
Reboot-based Recovery of
Unikernels at the Component Level

Takeru Wada
TUAT

Tokyo, Japan
takew@asg.cs.tuat.ac.jp

Hiroshi Yamada
TUAT

Tokyo, Japan
hiroshiy@cc.tuat.ac.jp

Abstract—The unikernel is a library operating system (OS)
where OS functions are linked to the target applications. Making
the unikernel layer as reliable as possible is mandatory because
it controls the linked application’s execution. However, like
commodity OS kernels, the unikernel suffers from software bugs
and non-deterministic hardware failures. The current standard
for recovering a failed unikernel is reboot-based and it involves
restarting the whole unikernel-linked application, which leads to
service stops and long downtimes. This paper presents VampOS
that performs efficient reboot-based recovery of the unikernel
layer. VampOS forces the unikernel components to interact
with each other in a message-passing manner to restart only
the damaged one while keeping the others and the application
running. We prototyped VampOS on Unikraft 0.8.0 and QEMU
6.1.50. The experimental results show that the prototypes for
four applications effectively recover the failed components with
almost zero downtime.

Index Terms—Reboot-based Recovery, Unikernel, Software
Rejuvenation

I. INTRODUCTION

The unikernel [24], [26], [31], [41], [57] is a library

operating system (OS) where OS functions are linked to the

target applications like libraries. The unikernel is suitable for

modern cloud platforms because each virtual machine (VM)

offered by a cloud vendor typically runs only one application

and uses some parts of the OS functionalities. This offers

several benefits. First, the overhead of system call issues is

mitigated since the unikernel runs in the same protection

mode as the applications, so that the system calls do not

cause mode changes. Second, the memory footprint of the

OS layer is small since the applications can link only OS

components required for their execution, which is different

from the widely used monolithic OS kernels that contain full

OS functionalities. Third, the trusted computing base (TCB)

of the unikernel-linked applications can be made small by

removing unnecessary OS components, which means attack

surfaces are reduced.

Making the unikernel layer as reliable as possible is manda-

tory because it controls the linked application’s execution

on top of the hypervisor. Failures and error propagation at

the unikernel affect the applications. For example, even if

the application layer is undamaged, a crash of the unikernel

due to non-deterministic memory errors aborts its execution.

Also, when software bugs in unikernels cause memory leaks,

the performance of the applications is significantly degraded.

Because of their complex and ever-changing functionalities,

OS components are still far from being bug-free despite

numerous efforts in the past decades [2], [9], [52]–[54], [58],

[62]. Unikernels, whose source code is much smaller than

commodity OS kernels, suffer from software bugs [10], [45],

[66]. For instance, a bug found in Unikraft causes memory

leaks in ukallocbuddy [67], while another one triggers a crash

by an invalid pointer reference in musl [65].
The current standard for recovering a failed unikernel is

reboot-based; it is often the only remedy that disposes of the

current states of the unikernel-linked application and initial-

izes them from scratch. Reboot-based recovery is, however,

expensive and sometimes unacceptable for stateful applica-

tions. Since it restarts the whole unikernel-linked application,

undamaged unikernel components and the application have to

be initialized. It thus loses the applications’ running states,

such as the session information in the web servers and data

items in in-memory databases, leading to sudden service stops

and long downtimes [18]. Since unikernels are used as core

system components, e.g., the critical service domain [44] and

OS servers [48], an efficient recovery method from failures

at runtime is needed to achieve high availability. Software

mechanisms [4], [15], [38], [64] for rebooting the OS kernel

without restarting the running applications have been explored,

but the implicit assumption of their designs is that the internals

of the target OS kernels are fixed; this assumption is not

acceptable for unikernels whose OS components vary among

applications.
This paper presents VampOS for efficient reboot-based re-

covery of the unikernel layer. VampOS allows us to perform

component-level reboots of the unikernel. The key idea behind

it is to exploit the unikernels’ customizability; modern uniker-

nel internals are so componentized that their components are

highly independent and interfaces between them are well-

defined. VampOS, whose components interact in a message-

passing manner, restarts only the target components while

keeping the others and the linked application running. To

maintain the consistency between the restarted and running

components, it restores the running states of the restarted

components by logging their interactions and replaying the

logs.
The contributions of this paper are as follows:

• We present VampOS, which reboots the unikernel at the

component level. Compared with state-of-the-art meth-

ods, our approach has unique characteristics. VampOS

15

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00017

allows us to restart the unikernel layer without rebooting

the linked application. It is applicable to any unikernel

component. It makes the downtime incurred by its reboot-

based recovery as short as possible (§IV).

• We show software mechanisms for efficient reboot-based

recovery of the unikernel layer. To avoid disturbing

running components when rebooting a failed component,

VampOS forces its components to communicate in a

message-passing style and schedules the threads assigned

to each component. At the same time, it offers mem-

ory isolation between the components to prevent errors

from propagating out of the failed one. It also pro-

vides mechanisms, including dependency-aware schedul-

ing, session-aware log shrinking, component merging,

and checkpoint-based restoration, to minimize the run-

time overhead and downtime for recovery (§V).

• We prototyped VampOS on Unikraft 0.8.0 and QEMU

6.1.50. The prototype supports four applications: SQLite,

Nginx, Redis, and Echo. Using them, we conducted

experiments to show the effectiveness of VampOS. The

experimental results show that the performance penalty

caused by VampOS is up to 1.4× and that the prototypes

efficiently perform reboot-based recovery in two scenar-

ios. In the first scenario, VampOS-based Nginx achieves

software rejuvenation without any loss of connections,

whereas the default full reboot loses 25.1% connections

across the rejuvenation. In the second scenario, VampOS-

based Redis recovers from an injected failure at the

unikernel layer with almost zero penalty to throughput

and latency. In contrast, the full reboot entails a signifi-

cation performance degradation (§VI and §VII).

II. MOTIVATION

A. Reboot-based Recovery of Unikernels

The unikernel is linked to the applications and sends

requests for computational resources to the underlying hy-

pervisor via hypercalls in the same protection mode as the

applications. The unikernel shares the address space with the

linked applications; typical unikernels support single-process

applications, not multi-process ones. Researchers have studied

unikernel architectures and their applicability to secure archi-

tectures [41], supports for various applications [17], [26], [33],

[49], [63], [69], [74], multi-tenant controllers for embedded

clouds [40], lightweight network function virtualization [42],

lightweight privilege functionalities [44], [48], improvements

to modularity [31], [32], workload offloading to various

embedded boards [50], mechanisms for supporting multi-

processes [37], [39], and enhancement of isolation between

components [35], [57].

In this paper, we try to answer the following question:

How can we perform reboot-based recovery of unikernels
efficiently? Here, it is better to make the unikernel layer as

reliable as possible. Since unikernels are intermediate between

applications and hypervisors to obtain computational resources

from the hypervisor, the linked applications cannot keep run-

ning when their unikernel layers fail. Reboot-based recovery

is a simple but powerful way to improve the availability of

computer systems. Periodic reboots of the target software,

a.k.a., software rejuvenation [11], [12], [21], reclaim stale or

leaked resources such as memory leaks and descriptor leaks to

proactively prevent failures such as crashes and hangs. Reboots

are used to recover the affected target software reactively.

Reboot-based recovery can be used without analyzing the

root causes of the failures and is often the only remedy

against software errors and failures for end users. To extend

its applicability, researchers have proposed effective software

mechanisms for various software layers such as java applica-

tions [8], in-memory databases [22], [23], operating systems

(OSes) [6], [15], [28], [64], [71], and hypervisors [29], [30],

[34].

However, efficient reboot-based recovery of unikernels does

not come for free. Since unikernels are so tightly coupled

with the applications and their memory segments are shared,

rebooting the unikernel layer involves a linked application

restart, which eliminates the whole contents of memory in the

unikernel-linked application even if the application memory is

undamaged. The conventional reboot quickly recovers stateless

and small memory footprint applications like web servers

from their failures, but is unsuitable for memory-intensive

and stateful applications. For example, in-memory key-value

stores, like memcached and Redis, typically utilize tens to

hundreds of GB of memory, and restoring running states

is time-consuming. A research paper reported that restarting

only 2% of Facebook’s servers at a time prolongs the restart

duration to about 12 hours, during which time users see only

partial query results [18]. Also, some research has been aimed

at making the core of the software systems, such as the critical

service domain [44] and OS function servers [48], unikernel-

based. Since their failures affect all of the running software,

quick recovery of the failed component directly results in the

availability of the system. These issues motivate us to explore

efficient reboot-based recovery of unikernels.

B. Fault Model

VampOS recovers from fail-stop faults of the unikernel

components. Similar to previous efforts based on restarts, it

keeps executing when the faults are non-deterministic. Exam-

ples of software ones are deadlocks and crashes caused by

race conditions that occur for particular scheduling decisions,

while non-deterministic hardware faults include bit flips in

memory and registers. Re-execution by restarting the faulty

component and replaying the same inputs will avoid triggering

these faults again. Because of its software approach, VampOS-

based recovery differs slightly from those of regular reboot-

based recovery in that VampOS cannot handle failures that

require hardware reboots, such as firmware crashes.

VampOS-based recovery covers faults due to software ag-

ing, such as memory leaks and fragmentation. It is known

that proactive restarts of the target software prevent crashes

and hangs caused by software aging. VampOS periodically

eliminates the software aging phenomenon in the unikernel

without restarting the application components.

16

VampOS fail-stops when the rebooted components face the

failure again. Similar to the regular reboot-based recovery, it

fails to recover from deterministic faults, such as permanent

hardware failures and deterministic bugs. Here, unikernel-

linked applications after VampOS-based recovery must face

these failures again, since the restoration phase feeds the same

inputs to the restarted components and activates the fault in the

same way as the previous execution. Note that VampOS tries to

reboot only the failed component; it does not detect or recover

the root-cause components that triggered the failure. Such

faults are out of the scope of VampOS. As well, it does not

target the validity of the arguments or function call sequences

used across components, but rather prevents components from

undermining any invariant maintained by such components.

Although our protection mechanisms, as described in §V, can

detect failures caused by argument errors, VampOS does not

cover all of such failures.

III. RELATED WORK

There are a number of approaches that aim to improve

the reliability of the unikernel. Unikraft [31] enhances the

modularity of the unikernels to improve their customizability

and reliability by making their TCB as small as possible.

CubicleOS [57] and FlexOS [35] strongly isolate unikernel

components to prevent errors from propagating from faulty

components. These approaches complement ours in attaining

reliable unikernel-linked applications. They do not guarantee

that the unikernels will never suffer from aging-related bugs,

whereas our approach can mitigate their adverse effects by

making the unikernels efficiently rebootable.

Some research has focused on the reliability of micro-

kernels. Theseus [5] and ReadLeaf [46], both of which are

written in Rust from scratch, respectively isolate the kernel

components in a fine-grained manner and avoid holding states

in the system server for each other to enhance the fault

recovery capability. TxIPC [38] recovers the stateful servers

on the microkernel by aborting all the updates made by the

IPC. OSIRIS [4] recovers stateful system servers without

modifying the source code by transparently recording undo

logs at runtime. CuriOS [14] stores client-specific states in

client-associated but client-inaccessible memory in order to

restore the states of the system server. These approaches are

aimed at the microkernels, while VampOS targets recovery of

the unikernels. In addition, these approaches do not handle

software aging.

Moreover, some researchers have explored recovery and

isolation mechanisms for monolithic kernels. Akeso [36] is

a kernel-level, request-oriented mechanism in that it handles

recoveries at the request level, such as through system calls

or interrupts. It rolls back the kernel state to the beginning

of the function and makes the function return an error.

Membrane [59] performs reboot-based recovery of file sys-

tem components, while Shadow Driver [60] restarts faulty

device drivers and restores their runtime states by monitoring

the drivers’ interactions with the OS kernel and devices.

Nooks [61] isolates device drivers from the other OS kernel

components. VampOS does not target specific components.

IskiOS [19] and HAKC [43] isolate memory segments and

loadable kernel modules by using CPU-supported lightweight

protection domains like Intel MPK. VampOS offers an efficient

recovery method after detecting failures.

Barrelfish [3] is a message-passing-based OS designed for

high multicore scalability. Each kernel thread executing an OS

component is pinned on a core and sends/receives messages

to/from each other. Barrelfish/DC [73] allows Barrelfish to

perform dynamic reconfigurations of the kernel threads and

core numbers. When an OS component fails and reboot-based

recovery is needed, the recovery on the OSes restarts all of the

components. In contrast, VampOS reboots only the damaged

components.

Software mechanisms for efficiently rebooting the target

software have been explored. Some of them focus on ef-

ficient OS kernel reboots. KUP [25] keeps the application

running across the OS kernel reboots. It takes snapshots of the

target applications in memory with user-space checkpointing

mechanisms [1] and restores them after the OS reboot. This

approach is not applicable to unikernel-linked applications.

Unlike conventional OS kernels, the checkpointing process

cannot run with the target application on a unikernel that

supports only a single address space shared with the linked

application. Also, taking snapshots of only the application

layers is difficult outside unikernel-linked applications because

the boundary between the applications and the unikernels is

unclear.

Otherworld [15] and Dwarf [64] restart the OS kernels while

keeping applications running. In restarting the OS kernel,

Otherworld launches the newer kernel and forces it to salvage

kernel memory objects of the process contexts in the older

kernel’s memory and restore its internal structures. Dwarf

stores the cores of process contexts for the target applications

to the hypervisor, launches the OS kernel on a newly launched

VM, and forces the kernel to restore them while migrating the

target applications from the old VM to the newly launched one.

The assumption behind these approaches is that the target OS

kernels are monolithic. Thus, they are not suited to the char-

acteristics of the unikernels; since the unikernel’s components

vary between applications, the kernel objects for maintaining

process contexts are not constant. These mechanisms have to

be redesigned for each unikernel-linked application, which is

a non-trivial task. In Otherworld, for example, we investigate

memory objects required to keep running applications from

their source code, memorize their addresses to reuse them, and

develop a crash kernel that loads unikernel components, tracks

the memory objects, and restores the kernel contexts based on

them after the unikernel-linked applications crash. These steps

have to be taken for each unikernel-linked application.

Microreboot [8] achieves fine-grained software reboots. To

enable a microreboot, the target application is divided into

small independent software components, which become units

for the reboot. If rebooting a small component cannot recover

from a failure, a bigger component will be rebooted. The

implicit assumption of this approach is that each component

17

�������

	
��
�

���

��

�

���������	��
����
�
�
����
��������
������
��
�������
���	����

���
�

�
�������������������	��������

�������

���������

�����������	����

���
�
������
��������
�����
���������	��
����
�
�����������

���
���

���

��� ����
���

������

���

�!��"�

Fig. 1. Overview of VampOS. VampOS reboots the unikernel layer at
the component level. To consistently restart stateful components, VampOS
logs function invocations during their execution and replays the functions
necessary for runtime state restoration.

to be microrebooted is so stateless that the target applications

consistently run across some components’ reboots. However,

the components of the unikernels are often stateful; thus,

it is difficult for the linked applications to consistently run

across rebooting stateful components such as file systems and

networks.

Approaches for efficient OS reboots, including phase-based

reboots [71], ShadowReboot [70], and CacheMind [28], reduce

downtime and performance degradation incurred by the OS

kernel reboots. Like regular OS reboots, they involve restarting

all running applications and thus cause significant performance

degradations in modern in-memory applications with large

memory footprints. Approaches that support hypervisor reju-

venation [29], [30], [34] allow us to keep the running states of

the virtual machines across the hypervisor rejuvenation. These

approaches are complementary to ours.

IV. VAMPOS

This paper presents VampOS that reboots unikernels effi-

ciently. VampOS is driven by the following design goals.

• Reboots only the unikernel layer. Different from con-

ventional full reboots, VampOS reboots the unikernel

components while preserving the contents of the appli-

cations’ memory. This enables the applications to run

consistently across VampOS-based reboots.

• Does not depend on specific unikernel configurations.
Recovery mechanisms designed for specific unikernel

configurations are unreasonable since the unikernel struc-

tures differ among applications. Our approach is applica-

ble to any unikernel component.

• Makes downtime as short as possible. To minimize

service disruption caused by reboot-based recovery, Vam-

pOS shortens the downtime of the applications as much

as possible.

To meet these goals, VampOS exploits the customizability

of the unikernels; i.e., unikernels offer numerous components,

and the interfaces between components are well-defined so that

the applications only select the components required to run. An

overview of VampOS is shown in Fig. 1. VampOS reboots the

unikernel at its component level and restores the running states

of the restarted components in order to execute the linked

applications consistently. Specifically, VampOS logs function

calls between components by hooking their exposed interfaces,

restarts the target one, and replays the selected function calls

to restore its running states if it is stateful, as described in

§V. Since VampOS chooses the functions necessary to restore

the running states of the component, memory fragmentation

and resource leaks caused by aging-related bugs, which are

triggered by numerous resource allocations/releases for long

time execution, are eliminated in the rebooted one. For exam-

ple, in rejuvenating a file system component, VampOS restarts

only the component and calls the selected functions inside the

rebooted component.

VampOS is effective in the following scenarios:

• Recovering unikernels without initializing in-memory
applications: Since VampOS keeps the memory content

of applications across its unikernel reboots, there is no

need to restore data items in in-memory KVSes (Key

Value Stores) or re-connect clients in web servers, both

of which would otherwise cause service disruptions.

• Frequent software rejuvenation: The component-level

reboot in VampOS is so lightweight that its service

disruption is negligible. Accordingly, administrators can

carry out VampOS-based reboots for software rejuvena-

tion more frequently than in the case of a regular reboot.

• Restarting only the failed unikernel component: Un-

like a whole reboot, VampOS reboots the damaged com-

ponent and restores it while reusing the undamaged ones.

To enforce this recovery, it also isolates each component

to prevent an error propagation of the faulty component

from damaging other components as much as possible.

Note that the goal of VampOS is to obtain the effect

of reboot-based recovery, not to be completely compatible

with regular reboots. We can perform VampOS’s rejuvena-

tion instead of rebooting the unikernel-linked application to

rejuvenate the unikernel. Regular reboots are used for other

purposes, such as software updates and reconfiguration. Vam-

pOS’s mechanisms cannot be used for such purposes; regular

reboots need to be used for them.

Designing VampOS poses the following technical chal-

lenges: How can we rejuvenate the unikernel at the component

level? How can we restore the only target component? How

can we restore the states of the rebooted stateful compo-

nents efficiently? And how can we mitigate thread scheduling

overhead? This paper tackles these challenges. Although the

following discussion is based on the development of our

prototype on Unikraft [31], we believe that it is general enough

to be applicable to other unikernels such as IncludeOS [7] and

OSv [26].

V. DESIGN DETAILS

VampOS offers software-level solutions for the design

challenges. The design of VampOS is shown in Fig. 2. To

efficiently reboot the unikernel at the component level, it

binds a dedicated thread to each component and the threads

communicate by message passing. It also isolates the memory

domains of the components to prevent errors from propagating

from faulty ones. To avoid affecting running components

18

����

���	

���

������

���	

���

���

���	

���

����

���	

���

�

�������
������
���	

���

��������� !�����"#������� ��"��� �$������%�	
�	

��������� �����"���
������� �
���� ��
�
 �#$���%�	��	

��
 ��&���������$$ ���"
&���� ������"��&"��'�$&�
����"��$�# ���������"� ��"������"������������������ ���� ��%�	��	

������
�	��� !��
�����&$� ���������� ��� �����
����"��(��&��������������#��%�	��	

���� �������"#����������������& � ��������'����������$�)�������%�	��	

Fig. 2. VampOS Design. VampOS forces components to communicate in
a message-passing style to efficiently trigger their reboots. To consistently
restore the rebooted components without having side effects on the running
ones, VampOS performs encapsulated restoration and checkpoint-based ini-
tialization. In addition, it isolates the memory region of each component to
prevent errors from propagating from the failed component to others.

connected to the rebooted component, it encapsulates the

rebooted component in playing the log. In addition, it uses

snapshots of the component memory images just after their

initialization and plays only the selected functions that change

the state of the target component.

A. Message-passing Component Interaction

We take into account the execution of the unikernel com-

ponents to reboot them at the component level. Since the

unikernels run as libraries, their components are executed

via function calls. When a thread of the unikernel-linked

application requests a file to be opened, it executes the file

system-related components. A naive approach is a single-

threaded one where the failed component is rebooted when

the context faces a crash or hang. However, this cannot move

the path for the recovery and thus cannot achieve a component

reboot.

To address this issue, VampOS assigns threads to all the

components, forcing them to interact with each other in a

message-passing manner. In so doing, it reboots the target

components while simultaneously keeping the other compo-

nents running. When a failure occurs in a component, VampOS

stops the thread, initializes the component, and reassigns a

thread. This design is also tightly coupled with the component

restoration for the VampOS-linked applications to continue to

run consistently across the reboot, as described in §V-B.

The components of VampOS, each with its own data, heap,

and stack regions, are executed by their threads, not the

callee thread context. Each thread invokes a function of the

other components by passing its arguments to the component’s

thread. In the regular unikernel, when the application issues

a open() exposed by the VFS component to open a file, its

thread context jumps to the open() in the VFS component. In

contrast, a thread of the VampOS-linked application passes the

arguments of the open() to the VFS’s thread, and it executes

the open() with the passed arguments. VampOS hooks the

interfaces exposed by the components, extracts the arguments,

puts them in shared memory (message domains) between

components, and notifies the target thread. The thread executes

the requested function with the arguments on the message

domain. The message thread plays the role of monitoring

the running components and triggering their reboots if they

face failures by using a simple detector that checks the states

in a heart-beat manner; illegal memory accesses and panic()
invocations transfer the control to error handlers and triggers

the reboot. In addition, the current prototypes have a simple

detector of component hangs that periodically checks the

processing time of a pulled message. They treat components

as hangs when the processing time exceeds a threshold (=

1.0 s). Also, they do nothing for some components, such as

LWIP, that wait for external events like network connection

requests. To detect component failures precisely, we can use

sophisticated runtime failure sensors [13], [16], [47], [51].

We note that VampOS assigns threads to components on

demand. Conceptually, each component is executed by a

dedicated thread in VampOS. With this design, the compo-

nent cannot process messages when the thread is blocked,

e.g., lock release waiting, inside the component, sometimes

causing deadlocks. To avoid such situations, VampOS attaches

a newly-spawned thread when dispatching it. Even if a running

thread is blocked in a component, another thread is allocated

by the scheduler to handle the arriving message.

B. Encapsulated Restoration

We must pay attention to the running states of the rebooted

components. Many OS subsystems, such as file systems and

networks, are stateful, and rebooting a unikernel component

of such a subsystem fails to keep the application and the

other components running consistently. When we reboot a VFS

component that maintains the file offset, the file operation of

the application after the rejuvenation cannot be done correctly

since the file offset is initialized to be zero. From the viewpoint

of software rejuvenation, it does not make sense to take

a memory snapshot of the target component just before it

restarts and its running state is restored. If the system states

change and the function returns a different value from the

previously issued one before replaying the log, the rebooted

component will not have the same states as before reboot.

The restored offset to the shared file with multiple threads

is wrong if a thread moves its offset using SEEK END and

then another thread changes the file size before replaying

the log. This is because the restoration respawns the aged

memory image, which can include memory/descriptor leaks

and memory fragmentation.

To avoid the inconsistency caused by stateful component re-

boots, we restore the running states of the stateful components

after their restart. For this restoration, VampOS memorizes

function calls in the target components invoked by the other

components and plays the logs of the components just after

their reboots. Different from replaying all the called functions

until reboot, VampOS invokes only the selected function calls

to shorten the restoration time and avoid regenerating error

19

�"� ��&���

��	�
&�	� �)�
"�����

���
** *

��

** *

�"� ��&���

'�	�&��	
+��

"����
�
"�����

���
** *

��

��

����

�

*

� �

������	
����
� ��������
�����
�

���
�� ��"� �����'�$&� ����'� ��"��,$������'����

#�"��$�#���������&������ �

���&"���

���$�# �
"�����
����
������

��
��

����
"�����
�
����������*
�""���"��� �
"����*��
����������*
�

���"��� �������""� ��������
"��� �
"�������������
"��&"��'�$&��$���

Fig. 3. Encapsulated Restoration of Rebooted Component. To avoid
changing the state of the running components, VampOS restores the rebooted
stateful components without any invocation in the other ones. It replays the
selected function calls in the log and feeds the corresponding return values.

states caused by aging-related bugs such as memory leaks

and fragmentation. It calls only enough functions to restore

the running states of the components just before rejuvenation.

Specifically, it skips functions that do not change the compo-

nent states, such as file status reads (fstat()-related functions).

In addition, VampOS also logs the return values of functions

in other components and uses them to restore the state of

only the target component. A simple approach for replaying

the functions is to call them with the logged arguments.

In this approach, during a restoration, the component can

invoke functions of other components and change their current

states. These state changes are inconsistent with the running

application and corresponding components, since they are

triggered by restoring operations, not the regular operations.

To avoid spilling the state-change operations from the rebooted

component during its restoration, VampOS returns the logged

return values of the other component’s functions, instead of

calling them. Fig. 3 is an overview of VampOS’s component

restoration. As the log is played, VampOS forces the restoring

component to use the return values logged before the reboot.

VampOS also extracts runtime data from some of the state-

ful components to restore their states. A component restoration

consistent with the other components and the application

cannot be achieved simply by replaying the functions. For

example, packet sequence numbers and ACK numbers in

TCP connections, managed by LWIP, are given at runtime

and updated via interactions with external communication

partners. The function replaying initializes connections but

cannot restore the TCP connection states. To handle this

runtime state issue, VampOS tracks and saves specific data

every time their updates are directly used in the component

restoration. Although this optimization is an ad-hoc one for the

components, the optimized components are not application-

specific and can be used in other applications. From our expe-

rience in designing VampOS on three real-world applications,

this special data saving is required by only one component,

LWIP, where the packet sequence and ACK numbers are

stored.

C. Dependency-aware Scheduling

Compared with the default that uses the target component

via function calls, message passing incurs additional over-

head due to thread scheduling. Since each component has

its own thread context, the component thread that receives

a message cannot run until the internal scheduler dispatches

it. The round-robin scheduler becomes less efficient when

there are more unikernel components. Due to the simplicity

and responsiveness of messages, as in a previous study [35],

the dispatched components poll their messages. Since this

design wastes the CPU time when messages do not arrive,

we can implement yield() and have the component calls it

to avoid busy-waiting. SQLite, for example, consists of seven

components and VFS invokes write instructions when storing

an item in its database. 9PFS may wait to be scheduled when

the round-robin scheduler dispatches other components.

To ensure both the design simplicity and high message

responsiveness without busy-waiting as much as possible,

VampOS uses dependency-aware scheduling to dispatch com-

ponent threads in an efficient manner. Dependency-aware

scheduling exploits the dependency between components; a

component invokes a subset of all the running components

and thus we can infer the components for the next scheduling

from the currently executing component. For example, VFS

passes messages to two components (9PFS and LWIP), while

LWIP communicates with VFS and NETDEV. Dependency-

aware scheduling dispatches components with this correlation

specified in advance. When a component is running and sends

a message, the scheduler selects the correlated components

as scheduling candidates and dispatches one at a time. When

VFS is running, our scheduler preferentially dispatches 9PFS

and LWIP.

In addition, dependency-aware scheduling takes into ac-

count the log requirement of the next scheduling candidate.

The scheduler dispatches the message thread to store the ar-

guments before dispatching a component. When the executing

component has stored the message in the message domain, the

scheduler dispatches the message thread if the next candidate

requires the argument logging for its restoration. Then, the

next component starts running. In sending the return value,

the scheduler dispatches the message thread to preserve it. All

the interactions between components are done in the above

way.

D. Component-level Protection Domains

VampOS isolates the running components to confine error

propagation from the faulty component. Since unikernel’s

components run in the same address space and at the same

privilege level, a faulty component can illegally modify the

memories of the other components. In this case, even if the

component is rebooted, the recovered applications cannot run

correctly since the other ones access the damaged memory.

Such an error propagation triggers reboots of multiple com-

ponents and, at worst, damages the application layer.

To prevent a faulty component from propagating its errors,

we take inspiration from previous unikernel’s isolation mecha-

20

nisms [35], [57] and make VampOS enforce memory isolation

with low overheads by using lightweight in-process protection

mechanisms, such as Intel Memory Protection Keys (MPK)

and ARM Memory Domains. These are ISA extensions that

manage access permissions on groups of pages. For example,

Intel MPK, which is used in our prototypes, assigns a 4-bit

key to each virtual page by extending the page table structures,

and adds a new 64-bit PKRU register that defines the access

permissions to all pages on a key. VampOS maps the memory

regions of each component thread into a separate protection

key and the thread scheduler dynamically manages the ac-

cess permissions. A component thread cannot access another

components’ memory since the thread’s key is permitted to

only access its heap, text, and stack. The threads change the

permission of message domains to writable only when the

messages are sent to other components. The receivers keep the

message domains read-only since their accesses to the regions

are to read the sent messages only. In switching a component

thread to another one, the thread scheduler also changes the

current MPK tag to the corresponding tag.

The tasks of the message thread are summarized as follows.

First, the thread maintains message buffers and the logs of

function calls and return values in a message domain isolated

from the other components. Management of these objects

inside each component is not reasonable since the errors of

the faulty component can damage their buffers and logs, and

the recovery procedure can be done using damaged ones. The

thread also releases buffers when they are used by the target

component and are not needed for the restoration. Second, the

message thread triggers the VampOS-based reboot of the faulty

component. In detecting the component’s failure, it initializes

the component and performs the encapsulated restoration.

Physical protection keys can be fewer than the running

components. For example, there are 16 protection keys in Intel

MPK and 32 in ARM Memory Domains. When the compo-

nents are more than the physical keys, VampOS fails to isolate

the internals of VampOS-linked applications. The maximum

number of the running components in our experiments was

up to 12 in Redis and Nginx. To isolate more components

than keys, we can use techniques to increase the number of

protection keys [20], [55], [72].

E. Checkpoint-based Initialization

The regular component restart that executes their shutdown

and boot routines is unsuitable for our component-level re-

juvenation. These routines involve function calls in the other

components and hardware operations, resulting in changes to

their running states. For example, VFS, which interacts with

file system and network components such as 9PFS and LWIP,

triggers the initialization of corresponding subsystems in its

boot phases, which means the VFS restart affects currently

running components.

To address this issue, VampOS leverages the memory im-

ages of the components just after their initialization, borrowing

an idea from the phase-based reboot [71]. The phase-based

reboot obtains the rejuvenation effect by restoring the memory

images of the system in its boot phase. VampOS offers a

component-level checkpointing mechanism and takes memory

snapshots of the initialized components. In rebooting a com-

ponent, it restores the corresponding memory snapshot and

performs our log replay as described in the previous section.

F. Other Optimizations

Component Merging: The message-passing approach addi-

tionally incurs runtime overhead for scheduling component

threads and pushing/pulling messages. To mitigate the over-

head, VampOS supports component merging that combines

components that interact with each other. The overhead mit-

igation of the component merging depends on the interac-

tion frequency of the target components; it becomes more

effective as more interactions occur between the components

since the message-passing procedure can be skipped. For

example, when we merge VFS and 9PFS, their functions

such as uk 9pfs lookup() and uk 9pfs write() are invoked

as function calls. The merged component shares a single

thread and the memory region, such as a heap and stack,

which means that a single MPK tag manages the memory

domain. In rebooting a composite component consisting of

three primitive components, VampOS loads the snapshots of

the three primitive components and replays their logs on each

component.

Session-aware Log Shrinking: The log sizes naturally be-

come large over time, especially in long-running applications

such as web servers and in-memory KVSes. This incurs more

memory space overhead and longer log replies. To address

this issue, VampOS performs the session-aware log shrinking

to decrease the log sizes. The session-aware log shrinking

prunes log entries, function calls, and their return values

unnecessary for the component restoration. The key behind

this method is that some functions, called canceling functions,

make it unnecessary to preserve a series of function calls

that change the component states. For example, write() and

read() update the file structure, including the offset value, in

VFS, and their changes are not needed for VFS restoration

after issuing close() for the corresponding file descriptors.

Another example is that socket states are no longer required

after closing the corresponding connections.

VampOS monitors the calls of the canceling functions and

eliminates the log entries when such a function is invoked.

VampOS specifically removes read() and write() logs when

the corresponding file descriptor is closed. In addition, Vam-

pOS takes the same or similar effect as forcing components

to invoke canceling functions to avoid increasing the log sizes

when the functions are not invoked for a long time. We can

shrink a series of write() by preserving the offset and contents

to write, leading to shortening of the log replay. For ease of

implementation, our prototypes restore the current states of the

components affected by the function invocation after calling

the canceling function intentionally. For example, VampOS

extracts and resets the offset value in VFS after calling close()
to shrink the logs. VampOS does so when the log size is over

the threshold (= 100 entries) specified in advance. Although

21

�#$���
�%&�

��'�
�(()��%)$

���	

�#$���
�%&�

��'�
�(()��%)$

���	

*

��++�,���-��

�#$���
�%&�

��'�
�(()��%)$

���	
�

�#$���
�%&�

��'�
�(()��%)$

���	�

�-.�����((�����%-$.���(-���),

����������	
�	�����
�
�����������������������

���������	
�	�����
�
������������������������

����

������������
��������������

��')$/
��+�

��������������������
��	���������������������

������

��������	
�	�����
������������������
������	����������
	���������
��������� ��!"

Fig. 4. VampOS Implementation. Each component in VampOS consists
of thread contexts and memory regions and is isolated by the Intel MPK
feature. The message domain maintains a message buffer for message passing
communication and function-call and return-value logs for encapsulated
restoration.

this implementation applies file modifications to the file system

and the result conflicts with the application logic, the four

applications in our case studies ran consistently.

Note that log entries could not be removed even with

the session-aware log shrinking that effectively prunes log

entries of the components in our case studies, including

server applications such as in-memory KVS (Redis) and web

servers (Nginx), which are long-running; clients close their

connections after fetching the target contents, and thus the log

shrinking removes the session-related log entries. For example,

if a component does not have canceling functions, its log size

becomes bigger over time. At worst, when the component

has few state-unchanged functions that skip being logged,

VampOS’s rejuvenation can regenerate software aging due to

long log replaying by the encapsulated restoration. The current

prototypes use the regular reboot to rejuvenate the unikernel-

linked applications. Although we have yet to face such a

component, exploring ways to handle this case is one of our

future work.

VI. IMPLEMENTATION

We prototype VampOS on Unikraft 0.8.0 and QEMU 6.1.50,

running on x86 CPUs. The VampOS mechanism leverages the

Intel MPK feature to create protection domains for compo-

nents. Unikraft is a framework for building unikernels. It has

a modular architecture in which each component implements

a single OS function (the virtual file system, file system back-

ends, memory allocation, network stack, etc.). Components are

selected at compile time and linked into a monolithic image

together with the application. When executing the VampOS-

linked application, the current implementation allocates fixed

memory to each component and loads its segments into the

memory. Then, it assigns memory for a message domain

and a thread to each component and launches the thread

scheduler. The upper limit of memory is set to 88 MB from

our experiments.

An overview of our implementation is shown in Fig. 4.

Each component has thread contexts, a memory allocator to

create its own heap, and an MPK key to isolate its memory

region. The static data in the .bss and .data regions is placed

via a compiler annotation section(”component-section-name”).

The message domain exposes message passing interfaces,

TABLE I
COMPONENTS USED IN THE CURRENT PROTOTYPES.

Component Description

VFS Exposes POSIX APIs for file systems and networks.

LWIP A network subsystem that implements a protocol stack.

9PFS A file system based on the 9P network protocol.

PROCESS Implements process-related functions like getpid().
SYSINFO Implements functions for system information such as uname()

USER Implements functions user information like getuid().
TIMER Implements time-related operations.

NETDEV Implements low packet operations.

VIRTIO A device driver for the virtio device.

vo push msgs() and vo pull msgs(). vo push msgs()
pushes function requests or return values into the messages buf

log and logs them into the function call and return value logs if

necessary, while vo pull msgs() pulls the requested functions

and the values. Each log entry is different since the sizes of

the return values and arguments depend on the function calls.

Also, the current implementation does not have an upper limit

to the log size, but the session-aware log shrinking threshold

is 100 entries. For checkpoint-based initialization, we reuse

the QEMU snapshot feature and our module running inside

QEMU takes a memory snapshot of the component unit.

We apply VampOS to four real-world applications supported

by the Unikraft project: SQLite, Nginx, Redis, and Echo. All

of them are running on the platform code. The details are as

follows.

SQLite: SQLite is a widely used relational database man-

agement system. SQLite handles SQL queries sent via its

functions and stores data items into a database file. It

comprises seven components: PROCESS, SYSINFO, USER,

TIME, VFS, 9PFS, and VIRTIO. We integrate the software

mechanisms of VampOS into SQLite’s components. The

VampOS-based SQLite uses ten MPK tags (application +
seven components + message domain + thread scheduler).

Nginx: Nginx is a well-known web server with nine compo-

nents: PROCESS, SYSINFO, USER, NETDEV, TIME, VFS,

9PFS, LWIP, and VIRTIO. The VampOS-based Nginx uses 12

MPK tags (application + nine components + message domain

+ thread scheduler).

Redis: Redis is a representative in-memory KVS used in

modern cloud platforms. It consists of nine components:

PROCESS, SYSINFO, USER, NETDEV, TIME, VFS, 9PFS,

LWIP, and VIRTIO. The VampOS-based Redis uses 12 MPK

tags (application + nine components + message domain +
thread scheduler).

Echo: Echo is a simple server that sends the same messages

received from clients. Its components are PROCESS, USER,

NETDEV, TIME, VFS, LWIP, and VIRTIO. The VampOS-

based Echo uses ten MPK tags (application + seven compo-

nents + message domain + thread scheduler).

We make the components used in these applications

VampOS-aware, as shown in Table I. Our prototypes reboot

four stateless components (PROCESS, SYSINFO, USER, and

NETDEV) by restarting them without function call logging

or encapsulated restoration. We integrate these functionalities

into three stateful components: VFS, LWIP, and 9PFS. We note

22

TABLE II
FUNCTION CALLS LOGGED FOR ENCAPSULATION REBOOTS.
Component Logged Function Calls

VFS
create(), open(), write(), pwrite(), read(), pread(), close(),
mount(), fcntl(), lseek(), vfscore vget(), pipe(), ioctl(),
writev(), fsync(), vfs alloc socket()

LWIP
socket(), bind(), listen(), connect(), getsockopt(),
setsockopt(), shutdown(), sock net close(),
sock net ioctl()

9PFS
uk 9pfs mount(), uk 9pfs unmount(), uk 9pfs open(),
uk 9pfs close(), uk 9pfs lookup(), uk 9pfs inactive(),
uk 9pfs mkdir()

Fig. 5. System Call Overheads. The graph shows the execution time in
each system call, Unikraft, VampOS-Noop, VampOS-DaS, VampOS-FSm, and
VampOS-NETm. The runtime overheads depend on system calls, and our
optimizations effectively mitigate the overheads.

that our prototypes do not reboot VIRTIO because its states

are shared with the host Linux and the rebooted VIRTIO does

not consistently work even with our restoration feature. We

discuss this issue in §VIII.

VampOS memorizes the function calls summarized in Ta-

ble II and the return values of the functions in other com-

ponents. In rebooting the three components, the prototypes

initialize them, assign threads, and perform the encapsulated

restoration. Additionally, the prototypes apply the checkpoint-

based initialization to VFS and LWIP since their initialization

procedures involve changes in other components. They per-

form session-aware log shrinking upon close() and functions

triggered by its issues. Our VFS removes entries for operations

on the closed fd number. 9PFS and LWIP in the prototypes

dispose of logged function calls to the file and the network

connections corresponding to the closed fd.

VII. EXPERIMENTS

To show the effectiveness of VampOS, we conducted several

experiments with the prototypes. We used a PowerEdge R740

which has 12 Intel Xeon Silver 2.20 GHz cores and 92

GB of memory. We turned off the hyperthreading feature.

The experiments try to answer the following fundamental

questions: 1.) How much performance and space overhead

does VampOS incur? 2.) How long does VampOS take in

component reboots? 3.) How much overhead does VampOS

cause on real-world applications, and 4.) How effective is

VampOS in reboot-based recovery scenarios?

A. System Call Overhead

To confirm the runtime overhead incurred by VampOS, we

measure the execution times for system calls on our prototypes

and vanilla Unikraft. In particular, we measure the execution

times and log entry increases for seven system calls: getpid(),

open(), write(), read(), close(), socket read()(read() for a

socket), and socket write()(write() for a socket). The number

of component transitions in these system calls is 4, 41, 65,

28, 37, 50, and 63, respectively. In write() and read(), we

issue a write/read request of 1 byte of a file. Open() and

close() create and release the file descriptor for a file. In

socket read() and socket write(), we receive/send 222 bytes

network messages. For comparison, we prepare four configu-

rations of VampOS: VampOS-Noop, VampOS-DaS, VampOS-
FSm, and VampOS-NETm. In VampOS-Noop, all of the

components are message-passing-based and scheduled by a

round-robin scheduler. VampOS-DaS adds dependency-aware

scheduling to VampOS-Noop. VampOS-FSm and VampOS-

NETm merge file system and network components into a

single component in VampOS-DaS, respectively. Specifically,

VampOS-FSm merges VFS and 9PFS, while VampOS-NETm

groups LWIP and NETDEV. The trials are run 100 times.

The results are shown in Fig. 5. The x-axis represents the

system calls, and the y-axis is the average execution time.

The bars represent the range of the standard deviation. The

figure reveals that the performance penalty depends on the

system call type. Compared with the vanilla Unikraft, the addi-

tional tasks in VampOS are the scheduling for the component

thread, function logging for the component restoration, and

message passing between component threads. The overhead

of VampOS-Noop adds 21.0 microseconds in getpid() and

almost no time in the other VampOS, since there are few

component transitions and thus very few message passing

communications. The other system call issues involve message

communications, and VampOS’s mechanisms incur additional

overhead. The biggest relative overhead is getpid(), because its

execution time is so short that the overhead becomes relatively

high even if the VampOS’s execution is shorter than other

system calls like open() and read(). Although VampOS’s

execution takes longer in open() and read() than the other

system calls, the overhead is relatively more minor (1.32×
and 1.23×) as their executions are long.

The figure also shows that our optimizations, dependency-

aware scheduling and component merges, effectively reduce

the overhead. The dependency-aware scheduling mitigates

the component scheduling overheads in all cases and be-

comes more effective as more component transitions oc-

cur. In socket read() and socket write(), VampOS-DaS is

0.34× and 0.49× shorter than VampOS-Noop. The component

merges are also effective for merged components-related sys-

tem calls. For example, VampOS-FSm in open() and close()
is 0.91× and 0.91× shorter than VampOS-DaS. On the other

hand, VampOS-NETm in socket write() and socket read()
is 0.91× and 0.95× shorter than VampOS-DaS.

Table III shows the memory space overhead in each system

call. VampOS stores ten and seven log entries in open() and

close() since these system calls transit more than two stateful

components, such as VFS and 9PFS, and change their states.

The space overhead of the other system calls is up to two

entries. This is because these system calls change the states

of fewer components. The log shrinking feature effectively

23

TABLE III
LOG SPACE OVERHEADS IN SYSTEM CALLS.

System call Normal Log Entries Shrunk Log Entries

getpid() 0 0
open() 10 -1
read() 2 2
write() 2 2
close() 7 1

socket read() 2 0
socket write() 2 0

Fig. 6. Component Reboot Times. The reboot time of PROCESS, a stateless
component, is less than seven milliseconds. The snapshot loads are the
dominant factor in rebooting stateful components, but the reboot times are
less than 48 milliseconds.

reduces these space overheads, 2 in close() and 0 in socket
read()/write. -1 in open() means that this removes a pair

of the previous open()/close() whose file descriptor number

is the same. Without the corresponding pair, one log entry

(open()) is added.

B. Component Reboot Time

We measure the reboot time for restarting components

to demonstrate the lightweightness of VampOS-based re-

boots. This experiment involves six components used in Ng-

inx: PROCESS, VFS, LWIP, 9PFS, VFS+9PFS(merged), and

LWIP+NETDEV(merged). PROCESS is a stateless component

implementing system calls for process management like get-
pid(). Here, we show the reboot time of PROCESS since the

reboot of stateless components is the same. Also, we measure

the reboot time for all of the stateful components used in our

prototypes. VFS and 9PFS are file system components, while

LWIP and NETDEV are ones for the network protocol stack.

We measure the reboot time for each component after sending

1,000 GET requests to Nginx. These trials are done ten times.

Fig. 6 shows the reboot times for each component. The

figure reveals that component reboot times are up to 48 msec.

The reboot for PROCESS takes less than 7,428 nanoseconds

since VampOS restarts it without replaying the logs and

restoring a snapshot. The dominant factor in the reboot times

for the stateful components is the snapshot restoration, and

the reboot time depends on the memory footprint of the

components. 9PFS is the fastest since the number of snapshots

is small. Unlike other stateful components, there is no data

or bss region in 9PFS; only the heap snapshot is loaded

for the memory initialization of 9PFS. We conducted some

experiments to check the reboot times with various log sizes.

The log sizes do not matter because the snapshot restoration

is dominant; its time is in on the order of ten milliseconds,

Fig. 7. Real-world Application Overheads. VampOS’s runtime overheads
in real-world applications are up to 1.46×, while memory space overhead
due to their mechanisms is less than 200 MB.

while other overheads, like the log replay, are of the hundred-

microsecond order.

C. Overheads of Real-world Applications

To confirm the runtime overheads of real-world applications,

we measure the execution times and memory utilization of four

real-world applications, SQLite, Nginx, Redis, and Echo, as

described in §VI. Our workloads, whose configurations are

based on [31] and [57], generate 1, 25, 4, and 1 threads.

Moreover, they are run on the same machine to measure

the overhead in the worst case, and on a separate machine

connected via a gigabit Ethernet, whose spec is the same

as another machine, for server applications. Each of them

performs 10,000 inserts of a 1-byte data item, requests a 180-

byte html file for a minute via 40 connections, sends 1,000,000

SET for a 4-byte key and 3-byte value, and sends a 159-

byte html file for a minute to SQLite, Nginx, Redis, and

Echo respectively. To make the unikernel layer rebootable,

we turn on the AOF (Append Only File) backup feature in

Unikraft-based Redis. It preserves volatile KVs into storage

synchronously via fsync() to restore its KVs after its reboot.

We run these applications on the four VampOS configurations

described in §VII-A.

The results are shown in Fig. 7. Fig. 7(a) shows the

execution time of each application and reveals that VampOS’s

performance penalty is up to 1.46×. The overhead of SQLite

is 1.24× in VampOS-FSm, while Nginx’s overhead is 1.24×
in VampOS-FSm. We note that Nginx and its clients run on

the same host so that the overhead can be amplified. In Nginx,

the throughput of VampOS is comparable to that of Unikraft

when they run on a separate machine. In Redis, VampOS’s

throughput outperforms that of Unikraft except for VampOS-

Noop, since the overhead of AOF’s synchronous storage

accesses becomes larger than that of VampOS. To take a closer

look at the behavior, we measure storage access time in their

24

TABLE IV
SQLITE THROUGHPUTS OVER LOG SHRINK THRESHOLD CHANGES.

Log shrink
SQLite [req/sec] Nginx [req/sec] Redis [req/sec]

threshold

20 138.57 344.23 16894.75

100 143.57 344.00 16879.63

1000 144.28 344.83 16870.52

execution. The I/O time of Unikraft-based Redis in the same

machine is 63.5% in the execution (17.2 sec.) due to the AoF

feature, while that of VampOS’s one is zero. The improvement

of VampOS is more substantial in the same machine than in the

separate machines since the storage accesses of AOF are more;

due to network latency, one KV preservation contains fewer

KVs. The I/O time in the separate machine is 63.0% in the

execution time (21.7 sec.), which means the I/O time is longer

than in the same machine. VampOS’s throughput of Echo is

comparable to that of Unikraft. In addition, our dependency-

aware scheduling mitigates the performance penalty in all the

cases.

Fig. 7b shows the memory utilization. The figure shows

that VampOS’s memory space overhead is less than 200 MB.

VampOS consumes 200 MB due to the log’s space overhead.

The overhead is suppressed by the session-aware log shrinking

that periodically removes the log entries. Since the memory

footprints of SQLite and Nginx are 190 MB and 141MB,

respectively, their memory space overheads are relatively big.

On the other hand, the memory space overhead in Redis is

small since its memory footprint (1,247 MB) is much larger

than VampOS’s constant memory consumption (200 MB).

The space overhead of Echo is negligible since it closes

connections after returning the messages and thus its log size

does not increase.

Table IV lists the throughputs of the applications over log-

shrink-threshold changes. The table indicates that the frequent

log shrinking affects the application’s performance. In the

SQLite case, the throughput with a threshold of 1,000 is 1.04×
better than that with a threshold of 20. The throughput with

a threshold of 100 is slightly better than that of 1,000. Log

shrinking does not affect Nginx and Redis significantly since

the number of log entries does not often exceed the thresholds

in these applications.

D. Case Study: Software Rejuvenation

To demonstrate how effective VampOS is in a software

rejuvenation scenario, we rejuvenate a running Nginx with

and without VampOS. We use the siege benchmark that

spawns 100 threads, each sending GET requests. We measure

the transaction success rate during the software rejuvenation.

We use the VampOS-DaS configuration. To perform soft-

ware rejuvenation that reboots the target software proactively

against failures, we carry out VampOS-based reboots of each

component one by one every 30 seconds. For comparison, we

conduct a Unikraft-based reboot (full reboot).

Table V shows the request success rates for Unikraft- and

VampOS-based software rejuvenation. The results demonstrate

that VampOS rejuvenates the unikernel components with-

TABLE V
REQUEST SUCCESSES ACROSS UNIKRAFT- AND VAMPOS-BASED

SOFTWARE REJUVENATION.
Unikraft VampOS

Success 191 255
Fails 64 0

Success Ratio 74.9 % 100 %

Fig. 8. Redis Request Latency across Unikraft- and VampOS-based
Failure Recovery. VampOS-based Redis recovers from the failure without
almost zero performance penalty, while the full reboot fails to handle requests
and significantly worsens request latencies.

out losing client requests. Since VampOS reboots only one

component each time and restores the runtime state of a

restarted stateful component like VFS, the connections are

kept across the rejuvenations of all of the components. The

benchmark reports that Unikraft-based rejuvenation loses 64

connections; it reboots all the running components, including

the application and the unikernel components, losing their

TCP connections. The results are independent of the type

of rebooted component; each reboot time is small enough to

significantly affect success/fail rates.

E. Case Study: Failure Recovery

To confirm the effectiveness of VampOS in a failure re-

covery scenario, we recover a running Redis from a failure

by using VampOS. We prepare a warm-up Redis that has

1,000,000 key values, utilizes 1.2 GB of memory, and sends

1,000 GET requests, each of which randomly gets one value

per second. We measure the response time by additionally

sending one GET method per second. We intentionally inject

a fail-stop failure into 9PFS. Specifically, we force 9PFS to

call panic() and trigger its reboot. We use VampOS-DaS- and

Unikraft-based reboots for the recovery.

Fig. 8 plots the request latency of Redis across Unikraft-

and VampOS-based reboots. The figure reveals that VampOS

recovers Redis from the failure with almost zero performance

penalty. Since the Unikraft-based recovery restarts all the

components of Redis and eliminates its KVs, a KV restoration

using the AOF feature is required. The requests are not handled

as a whole, and their latencies are degraded significantly until

the restoration is completed. On the other hand, VampOS

reboots only the faulty 9PFS component, restores its runtime

states, and keeps Redis running across the reboot, which means

the restoration is unnecessary. Redis, therefore, maintains its

request latency during the VampOS-based recovery.

VIII. DISCUSSIONS AND LIMITATIONS

Handling the failures of unikernel-linked applications is a

challenging problem for modern networked systems in data

25

centers. To tackle this problem, VampOS is a first step to

efficiently recover from the failures at the unikernel layer on

the basis of reboot-based recovery; we show a design that

allows us to perform reboot-based recovery at the component

level. Below, we discuss its aspects and limitations.

Applicability of Other System Software: Componentization

contributes to partial reboots like VampOS. In this work, we

focus on unikernels, but modern system software layers such

as hypervisors and OS kernels have a modular architecture,

and thus, some of VampOS’s mechanisms are applicable

to them for fine-grained reboot-based recovery even with

numerous stateful components.

Recovery of Unrebootable Components: VampOS cannot

consistently restart stateful components that share the data

with the underlying hypervisor. A unikernel-linked application

that restarts such components is hard to run consistently and

sometimes crashes since its states are inconsistent with the

hypervisor’s. For example, VIRTIO, which interacts with virtio

devices exposed by the host Linux, shares the ring buffers

with Linux. The restart of VIRTIO initializes the ring buffers,

causing I/O requests to become lost in the operation and

pointers to be misaligned to the ring buffers between VIRTIO

and Linux. Moreover, we cannot reboot the component that

manages a DMA region being processed by the hypervisor via

I/O pass-through virtualization; the hypervisor fails to perform

I/O since the reboot clears the DMA region. Reboot-based

recovery of such components requires additional software

mechanisms that orchestrate the unikernel components and

hypervisor to build consistent states.

Graceful Termination with Unrecoverable Components:
VampOS cannot recover from all the types of failures, as

described in §II-B. The current prototypes terminate execution

when the rebooted components face failure again. One way

to move forward is to use undamaged components to restart

the unikernel-linked application smoothly after a fail-stop.

Some component failures do not affect execution directly.

For example, Redis can handle client requests and store its

KVs into storage when Sysinfo stops. In the Redis case,

storing the current in-memory KVs in storage just before

a fail-stop is more helpful for restoring the running state

than eliminating all the KVs. Even when VampOS fails to

recover from a component failure, partial recovery can still be

achieved if the Redis layer and file system-related components

are undamaged. Exploring such procedures to support the

subsequent launch of applications is attractive to improve their

reliability.

Handling Failures from Deterministic Bugs: When a com-

ponent crashes due to a deterministic bug, which is not

considered in our fault model, the VampOS recovery causes

it to crash again since the restarted component triggers the

bug by executing the same code path. The ability to handle

such failures triggered by deterministic bugs improves the

reliability of unikernel-linked applications. To do so, multi-

versioning components can be helpful for deterministic bug

mitigation [27], [56], [68], since their source code differs

from that of the failed component. When a component fails,

VampOS could insert a different version of the component,

whose functionalities and interfaces are the same as in the

failed one, thereby eliminating the execution of the buggy code

path. Exploring the effectiveness of this approach is also an

interesting topic.

Applying VampOS to Other Applications: In this work, we

made unikernel components for four applications VampOS-

aware and confirmed their effectiveness with prototypes. Al-

though our prototypes cover the main OS components, in-

cluding file systems (VFS and 9PFS), networks (IWIP and

NETDEV), and core utilities (Process, Time, Platform, and

so on), we need to prototype components used in other

applications and integrate VampOS’s mechanisms into them

to show its applicability more clearly.

Reboots for Component Updates: VampOS focuses on an

aspect of the reboot, i.e., recovery. Reboot is also used for

software updates, an important administration task because

software updates include ones that improve performance,

add new functionalities, and repair security vulnerabilities.

Software mechanisms to extend VampOS-based reboots for

software updates lead to dynamic unikernel updates without

interfering with the running application layer.

Support Tools for Making Unikernels VampOS-aware:
We made components VampOS-aware manually; the VampOS

mechanisms, such as message passing and component protec-

tion, were developed on Unikraft from scratch. Also, some

of our optimizations are ad-hoc to a certain component. We

believe that these mechanisms are independent of components

and thus the developed components are reusable on applica-

tions. Some support tools to make components VampOS-aware

and automatically suggest optimization schemes suitable to the

target component are useful.

IX. CONCLUSION

Improving the reliability of unikernel is essential because it

is a primary control layer that obtains computational resources

from the hypervisor and allocates them to the linked appli-

cation. Reboot-based recovery from failures at the unikernel

layer involves service disruptions due to restarts of the whole

unikernel-linked application. VampOS, presented in this paper,

performs reboot-based recovery on only the failed compo-

nents by forcing components to interact with each other in a

message-passing manner, while keeping the other components

and applications running. We prototyped VampOS in SQLite,

Nginx, Redis, and Echo components. The experimental re-

sults show that the prototypes effectively perform reboot-

based recovery of the target unikernel components in software

rejuvenation and failure recovery scenarios. VampOS’s code

is available at https://zenodo.org/records/10784506.

ACKNOWLEDGMENTS

We thank Hamed Okhravi (shepherd) and the anonymous

reviewers for their insightful comments and suggestions. This

work was supported in part by JST, PRESTO Grant Number

JPMJPR21P9, Japan.

26

REFERENCES

[1] CRIU: Checkpoint/Restore In Userspace.

[2] Syzkaller: an unsupervised, coverage-guided linux system call fuzzer,
2019.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A New
OS Architecture for Scalable Multicore Systems. In Proc. of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (SOSP ’09),
pages 29–44, 2009.

[4] K. Bhat, D. Vogt, E. van der Kouwe, B. Gras, L. Sambuc, A. S.
Tanenbaum, H. Bos, and C. Giuffrida. OSIRIS: Efficient and Consistent
Recovery of Compartmentalized Operating Systems. In Proc. of the 46th
Annual IEEE/IFIP International Conference on Dependabile Systems
and Networks (DSN ’16), pages 25–36, 2016.

[5] K. Boos, N. Liyanage, R. Ijaz, and L. Zhong. Theseus: an experiment
in operating system structure and state management. In Proc of the 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’20), pages 1–19, 2020.

[6] A. Bovenzi, J. Alonso, H. Yamada, S. Russo, and K. S. Trivedi. Towards
fast os rejuvenation: An experimental evaluation of fast os reboot
techniques. In 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), pages 61–70. IEEE, 2013.

[7] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Beg-
num. Includeos: A minimal, resource efficient unikernel for cloud
services. In Proc. of the 2015 IEEE 7th International Conference on
Cloud Computing Technology and Science (CloudCom ’15), pages 250–
257, 2015.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot–a technique for cheap recovery. In USENIX Association
OSDI ’04: 6th Symposium on Operating Systems Design and Imple-
mentation, pages 31–44, 2004.

[9] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating systems errors. In Proc. of the Eighteenth ACM
Symposium on Operating Systems Principles (SOSP’01), pages 73–88,
2001.

[10] Cloudius System. Issues cloudius-systems/osv, Accessed: 2023-08-01.
https://github.com/cloudius-systems/osv/issues.

[11] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. Software aging
and rejuvenation: Where we are and where we are going. In 2011 IEEE
Third International Workshop on Software Aging and Rejuvenation,
pages 1–6. IEEE, 2011.

[12] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. A survey of
software aging and rejuvenation studies. J. Emerg. Technol. Comput.
Syst., 10(1), jan 2014.

[13] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure Virtual
Architecture: A Safe Execution Environment for Commodity Operating
Systems. In Proc. of Twenty-First ACM Symposium on Operating
Systems Principles (SOSP ’07), pages 351–366, 2007.

[14] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell. CuriOS:
Improving Reliability through Operating System Structure. In Proc.
of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’08), pages 59–72, Dec. 2008.

[15] A. Depoutovitch and M. Stumm. Otherworld - Giving Applications
a Change to Servive OS Kernel Crashes. In Proc. of the 5th ACM
European Conference on Computer Systems (EuroSys ’10), pages 181–
194, 2010.

[16] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI:
Software Guards for System Address Spaces. In Proc. of 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’06), pages 75–88, 2006.

[17] G. Gain, C. Soldani, F. Huici, and L. Mathy. Want more unikernels?
inflate them! In Proc. of the 13th Symposium on Cloud Computing
(SoCC ’22), pages 510–525, 2022.

[18] A. Goel, B. Chopra, C. Gerea, D. Mátáni, J. Metzler, F. Ul Haq, and
J. Wiener. Fast Database Restarts at Facebook. In Proc. of the 2014 ACM
SIGMOD international conference on Management of data (SIGMOD
’14), pages 541–549, 2014.

[19] S. Gravani, M. Hedayati, J. Criswell, and M. L. Scott. Fast intra-kernel
isolation and security with iskios. In Proceedings of the 24th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses,
pages 119–134, 2021.

[20] J. Gu, H. Li, W. Li, Y. Xia, and H. Chen. ”epk: Scalable and efficient
memory protection keys”. In Proc of the 2022 USENIX Annual Technical
Conference (USENIX ATC ’22), pages 609–624, 2022.

[21] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: Analysis, module and applications. In Proceedings of the
IEEE 25th Int’l Symp. on Fault-Tolerant Computing (FTCS ’95), pages
381–390, 1995.

[22] Y. Jumonji and H. Yamada. Efficient software rejuvenation of in-memory
key-value storages. In 2017 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pages 280–285. IEEE,
2017.

[23] Y. Jumonji and H. Yamada. Efficent reboot-based recovery of in-memory
databases. IEICE Trans. on Information and Systems, E104.D(12):2164–
2172, 2021.

[24] A. Kantee and J. Cormack. Rump kernels no os? no problem! USENIX;
login: magazine, 39(5):11–17, 2014.

[25] S. Kashyap, C. Min, B. Lee, T. Kim, and P. Emelyanov. Instant OS
Updates via Userspace Checkpoint-and-Restart. In Proc. of the 2016
USENIX Annual Technical Conference (ATC ’16), pages 605–619, Jun.
2016.

[26] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov. OSv—Optimizing the operating system for virtual ma-
chines. In 2014 USENIX Annual Technical Conference (USENIX ATC
’14), pages 61–72, 2014.

[27] B. H. Koning Koen and G. Cristiano. Secure and Efficient Multi-Variant
Execution Using Hardware-Assisted Process Virtualization. In Proc. of
the 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’16), pages 431–442, 2016.

[28] K. Kourai. Cachemind: Fast performance recovery using a virtual
machine monitor. In 2010 International Conference on Dependable
Systems and Networks Workshops (DSN-W), pages 86–92. IEEE, 2010.

[29] K. Kourai and S. Chiba. A fast rejuvenation technique for server consol-
idation with virtual machines. In 37th annual IEEE/IFIP international
conference on dependable systems and networks (DSN’07), pages 245–
255. IEEE, 2007.

[30] K. Kourai and S. Chiba. Fast software rejuvenation of virtual machine
monitors. IEEE Transactions on Dependable and Secure Computing
(TDSC), 8(6):839–851, 2010.

[31] S. Kuenzer, V.-A. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain,
C. Soldani, C. Lupu, c. Teodorescu, C. Răducanu, C. Banu, L. Mathy,
R. Deaconescu, C. Raiciu, and F. Huici. Unikraft: Fast, specialized
unikernels the easy way. In Proc. of the Sixteenth European Conference
on Computer Systems (EuroSys ’21), pages 376–394, 2021.

[32] S. Kuenzer, S. Santhanam, Y. Volchkov, F. Schmidt, F. Huici, J. Nider,
M. Rapoport, and C. Lupu. Unleashing the power of unikernels with
unikraft. In Proc. of the 12th ACM International Conference on Systems
and Storage (SYSTOR’19), page 195, 2019.

[33] H.-C. Kuo, D. Williams, R. Koller, and S. Mohan. A linux in unikernel
clothing. In Proc. of the 15th ACM European Conference on Computer
Systems (EuroSys ’20), pages 1–15, 2020.

[34] M. Le and Y. Tamir. Rehype: Enabling vm survival across hypervisor
failures. In 7th ACM Int’l Conf. on Virtual Execution Environments
(VEE’11), pages 63–74, 2011.

[35] H. Lefeuvre, V.-A. Bădoiu, A. Jung, S. L. Teodorescu, S. Rauch,
F. Huici, C. Raiciu, and P. Olivier. Flexos: Towards flexible os isolation.
In Proc. of the 27th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’22),
pages 467–482, 2022.

[36] A. Lenharth, V. Adve, and S. T. King. Recovery domains: An organizing
principle for recoverable operating systems. In Proc. of the 14th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’09), pages 49–60, 2009.

[37] G. Li, D. Du, and Y. Xia. Iso-unik: lightweight multi-process unikernel
through memory protection keys. Cybersecurity, 3(1):11, 2020.

[38] W. Li, J. Gu, N. Liu, and B. Zang. Efficiently recovering stateful
system components of multi-server microkernels. In Proc. of IEEE 41st
International Conference on Distributed Computing Systems (ICDCS
’21), pages 494–505, 2021.

[39] C. Lupu, A. Albiundefinedoru, R. Nichita, D.-F. Blânzeanu, M. Pogo-
naru, R. Deaconescu, and C. Raiciu. Nephele: Extending virtualization
environments for cloning unikernel-based vms. In Proceedings of the
Eighteenth European Conference on Computer Systems, pages 574–589,
2023.

27

[40] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, J. Crowcroft,
and I. Leslie. Jitsu: Just-In-Time summoning of unikernels. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’15), pages 559–573, 2015.

[41] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazag-
naire, S. Smith, S. Hand, and J. Crowcroft. Unikernels: Library operating
systems for the cloud. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 461–472, 2013.

[42] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici. ClickOS and the art of network function virtualization.
In Proc. of the 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 459–473, 2014.

[43] D. McKee, Y. Giannaris, C. O. Perez, H. Shrobe, M. Payer, H. Okhravi,
and N. Burow. ”preventing kernel hacks with hakc”. In Proc of the 2022
Network and Distributed Systems Security Symposium (NDSS ’22), pages
1–17, 2022.

[44] A. K. M. F. Mehrab, R. Nikolaev, and B. Ravindran. Kite: Lightweight
critical service domains. In Proc. of the Seventeenth European Confer-
ence on Computer Systems (EuroSys’22), pages 384–401, 2022.

[45] MirageOS. Issues mirage/mirage, Accessed: 2023-08-01. https://github.
com/mirage/mirage/issues.

[46] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zellweger,
and A. Burtsev. ”redleaf: Isolation and communication in a safe
operating system”. In Proc of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’20), pages 21–39, 2020.

[47] R. Nikolaev, H. Nadeem, C. Stone, and B. Ravindran. Adelie: Con-
tinuous address space layout re-randomization for linux drivers. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
483–498, 2022.

[48] R. Nikolaev, M. Sung, and B. Ravindran. Librettos: A dynamically
adaptable multiserver-library os. In Proc. of the 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE ’20), pages 114–128, 2020.

[49] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran. A binary-
compatible unikernel. In Proc. of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE’19),
pages 59–73, 2019.

[50] P. Olivier, A. K. M. F. Mehrab, S. Lankes, M. L. Karaoui, R. Lyerly,
and B. Ravindran. Hexo: Offloading hpc compute-intensive workloads
on low-cost, low-power embedded systems. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, pages 85–96, 2019.

[51] S. Österlund, K. Koning, P. Olivier, A. Barbalace, H. Bos, and C. Giuf-
frida. kMVX: Detecting Kernel Information Leaks with Multi-Variant
Execution. In Proc. of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19), pages 559–572, 2019.

[52] S. Pailoor, A. Aday, and S. Jana. MoonShine: Optimizing OS fuzzer seed
selection with trace distillation. In Pro.c of the 27th USENIX Security
Symposium (USENIX Security 18), pages 729–743, 2018.

[53] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller.
Faults in linux: Ten years later. In Proc. of the Sixteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’11), pages 305–318, 2011.

[54] J. Pan, G. Yan, and X. Fan. Digtool: A Virtualization-Based framework
for detecting kernel vulnerabilities. In Proc. of the 26th USENIX Security
Symposium (USENIX Security 17), pages 149–165, 2017.

[55] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim. libmpk: Software
abstraction for intel memory protection keys (intel MPK). In Proc of the
2019 USENIX Annual Technical Conference (USENIX ATC ’19), pages
241–254, 2019.

[56] L. Pina, A. Andronidis, M. Hicks, and C. Cadar. MVEDSUA: Higher
Availability Dynamic Software Updates via Multi-Version Execution. In
Proc. of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’19), pages 573–585, 2019.

[57] V. A. Sartakov, L. Vilanova, and P. Pietzuch. Cubicleos: A library os
with software componentisation for practical isolation. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’21), pages
546–558, 2021.

[58] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz.
kAFL: Hardware-Assisted feedback fuzzing for OS kernels. In Proc.
of the 26th USENIX Security Symposium (USENIX Security 17), pages
167–182, 2017.

[59] S. Sundararaman, S. Subramanian, A. Rajimwale, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and M. M. Swift. Membrane: Operating System
Support for Restartable File Systems. In Proc. of the 8th USENIX
Conference on File and Storage Technologies (FAST ’10), pages 281–
294, 2010.

[60] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Recovering
Device Drivers. In Proc. of the 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’04), pages 1–16, 2004.

[61] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability
of Commodity Operating Systems. In Proc. of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’03), pages 207–222, 2003.

[62] S. M. S. Talebi, Z. Yao, A. A. Sani, Z. Qian, and D. Austin. Undo
workarounds for kernel bugs. In Proc. of the 30th USENIX Security
Symposium (USENIX Security ’21), pages 2381–2398, 2021.

[63] H. Tazaki, A. Moroo, Y. Kuga, and R. Nakamura. How to design
a library os for practical containers? In Proc. of the 17th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE ’21), pages 15–28, 2021.

[64] K. Terada and H. Yamada. Dwarf: Shortening Downtime of Reboot-
based Kernel Updates. In Proc. of the 12th European Dependable
Computing Conference (EDCC ’16), pages 208–217, Sep. 2016.

[65] Unikraft. Crash when running app-lua, Accessed: 2023-08-01. https:
//github.com/unikraft/unikraft/issues/841.

[66] Unikraft. Issues unikraft/unikraft, Accessed: 2023-08-01. https://github.
com/unikraft/unikraft/issues.

[67] Unikraft. lib/ukallocbbuddy: fix a memory leak, Accessed: 2023-08-01.
https://github.com/unikraft/unikraft/issues/689.

[68] J. Vinck, B. Abrath, B. Coppens, A. Voulimeneas, B. De Sutter, and
S. Volckaert. Sharing is Caring: Secure and Efficient Shared Memory
Support for MVEEs. In Proc. of the Seventeenth European Conference
on Computer Systems (EuroSys ’22), pages 99–116, 2022.

[69] D. Williams, R. Koller, M. Lucina, and N. Prakash. Unikernels as
processes. In Proc. of the ACM Symposium on Cloud Computing
(SoCC’18), pages 199–211, 2018.

[70] H. Yamada and K. Kono. Traveling forward in time to newer
operating systems using shadowreboot. In Proc. of the 9th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE ’13), pages 121–130, 2013.

[71] K. Yamakita, H. Yamada, and K. Kono. Phase-based Reboot: Reusing
Operating System Execution Phases for Cheap Reboot-based Recovery.
In Proc. of the 41st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’11), pages 169–180, 2011.

[72] Z. Yuan, S. Hong, R. Chang, Y. Zhou, W. Shen, and K. Ren. Vdom:
Fast and unlimited virtual domains on multiple architectures. In Proc.
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’23), pages
905–919, 2023.

[73] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe. Decoupling
Cores, Kernels, and Operating Systems. In Proc. of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’14), pages 17–31, 2014.

[74] Y. Zhang, J. Crowcroft, D. Li, C. Zhang, H. Li, Y. Wang, K. Yu,
Y. Xiong, and G. Chen. KylinX: A dynamic library operating system
for simplified and efficient cloud virtualization. In Proc. of the 2018
USENIX Annual Technical Conference (USENIX ATC ’18), pages 173–
186, 2018.

28

