the closely related

studies [13], [28].

C. Working Principle of EDDI

The EDDI process involves creating a duplication of an

instruction and comparing the computations between the

original instruction and the duplicated one. The duplication

of instructions and the placement of checkers are done at

compile-time, then the checker placed will be executed for

checking any mismatch at runtime for error detection.

Fig. 1. High-level idea of EDDI

Figure 1 shows an example of instruction duplication tech-

nique. Figure 1-(a) represents the original program, figure 1-

(b) shows the protected version after EDDI. In the example,

Inst1, Inst2, Inst3, Inst4, Inst5 are instructions in a data

dependence sequence in a program, and Inst5 denotes a syn-

chronization point (e.g., store, control-flow branch, function

call) at the end of this sequence. A data dependence sequence

outlines the order in which data must be processed to ensure

correct program execution. EDDI will duplicate Inst1, Inst2,
Inst3, Inst4 and insert a checkpoint before Inst5. If any faults

happen at either original or duplicated instructions, the checker

will detect the mismatch at runtime and report the error (if

any).

In figure 2, we illustrate the code examples of the same

program fragment at C source code and LLVM IR, showing

the protection that EDDI provides. The original C code defines

91

a simple function ‘add‘ that takes two integers as arguments

and returns their sum. After compiled to LLVM IR, EDDI

duplicates load and add instructions, and then adds a checker

after the duplication.

1 // High-level C code
2 int add(int a, int b) {
3 return a + b;
4 }

1 define i32 @add(i32 %a, i32 %b) {
2 entry:
3 %a.addr = alloca i32, align 4
4 %b.addr = alloca i32, align 4
5 store i32 %a, i32* %a.addr, align 4
6 store i32 %b, i32* %b.addr, align 4
7 ;Duplicate instruction
8 %0 = load i32, i32* %a.addr, align 4
9 %1 = load i32, i32* %a.addr, align 4

10 ;Duplicate instruction
11 %2 = load i32, i32* %b.addr, align 4
12 %3 = load i32, i32* %b.addr, align 4
13 ;Duplicate instruction
14 %add = add nsw i32 %0, %1
15 %add2 = add nsw i32 %2, %3
16 ;Check the results
17 %cmp = icmp eq i8** %add, %add2
18 br i1 %cmp, label %4, label %checkBb
19

20 checkBb:
21 call void @check_flag()
22 br label %4
23

24 <label>:4
25 ret i32 %add
26 }

Fig. 2. IR code examples of using EDDI

D. Compilation

Most existing EDDI tools available in the literature are

implemented at LLVM IR level due to the availability of

compiler tools in both code analysis and transformation in

LLVM [8], [14], [17]. The procedure of using existing IR-

level EDDI is as follows: First, the source code of the target

program needs to be compiled to LLVM IR code. In this

step, LLVM compiler (e.g., Clang) is used. Then an EDDI

library, as a set of LLVM compiler passes, is invoked on top

of the target program IR code, transforming the IR code to a

protected version of IR. Finally, the protected IR code is down

compiled via backend compiler to the executable.

On the other hand, it is possible to deploy EDDI at assembly

level, a straightforward process is as follows: The source of

target program is compiled down to assembly code, then EDDI

methodology can be applied on the compiled assembly code

before translating to executable. Due to the lack of openly

available tools and implementations of assembly-level EDDI,

most studies in the literature focus on LLVM-IR-level EDDI.

E. Platform

We target x86 ISA platform where we design and develop

our proposed technique and test existing EDDI techniques.

This is because x86 is one of the most popular platform [29],

and thereby our choice. Other ISAs with similar features and

designs may have similar designs when deploying EDDI, but

we refer to the extension to other platforms as our future work.

III. FERRUM

In this section, we first describe the overall design of

FERRUM, and then we dive into the technical details of the

technique before we discuss the implementation.

Fig. 3. FERRUM design

A. High-Level Design

We describe the overall design of our proposed technique.

Recall that FERRUM aims to protect programs from hardware

transient faults at assembly instruction level. The detailed steps

of the technique is presented in figure 3. There are four key

steps in the technique: First, FERRUM scans and examines

all the registers that the target program has used, and figures

out which ones are spare and available for implementing the

protection. In our technique, the registers are classified into

two groups. One is general-purpose registers, while the other

one is SIMD registers. During the tracking, FERRUM keeps a

record of the usage in both groups. At the same time, FERRUM

performs instruction annotation by examining each instruction

in the code, and determines if the instruction can be duplicated

and checked via SIMD fashion. After FERRUM knows the

spare registers and instruction information, it duplicates the

instruction and places the checkers accordingly. In a nutshell,

based on the availability of spare registers and the type of

instructions, FERRUM duplicates instructions and places the

data into available SIMD registers first before considering

general-purpose registers. In the cases where there are no spare

registers in either group, FERRUM leverages stack in memory

at certain points of the program execution to temporarily buffer

selected registers and make them available for duplication

before restoring their states.

92

B. Components of FERRUM

1) Static Code Analysis: In this phase, FERRUM first

conducts static analysis to the target code. There are two

goals in this step: (1) Identifying spare registers, and (2)

annotating each instruction. FERRUM does so by examining

every instructions in the code, starting from the beginning.

To identify spare registers, FERRUM keeps record of the

usages in both general-purpose and SIMD registers throughout

the program code. After counting the usage of the registers, we

check if the spare registers are enough for implementing our

protection. For general-purpose registers, FERRUM requires

two spare registers. This is because we need one register to

protect GENERAL-INSTRUCTIONS showed in figure 4 and two

registers to protect comparison instructions showed in figure 5

Whereas for SIMD registers, it demands 4 spare XMM regis-

ters for SIMD execution. These are the minimum number of

spare registers for implementing FERRUM in a target program

to fully leverage SIMD and register-level data redundancy.

However, if the number of spare registers falls below these

thresholds, FERRUM will handle the data redundancy in the

protection using stack and make registers temporarily available

in the protection before restoring them back to normal (more

in in Section III-B4). The reason FERRUM demands 4 spare

XMM registers, for example, is because we eventually need

to shift 4 XMM into 2 YMM registers for comparison so on

and so forth.

During instruction annotation, for each instruction, FERRUM

examines whether the target instruction is suitable for using

SIMD. In x86, FERRUM does so by checking if the source

register is the same as the destination register. This is because

if an instruction uses the same register as both source and

destination, there will be no corresponding single operation for

moving the data to SIMD register for execution. Consequently,

a few more instructions need to be added to move the data

which significantly prolongs hinders the execution time. This

is a limitation of current x86 ISA support for SIMD, but

future development of the ISA may address this issue. For

the instructions where SIMD execution can be utilized, we

name them SIMD-ENABLED-INSTRUCTIONS. For the rest,

we name them GENERAL-INSTRUCTIONS. The protection

strategies will be different based on the type of instructions.

2) Duplication for GENERAL-INSTRUCTIONS: To this end,

FERRUM duplicates each instruction and places checkers for

the duplication. For GENERAL-INSTRUCTIONS, FERRUM du-

plicates the target instruction with the same source registers

and replaces the target register with one available general-

purpose register, and then places a jne instruction for com-

paring the duplicated result with the original computation.

A code example is shown in figure 4 for the protection of

GENERAL-INSTRUCTIONS. In the example, FERRUM aims to

protect movslq instruction. In this case, there is only one spare

register is needed for duplicating and checking the results.

Figure 5 shows another example of protecting GENERAL-

INSTRUCTIONS. The code example is for protecting compar-

ison instruction. As seen, for storing the result of the cmpl,

1 .LBB0_3:
2 ...
3 movslq %ecx, %r10
4 movslq %ecx, %rcx #original instruction
5 xorq %rcx, %r10
6 jne exit_function
7 ...

Fig. 4. Protection of GENERAL-INSTRUCTIONS

two spare registers are needed. The cmpl instruction changes

the rflag register according to the result of cmpl instruction.

However, the rflag register is different from other registers

because its value cannot be directly and explicitly used for

comparison as is done with other registers. Retrieving its value

from stack requires expensive data movement, which will be

inefficient. To address this issue, we propose deferred detection
to safeguard the rflag register. This approach involves inserting

an operation after each comparison instruction that determines

the jump destination, prior to any jump instruction. This

operation is designed to transfer the zero flag from the rflag
register to a spare register. This procedure is repeated another

time in order to duplicate the jump instruction and store the

value into the additional spare register. It is important to

note that we avoid immediate comparison of the two registers

since such an operation would modify the value in the rflag
register, voiding our effort of the protection. Instead, FERRUM

identifies the basic block of code associated with the jump

instruction. During the execution of the basic block, FERRUM

first performs a check on the registers to detect if there is a

mismatch, hence to protect comparison instruction. Note that

our approach still works if there are multiple predecessors,

and the trick lies in that we employ the same registers for

comparison instructions. According to liveness analysis, after

the check process, the register can immediately be put into

new use. Our approach does not especially take indirect jump

into consideration, because such cases (e.g., goto statement)

are not suggested [30].

The example illustrates that after the comparison instruction,

a set instruction ’sete %r11b’ is appended for storing the zero

flag’s value. FERRUM then duplicates the instruction, storing

the result of a second cmpl operation in ’%r12b’. Subse-

quently, it jumps to the potential target address (’.LBB7 4’ in

this example) and performs an XOR check, hence protecting

the rflag register.

3) Duplication for SIMD-ENABLED-INSTRUCTIONS: The

main idea to protect SIMD-ENABLED-INSTRUCTIONS is that

we duplicate SIMD-ENABLED-INSTRUCTIONS and shift mul-

tiple duplication and original results to SIMD registers, then

compare the values at once. Since SIMD registers are larger

than general purpose registers in size, a SIMD register can hold

multiple results of general-purpose registers of which size are

up to 64 bits. For example, a XMM register has 128 bits in

width, and a YMM register holds 256 bits, whereas a general-

93

1 .LBB7_3:
2 ...
3 cmpl -12(%rbp), %eax
4 sete %r11b #set original flag
5 cmpl -12(%rbp), %eax
6 sete %r12b #set duplication flag
7 jl .LBB7_4
8 ...
9 .LBB7_4:

10 xor %r11b, %r12b #check flag value
11 jne exit_function
12 ...

Fig. 5. Protection of comparison instruction

purpose register has only up 64 bits. Therefore, by having 4

spare XMM registers, 2 of them stores 4 computation results

for original instructions and the other 2 stores 4 computation

results for the duplicated instructions, we can shift them into 2

spare YMM registers and compare the two at once using SIMD

execution. Note that it is also viable to leverage ZMM registers

in our design, of which each has 512 bits, it depends on the

underlying CPU architecture – only part of high-performance

processors from Intel supports ZMM registers [31].

To implement the logic, when FERRUM imposes duplication

for SIMD-ENABLED-INSTRUCTIONS, a counter is maintained

in order to track how many duplications have been shifted into

each SIMD register. In the case of reaching the end of a basic

block, FERRUM has to check the mismatch even if the SIMD

registers are not full.

1 BB1:
2 movq -24(%rbp), %xmm0
3 movq -24(%rbp), %rax #original Ins
4 movq %rax, %xmm1
5 pinsrq $1, 8(%rax), %xmm0
6 movq 8(%rax), %rdi #original Ins
7 pinsrq $1, %rdi, %xmm1
8 ...
9 movq -24(%rbp), %xmm2

10 movq -24(%rbp), %rax #original Ins
11 movq %rax, %xmm3
12 pinsrq $1, 16(%rax), %xmm2
13 movq 16(%rax), %rdi #original Ins
14 pinsrq $1, %rdi, %xmm3
15 vinserti128 $1, %xmm2, %ymm0, %ymm0
16 vinserti128 $1, %xmm3, %ymm1, %ymm1
17 vpxor %ymm1, %ymm0, %ymm0
18 vptest %ymm0, %ymm0
19 jne exit_function
20 ...

Fig. 6. FERRUM using SIMD capability

Figure 6 illustrates an example of the protection for SIMD-

ENABLED-INSTRUCTIONS in Pathfinder benchmark. In this

example, the first step involves copying the results of the target

instruction and its original outcome into the lower 64 bits of

the xmm0 and xmm1 registers, respectively. Subsequently, the

result of the second instruction is shifted directly into the upper

64 bits of xmm0 and xmm1 registers. This same procedure is

repeated for the third and fourth instructions, with their results

being stored in the xmm2 and xmm3 registers. Once the shifts

are completed, it is important to note that modifying the xmm0
and xmm1 registers effectively alters the lower 128 bits of the

ymm0 and ymm1 registers. Therefore, we only need to move

the contents of xmm2 and xmm3 into the upper 128 bits of the

corresponding ymm registers to move all the results into one

register, then place a checker to check mismatch. After this

transfer is complete, a comparison operation is inserted and

performed for checking mismatch at runtime using SIMD.

4) Stack-Level Data Redundancy: When encountering the

situations where the number of the spare registers fall below

the thresholds, FERRUM identifies the registers that are not

used inside each basic block and makes them temporarily

available by buffering their data onto stack, then restoring them

before jumping to next basic block.

Figure 7 shows an example of this. In the example, there

are no spare general-purpose registers that can be used for

duplication. However, r10 register is not used in this basic

block. In this case, upon entering the basic block, FERRUM

inserts a ’push %r10’ instruction to push r10 onto the stack

and makes it available for using. Inside the basic block, r10
is used for the duplication and checking. At the end of the

basic block, once the checking is completed, the value of r10
is popped from the stack through ’pop %r10’ operation. This

process allows for the temporary requisition of registers for in-

struction duplication with some extra performance overheads.

We evaluate the technique in Section IV.

5) Other ISAs: As previously discussed, we implement

FERRUM based on the x86 ISA due to its popularity in

modern computing systems. However, it is possible to port

FERRUM to other ISAs. For instance, the ARM architecture

benefits significantly from the NEON SIMD instruction sets,

which are optimized for efficient execution on ARM-based

systems. Similarly, the AVX-512 instruction set enhances the

x86 architecture by introducing ZMM registers, facilitating

more efficient data backup and comparison operations. Hence,

other platforms may offer additional optimization opportuni-

ties based on the characteristics of each ISA. We refer the

extension to other ISAs as our future work.

IV. EVALUATION

In this section, we first introduce our experimental setup

before presenting the results.

A. Experimental Setup

1) Benchmarks, Baselines, and Platform: We choose 8

benchmarks from Rodinia suite [32] in our evaluation, they

are commonly used in closely related studies [14], [16], [33].

94

1 .LBB1_40:
2 push %r10 #get temporary use
3 ...
4 movslq -68(%rbp), %r10
5 movslq -68(%rbp), %rax
6 cmpq %rax, %r10
7 jne exit_function
8 ...
9 pop %r10 #reload to previous value

Fig. 7. Register requisition using stack

Details of the benchmarks can be found in Table II. We first

compile our benchmarks from source code to LLVM IR in

order to deploy IR-based protection, which is our first baseline

– the details of it will be described later. We name this baseline

IR-LEVEL-EDDI.

On the other hand, we try our best to replicate a hybrid

assembly-level EDDI technique based on the working princi-

ple of EDDI presented in the literature [5], [13], [34](described

in Section II-C). Due to the lack of open-source code at

the assembly level EDDI available in current research, we

have assembled a hybrid version of EDDI through several

methods. For both GENERAL-INSTRUCTIONS and SIMD-

ENABLED-INSTRUCTIONS, we employ the protection method

illustrated in figure 4, where each protectable instruction is

immediately duplicated and checked. For comparison and

branch instructions, however, we opt for delayed protection at

IR level through the use of signatures [13]. The decision to

implement these two instructions’ protection at IR level stems

from the considerable challenges associated with implement-

ing such protections at the assembly level. Additionally, there

are already existing open-source IR level protection patches

designed to protect them [13]. This approach allows us to ef-

fectively implement and evaluate the EDDI system despite the

challenges posed by the absence of directly comparable open-

source projects. This version has no other improvement such as

SIMD usage we mention above. We refer this plain assembly-

level EDDI as our second baseline – HYBRID-ASSEMBLY-

LEVEL-EDDI. We compile the IR to assembly code so that

we can deploy HYBRID-ASSEMBLY-LEVEL-EDDI. Finally,

we deploy FERRUM for the same assembly code for evaluation.

TABLE I
FERRUM AND BASELINE TECHNIQUES

basic store branch call mapping comparison
IR-LEVEL-
EDDI

IR / / / / /

HYBRID-
ASSEMBLY-
LEVEL-
EDDI

AS1 AS1 IR AS1 AS1 IR

FERRUM AS2 AS2 AS2 AS2 AS2 AS2

Table I compares the implementation differences between

FERRUM and the two baselines. IR denotes that the protection

is implemented at IR level (under ”basic” column), AS1

represents the protection is implemented at assembly level

without SIMD, whereas AS2 indicates that the protection is

implemented at the assembly level with SIMD utilization.

Other columns indicates the assembly instruction types that

whether each technique can cover or no if faults are injected to

the instructions. These cases are discovered in our prior study

as well [13]. We list them in the table to show the deficiency

of the coverage in each technique. As seen, FERRUM can

protect all types of instructions at the assembly level. Whereas

HYBRID-ASSEMBLY-LEVEL-EDDI addresses the protection

of branch and comparison instructions at IR level.

TABLE II
DETAILS OF BENCHMARKS

Benchmark Suite Domain

Backprop Rodinia Machine Learning

BFS Rodinia Graph Algorithm

Pathfinder Rodinia Dynamic Programming

LUD Rodinia Linear Algebra

Needle Rodinia Dynamic Programming

kNN Rodinia Machine Learning

kmeans Rodinia Data Mining

Particlefilter Rodinia Noise estimator

We conduct our experiment in Ubuntu 20.04 machine with

an Intel Xeon processor which implements x86-64 architec-

ture. The machine equips with 64GB RAM and GCC v5.4.0.

2) Fault Injection Methodology: In our experiment, we

need to measure the SDC coverage of programs before and

after each technique. We do so by conducting fault injections at

assembly level as per discussed in Section II. The details of the

fault injection process are described as follows: Based on our

fault model, we inject single bit-flip faults to the destination

register of instructions. It is a sampling process where we

randomly choose a dynamically executed instruction and a

random bit in the destination register of the instruction for fault

injection. One fault is sampled in one program execution. In

each measurement, we sample 1000 faults in each benchmark

to get statistical significance. Our fault injection method is

inline with other studies in the area [13], [18], [19].

3) Metrics: We choose three metrics in our evaluation in

order to compare FERRUM with the two baselines:

• SDC Coverage: We measure SDC coverage after each

protection technique is deployed. This gauges the effec-

tiveness of a protection technique that mitigate SDCs

in programs. We define SDC coverage as follows:

(SDCraw − SDCprot)/SDCraw, where SDCprot and

SDCraw denote program SDC probability with and with-

out protection respectively.

• Runtime Performance Overhead: We measure runtime

performance overhead following the deployment of each

95

protection technique. We measure the runtime perfor-

mance overhead on average of three executions in order

to minimize noises in each technique. We define run-

time performance overhead as follows: (Runtimeprot −
Runtimeraw)/Runtimeraw, where Runtimeprot and

Runtimeraw denote program runtime with and without

protection respectively.

• Time to execute FERRUM: We measure the time to exe-

cute FERRUM. The execution of FERRUM is at compile

time and is measured in wallclock time.

B. Results

To this end, we evaluate FERRUM and the baselines accord-

ing to the metrics and then analyze the results.

1) SDC Coverage: Figure 10 demonstrates the SDC cov-

erage provided by the two baselines and FERRUM. Here are

our main observations from the experiments. First, FERRUM

and HYBRID-ASSEMBLY-LEVEL-EDDI both provide 100%

SDC coverage across all the benchmarks, whereas IR-LEVEL-

EDDI cannot reach 100% SDC coverage in most of the

benchmarks. In fact, among 8 benchmarks, only kmeans has

full SDC coverage when using IR-LEVEL-EDDI protection.

On average, the SDC coverage provided by IR-LEVEL-EDDI

technique is 72%. In kNN and Needle benchmarks, the SDC

coverages are merely 50% and 54%. This is rather ineffective

protection as half of SDCs are still observed in the fault

injection experiments even though the programs are protected

by IR-LEVEL-EDDI.

1 BB3:
2 br i1 %4, label %5, label %8

Fig. 8. Branch Instruction at IR Level

1 .LBB1_4:
2 cmpl $0, -4(%rbp) #New FI Site
3 je .LBB2_2

Fig. 9. Branch Instruction at Assembly Level

We review every scenario that leads to a loss of SDC

coverage in our experiment and identify two main root-causes.

Firstly, certain instructions can create potential fault injection

sites when translated into assembly language, which aren’t

visible at IR level. This includes store, branch, and call

instructions. Second, some protection that exists at IR level

may become ineffective once the code is converted from IR

to assembly level.

We explain this using branch instruction as an example:

At LLVM IR level, the conditional branch instruction uses a

true/false condition and two destinations as the perimeters.

When this is turned into assembly code, the condition is

usually already in the FLAGS register, so the jump instruction

can just use that condition directly. But this only works

if the last instruction is an ’cmp’ instruction. If not, the

assembly code needs to set the EFLAG/RFLAG register with

the condition before it jumps. This situation is common in

protected IRs.

Figure 8 provides an example where the branch instruction

is positioned at the beginning of a basic block. As a result, in

figure 9, at the assembly level, a ’cmpl’ instruction is added

to prepare the EFLAG/RFLAG register before it proceeds to

jump to the destination address. At IR level, we do not con-

sider branch instructions as potential sites for fault injection,

but this changes at the assembly level. In assembly level fault

injections, we identify faults that are introduced into the status

register following the test instruction, as mentioned earlier,

which can result in SDC. Similar observations on the loss of

protection coverage across layers have been also reported in

other recent studies [13], [19].

Note both FERRUM and HYBRID-ASSEMBLY-LEVEL-

EDDI provides full coverage in all the benchmarks. That is,

there is no SDC observed when injecting faults at assembly

level in the programs protected by either IR-LEVEL-EDDI or

FERRUM. This meets our expectation since both FERRUM and

HYBRID-ASSEMBLY-LEVEL-EDDI protection provide fine-

grained protection at assembly level – every possible fault in-

jection site in assembly is duplicated and checked in FERRUM

and HYBRID-ASSEMBLY-LEVEL-EDDI.

��

���

���

���

���

����

	

��

���
�� �
�

�

���

��� ��� ��
��
��
��

��
�

��

�

����

��

����

�

��
��

��

��
��
��

 �
!	

�

�����
	!�

��"�� ��"���� ��!!#
 �$�!��"	%%�
��$"�� ��"����

Fig. 10. SDC coverage measured with FERRUM, IR-LEVEL-EDDI and
HYBRID-ASSEMBLY-LEVEL-EDDI; X-axis denotes ‘benchmark‘, and Y-axis
denotes ‘SDC coverage‘ measured.

&�

�&�

'&&�

'�&�

�&&�

	

��

���
�� �
�

�

���

��� ��� ��
��
��
��

��
�

��

�

����

��

����

�

��
��

��

��
!��

!�
��

	�

�
 �

!�
��

���	���!�

��"�� ��"���� ��!!#� �$�!�
"�%%����$"�� ��"����

Fig. 11. Performance overhead measured with FERRUM, IR-LEVEL-EDDI
and HYBRID-ASSEMBLY-LEVEL-EDDI; X-axis denotes ‘benchmark‘, and Y-
axis denotes ‘runtime performance overhead‘ measured.

96

2) Runtime Performance Overhead: Figure 11 shows the

runtime performance overhead incurred by deploying FER-

RUM, IR-LEVEL-EDDI and HYBRID-ASSEMBLY-LEVEL-

EDDI respectively. As can be seen, FERRUM incurs the lowest

overhead on average across all benchmarks compared with

our baseline techniques. On average, the runtime performance

overhead incurred by the IR-LEVEL-EDDI and HYBRID-

ASSEMBLY-LEVEL-EDDI are 62.27% and 83.39%, while in

FERRUM the overhead is merely 29.83%. This shows that

FERRUM is significantly faster than existing IR-level EDDI

and assembly-level EDDI.

In more details, we observe that HYBRID-ASSEMBLY-

LEVEL-EDDI incurs higher performance overhead compared

with IR-LEVEL-EDDI. This is surprising as a native imple-

mentation of the protection at assembly level is supported to

be more efficient compared with an IR-level implementation.

One of possible reasons why this happens could be that

there are more assembly instructions generated when compiled

from IR to assembly. The additional assembly instructions

generated are also duplicated by HYBRID-ASSEMBLY-LEVEL-

EDDI (but they do not appear at IR level protection in IR-

LEVEL-EDDI), thereby incurring high overhead.

3) Execution Time: We report the time taken to execute

FERRUM. Our measurement shows that FERRUM takes only

0.117 seconds on average across all the benchmarks, with a

maximum of 0.196 seconds in Particlefilter and a minimum

of 0.089 seconds in BFS. We find that the time taken depends

on the number of static instructions in a program, as FERRUM

needs to linearly scan the code and generate transformations.

For example, in Particlefilter benchmark, the number of static

instructions is 2230 while it is 406 in BFS benchmark.

V. RELATED WORK

EDDI has been proposed for more than two decades [35]

and it became a popular technique in detecting soft errors

with a low cost [5], [8], [34], especially in high-performance

computing systems [36]–[42]. Reis et al. enhanced instruction

duplication by integrating a software-only signature-based

control-flow verification approach [34]. Lu et al. proposed

SDCTune, an empirical model for predicting a program’s data

SDC proneness, enabling selective protection without the need

for time-intensive fault injection experiments [9]. Fang et al.

proposed ePVF, an enhanced Program Vulnerability Factor

methodology, which provides a more discriminating metric

for informing resilience techniques while reducing vulnerable

bits by up to 67% and maintaining high accuracy [43].

Kalra et al. introduced ArmorAll, a lightweight and adaptive

software solution for detecting soft errors in GPU, especially

for accuracy-sensitive and safety-critical applications [5].

Carreira et al. introduced Xception, a sophisticated

software-based fault injection and monitoring environment

designed for modern and complex processors, offering a com-

prehensive set of fault triggers and demonstrating its potential

for evaluating the dependability properties of contemporary

computer systems [44]. Wei et al. assessed the accuracy of

high-level software fault injection mechanisms, focusing on

LLFI, an LLVM-based tool that injects faults close to the

source code, and compares it to assembly-level fault injection

methods to gain insights into their differences and effective-

ness in quantifying application-specific resilience character-

istics [18]. Qureshi et al. introduced microarchitecture-based

introspection (MBI), a low-cost transient-fault detection tech-

nique that leverages otherwise wasted processing bandwidth

during long-latency cache misses, making it well-suited for

memory-intensive applications and resulting in only modest

average IPC reductions [45]. Pham et al. introduced a com-

prehensive reliability modeling and prediction approach for

component-based software systems that explicitly addresses

factors like error propagation, fault tolerance mechanisms,

and concurrent errors, offering valuable support for informed

design decisions and enhanced system reliability [46].

VI. CONCLUSION

In conclusion, we propose FERRUM, an enhanced version of

assembly-level EDDI with low runtime performance overhead.

FERRUM is based on a hybrid version of assembly-level EDDI

and upgraded by SIMD and compiler-level optimizations. Our

evaluation demonstrates that FERRUM can not only achieve

perfect fault coverage compared with IR-level EDDI but also

has the lowest runtime performance overhead compared with

both IR-level EDDI and hybrid version of assembly-level

EDDI.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of

Energy, Office of Science, Advanced Scientific Computing

Research (ASCR), under contract DE-SC0024559.

REFERENCES

[1] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Model-
ing the effect of technology trends on the soft error rate of combinational
logic,” in Proceedings International Conference on Dependable Systems
and Networks, 2002, pp. 389–398.

[2] B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari,
“Characterizing temperature, power, and soft-error behaviors in data
center systems: Insights, challenges, and opportunities,” in 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2017, pp.
22–31.

[3] T. O’Gorman, “The effect of cosmic rays on the soft error rate of a
dram at ground level,” IEEE Transactions on Electron Devices, vol. 41,
no. 4, pp. 553–557, 1994.

[4] D. A. G. D. Oliveira, L. L. Pilla, M. Hanzich, V. Fratin, F. Fernandes,
C. Lunardi, J. M. Cela, P. O. A. Navaux, L. Carro, and P. Rech,
“Radiation-induced error criticality in modern hpc parallel accelerators,”
in 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2017, pp. 577–588.

[5] C. Kalra, F. Previlon, N. Rubin, and D. Kaeli, “Armorall: Compiler-based
resilience targeting gpu applications,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 17, no. 2, pp. 1–24, 2020.

[6] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[7] Z. Yan, H. Jiang, W. Srisa-an, S. Seth, and Y. Tan, “Leverage redundancy
in hardware transactional memory to improve cache reliability,” in
Proceedings of the 47th international conference on parallel processing,
2018, pp. 1–10.

[8] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson,
“Ipas: Intelligent protection against silent output corruption in scientific
applications,” in 2016 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2016, pp. 227–238.

97

[9] Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers, “Sdctune: A
model for predicting the sdc proneness of an application for configurable
protection,” in 2014 International Conference on Compilers, Architec-
ture and Synthesis for Embedded Systems (CASES), 2014, pp. 1–10.

[10] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, and M. Violante,
“Soft-error detection through software fault-tolerance techniques,” in
Proceedings 1999 IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (EFT’99), 1999, pp. 210–218.

[11] B. De Blaere, J. Vankeirsbilck, and J. Boydens, “Soft error detection
through low-level re-execution,” in 2021 5th International Conference
on System Reliability and Safety (ICSRS), 2021, pp. 181–189.

[12] M. H. Rahman, A. Shamji, S. Guo, and G. Li, “Peppa-x: Finding
program test inputs to bound silent data corruption vulnerability in hpc
applications,” in SC21: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–14.

[13] Z. He, Y. Huang, H. Xu, D. Tao, and G. Li, “Demystifying and
mitigating cross-layer deficiencies of soft error protection in instruction
duplication,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2023, pp.
1–13.

[14] Y. Huang, S. Guo, S. Di, G. Li, and F. Cappello, “Mitigating silent
data corruptions in hpc applications across multiple program inputs,”
in SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2022, pp. 1–14.

[15] G. Li and K. Pattabiraman, “Modeling input-dependent error propagation
in programs,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2018, pp. 279–290.

[16] A. R. Anwer, G. Li, K. Pattabiraman, M. Sullivan, T. Tsai, and S. K. S.
Hari, “Gpu-trident: Efficient modeling of error propagation in gpu
programs,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020, pp. 1–15.

[17] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis and transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–
86.

[18] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014, pp. 375–382.

[19] C.-K. Chang, G. Li, and M. Erez, “Evaluating compiler ir-level se-
lective instruction duplication with realistic hardware errors,” in 2019
IEEE/ACM 9th Workshop on Fault Tolerance for HPC at eXtreme Scale
(FTXS), 2019, pp. 41–49.

[20] F. G. Previlon, B. Egbantan, D. Tiwari, P. Rech, and D. R. Kaeli,
“Combining architectural fault-injection and neutron beam testing ap-
proaches toward better understanding of gpu soft-error resilience,” in
2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS), 2017, pp. 898–901.

[21] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Model-
ing soft-error propagation in programs,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2018, pp. 27–38.

[22] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding gpu errors on large-scale hpc systems and
the implications for system design and operation,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 331–342.

[23] S. E. Michalak, A. J. DuBois, C. B. Storlie, H. M. Quinn, W. N. Rust,
D. H. DuBois, D. G. Modl, A. Manuzzato, and S. P. Blanchard, “Neutron
beam testing of high performance computing hardware,” in 2011 IEEE
Radiation Effects Data Workshop, 2011, pp. 1–8.

[24] G. Bak and S. Baeg, “Failure analysis of galaxy s7 edge smartphone
using neutron radiation,” IEEE Transactions on Nuclear Science, vol. 67,
no. 11, pp. 2370–2381, 2020.

[25] A. Vallero, A. Savino, G. Politano, S. Di Carlo, A. Chatzidimitriou,
S. Tselonis, M. Kaliorakis, D. Gizopoulos, M. Riera, R. Canal, A. Gon-
zalez, M. Kooli, A. Bosio, and G. Di Natale, “Cross-layer system
reliability assessment framework for hardware faults,” in 2016 IEEE
International Test Conference (ITC), 2016, pp. 1–10.

[26] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadim-
itriou, “Cross-layer analysis of software fault models and countermea-
sures against hardware fault attacks in a risc-v processor,” Microproces-
sors and Microsystems, p. 102862, 2019.

[27] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “Llfi:
An intermediate code-level fault injection tool for hardware faults,” in
2015 IEEE International Conference on Software Quality, Reliability
and Security, 2015, pp. 11–16.

[28] L. Palazzi, G. Li, B. Fang, and K. Pattabiraman, “A tale of two injectors:
End-to-end comparison of ir-level and assembly-level fault injection,”
in 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE), 2019, pp. 151–162.

[29] A. Heinecke, T. Auckenthaler, and C. Trinitis, “Exploiting state-of-the-
art x86 architectures in scientific computing,” in 2012 11th International
Symposium on Parallel and Distributed Computing, 2012, pp. 47–54.

[30] E. W. Dijkstra, “Letters to the editor: go to statement considered
harmful,” Commun. ACM, vol. 11, no. 3, p. 147–148, mar 1968.
[Online]. Available: https://doi.org/10.1145/362929.362947

[31] C. S. Anderson, J. Zhang, and M. Cornea, “Enhanced vector math sup-
port on the intel®avx-512 architecture,” in 2018 IEEE 25th Symposium
on Computer Arithmetic (ARITH), 2018, pp. 120–124.

[32] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[33] L. Yang, B. Nie, A. Jog, and E. Smirni, “Practical resilience analysis
of gpgpu applications in the presence of single- and multi-bit faults,”
IEEE Transactions on Computers, vol. 70, no. 1, pp. 30–44, 2021.

[34] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in International sympo-
sium on Code generation and optimization. IEEE, 2005, pp. 243–254.

[35] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated in-
structions in super-scalar processors,” IEEE Transactions on Reliability,
vol. 51, no. 1, pp. 63–75, 2002.

[36] X. Wei, N. Jiang, H. Yue, X. Wang, J. Zhao, G. Li, and M. Qiu, “Ap-
proxdup: Developing an approximate instruction duplication mechanism
for efficient sdc detection in gpgpus,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2023.

[37] Y. Huang, Z. He, L. Li, and G. Li, “Characterizing runtime performance
variation in error detection by duplicating instructions,” in 2023 IEEE
34th International Symposium on Software Reliability Engineering (IS-
SRE). IEEE, 2023, pp. 730–741.

[38] B. Zhang, J. Tian, S. Di, X. Yu, Y. Feng, X. Liang, D. Tao, and
F. Cappello, “Fz-gpu: A fast and high-ratio lossy compressor for
scientific computing applications on gpus,” in Proceedings of the 32nd
International Symposium on High-Performance Parallel and Distributed
Computing, 2023, pp. 129–142.

[39] B. Zhang, J. Tian, S. Di, X. Yu, M. Swany, D. Tao, and F. Cappello,
“Gpulz: Optimizing lzss lossless compression for multi-byte data on
modern gpus,” in Proceedings of the 37th International Conference on
Supercomputing, 2023, pp. 348–359.

[40] B. Zhang, B. Fang, Q. Guan, A. Li, and D. Tao, “Hq-sim: High-
performance state vector simulation of quantum circuits on heteroge-
neous hpc systems,” in Proceedings of the 2023 International Workshop
on Quantum Classical Cooperative, 2023, pp. 1–4.

[41] S. Song and P. Jiang, “Rethinking graph data placement for graph neural
network training on multiple gpus,” in Proceedings of the 36th ACM
International Conference on Supercomputing, 2022, pp. 1–10.

[42] Y. Huang, S. Guo, S. Di, G. Li, and F. Cappello, “Hardening selective
protection across multiple program inputs for hpc applications,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2022, pp. 437–438.

[43] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“epvf: An enhanced program vulnerability factor methodology for cross-
layer resilience analysis,” in 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2016, pp.
168–179.

[44] J. Carreira, H. Madeira, J. G. Silva et al., “Xception: Software fault
injection and monitoring in processor functional units.”

[45] M. Qureshi, O. Mutlu, and Y. Patt, “Microarchitecture-based introspec-
tion: a technique for transient-fault tolerance in microprocessors,” in
2005 International Conference on Dependable Systems and Networks
(DSN’05), 2005, pp. 434–443.

[46] T.-T. Pham, X. Défago, and Q.-T. Huynh, “Reliability prediction for
component-based software systems: Dealing with concurrent and prop-
agating errors,” Science of Computer Programming, pp. 426–457, 2015.

98

