
SPP: Safe Persistent Pointers for Memory Safety

Dimitrios Stavrakakis
TU Munich &

University of Edinburgh

Alexandrina Panfil
TU Munich

MJin Nam
TU Munich

Pramod Bhatotia
TU Munich

Abstract—Memory safety violations, such as buffer overflows,
are the primary cause of security and reliability issues in software
systems. Like the volatile main memory, byte-addressable persis-
tent memory (PM) storage devices are also prone to memory
safety exploits because PM devices are directly mapped to the
address space and accessed via the load/store interface using
pointers. However, the PM pointer representation is persistent,
i.e., its offset and the associated object are persistent across sys-
tem reboots. Therefore, the current memory safety mechanisms
for the volatile main memory are inadequate for ensuring the
safety of persistent pointers.

To this end, we propose Safe Persistent Pointers (SPP), a
practical memory safety approach against buffer overflows for
PM applications. SPP augments persistent pointers with memory
safety properties. SPP is based on a simple combination of tagged
pointers, efficient persistent memory layout, and transactional
updates to the memory safety metadata for ensuring crash con-
sistency. SPP’s efficient pointer representation does not require
additional memory lookup operations at run-time while incurring
minimal space overheads for storing the memory safety metadata.

We implement SPP based on the LLVM compiler infrastruc-
ture accompanied by a runtime library and an adapted version of
PM development kit (PMDK). Our evaluation demonstrates that
SPP incurs low runtime and space overheads while preserving
the crash-consistency property and maintaining the PMDK API
intact, i.e., requiring no source code modifications.

I. INTRODUCTION

Low-level unsafe languages, such as C/C++, provide de-

velopers with control over the system’s memory. While this

is crucial performance-wise [101], it can lead to, potentially

harmful, memory safety bugs [31], [46], [108], [110], [120].

These bugs are broadly separated into two categories; spatial,
e.g. buffer overflows, and temporal, e.g., dangling pointers.

Memory safety bugs cause many critical security and re-

liability issues [2], [7], [8], [54]. The severity of memory

safety violations is also confirmed by the reports of major

software projects, such as Windows [5], Android [6] and

Chromium [10], where 70− 75% of the detected issues stem

from memory safety bugs. According to Szekeres et al. [108],

the majority of security attacks in software systems occur

through exploiting memory safety vulnerabilities.

Designing efficient approaches to enforce memory safety

is an active area of research for the volatile main memory,

including software and hardware-based memory safety solu-

tions (§VII). At a high level, these approaches implement

deterministic dynamic bounds checking [89], [108], which

utilizes runtime metadata (bounds information) [75], rather

than relying on probabilistic heuristics [31], [83]. These ap-

proaches instrument the code during compilation and inject

run-time metadata management into an application that allows

deterministic run-time checks for validating memory accesses.

Unfortunately, existing memory safety approaches are re-
stricted to the volatile main memory devices and are inade-
quate for byte-addressable persistent memory (PM) devices. In

particular, the emergence of the Compute Express Link (CXL)

technology [37] is leading to byte-addressable PM storage

devices [51], [105]. These PM devices are either attached

to the memory bus [95] or the PCIe bus [37] and can also
be accessed over the network (e.g., via RDMA) [65]. PM

applications memory map (mmap()) these devices directly

to their address space. Using pointers, their mapped content

is accessed at a byte granularity via the ld/st interface.

However, the PM pointer representation is persistent, i.e.,

its offset and the associated PM object are durable. There-

fore, addressing memory safety issues for PM is challenging,

especially due to the idiosyncrasies of the PM programming

model [15]. More specifically, PM applications rely on persis-

tent pointers [9] and use specialized, crash-consistent memory

allocators [39], [64]. This entails two challenges: (a) how do

we preserve crash consistency for memory safety metadata?,

and (b) how do we ensure memory safety on the recovery paths

after a system crash or reboot? Unfortunately, current memory

safety mechanisms for PM, with the most prominent being

SafePM [33], a shadow memory-based memory safety solution

built on AddressSanitizer [104], are deemed as impracti-
cal since they either require adopting a new programming

model/language [55] or are restricted to the offline testing

phase [20], [33] due to prohibitive performance costs.

To this end, we propose Safe Persistent Pointers (SPP), a

practical memory safety approach for applications accessing

byte-addressable PM storage devices via PM pointers. SPP

provides PM buffer overflow protection. Its design is based

on DeltaPointers [75], a memory safety approach for volatile

memory. SPP essentially extends DeltaPointers to PM. SPP

is built on the prevalent PM programming model and employs

tagged pointers, as well as an efficient PM layout, in combina-

tion with transactional updates to the memory safety metadata.

Our SPP prototype consists of an adapted PMDK [15]

version, the state-of-the-art PM programming toolchain, and

an instrumentation using LLVM [77]. The evaluation of SPP

is structured around three dimensions: performance and space

overhead, effectiveness, and crash consistency. We measure

the performance and space overheads of SPP using PMDK

micro-benchmarks and a persistent KV store [59]. We evaluate

the effectiveness of SPP with the RIPE framework [114]

that contains a set of memory safety exploits. Lastly, we

validate the crash-consistency of SPP’s metadata using the

pmemcheck [20] tool. SPP incurs low performance over-

heads and requires no source code modifications, while pre-

37

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00019

SPP pointer representation

Persistent
memory

PM pool
/mnt/pm/f1PM object

SPP PMEMoid

Virtual
address
space

PM objectSPP PMEMoidSPP

0 1
Invalid access

0x626364
Tag Virtual addressPM bit Overflow bit

mmap()

Valid access

pool id object offset object size

Overflow
bit

Fig. 1. SPP pointer representation: The SPP PM pointer representation (SPP PMEMoid) is used to derive the tagged pointer to the PM object (SPP
pointer representation). On a PM access, the PM bit and the pointer tag get masked while the overflow bit is preserved. If the access is valid (in green), the
overflow bit is 0 and the access succeeds. In case of a PM buffer overflow (in red), the overflow bit is 1 which makes the address invalid.

serving the crash consistency property.

Altogether, SPP makes the following contributions:

• SPP introduces safe persistent pointers (§IV), a spatial

memory safety solution against PM buffer overflows for

PMDK applications. They are the first tagged pointer

scheme specifically designed for PM. They consist of

an enhanced durable representation of PMDK’s persistent

pointers and a native-pointer tagging scheme.

• SPP offers a configurable pointer encoding scheme, in-

spired by DeltaPointers [75], to fit the PM management

requirements of every PM application. The number of bits

in the pointer tag is adjustable and and can be easily

tuned without breaking the compatibility with pre-compiled,

uninstrumented libraries.

• We implement the SPP prototype and design our compiler

optimizations based on LLVM (§V). Our evaluation (§VI)

indicates that SPP is a practical approach that prevents PM

buffer overflow exploits, while incurring low performance

and negligible space overheads.

II. BACKGROUND AND MOTIVATION

A. Byte-Addressable Persistent Memory

Byte-addressable PM storage devices reside on the mem-

ory bus [95], providing access latencies similar to DRAM.

However, the recently-emerged and evolving Compute Express

Link (CXL) technology [51] allows these devices to be at-

tached on the PCIe bus or even be exposed over the network

(e.g., through RDMA), enabling the creation of large pools of

byte-addressable storage.

Precisely, PM devices are accessed with ld/st instructions.

They are directly mapped to an application’s address space.

Applications use pointers to access PM, which must be recon-

structible and consistent across reboots or crashes, leading to

a deviation from the established programming model.

B. Byte-addressable PM Programming Model

Persistent pointers. Persistent pointer is the core program-

ming abstraction to access byte-addressable PM. Based on this

abstraction, a PM memory pool can be mapped in different

regions of an application’s address space across different runs

and, thus, the application needs a consistent way to identify

the stored, persistent objects. In contrast to volatile pointers,

persistent pointers are durable, crash-consistent data structures

that are used to reconstruct native pointers to PM objects

across application restarts or crashes.

PM Development Kit (PMDK). To facilitate the application

development for PM devices, Intel introduced PMDK [15].

PMDK includes a variety of generic libraries and high-level

tools that allow for flexible PM management [59]–[61], [64]

while also exposing a low-level PM support API [12].

libpmemobj. The libpmemobj [64] library handles PM files

as object stores and exposes an intuitive API for PM manage-

ment, similar to the conventional malloc/free API. Further, it

employs a fat-pointer scheme [9] for the PM pointers. Each

object is identified by a PMEMoid that contains a pool id
(8B) and an offset (8B) relative to the beginning of the pool.

libpmemobj translates PMEMoids to native pointers via

the pmemobj_direct() function. Lastly, libpmemobj
introduces SW transactions to ensure the crash-consistency of

PM data updates exceeding the atomicity boundary of 8B.

C. Memory safety

Low-level unsafe languages (e.g., C/C++), allow applica-

tions to interact with the system’s memory. While this is

powerful for optimizing performance, it can lead to memory

safety violations with dire consequences when exploited by

malicious attackers [86], [110]. Memory safety violations fall

into two categories. Spatial memory safety errors refer to

accesses beyond the intended boundaries on memory (e.g.,

buffer overflows) while temporal memory safety bugs occur

when a memory region is accessed before its allocation or

after its release (e.g., dangling pointers). Due to their severity,

such illegal memory accesses must be prevented. To this

end, various approaches have been proposed, which can be

categorized as (i) pointer-based [68], [75], [90]–[92], [94],

[107], (ii) shadow memory-based [38], [50], [52], [53], [104]

and (iii) object-based [30], [41], [42], [44], [45], [69], [103].

D. Memory safety for Byte-Addressable Persistent Memory

Byte-addressable PM is susceptible to memory safety issues

since it is accessed through pointers. However, existing solu-

tions for volatile memory cannot be directly applied to PM.

First, the durability of PM pointers representation implies that

their associated memory safety metadata needs not only to

be persistent but also consistent across application restarts or

crashes. Precisely, consider a crash during the update of mem-

ory safety metadata (e.g., object re-allocation). The derived

PM pointer on the next run can contain stale or erroneous

bounds information due to partially updated or inconsistent

memory safety metadata which can lead to bugs or allow for

38

SPP
transformation

pass

Transformed
LLVM

intermediate
representation

Hardened binarySPP LTO
pass

SPP
runtime library

PMDK with
SPP wrappers

External
libraries

Compilation phase Linking phase

Unmodified
persistent
memory

application

LLVM
intermediate

representation

Fig. 2. SPP overview (yellow colored boxes denote the SPP components): The unmodified PM application is converted to its LLVM IR, where the SPP
transformation pass transforms the runtime function calls for the pointer tag management. At the link phase, SPP applies its optimizations via its LTO pass
and the transformed application is linked against the SPP runtime library, adapted PMDK version and external libraries to produce the final binary.

exploits from a malicious attacker. To tackle this problem, a

PM memory safety solution must update its metadata in a fail-

safe manner via atomic operations or transactions.

Additionally, metadata fetching during runtime can cause

a significant performance degradation due to the slower PM

accesses rendering an approach impractical. Therefore, min-

imizing the stored memory safety metadata and optimizing

their placement is imperative.

Lastly, PM comes with its own programming model and

specialized PM management APIs that need to be carefully

handled and instrumented to preserve their persistency and

crash-consistency semantics.

SafePM [33] is the current state-of-the-art solution for PM

memory safety. It is a shadow-memory [38], [50], [52], [53]

approach based on ASan [104] and PMDK [15]. SafePM

targets mainly debugging environments due to its performance

and PM space overheads. It reserves a part of the PM pool for

its PM safety metadata which is mapped on ASan’s shadow

memory during runtime. Thus, SafePM leverages ASan’s

instrumentation and detects PM safety bugs across runs as

it also ensures crash consistency for PM safety metadata.

III. OVERVIEW

SPP is a system that provides spatial memory safety

for PMDK-based applications. It requires no source code

modifications and introduces minimal performance and space

overheads. Thus, SPP is a practical PM safety solution, in

contrast to the state of the art approaches that incur significant

space and runtime overheads [13], [33] or demand the usage

of specific memory safe languages [55].

Figure 1 captures the SPP PM pointer representation (SPP

PMEMoid), the tagged pointer structure and how SPP handles

PM accesses. Precisely, SPP enhances the SPP PMEMoid

with a field containing the object size. This persistent data

structure is used to generate the tagged pointer [75] to a PM

object. Importantly, SPP sets and updates the SPP PMEMoid

in a crash consistent manner either by wrapping its content

inside transactions or through atomic operations. In case of

a PM access, SPP preserves only the virtual address and the

overflow bit of the tagged pointer. If the access lies within

the bounds of the PM object, the overflow bit is clear and the

access proceeds normally using the virtual address. However,

if the pointer is beyond the objects boundaries, the overflow

bit is set through the SPP pointer tag operations rendering the

address invalid. Thus, the upcoming access triggers a fault.
An overview of SPP’s workflow is shown in Figure 2.

An unmodified PM application is initially instrumented with

SPP’s transformation pass that inserts the PM pointer tag

operations and the runtime checks. The instrumented code is

then linked against SPP’s runtime library and the modified

PMDK that includes the enhanced PM pointer representation

and the adapted PM management functions. Note that the

programming model and the APIs of PMDK remain intact.

During the linking process, SPP’s link time optimization

(LTO) pass scans the application for external function calls

and masks away the tag from the PM pointers passed as argu-

ments to preserve compatibility. Thus, SPP can be seamlessly

integrated in existing workflows and deployments, providing

complete control of the memory safety-critical code parts.

A. System Model
Fault model. SPP protects against spatial memory safety

bugs on PM. It detects PM buffer overflows in PMDK-

based applications, while preserving crash consistency for

both application data and metadata. SPP correctly reconstructs

tagged pointers across crashes and provides complete code

coverage, including the application’s recovery code paths.
Usage model. SPP aims to be integrated in production de-

ployments of PMDK-based systems. It can be tuned to fit

multiple use cases. SPP also provides complete control to the

developers to define the memory safety-critical code files to

further reduce the instrumentation and run-time overheads.
Programming model. SPP supports the native PM program-

ming model and the PMDK APIs. It provides spatial memory

safety against PM buffer overflows for PMDK applications.

B. Design Goals and Key Ideas
#1: Transparency. For practical memory safety, SPP should

transparently provide memory safety using the native PMDK

API, similarly to prior approaches [13], [20], [33]. This is

essential to ease the integration in existing toolchains.
Approach: SPP adapts the PMDK functions for PM object

management and transactional logging to consider the ad-

ditional size field of the PM pointer representation without

altering the APIs (§V). It further adapts PMDK to construct

PM pointers with the SPP’s encoding transparently.
#2 Performance and compatibility. SPP aims to be deployed

in performance critical environments. To this end, SPP must

39

(i) keep runtime and storage overheads at the bare minimum

levels, while offering high code coverage, and (ii) be compat-

ible with existing, uninstrumented, external libraries.

Approach: To minimize the performance and storage over-

heads, SPP includes optimizations (e.g., pointer tracking)

and limits its metadata to the size field (8B), added to the

PMEMoid. Further, to preserve compatibility, SPP identifies

the external library calls and removes the tag from their pointer

arguments. Thus, linking against shared libraries is supported

without recompilation. Note that SPP cannot provide any

memory safety for the code paths of the external functions.

#3: Heterogenous memory systems. Modern applications are

designed to operate on heterogeneous systems that combine

PM and volatile memory [16], [17], [59], [84]. A program ac-

cesses both PM and volatile memory via native 64-bit pointers.

Therefore, SPP should distinguish between the instrumented

PM pointers and the uninstrumented volatile memory pointers.

Approach: To identify pointers to PM, SPP sets their most

significant bit. In that way, SPP tags and instruments ex-

clusively the PM pointers. Additionally, SPP preserves the

volatile memory management of an application intact, since

in current systems, pointers utilize only 48-57 bits [21].

#4: Crash consistency. PM applications are designed to

recover from crashes and maintain the PM data consistent.

This process requires designated recovery code paths which,

inevitably, include PM accesses. Therefore, SPP should be

able to reconstruct tagged PM pointers correctly to provide

memory safety across restarts and cover the recovery paths.

Approach: SPP enhances the PM pointer representation with

a field holding the size of the PM object. This representation

is updated in the adapted PM management operations using

atomic operations or PMDK software transactions. Thus, SPP

is able to recreate the PM pointer tags across reboots/crashes

since the PM object size information is durable and valid.

IV. DESIGN

SPP enforces a tagged pointer (§IV-A) approach to detect PM

buffer overflows in PMDK applications. SPP consists of (i) an

adapted PMDK version (§IV-B), (ii) static analysis compiler

passes (§IV-C), and (iii) a runtime library (§IV-D).

A. SPP Pointer Representation

SPP introduces the first tagged pointer scheme for PM.

SPP encodes memory safety metadata in the upper bits of

each PM pointer [21], as performed in prior tagged pointer

approaches [75], [76], [92], [117]. More specifically, a native

64-bit PM pointer is split into four distinct parts (Figure 1).

Its most significant bit (MSB) is set to 1 to indicate that it

points to a PM address. The following bits contain an overflow
bit and the tag, which has a configurable size. The lower bits

maintain the actual virtual address of the pointer in the mapped

PM file. SPP’s pointer tag specifies the current distance from

the upper bound of the PM object. SPP initializes it as the

negated allocated object size, similarly to Delta pointers [75],

and updates it on pointer arithmetic operations.

0

FF FF D6 38-bit virtual
address1 0char *pm_ptr =

pmemobj_direct(oid);

FF FF EB1pm_ptr += 21;

+21 +21

00 00 001 1pm_ptr += 21;

+21 +21

38-bit virtual
address

38-bit virtual
address

(a)

(b)

(c)

Fig. 3. SPP pointer management: On each pointer arithmetic operation,
the respective action is applied to the tag of the pointer (b). When a pointer
surpasses the object’s upper bound, the overflow bit gets implicitly set (c).

Figure 3 presents an example of an SPP pointer with 24 tag

bits for a 42B object. Initially, the pmemobj_direct func-

tion receives the enhanced PMEMoid of the object and returns

the tagged pointer (Figure 3a). On every pointer arithmetic

operation, the virtual address modification is also applied to

the tag (Figure 3b). Once the pointer surpasses its upper bound,

the overflow bit gets set as shown in Figure 3c. Thus, on an

out-of-bounds access, an error is triggered since the pointer is

implicitly invalidated due to the overflow bit. This means that

SPP requires no explicit, actively-performed runtime bound

checks. However, if subsequent pointer arithmetic operations

bring the pointer back within its assigned boundaries, the

overflow bit gets unset and the pointer becomes valid again.

SPP’s tag encoding is designed to detect PM buffer over-

flows while aiming to reduce the performance and space over-

heads. To incorporate protection against additional memory

safety bug types, different encoding schemes that maintain the

location of memory safety metadata (e.g., lower bound) [76],

[117] or fat-pointer approaches [115] can be adapted for

PM. In every case the system needs to consider the crash

consistency of the additional metadata as well.

Further, if the usable pointer bits were not limited, SPP

could include a second part in the tag for the lower bound.

However, this approach would significantly limit the buffer

size, making the approach non-practical. It would also require

further manipulation of the tag on pointer operations, which

would introduce additional overheads.

B. PMDK Modifications

SPP adapts PMDK to correctly construct the pointer tags

even across restarts or crashes. SPP enhances the PM pointer

representation (PMEMoid) with an additional field maintaining

the size of the PM object, incurring minimal space overheads.

This choice also improves the access locality and reduces

cache pollution, as SPP does not need to search in disjoint

memory areas to fetch the metadata.

1 struct PMEMoid {
2 uint64_t pool_uuid_lo; // pool id of the pool
3 uint64_t off; // offset of the PM object
4 uint64_t size; // size of the PM object
5 };

To ensure fault-tolerance, PMDK performs the PM object

allocation and management either with atomic operations or

software transactions. A PMEMoid is considered valid only

after its offset field is set. Therefore, SPP adapts the PM

management functions (e.g. alloc, realloc) to set the size field,

40

1 PMEMoid obj_id;
2 pmemobj_alloc(pool, &obj_oid, size, ...);//alloc a PM Object
3 void* pm_ptr = pmemobj_direct(obj_id);//get tagged ptr
4 pm_ptr += 42;//apply ptr arithmetics
5 __spp_updatetag(pm_ptr, /*off*/ 42);//update the tag
6 ...
7 __spp_checkbound(pm_ptr, sizeof(int));//impl. bounds check
8 int x = (int)*pm_ptr;
9 ...

10 clean_pm_ptr = __spp_cleantag(pm_ptr);//tag masking
11 uint64_t ptrtoint = (uintptr_t)clean_pm_ptr;
12 ...
13 internal_foo(pm_ptr);//internal function call
14 clean_pm_ptr = __spp_cleantag(pm_ptr);//tag masking
15 external_foo(clean_pm_ptr);//external function call
16 ...
17 __wrap_memcpy(src_pm_ptr, dst_pm_ptr, 42);//memcpy call
18 __wrap_strcpy(src_pm_str, dst_pm_str);//strcpy call

Listing 1. SPP code transformation: modifications are highlighted in blue.

given as an argument to each PM management function call,

right before the offset field, thus preserving the semantics of

PMDK. In a similar fashion, when a PMEMoid is modified

inside a PMDK transaction using the dedicated PMDK API,

SPP’s size field is logged to preserve crash-consistency.

PMDK uses PMEMoids to locate objects across the runs of

an application. It exposes the pmemobj_direct function

that converts a PMEMoid to a 64-bit pointer to the PM

object. SPP modifies this function to consider the size field of

PMEMoid and return a tagged pointer (§IV-A). The additional

operations to construct the PM pointer are presented below:

1 #define ADDRESS_BITS (PTR_SIZE - TAG - OVERFLOW - PM_BIT)
2 #define PM_PTR_BIT ((uint64_t)1 << (PTR_SIZE - 1))
3 #define OVERFLOW_BIT (∼((uint64_t)1 << (PTR_SIZE - 2)))
4 ...
5 void* pmemobj_direct(PMEMoid oid) {
6 //calculate untagged PM pointer
7 ...
8 //Take the two’s complement of the size
9 uint64_t tag = (∼oid.size + 1) << ADDRESS_BITS;

10 return (void*)(pm_ptr | tag & OVERFLOW_BIT | PM_PTR_BIT);
11 }

Despite these changes, SPP does not alter the semantics of

the PMDK programming model. It leaves both the atomic and

the transactional APIs [24] intact, supports the type-safety

macros [26] and provides multi-threading support with the

same thread-safety guarantees with PMDK. Note that SPP’s

approach is not bound to PMDK but can be adapted for PM

programming frameworks following similar principles.

C++ support. PMDK exposes a C API. However, the imposed

limitations by the C semantics led Intel to develop C++

bindings in libpmemobj-cpp [60]. This library enriches

libpmemobj with C++ features such as containers and smart

pointers. To provide complete support for applications devel-

oped in C++, SPP adapts the base class for PM pointers to

transparently use the modified pmemobj_direct function

and consider the additional size field of the PMEMoid.

C. Compiler Passes

Transformation pass. The transformation pass of SPP in-

struments the target application by injecting the appropriate

function calls to update the PM pointer tag, propagate its

value and perform its masking. It identifies the instructions

that involve pointer arithmetic operations and updates the tag

accordingly (Listing 1 Line 5). It further cleans up the tag

prior to ld/st instructions to perform the implicit bound check

on the upcoming PM access (Listing 1 Lines 7-8).

However, in LLVM intermediate representation (IR) there

is no distinction between the pointers to volatile memory and

those to PM. SPP addresses this by performing static analysis

on the produced IR: it tracks the pointer origins and skips

inserting runtime checks to operations for pointers that are

statically identified to point to volatile memory. Thus, SPP can

remove the instrumentation for pointers to volatile memory.

Similarly, for pointers that are guaranteed to point to PM,

SPP can directly perform the tag cleaning, without checking

the PM bit. For pointers, whose type cannot be deduced by

SPP on compilation, SPP preserves their instrumentation and

the runtime operations are performed based on their PM bit.

Additionally, pointers can be converted to integers and be

used as operands in mathematical or comparison operations.

The insertion of the tag can affect the correctness of these

calculations. Therefore, SPP masks the tag of the pointer prior

the pointer-to-integer conversion (Listing 1 Line 10).

LTO pass. SPP’s link-time-optimization (LTO) pass ensures

compatibility with non-instrumented shared libraries [92]. It

scans through the application code and locates the external

function calls with pointer arguments. Right before these calls,

the LTO pass masks the pointer tag and passes the untagged

pointers to the external function (Listing 1 Lines 14-15).

Further, SPP interposes the memory management and string

functions (e.g., memcpy, strcpy) with wrapper functions (List-

ing 1 Lines 17-18). The wrappers are verifying the validity of

the accessed address ranges based on the function parameters

and perform the respective operation if no violation occurs.

D. Runtime Library

SPP’s runtime library contains the implementation of the

functions that are injected through the compiler instrumenta-

tion. These functions operate on SPP pointers to clean and

update the tag after they verify that the pointer points to PM.

Precisely, the __spp_cleantag function returns the PM

pointer after masking out its tag and PM bit as shown below:

1 /* PTR_BITS denote the bits for the virtual address */
2 #define PTR_MASK (1ULL << 62) | ((1ULL << PTR_BITS) - 1)
3 ...
4 void* __spp_cleantag(void *ptr) {
5 /* check if ptr points to PM */
6 if (!__spp_is_pm_ptr(ptr))
7 return ptr;
8 /* keep the overflow and the virtual address bits */
9 return ptr & (PTR_MASK);

10 }

Thus, the application gets the actual virtual address which can

be normally accessed through ld/st instructions. The overflow

bit is preserved so that any subsequent memory access through

an overflown pointer is detected.

Further, the __spp_updatetag function is invoked when

a tag needs to be updated due to a pointer arithmetic operation.

The provided offset to this function is determined via the

static analysis compiler pass. The tag of the given pointer is

extracted and incremented by the offset value. If a PM pointer

overflows, this operation implicitly sets the overflow bit. After

41

the tag update, the new value is merged into the PM pointer

which is returned back to the application, as presented here:

1 void* __spp_updatetag(void *ptr, int64_t off) {
2 /* check if ptr points to PM */
3 if (!__spp_is_pm_ptr(ptr))
4 return ptr;
5 /* extract and update the tag */
6 int64_t tag = (int64_t)__spp_extract_tag(ptr);
7 tag = tag + off;
8 /* return the updated tagged pointer */
9 return (void*)__spp_insert_tag(ptr, tag);

10 }

Additionally, the runtime library implements the

__spp_checkbound function, shown below. It is called

prior to every PM access. It updates the tag based on the

size of the dereferenced pointer type since this indicates the

upper bound of the memory access. After the update, the

PM pointer gets masked and is returned to the application to

perform the intended access. If the overflow bit is set, this

access will trigger a segmentation fault or a bus error.

1 void* __spp_checkbound(void *ptr, size_t deref_size) {
2 /* check if ptr points to PM */
3 if (!__spp_is_pm_ptr(ptr))
4 return ptr;
5 void* upd_ptr = __spp_updatetag(ptr, deref_size - 1);
6 return __spp_cleantag(upd_ptr);
7 }

Lastly, the SPP runtime library includes the wrapper func-

tions for memory intrinsic (e.g., memcpy, memmove) and

string management functions (e.g., strcpy, strcmp). These func-

tions perform memory accesses to specified address ranges.

Therefore, SPP calculates the maximum addresses they intend

to access for each PM pointer argument and updates the tag(s)

before the actual function call. If any of the addresses lies

outside the defined PM objects’ boundaries, the respective

pointer’s overflow bit is set. Then, SPP masks out the tags and

the PM bit and executes the built-in function. This execution

will raise an error if any masked pointer is invalid due to the

overflow bit, preserving SPP’s memory safety properties.

E. Optimizations

SPP aims to provide spatial memory safety for PM with

low overheads. To this end, the instrumentation includes opti-

mizations to reduce the SPP function calls (e.g., for pointers

to volatile memory) and merge or omit instrumentation steps,

whenever possible (e.g., constant pointer increments in a loop).

Pointer tracking. SPP’s compiler passes perform pointer ori-

gin tracking and divide the pointers into three categories based

on the memory type they point to, namely, volatile, persistent
and unknown. The category of each pointer is decided based

on the API that generates it. More specifically, in SPP, we

refer to the pointers returned by the traditional volatile memory

management APIs (e.g., malloc, realloc, new) as volatile.

Pointers referring to C++ Vtables and error handling are also

known to be volatile. Equivalently, pointers that were con-

structed by specific PMDK functions (e.g., pmemobj direct)

are characterized as persistent. The remaining pointers (e.g.,

pointers loaded from memory) are considered unknown. SPP

also tracks the derived pointers (e.g., via pointer arithmetics)

and adds them in the category of their predecessor, if specified.

SPP’s LTO pass proceeds one step further and analyzes

the function pointer arguments. It scans the calling sites of

each function and records the type of the pointer arguments

passed by the caller. With this method, SPP can determine the

category of a function pointer argument, provided that all the

callers use pointers falling into a single category.

The benefit from the pointer classification is twofold. First,

SPP can omit the instrumentation for the volatile pointers.

avoiding multiple redundant function calls injection. Second,

SPP can skip the PM bit check in its hook functions when

operating on known persistent pointers. For pointers whose

category cannot be determined (unknown), SPP keeps the

instrumentation including the runtime pointer type checks.

Currently, the pointer tracking is designed for PMDK APIs.

However, it can be adapted and incorporated in different PM

frameworks that can benefit from or require the characteriza-

tion of whether a pointer points to PM or volatile memory.

Bound checks preemption. SPP leverages the static analysis

to identify basic code blocks and simple loops that include

consecutive updates on the same pointer with constant offsets

or following a known pattern during compile time. In this case,

SPP’s transformation pass calculates the maximum pointer

offset and performs a single tag update followed by a dummy

memory access on the updated pointer (blue highlight). This

memory access acts as a bound check. It silently verifies

the validity of the upcoming memory accesses related to this

pointer, and, thus, SPP can omit the associated tag updates

and bound checks in the specified code block (red highlight).

1 void* pm_ptr = pmemobj_direct(obj_id); // get tagged ptr
2 __spp_updatetag(pm_ptr, /*total_off*/ 16);
3 __spp_checkbound(pm_ptr, sizeof(int));
4 pm_ptr += 8;
5 __spp_updatetag(pm_ptr, /*current_off*/ 8);
6 __spp_checkbound(pm_ptr, sizeof(int));
7 int x = (int)*pm_ptr;
8 pm_ptr += 8;
9 __spp_updatetag(pm_ptr, /*current_off*/ 8);

10 __spp_checkbound(pm_ptr, sizeof(int));
11 int y = (int)*pm_ptr;

F. Additional Design Details

Crash consistency. SPP preserves the crash consistency prop-

erty for the PM data. SPP adapts PMDK internally, so that the

added PMEMoid field is set and updated in a fail-safe manner

when the application uses the dedicated PMDK APIs.

Precisely, in PM allocations, SPP atomically sets the size
field of the PMEMoid before PMDK validates the object

allocation by assigning it with its offset. This is achieved

through writing the size object in the redo log, which ensures

that the setting of this field precedes the setting of the offset.
For the case of reallocation of a PM object, the entire

PMEMoid structure is captured in a log. Since the amount of

logged bytes is determined by the size of PMEMoid object,

SPP does not have to interfere with this operation, further than

simply setting the new size of the reallocated object.

Lastly, for the general case that a PM object containing

a PMEMoid needs to be snapshotted in a transaction, the

additional 8B, that SPP introduces, are implicitly added in

the transactional undo log. This is achieved with the help of

42

the type system that accounts for these bytes when calculating

the PMEMoid size, e.g., with the sizeof() function.

However, if a PMEMoid is updated manually, it must be

wrapped in a transaction and be snapshotted in the undo log

by the developer. Thus, in case of an unexpected crash, the

recovery process of PMDK will restore the logged value.

Address space layout. Reserving a part of the pointer for

the PM bit and the tag reduces the number of available bits

leading to virtual address space limitation. This limitation only

affects the regions where a PM pool is mapped. Therefore,

we configure our PMDK version to map the PM pools in

the lower part of the virtual address space. The exact address

space limit depends on the configurable tag size so that every

PM object can be addressed using (64 − tag bits − 2) bits.

Volatile memory management can utilize 63 out of the 64

bits (excluding the PM bit) which are sufficient for current

systems [21]. In this case the address space layout random-

ization (ASLR) is disabled for PM mappings. While ASLR

has a broader memory safety spectrum than SPP (e.g., use-

after-free), its guarantees are probabilistic. Instead, SPP offers

deterministic PM buffer overflow protection. Overall, a more

sustainable future solution would be to use fat-pointers (e.g.,

128 bits) where the first 64 bits contain the safety metadata.

This approach comes with higher performance overheads as it

requires additional memory accesses for metadata fetching.

G. Limitations

SPP detects PM buffer overflows in PMDK applications,

provided that PM is managed with the PMDK APIs. SPP

comes with inherent limitations due to (i) limited pointer bits,

(ii) potential arbitrary pointer operations and (iii) the require-

ment for compatibility with pre-compiled shared libraries.

PM object & PM pool size. In SPP design, we face the

limitations imposed by the 64 bit native pointers. The PM

and overflow bits decrease the number of available bits to 62,

which should enclose both the tag and the virtual address of

the PM objects. The number of tag bits limits the PM object

size while the virtual address space bits limit the maximum

size of a PM pool. Therefore, we configure our PMDK version

to set the maximum PM object size to 1<<tag bits bits and

the maximum PM pool size to 1<<62-tag bits bits. However,

SPP allows for a configurable amount of tag bits which can be

tuned by the developers. We apply SPP on sample applications

shipped with PMDK and on a key-value store [59]. We observe

that SPP provides complete coverage for these applications.

Pointer operations. Typically, the pointer subtraction is per-

formed after converting the pointers to integers, based on the

LLVM standard. Such operations on tagged pointers can lead

to incorrect results. Therefore, SPP masks the pointer before

the subtraction to provide the expected operation outcome.

Similarly, in cases of pointer comparisons, SPP also masks

the pointers to ensure correctness. This process does not affect

SPP’s guarantees, since the converted values are only used for

the comparison and are never dereferenced.

Additionally, when an application performs a pointer to

integer operation, SPP preserves only the virtual address bits.

Thus, the application receives the expected value. However,

when an integer is converted to a pointer, SPP cannot provide

its memory safety guarantees since the integer does not contain

a tag, even if it was derived from a previously tagged pointer.

The latter case could be addressed by tracking the origin

and type of such pointers (e.g., with the use-def chain of

LLVM [1]) and maintaining the tag in a data structure to

restore it in an upcoming integer-to-pointer conversion.

In general, arbitrary pointer operations can result in an out-

of-bounds pointer by an offset that resets the overflow bit

hindering SPP from reporting the memory safety violation.

A typical example is when the offset of a pointer exceeds the

representation range of the address bits. Currently, this case is

not handled explicitly but SPP can be enhanced to either emit

an error or manually set the overflow bit. The former would be

a better approach to prevent any further pointer misuse, since

such actions mostly originate from malicious activities.

Lastly, SPP does not protect against arbitrarily generated

pointers that might end up landing on PM, as it can be neither

predicted nor prevented. Similar limitations apply in most

memory safety approaches.

Shared libraries. SPP masks the pointers passed to shared

libraries to preserve correct functionality. For the pointers re-

turned from shared libraries, SPP cannot provide any memory

safety guarantees as they are not guaranteed to be tagged

and the way they are originated within the shared library is

unknown. Therefore, SPP cannot assign them with a tag. SPP

provides memory safety guarantees for PM pointers generated

and preserved in the compilation units it has access to.

Additionally, SPP is not able currently to identify whether

a shared library is instrumented, because SPP treats each

compile module on its own. Therefore, the functions of shared

libraries that an instrumented application is linked against, are

seen as external. SPP precedes calls to these functions with

a tag cleaning operation for their pointer arguments. Thus,

despite the libraries being potentially instrumented, the tag is

not propagated to them by the application and memory safety

guarantees cannot be ensured in such cases.

V. IMPLEMENTATION

SPP is built based on PMDK v.1.9 and LLVM v.12.0. It

consists of (i) a static analysis transformation pass, (ii) a link-

time-optimization pass and (iii) a runtime library.

A. Compiler Support

Transformation pass. The SPP static analysis transformation

pass scans the application and inserts the appropriate SPP

runtime function calls. The pass operates on the LLVM

Intermediate Representation (IR) of every translation unit.

Initially, the SPP transformation pass tracks the pointer

variables of the IR. Global pointers and pointers to volatile

heap allocated objects are volatile, while pointers derived

through the pmemobj_direct function are persistent. The

rest are classified as unknown. Following, each instruction of

the module is examined. Based on the instruction type, the

43

SPP’s transformation determines where to insert the appropri-

ate callsites to SPP’s functions in the target module’s IR.

More precisely, when the pass locates a pointer arithmetic

operation, or a GetElementP trInst (GEP) in LLVM termi-

nology, it calculates the offset of the operation and inserts a

call to the __spp_updatetag to update the tag after the

GEP, as shown in Figure 3. Similarly, on ld/st instructions,

SPP updates the pointer tag based on the pointer type size

and masks the pointer for the actual dereference by inserting a

call to __spp_checkbound, as described in §IV-D. Further,

calls to __spp_cleantag are injected before the pointer-to-

integer conversions (PtrToIntInst) to preserve correct code

behaviour. Lastly, SPP’s transformation pass masks the pointer

for function arguments passed by value (Attr::ByV al) since

they implicitly perform an object copy.

LTO pass. The link-time-optimization (LTO) pass of SPP

performs an analysis and instrumentation of the whole pro-

gram during the linking phase for further optimizations. In

our implementation we use the gold linker [22], [25].

We place our pass before the LLVM inliner in the pipeline.

SPP compiles its runtime functions into object files. These

files are linked against the target application’s IR. In this way,

SPP allows LLVM to apply its effective optimizations and

perform the inlining of SPP’s functions whenever possible.

SPP hints the compiler to always_inline its functions and

prevents them being optimized out with the used attribute.

Further, the LTO pass performs a more exhaustive pointer

tracking, since it iterates over all the compile units of the

application. Thus, SPP classifies further volatile and persistent
pointer arguments by examining each function’s calling sites.

Using this information, it omits the pointer type check in the

hook functions for the identified persistent pointers. Apart

from that, this tracking allows SPP to prune injected calls

when they have a volatile pointer as argument, whose category

could not be determined via the transformation pass.

B. Runtime Library

PMDK wrappers. SPP includes wrappers for the core PMDK

operations (i.e., PM heap management). The exposed PMDK

API remains intact. The only deviation is that the environment

variable PMEM_MMAP_HINT is set to 0 so that the PM pool

is mapped to the lower part of the virtual address space.

SPP’s wrappers are responsible to set and update the

introduced 64-bit size field of a PMEMoid without violating

the crash consistency property. Both the atomic and the

transactional operations that affect the object’s size (e.g., alloc,

realloc) are considered, covering all the PM heap allocations.

Precisely, for the persistence of the pointers, SPP provides the

same atomicity guarantees with PMDK. In case of an object

(re)allocation outside a PMDK transaction, SPP leverages the

PMDK redo logging and performs an atomic operation that

validates the (re)allocation after setting the size field in the

PMEMoid. When the object management is performed within

a PMDK transaction, SPP intercepts the functions that perform

the snapshotting to ensure that the additional size field is

included in the undo log, so that it can be restored in case

of a crash during the transaction. SPP also performs a bounds

check to prevent overflows on the snapshotted objects that

could lead to information leakage through the transaction logs.

Lastly, SPP adapts the pmemobj_direct() function

to construct a tagged pointer from a PMEMoid (§IV-B). It

leverages the size field of the PMEMoid to create the tag and

returns the tagged pointer to the caller.

Hook functions. SPP’s runtime library contains a set of

hook functions that are injected in the LLVM IR of the

instrumented code. These functions update and mask the tag of

PM pointers, as explained in §IV-D. Apart from the described

hook functions, SPP implements equivalent functions with a

_direct suffix that omit the pointer type check. They are

only used when a pointer is determined to point to PM.

SPP handles separately the memory management functions,

e.g., memcpy, memset and memmove. For each pointer

operand, SPP injects a call to its __spp_memintr_check
function. This function updates the tag based on the maximum

address that the function operates on and masks the pointer.

Then, the masked pointer is passed to the original memory

management function. If the tag update sets the overflow bit,

a fault will be triggered due to the invalid pointer during the

function execution, showcasing the overflow.

Similarly, SPP interposes the common string manipulation

functions (e.g., strcpy, strcat) at link time. The runtime

library includes wrapper functions that perform the tag update

and tag masking based on the arguments of each string

function and then call the original function.

Lastly, SPP ensures compatibility between instrumented

code and pre-compiled, uninstrumented libraries via its

__spp_cleantag_external function. It is injected be-

fore the calls to external functions and removes the tag and the

PM bit from the pointer arguments promoting interoperability.

However, SPP has a caveat; a tagged PM pointer can be mis-

takenly passed to an external function as part of a struct, since

SPP currently does not perform any intra-object analysis.

C. Optimizations

Pointer tracking. SPP compiler passes perform pointer track-

ing to differentiate between volatile and persistent pointers.

This is to avoid redundant attempts to perform bounds check-

ing and tag cleaning on tag-free volatile pointers.They iterate

over each translation unit in the LLVM IR and categorise

each pointer based on the way it is derived. More specif-

ically, if a pointer is obtained via the pmemobj_direct
of PMDK (or its equivalent get() function in C++), it is

considered persistent. Similarly, pointers created via volatile

allocation functions (e.g., malloc), pointers to C++ VTa-

bles (e.g., vfn or vtable prefixed) or pointers used by

common functions that are known to point to the volatile

heap (e.g., pthread_create) are classified as volatile.

Further, pointers returned by external functions are accounted

as volatile, to avoid the instrumentation, since they are not

tagged. These pointer categories are also propagated via the

GEP and BitCast LLVM instructions. The remaining point-

ers are characterized as unknown. This classification enables

44

Fig. 4. Performance overheads (throughput) of persistent indices for SPP and SAFEPM w.r.t. the native PMDK execution.

SPP to remove useless function calls that are injected for

volatile pointers and, equivalently, to omit the pointer type

check for the persistent ones by using the _direct suffixed

version of the hook functions. For the pointers with unknown
type, SPP preserves the instrumentation and checks the PM

bit to determine their type and perform the appropriate action.

Bound checks preemption. During development, we observed

that many pointers are consecutively updated and dereferenced

in a single LLVM BasicBlock. Therefore, instead of perform-

ing a costly tag update and masking for each GEP and ld/st,

SPP calculates the maximum offset that is added to the pointer

and updates the tag only once before the first GEP. Then, it

places a dummy ld to implicitly perform the bound check and

replaces the uses of the pointer with the masked one, which

gets exempt from further instrumentation. The injected ld is

tagged volatile to avoid being optimized out by the compiler.

To further reduce the SPP’s overheads, SPP hoists bound

checks out of loops whenever possible. SPP checks every

monotonic loop for existing loop-invariant expressions refer-

ring to pointers using LLVM’s scalar evolution. If a pointer

can be hoisted, SPP calculates its max offset that is used

for dereference in the loop and places a tag update and a

dummy ld in the loop pre-header. In this optimization, the

ld is also tagged volatile. Thus, SPP performs the pointer

instrumentation only once rather than at every loop iteration.

However, due to the bound check preemption, SPP might

indicate a false code location for an overflow, pointing to the

injected dummy ld. To address this issue, bound check pre-

emption optimizations can be optional and the programmer can

choose to enable them depending on the target environment.

VI. EVALUATION

We evaluate SPP on the following three aspects:

• Performance & space overheads: We measure the perfor-

mance (§VI-B) and space (§VI-C) overheads of SPP using

PMDK’s microbenchmarks, a persistent key-value (KV)

store, designed and optimized for PM, namely pmemkv [59]

and a port of Phoenix 2.0 [102] benchmark suite to PM.

• Effectiveness: We evaluate the capability of SPP in detect-

ing PM buffer overflows (§VI-D). We use the RIPE frame-

work [114] where we focus on buffer overflow exploits. We

also detect memory safety bugs in the PMDK examples.

• Crash consistency: We verify the crash-consistency prop-

erty (§VI-E) with Valgrind’s pmemcheck tool [20].

TABLE I
BENCHMARKING VARIANTS

Variant Description
PMDK [15] PM application using unmodified PMDK

SAFEPM [33] PM application instrumented with SAFEPM
SPP PM application instrumented with SPP

A. Experimental Setup
Testbed. We conduct our experiments on a two-socket server

machine, equipped with Intel(R) Xeon(R) Gold 6326 CPU (16

cores), 64 GB (4 channels × 16 GB/DIMM) DRAM and 1

TB (4 channels × 256 GB/DIMM) Intel Optane DC DIMMs

per socket. PM is configured in App-Direct mode [66]. The

machine is running NixOS 22.05 with kernel version 5.15.49.
Variants. We perform our experiments with the variants of

Table I. As our baselines, we consider the application compiled

with (i) native PMDK, and (ii) SAFEPM sanitizer enabled. We

set the optimization level to O2 and use 26 tag bits. The results

present the average of 3 runs, unless otherwise specified.

B. Performance Overheads
Persistent indices. To measure the performance overhead, we

use pmembench [56]. For each variant of Table I we execute

experiments on the PM indices of PMDK, namely ctree,

rbtree, rtree and hashmap, with a single query type (insert,
get, remove) per run. Each workload consists of one million

queries. The keys are 8B and follow a uniform distribution.
Figure 4 reports the normalized performance overhead for

SAFEPM and SPP having the native PMDK as a baseline.

Overall, SPP achieves 9.25%, 13.75% and 10.5% lower av-

erage throughput compared to PMDK for each query type.

The respective values for SAFEPM are 101%, 37.75% and

101.75%. The large overhead difference comes from SPP’s

compiler optimisations and tagged pointer utilisation – SPP’s

LLVM pass removes redundant runtime checks on volatile

pointers and unlike SAFEPM, SPP does not access remote

memory regions for bounds information at every ld/st.

Further, pmembench has limited external function calls. This

allows SPP to perform better pointer tracing and reduce the tag

cleaning operations for external functions. Additionally, com-

pared to DRAM memory safety approaches, SPP introduces

lower relative overheads since the performance impact of tag

updating and cleaning operations in SPP is proportionally

lower due to the slower PM access. For certain experiments,

SPP approaches the native PMDK performance having an

overhead of around 6%. This indicates the practicality of SPP.
Persistent KV store. We measure the performance impact

of SPP on pmemkv [59] using its non-experimental, concur-

rent, persistent engine [23]. For our benchmarking, we use

45

Fig. 5. Performance overheads (throughput) of SPP and SAFEPM w.r.t. the native PMDK execution for pmemkv.

Fig. 6. Performance overheads of SPP and SAFEPM w.r.t. the native PMDK
execution for the Phoenix benchmark suite.

pmemkv-bench [57], which is based on the db bench. We

consider four workload types: (i) update intensive (50%R-

50%W), (ii) read intensive (95% R-5%W), (iii) random reads

and (iv) sequential reads. We perform 10M operations for each

workload. The key size is set to 16B and the value size to

1024B. Prior to each run, we insert 1M keys to the KV store.
Figure 5 illustrates the performance overhead of SPP and

SAFEPM normalized to the PMDK. SPP causes an average

18.3% throughput decrease across the workloads while the

respective value for SAFEPM is 84.4%. The overhead of SPP

mostly stems from redundant checks for volatile pointers, that

SPP cannot identify at compile time. Regarding the scalability,

we observe that SPP follows a similar pattern to the PMDK,

indicating the minimal effect of SPP on the parallel execution.
Phoenix benchmark suite. We evaluate the performance

impact of SPP in CPU intensive scenarios. We port all 7 ap-

plications of the Phoenix benchmark [102] to use PM objects

via the PMDK API. For each application, we use 8 threads and

its largest provided dataset as input. To accommodate larger

allocation sizes (e.g., the input files), we set the tag bits to 31

for SPP. The presented results are the average of 20 runs.
Figure 6 presents the slowdown of SPP and SAFEPM hav-

ing PMDK as the baseline. SPP causes a slowdown of 2-23%

for Phoenix benchmark applications, except for the kmeans
where it incurs 180%. The respective values for SAFEPM

range from 83% to 750%. The significantly reduced overheads

of SPP can be reasoned by the effective pointer tracking since

SPP has all the source code of the applications available for

its analysis. The unique case of the kmeans benchmark can be

justified as this application iterates constantly over its working

set, leading to a higher performance impact of the SPP’s

instrumentation in its execution. Note that the Phoenix port is

not optimized for PM. It uses plain memory intrinsic functions

(e.g., memcpy) which do not allow SPP to avoid some pointer

type checks. This implies that in a more sophisticated, PM-

oriented port, the overheads of SPP can be further diminished.
Atomic and transactional PM operations. We evaluate

the effect of SPP on PMDK’s atomic and transactional PM

Fig. 7. Performance overhead of SPP for PM management operations.

TABLE II
RECOVERY TIME IN MILLISECONDS (ms).

Snapshotted PMEMoids
Variant 100 1000 10K 100K 1M
PMDK 17.62 17.78 18.82 28.52 119.77

SPP 17.77 17.86 18.87 28.66 120.00

management functions. We use pmembench [56], where we

configure each experiment to perform 100K operations while

varying the object size. We present the average of 10 runs.

Figure 7 reports the normalized slowdown of SPP for each

PM management operation. For almost all the operations,

the performance of SPP is close to the PMDK for the

various object sizes (1-8% slowdown). It can be justified, as

this microbenchmark only allocates PM objects and performs

no PM access after the respective operation. Therefore, the

overhead comes from redundant checks for the pointer type

that SPP’s static analysis cannot optimise away. The only

operation with high overheads(7-17%) is the atomic free. This

is due to SPP’s required runtime checks, compared to a single

atomic operation that PMDK requires to free the PM object.

Recovery time. We measure the recovery time of an appli-

cation and compare SPP with PMDK. We develop a mi-

crobenchmark that allocates PM objects in a pool. We present

a worst-case scenario for SPP where an application snapshots

exclusively PMEMoids in a transaction, resulting in larger logs

for SPP. The number of objects per experiment is shown in

Table II. After the snapshotting, we inject a crash and trigger

a recovery. Our results indicate the average of 100 runs.

The slightly increased recovery time is caused mainly by

the need for restoration of the additional size field of the

PMEMoid. Note that SPP does not interfere with the internal

recovery process of PMDK. However, user-defined recovery

functions could pose higher overhead, since they are also

46

subject to SPP’s instrumentation as part of the application,

where SPP must provide its spatial memory safety guarantees.

C. Space Overhead

We measure the space overhead introduced by SPP com-

pared to the native PMDK. SPP’s space overhead is caused

by the size field, added to the PMEMoid of PMDK. We reuse

the four PM indices with the insert and get workloads and 1M

keys, as explained in §VI-B. The reported values indicate the

space overhead after the execution of the application.

The PM space overheads of SPP are presented in Table III.

We conclude that SPP wastes minimal PM space to store its

memory safety metadata (0-0.43%) for all persistent indices,

except the rtree. In the extreme case of rtree, SPP consumes

39.7% more PM space compared to PMDK. It occurs, as each

rtree node contains 256 PMEMoids and SPP’s space overhead

is proportional to the number of PMEMoids an application

stores in PM. Note that this is not a common pattern in PM

applications based on our observations. A future design can

completely eliminate the PM space overhead if the object size

gets encoded along with the object offset in the PMEMoid
structure, thus requiring no extra PM space. This feature is

not included in current SPP version due to time constraints.

D. Effectiveness

In this experiment, we examine the effectiveness of SPP.

We use the RIPE benchmark framework [114]. It contains a set

of different memory vulnerability exploits. We focus on buffer

overflows. We use the 64-bit version of RIPE [3] that allocates

objects on PM via PMDK [33]. We consider the following

variants: (i) Volatile heap, where RIPE uses volatile memory,

(ii) PM pool heap, where it uses the PM heap, (iii) SafePM,

where it uses the PM heap with SAFEPM sanitizer enabled,

(iv) SPP, where the application uses the PM heap and is

instrumented with SPP and (v) memcheck [18], a valgrind tool

for memory bugs in PM. Each memory exploit is executed 3

times in each run. We perform the RIPE experiments several

times to ascertain the stability of our reported results.

Table IV shows the exploits that are successful or prevented

throughout our runs. We observe that porting RIPE to use PM

preserves the number of potential buffer overflow exploits (83).

Out of these attacks, SPP is able to prevent 79 while SAFEPM

detected 77. The memcheck [18] identified 63 attacks. We

further examine the non-detected attacks by SPP and realise

that the constructed PM buffer is only directly accessed in-

bounds. Overall, SPP is capable of detecting almost every

PM buffer overflow with notably lower performance overhead,

compared to its state-of-the-art counterparts.

Reproducing bugs. To further verify the effectiveness of SPP,

we reproduce and detect a reported PM buffer overflow bug

in PMDK’s btree index [11]. More specifically, on line 378 of

btree map.c file, the memmove call leads to a buffer overflow

on a PM data object, which SPP is able to identify and report.

Additionally, we test various examples shipped with PMDK

[63]. We apply SPP on implementations of an array, a queue,

a FIFO list, a solution of Buffon’s Needle problem, a program

TABLE III
SPP SPACE OVERHEAD

Data Insert Get
structure (MB) (%) (MB) (%)

ctree 0 0% 0 0%
rtree 2127 39.7% 2127 39.7%
rbtree 0 0% 0 0%

hashmap tx 5 0.43% 5 0.43%

TABLE IV
RIPE ATTACKS USING DIFFERENT PROTECTION MECHANISMS.

RIPE variant Successful Prevented
Volatile heap 83 140
PM pool heap 83 140

SafePM 6 217
SPP 4 219

memcheck 20 203

for the π calculation and a slab allocator. Using SPP, we

identify three PM buffer overflows in the array example.

Precisely, when an array realloc is requested, its return value

is not checked. In case of a failed realloaction to a larger size,

the application attempts to fill the newly, supposedly allocated,

array which results in an overflow, as the original array is not

resized. This bug occurs in lines 215, 235 and 257 of the array

example [62]. The remaining examples do not report any error

throughout their execution with arbitrary inputs.

Further, we identify an off-by-one buffer overflow in the

string_match benchmark of Phoenix, when the read
function is used for the input file. This bug is detected when

we execute the ported version with SPP. It occurs when trying

to access a character beyond the input buffer [74]. We verify

our finding using ASan [104] on the volatile memory version.

We report the bug [28] and its respective fix [29].

On top of that, we develop sample examples with various

kinds of PM buffer overflows (e.g., overflows during snap-

shotting, built-in memory functions overflows, etc.) for testing.

SPP identifies and reports all of the above cases.

E. Crash Consistency

We verify that SPP preserves the crash consistency for the

PM data despite the addition of the size field in the PM pointer.

We use pmemcheck [20] and memcheck [96]. pmemcheck
is a Valgrind plugin that allows for exploring and verifying

the data consistency in PM applications [33], [58], [67], [79].

Its output is passed to pmreorder [19] to explore the state

space. We perform the same experiments as in §VI-B. Due

to Valgrind’s overheads, we set the number of operations to

10000 to shorten the execution time.

pmemcheck and pmreorder do not report any error.

memcheck also has an empty error log for the persistent

indices. For the PM operations, memcheck provides the same

error output with the case of unmodified PMDK which is not

indicating any crash consistency violation.

VII. RELATED WORK

Persistent memory systems. There exists a large body of

work on PM filesystems that aims to reap the performance

benefits of persistent memory as a storage medium [36], [72],

47

[111], [116], [123]. Further, persistent memory has already

been incorporated in the design of many high performant

data management systems [14], [16], [17], [59], [73]. On

top of that, several proposed distributed systems leverage the

capability of accessing PM remotely via RDMA to improve

their efficiency [65], [71], [82], [106], [118], [122]. Unlike

these systems that focus on high performance and correctness,

SPP efficiently tackles the problem of memory safety on PM.

Further, recent works [32], [85], [113] leverage accelera-

tors (e.g., FPGAs) where they offload PM operations (e.g.,

cacheline flushes, logging). Such systems can improve the

PMDK performance. We expect that the performance boost

will be similar for SPP, as it uses PMDK underneath for

these operations, does not hamper the cache locality and has

a minimal contribution to the amount of logged data.

SW memory safety approaches. Various software based

approaches have been proposed to deal with the memory safety

bugs for volatile memory [27], [30], [75], [76], [78], [90],

[92], [104], [119]. The main target of these approaches is

to preserve compatibility and high efficiency while incurring

low performance and memory overheads. They apply different

techniques such as pointer tagging [75] or the shadow-memory

concept [104] and are often accompanied with compiler instru-

mentation [90], [119] and runtime libraries. Differently from

such approaches, SPP focuses on memory safety for PM and

achieves low runtime overheads for PM applications due to its

conservative, yet effective, distinction of pointer types through

the introduced PM bit as well as its selective instrumentation

of PM pointers that eliminates redundant runtime function

calls for volatile memory pointers. However, for complete

memory safety, SPP can be combined with other SW-based

memory safety approaches targeting volatile memory, since

it is practically only affecting the PM pointer representation.

Note that at the cost of additional performance overhead, SPP

could be generalised and include instrumentation and checks

for volatile memory pointers, similarly to prior work [75].

Targeting memory safety for PM, SafePM [33] and the

valgrind-based memcheck [18] tool have been proposed.

SafePM is built on google’s AddressSanitizer [104] while

memcheck leverages Valgrind and PMDK’s internal code

annotations to provide memory safety. Both these approaches

incur considerable performance and space overheads and are

destined for debugging purposes. On the contrary, SPP intends

to be an efficient, low-overhead memory safety solution.

Lastly, Corundum [55] is a PM management library in Rust

that enforces language-based memory safety. In contrast, SPP

can be deployed in existing PMDK applications without any

source code modifications and does not require re-developing

applications with certain libraries or languages.

HW memory safety approaches. Striving for lower perfor-

mance overheads, several works introduce HW extensions to

provide memory safety for volatile memory [4], [40], [45],

[48], [87], [88], [97], [98], [109], [115], [121]. Cheri [115]

employs hardware capabilities while lowfat pointers [45] offer

spatial memory safety using compact fat pointers that contain

the encoded object bounds. They propose a hardware-level

implementation for faster decoding and pointer validation.

Intel MPX [97], [98] and Arm MTE [4] provide ISA ex-

tensions to prevent memory safety bugs for Intel x86-64 and

Arm architecture respectively. Hardbound [40], SafeProc [48]

and WatchdogLite [88] propose further ISA extensions that

work collaboratively with a compiler instrumentation aiming

towards better performance. In contrast to these approaches

that rely on specialized HW or require ISA modifications and

are dedicated for volatile memory safety, SPP can be used in

commodity HW and detect memory safety bugs on PM.

PM allocators and libraries. PM allocation and management

is an active area of research [34], [35], [39], [64], [99], [112].

Mnemosyne [112], NVHeaps [35] and PMDK [64] provide

APIs for PM management and implement transactions to guar-

antee crash consistency. They distinguish between pointers to

volatile memory and PM to avoid ephemeral or stale references

being reused across restarts, if the developer uses their APIs

correctly. Notably, NVHeaps [35] and Mnemosyne [112] are

evaluated using simulated PM while PMDK is optimized

to leverage the HW features of actual PM devices. These

approaches, unlike SPP, do not provide any memory safety

but only ways to manage PM in a correct manner, which SPP

also performs as it is based on PMDK by design.

Poseidon [39] is a PM allocator that prevents metadata

corruption using Intel MPK [100]. GPM [99] exposes an API

to access PM directly from the GPU with respect to crash con-

sistency and persistence. However, ensuring crash consistency

is a non-trivial task. Therefore, multiple frameworks have been

proposed to verify, or potentially ensure, this property for PM

applications [32], [43], [47], [49], [70], [79]–[81], [93].

VIII. CONCLUSION

In this paper, we present SPP, the first tagged pointer-based

mechanism designed to provide practical memory safety for

PM applications. The PM pointer tag indicates the pointer

distance from the end of the PM object and gets implicitly

invalidated when it surpasses this boundary. SPP consists of

a compiler instrumentation based on LLVM, a runtime library

and an adapted PMDK version. It enhances the persistent

pointer representation of PMDK with memory safety metadata

which is set and updated in a crash-consistent manner. Its run-

time functions ensure the correct tagged pointer management

and provide compatibility with pre-compiled external libraries.

SPP maintains the PMDK API intact. Consequently, SPP

requires no source code modifications and can be seamlessly

integrated into existing PM software. Our thorough evaluation

shows that SPP effectively detects PM buffer overflows with

low performance costs and negligible space overheads.

Software artifact. SPP is publicly available with the entire

setup (https://doi.org/10.5281/zenodo.10211561).

ACKNOWLEDGMENTS

We thank our shepherd, Prof. Jian Huang, and the anony-

mous reviewers for their helpful comments. This work was

supported by a Schwerpunktprogramm (SPP) (ID: 2377) from

Deutsche Forschungsgemeinschaft (DFG).

48

REFERENCES

[1] Iterating over def-use & use-def chains. https://llvm.org/docs/Progra
mmersManual.html#iterating-over-def-use-use-def-chains. April 16,
2024.

[2] Poject zero - stagefrightened? https://googleprojectzero.blogspot.com
/2015/09/stagefrightened.html, 2015. April 16, 2024.

[3] A 64-bit port of the RIPE benchmark. https://github.com/hrosier/ripe6
4.git, 2019. April 16, 2024.

[4] Memory tagging extension: Enhancing memory safety through archi-
tecture. https://community.arm.com/developer/ip-products/processo
rs/b/processors-ip-blog/posts/enhancing-memory-safety, 2019. April
16, 2024.

[5] A proactive approach to more secure code. https://msrc-blog.microsof
t.com/2019/07/16/a-proactive-approach-to-more-secure-code/, 2019.
April 16, 2024.

[6] Queue the hardening enhancements. https://security.googleblog.co
m/2019/05/queue-hardening-enhancements.html, 2019. Accessed:
2021-02-27.

[7] The heartbleed bug. https://heartbleed.com/, 2020. April 16, 2024.
[8] 2021 cwe top 25 most dangerous software weaknesses. http://cwe.mi

tre.org/top25/archive/2021/2021 cwe top25.html, 2021. Accessed:
31-08-2021.

[9] AN INTRODUCTION TO PMEMOBJ (PART 3) - TYPES. https:
//pmem.io/blog/2015/06/an-introduction-to-pmemobj-part-3-types/,
2021. Accessed 22-07-2022.

[10] The chromium projects - memory safety. https://www.chromium.org
/Home/chromium-security/memory-safety, 2021. April 16, 2024.

[11] GitHub issue on the btree overflow. https://github.com/pmem/pmdk/i
ssues/5333, 2021. Accessed 05-10-2021.

[12] The libpmem webpage. https://pmem.io/pmdk/libpmem/, 2021.
Accessed: 2021-02-27.

[13] Memcheck: a memory error detector. https://valgrind.org/docs/manual
/mc-manual.html, 2021. April 16, 2024.

[14] Memhive: Scale applications with persistent memory! https://www.me
mhive.io/, 2021. April 16, 2024.

[15] The pmdk webpage. https://pmem.io/pmdk/, 2021. Accessed: 2021-
02-27.

[16] Pmem-Redis. https://github.com/pmem/pmem-redis, 2021. April 16,
2024.

[17] pmem-rocksdb. https://github.com/pmem/pmem-rocksdb, 2021. April
16, 2024.

[18] pmem-valgrind. https://github.com/pmem/valgrind, 2021. April 16,
2024.

[19] The pmreorder utility. https://pmem.io/pmdk/pmreorder/, 2021. April
16, 2024.

[20] Valgrind: an enhanced version for pmem. https://github.com/efeslab/p
memcheck, 2021. April 16, 2024.

[21] Five-level page tables. https://lwn.net/Articles/717293/, 2022. Accessed
04-07-2022.

[22] GNU Binutils. https://sourceware.org/binutils/, 2022. Accessed
20-07-2022.

[23] pmemkv engines. https://github.com/pmem/pmemkv/blob/master/doc/l
ibpmemkv.7.md#cmap, 2022. Accessed 04-07-2022.

[24] pmemobj API. https://pmem.io/pmdk/manpages/linux/v1.1/libpmemob
j.3/, 2022. Accessed 04-07-2022.

[25] The LLVM gold plugin. https://llvm.org/docs/GoldPlugin.html, 2022.
Accessed 20-07-2022.

[26] Type safety MACROS in libpmemobj. https://pmem.io/blog/2015/06/t
ype-safety-macros-in-libpmemobj/, 2022. Accessed 04-07-2022.

[27] CAMP: Compiler and allocator-based heap memory protection. In 33rd
USENIX Security Symposium (USENIX Security 24), Philadelphia, PA,
August 2024. USENIX Association.

[28] Heap overflow bug in the string match benchmark of the phoenix
benchmark suite. https://github.com/kozyraki/phoenix/issues/9, 2024.
April 16, 2024.

[29] Suggested fix for the heap overflow bug in the string match benchmark
of the phoenix benchmark suite. https://github.com/kozyraki/phoenix/
pull/10, 2024. April 16, 2024.

[30] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.
Baggy bounds checking: An efficient and backwards-compatible de-
fense against out-of-bounds errors. In 18th USENIX Security Sympo-
sium (USENIX Security 09), Montreal, Quebec, August 2009. USENIX
Association.

[31] Emery D. Berger and Benjamin G. Zorn. Diehard: Probabilistic
memory safety for unsafe languages. In Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’06, page 158–168, New York, NY, USA, 2006.
Association for Computing Machinery.

[32] Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann, Gerd
Zellweger, and Ryan Stutsman. Cache-coherent accelerators for per-
sistent memory crash consistency. In Proceedings of the 14th ACM
Workshop on Hot Topics in Storage and File Systems, HotStorage ’22,
page 37–44, New York, NY, USA, 2022. Association for Computing
Machinery.

[33] Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod
Bhatotia. Safepm: A sanitizer for persistent memory. In Proceedings of
the Seventeenth European Conference on Computer Systems, EuroSys
’22, page 506–524, New York, NY, USA, 2022. Association for
Computing Machinery.

[34] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
Leveraging locks for non-volatile memory consistency. In Proceed-
ings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, page
433–452, New York, NY, USA, 2014. Association for Computing
Machinery.

[35] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp,
Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. Nv-heaps:
Making persistent objects fast and safe with next-generation, non-
volatile memories. SIGARCH Comput. Archit. News, 39(1):105–118,
March 2011.

[36] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09,
page 133–146, New York, NY, USA, 2009. Association for Computing
Machinery.

[37] CXL™ Consortium. Compute express link™: The breakthrough cpu-
to-device interconnect. https://www.computeexpresslink.org/, April
16, 2024.

[38] Thurston Dang, Petros Maniatis, and David Wagner. The performance
cost of shadow stacks and stack canaries. ASIACCS 2015 - Proceedings
of the 10th ACM Symposium on Information, Computer and Commu-
nications Security, pages 555–566, 04 2015.

[39] Anthony Demeri, Wook-Hee Kim, R. Madhava Krishnan, Jaeho Kim,
Mohannad Ismail, and Changwoo Min. Poseidon: Safe, fast and
scalable persistent memory allocator. In Proceedings of the 21st
International Middleware Conference, Middleware ’20, page 207–220,
New York, NY, USA, 2020. Association for Computing Machinery.

[40] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic.
Hardbound: architectural support for spatial safety of the c program-
ming language. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, page 103–114, New York, NY, USA, 2008.
Association for Computing Machinery.

[41] Dinakar Dhurjati and Vikram Adve. Backwards-Compatible Array
Bounds Checking for C with Very Low Overhead, page 162–171.
Association for Computing Machinery, New York, NY, USA, 2006.

[42] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Safecode:
enforcing alias analysis for weakly typed languages. In PLDI ’06:
Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 144–157, New York, NY,
USA, 2006. ACM.

[43] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, flexible, and
comprehensive bug detection for persistent memory programs. In Pro-
ceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2021, page 503–516, New York, NY, USA, 2021. Association for
Computing Machinery.

[44] Gregory J. Duck, R. Yap, and L. Cavallaro. Stack bounds protection
with low fat pointers. In Network and Distributed System Security
Symposium, NDSS, 2017.

[45] Gregory J. Duck and Roland H. C. Yap. Heap bounds protection with
low fat pointers. In Proceedings of the 25th International Conference
on Compiler Construction, CC 2016, page 132–142, New York, NY,
USA, 2016. Association for Computing Machinery.

49

[46] Gregory J. Duck and Roland H. C. Yap. Effectivesan: Type and memory
error detection using dynamically typed c/c++. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, page 181–195, New York, NY, USA,
2018. Association for Computing Machinery.

[47] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad
Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. Witcher:
Systematic crash consistency testing for non-volatile memory key-value
stores. In Proceedings of the 28th ACM Symposium on Operating
Systems Principles, SOSP ’21, page 1–15, New York, NY, USA, 2021.
Association for Computing Machinery.

[48] Saugata Ghose, Latoya Gilgeous, Polina Dudnik, Aneesh Aggarwal,
and Corey Waxman. Architectural support for low overhead detection
of memory violations. In 2009 Design, Automation & Test in Europe
Conference & Exhibition, pages 652–657, 2009.

[49] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Jaaru: Effi-
ciently model checking persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2021,
page 415–428, New York, NY, USA, 2021. ACM.

[50] Istvan Haller, Erik Kouwe, Cristiano Giuffrida, and Herbert Bos. Met-
alloc: Efficient and comprehensive metadata management for software
security hardening. pages 1–6, 04 2016.

[51] Jim Handy. SUnderstand how the CXL SSD can aid performance.
April 16, 2024.

[52] Niranjan Hasabnis, Ashish Misra, and R. Sekar. Light-weight bounds
checking. In Proceedings of the Tenth International Symposium on
Code Generation and Optimization, CGO ’12, page 135–144, New
York, NY, USA, 2012. Association for Computing Machinery.

[53] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks
and access errors. In In Proc. of the Winter 1992 USENIX Conference,
pages 125–138, 1991.

[54] Red Hat. Ghost: glibc vulnerability (cve-2015-0235). https://access.r
edhat.com/articles/1332213, 2015. April 16, 2024.

[55] Morteza Hoseinzadeh and Steven Swanson. Corundum: Statically-
enforced persistent memory safety. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, page 429–442, New
York, NY, USA, 2021. Association for Computing Machinery.

[56] Intel. pmembench: PMDK benchmark framework, 2021. April 16,
2024.

[57] Intel. Benchmarking tools for pmemkv, 2022. April 16, 2024.
[58] Intel. Discover Persistent Memory Programming Errors with Pmem-

check, 2022.
[59] ”Intel”. ”persistent memory development kit : pmemkv”, 2022. April

16, 2024.
[60] Intel. Persistent Memory Development Kit : The C++ bindings to

libpmemobj, 2022. April 16, 2024.
[61] Intel. Persistent Memory Development Kit : The libpmemlog library,

2022. April 16, 2024.
[62] Intel. Persistent Memory Development Kit : the libpmemobj array

example, 2022. April 16, 2024.
[63] Intel. Persistent Memory Development Kit : The libpmemobj examples,

2022. April 16, 2024.
[64] Intel. Persistent memory development kit : The libpmemobj library,

2022. April 16, 2024.
[65] ”Intel”. Persistent Memory Development Kit : The librpma library,

2022. April 16, 2024.
[66] Intel. The Challenge of Keeping Up with Data, 2022. April 16, 2024.
[67] Louis Jenkins and Michael L. Scott. Persistent Memory Analysis Tool

(PMAT), 2022.
[68] Trevor Jim, J. Morrisett, Dan Grossman, Michael Hicks, James Cheney,

and Yanling Wang. Cyclone: A safe dialect of c. pages 275–288, 01
2002.

[69] Richard Jones and Paul Kelly. Backwards-compatible bounds checking
for arrays and pointers in c programs. 05 2002.

[70] Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa. Vinter: Auto-
matic Non-Volatile memory crash consistency testing for full systems.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22),
pages 933–950, Carlsbad, CA, July 2022. USENIX Association.

[71] Anuj Kalia, David Andersen, and Michael Kaminsky. Challenges and
solutions for fast remote persistent memory access. In Proceedings
of the 11th ACM Symposium on Cloud Computing, SoCC ’20, page

105–119, New York, NY, USA, 2020. Association for Computing
Machinery.

[72] Chandan Kalita, Gautam Barua, and Priya Sehgal. Durablefs: A file
system for persistent memory. CoRR, abs/1811.00757, 2018.

[73] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young
ri Choi, Alan Sussman, and Beomseok Nam. ListDB: Union of Write-
Ahead logs and persistent SkipLists for incremental checkpointing on
persistent memory. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 161–177, Carlsbad, CA,
July 2022. USENIX Association.

[74] Christos Kozyrakis. Phoenix benchmark overflow bug location. https:
//github.com/kozyraki/phoenix/blob/1276c8d8f3b82050071d0a7a4b8
a352a05d1faab/phoenix-2.0/tests/string match/string match.c#L158.
April 16, 2024.

[75] Taddeus Kroes, Koen Koning, Erik Kouwe, Herbert Bos, and Cristiano
Giuffrida. Delta pointers: buffer overflow checks without the checks.
pages 1–14, 04 2018.

[76] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach,
Pramod Bhatotia, Pascal Felber, and Christof Fetzer. Sgxbounds: Mem-
ory safety for shielded execution. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems, EuroSys ’17, page 205–221,
New York, NY, USA, 2017. Association for Computing Machinery.

[77] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’04, page 75,
USA, 2004. IEEE Computer Society.

[78] Hao Ling, Heqing Huang, Chengpeng Wang, Yuandao Cai, and Charles
Zhang. Giantsan: Efficient memory sanitization with segment folding.
In 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2024),
2024.

[79] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. Pmfuzz:
Test case generation for persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2021,
page 487–502, New York, NY, USA, 2021. Association for Computing
Machinery.

[80] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-failure bug detection in
persistent memory programs. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page 1187–1202,
New York, NY, USA, 2020. Association for Computing Machinery.

[81] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira
Khan. Pmtest: A fast and flexible testing framework for persistent
memory programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 411–425, New York, NY, USA,
2019. Association for Computing Machinery.

[82] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: an rdma-
enabled distributed persistent memory file system. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 773–785, Santa
Clara, CA, July 2017. USENIX Association.

[83] Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Benjamin G.
Zorn. Archipelago: Trading address space for reliability and security.
SIGOPS Oper. Syst. Rev., 42(2):115–124, mar 2008.

[84] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris.
Persistent memcached: Bringing legacy code to Byte-Addressable per-
sistent memory. In 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), Santa Clara, CA, July 2017. USENIX
Association.

[85] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris.
Persistent memcached: Bringing legacy code to Byte-Addressable per-
sistent memory. In 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), Santa Clara, CA, July 2017. USENIX
Association.

[86] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nien-
huis, David Chisnall, Robert N. M. Watson, and Peter Sewell. Into the
depths of c: Elaborating the de facto standards. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, page 1–15, New York, NY, USA, 2016.
Association for Computing Machinery.

50

[87] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
dog: Hardware for safe and secure manual memory management and
full memory safety. In 2012 39th Annual International Symposium on
Computer Architecture (ISCA), pages 189–200, 2012.

[88] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watch-
doglite: Hardware-accelerated compiler-based pointer checking. In
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’14, page 175–184, New York, NY,
USA, 2014. Association for Computing Machinery.

[89] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Every-
thing You Want to Know About Pointer-Based Checking. In Thomas
Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner,
and Greg Morrisett, editors, 1st Summit on Advances in Programming
Languages (SNAPL 2015), volume 32 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 190–208, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[90] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Softbound: Highly compatible and complete spatial mem-
ory safety for c. In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’09,
page 245–258, New York, NY, USA, 2009. Association for Computing
Machinery.

[91] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Cets: Compiler enforced temporal safety for c. In Proceed-
ings of the 2010 International Symposium on Memory Management,
ISMM ’10, page 31–40, New York, NY, USA, 2010. Association for
Computing Machinery.

[92] Myoung Jin Nam, Periklis Akritidis, and David J Greaves. Framer:
A tagged-pointer capability system with memory safety applications.
In Proceedings of the 35th Annual Computer Security Applications
Conference, ACSAC ’19, page 612–626, New York, NY, USA, 2019.
Association for Computing Machinery.

[93] Ian Neal, Andrew Quinn, and Baris Kasikci. Hippocrates: Healing
persistent memory bugs without doing any harm. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2021,
page 401–414, New York, NY, USA, 2021. Association for Computing
Machinery.

[94] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak,
and Westley Weimer. Ccured: Type-safe retrofitting of legacy software.
ACM Trans. Program. Lang. Syst., 27(3):477–526, May 2005.

[95] Netapp. What is persistent memory?, 2022. April 16, 2024.
[96] Nicholas Nethercote and Julian Seward. Valgrind: A framework

for heavyweight dynamic binary instrumentation. SIGPLAN Not.,
42(6):89–100, June 2007.

[97] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel MPX explained: An empirical study of
intel MPX and software-based bounds checking approaches. CoRR,
abs/1702.00719, 2017.

[98] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel MPX Explained: A Cross-layer Analysis of
the Intel MPX System Stack. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 2018.

[99] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. GPM:
Leveraging Persistent Memory from a GPU, page 142–156. Association
for Computing Machinery, New York, NY, USA, 2022.

[100] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim.
libmpk: Software abstraction for intel memory protection keys (intel
MPK). In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 241–254, Renton, WA, July 2019. USENIX Association.

[101] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,
João Paulo Fernandes, and João Saraiva. Energy efficiency across
programming languages: How do energy, time, and memory relate?
In Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2017, page 256–267, New
York, NY, USA, 2017. Association for Computing Machinery.

[102] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. Evaluating mapreduce for multi-core and
multiprocessor systems. In 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, pages 13–24, 2007.

[103] Olatunji Ruwase and M. Lam. A practical dynamic buffer overflow
detector. In Network and Distributed System Security Symposium,
NDSS, 2004.

[104] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. Addresssanitizer: A fast address sanity checker. In

2012 USENIX Annual Technical Conference (USENIX ATC 12), pages
309–318, Boston, MA, June 2012. USENIX Association.

[105] Anton Shilov. Samsung’s Memory-Semantic CXL SSD Brings a 20X
Performance Uplift. April 16, 2024.

[106] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu, Junru Li, and
Youyou Lu. Th-dpms: Design and implementation of an rdma-enabled
distributed persistent memory storage system. ACM Trans. Storage,
16(4), October 2020.

[107] Matthew S. Simpson and Rajeev K. Barua. Memsafe: Ensuring the
spatial and temporal memory safety of c at runtime. In 2010 10th
IEEE Working Conference on Source Code Analysis and Manipulation,
pages 199–208, 2010.

[108] László Szekeres, M. Payer, Tao Wei, and D. Song. Sok: Eternal war
in memory. 2013 IEEE Symposium on Security and Privacy, pages
48–62, 2013.

[109] Martin Unterguggenberger, David Schrammel, Lukas Lamster, Pascal
Nasahl, and Stefan Mangard. Cryptographically enforced memory
safety. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, page 889–903, New
York, NY, USA, 2023. Association for Computing Machinery.

[110] Victor van der Veen, Nitish Dutt-Sharma, Lorenzo Cavallaro, and
Herbert Bos. Memory errors: The past, the present, and the future.
volume 7462, 09 2012.

[111] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. Aerie: Flexible file-system interfaces to storage-class memory.
In Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, New York, NY, USA, 2014. Association for
Computing Machinery.

[112] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, page 91–104, New
York, NY, USA, 2011. Association for Computing Machinery.

[113] Tiancong Wang, Sakthikumaran Sambasivam, Yan Solihin, and James
Tuck. Hardware supported persistent object address translation. In
Hillery C. Hunter, Jaime Moreno, Joel S. Emer, and Daniel Sánchez,
editors, Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2017, Cambridge, MA, USA,
October 14-18, 2017, pages 800–812. ACM, 2017.

[114] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and
Wouter Joosen. Ripe: Runtime intrusion prevention evaluator. pages
41–50, 12 2011.

[115] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. The cheri capability model:
Revisiting risc in an age of risk. SIGARCH Comput. Archit. News,
42(3):457–468, June 2014.

[116] Jian Xu and Steven Swanson. NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16), pages 323–
338, Santa Clara, CA, February 2016. USENIX Association.

[117] Shengjie Xu, Wei Huang, and David Lie. In-fat pointer: Hardware-
assisted tagged-pointer spatial memory safety defense with subobject
granularity protection. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, page 224–240, New York, NY, USA,
2021. Association for Computing Machinery.

[118] Jian Yang, Joseph Izraelevitz, and Steven Swanson. Filemr: Rethinking
RDMA networking for scalable persistent memory. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), pages 111–125, Santa Clara, CA, February 2020. USENIX Asso-
ciation.

[119] Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. Wpbound: Enforcing spa-
tial memory safety efficiently at runtime with weakest preconditions.
In 2014 IEEE 25th International Symposium on Software Reliability
Engineering, pages 88–99, 2014.

[120] Yves Younan, Wouter Joosen, and Frank Piessens. Runtime counter-
measures for code injection attacks against c and c++ programs. ACM
Computing Surveys - CSUR, 44:1–28, 06 2012.

[121] Jason Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carl-
son, and Prateek Saxena. Capstone: A capability-based foundation for
trustless secure memory access. In 32nd USENIX Security Symposium

51

(USENIX Security 23), pages 787–804, Anaheim, CA, August 2023.
USENIX Association.

[122] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. FORD: Fast one-
sided RDMA-based distributed transactions for disaggregated persistent
memory. In 20th USENIX Conference on File and Storage Technologies
(FAST 22), pages 51–68, Santa Clara, CA, February 2022. USENIX

Association.
[123] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min,

and Sanidhya Kashyap. ODINFS: Scaling PM performance with oppor-
tunistic delegation. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 179–193, Carlsbad, CA,
July 2022. USENIX Association.

52

