
Mutiny! How does Kubernetes fail,
and what can we do about it?

Marco Barletta∗, Marcello Cinque∗, Catello Di Martino†, Zbigniew T. Kalbarczyk‡, and Ravishankar K. Iyer‡
∗Università degli Studi di Napoli Federico II, Naples, NA 80125, Italy

†Nokia Bell Labs, Sao Paulo, SP 05069-010, Brazil
‡University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA

marco.barletta@unina.it

Abstract—In this paper, we i) analyze and classify real-world
failures of Kubernetes (the most popular container orchestration
system), ii) develop a framework to perform a fault/error in-
jection campaign targeting the data store preserving the cluster
state, and iii) compare results of our fault/error injection ex-
periments with real-world failures, showing that our fault/error
injections can recreate many real-world failure patterns. The
paper aims to address the lack of studies on systematic analyses
of Kubernetes failures to date.

Our results show that even a single fault/error (e.g., a bit-flip)
in the data stored can propagate, causing cluster-wide failures
(3% of injections), service networking issues (4%), and service
under/overprovisioning (24%). Errors in the fields tracking
dependencies between object caused 51% of such cluster-wide
failures. We argue that controlled fault/error injection-based
testing should be employed to proactively assess Kubernetes’
resiliency and guide the design of failure mitigation strategies.

Index Terms—container orchestration, Kubernetes, resiliency,
failure, mission-critical, fault injection, cloud, failure analysis

I. INTRODUCTION

Container orchestration systems manage container life cy-

cles across a cluster of nodes providing automation and

flexibility for application management and acting as cloud op-

erating systems [1]–[3]. They are increasingly used in mission-

critical scenarios with strict non-functional requirements (e.g.,

response-time latency and availability) [4]–[9]. Those sce-

narios adopt fog/edge-cloud and service-based paradigms to

support fast and automated reconfiguration [10]–[14].

Kubernetes (henceforth, K8s), is the de facto standard

among container orchestration systems to provide automated

management of services. Several orchestration systems are

compliant with K8s [15] or reuse its code. A survey from

the Cloud Native Computing Foundation found that 96% of

organizations are using (or plan to use) K8s [16].

The widespread use of K8s-based platforms to host critical

applications makes it imperative to study K8s’s resiliency

and failure modes. Literature has focused on K8s testing to

discover bugs, but there are no available studies to assess the

resiliency of K8s in a thorough and systematic way or that

perform a clear classification of its failures.

K8s is designed to withstand common errors and failures

through a range of resiliency strategies, including heartbeats,

redundancy, failover, circuit breakers, and stateless system

components. In particular, stateless components foster easy

failover: action is based on observation rather than a state

machine. Upon restart, a component only needs to observe the

current and the desired cluster state stored on a data store. The

state dependency is thus moved away from the components

to an external data store, which becomes a dependability

bottleneck that preserves all the state information.

In this paper, we use both real-world failure reports and a

fault/error injection campaign to classify K8s’s failure modes,

assess its ability to tolerate faults, and analyze how errors

propagate and impact the availability and response times of

deployed services.

Multiple real-world failure reports referring to enterprise

production clusters in the order of a thousand nodes [17]

can be found in blogs or forums [18]–[23] on the Internet.

Although human-generated reports can be vague and incom-

plete, they provide valuable insights to inform the design of

the fault/error injection campaign.

Our fault/error injections target the data store, which pre-

serves the current and desired states of cluster resources. Any

corruption of the data in the data store may propagate and

cause failures in every system component. The fault/error

injection campaign affects the data used by orchestration

operations and follows three models: bit-flips, data-type cor-

ruption, and message drops. Importantly, we show that our

injections trigger failure patterns similar to those seen in the

real world, despite the possibly different root causes. For

example, corrupting the data of a service causes containers

to be spawned in an infinite loop, leading to an overload and

system-wide outage. The same pattern was observed in [19]

as the result of incorrect container labels.

Our contributions include i) a field failure data analysis

(FFDA) of real-world K8s incidents reported in online sources,

deriving a failure model for K8s; ii) the design and implemen-

tation of Mutiny, a K8s injection framework (the data and code

are available at [24]) used to perform a fault/error injection

campaign of about 9000 injections in an on-premises cluster;

and iii) the comparison of the results of the FFDA and our

fault/error injection experiments.

Our key findings are as follows.

F1) ∼3% (282) of the performed injections led to a
system-wide failure. Those failures include Stall, i.e., the

cluster’s ability to react to changes was compromised, but

already-running services remained available; and Outage, i.e.,

services’ availability system-wide was compromised. ∼24%

1

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00016

of injections led to service under/over provisioning, ∼4% to

service network issues. Both experiments and real-world K8s

failures show that one incorrect data value can propagate and

cause system-wide failures despite the resiliency strategies.

F2) Errors in the fields tracking the dependencies among
objects caused 51% of critical failures (i.e., Stall, Outage,

Service unreachable). Objects are entities representing part of

the cluster state. Dependency relationships among them can

be dynamically managed through labels at the expense of

resiliency. Errors in those labels can overload the system, as

for the infinite loop of spawned containers cited above [19].

F3) Misconfigurations can easily overload the system,
like in 13 out of 81 real-world failures. The system does not

detect hazardous user commands when managing resources at

scale. Misconfigurations, which are common in practice [25],

can overload the system, and saturate all computing resources.

F4) Errors can escape monitoring and propagate inside
the system with the user being unaware. Orchestrators

compare a user-requested desired state (e.g., the number of

containers to run) and the observed state (the number of

containers spawned). If the observed and desired states differ,

the orchestrator takes actions to harmonize (reconcile) the two

states [3]. When a user modifies the desired state, the orches-

trator acknowledges the change but postpones the attainment

of the requested state. The observed and desired states should

eventually match. If they do not match because of a failure,

the user might not receive any error from the system (like in

more than 85% of our experiments), unless proper monitoring

alerts are set up. Real-world data show that errors propagated

to failures because companies had inappropriate alarms set up.

The implication of the findings is that the system should

log changes to labels that can cause critical failures, monitor

whether those changes alter system availability, and possibly

roll back to the old values when needed.

The novelties of the work include our classification of the

orchestration failures, the use of the data store as the target of

our injections, and the adoption of our fault/error injection

framework for systematic testing of orchestration systems’

resiliency as part of the software development process.

II. BACKGROUND

A. Containers and orchestration systems

Containers and orchestration systems are technologies that

automate the management of services and resources. Con-

tainers provide easy packing of services. Orchestrators are

distributed systems that provide containers with scheduling,

availability, resource allocation, health monitoring, scaling,

load-balancing, and networking [1]–[3]. They are composed of

a control plane and a compute cluster made of worker nodes.

The former makes global decisions to reconcile the observed

state with the desired state received in input. The latter spawns

and monitors the containers assigned to the worker nodes.

B. Putting Mutiny into perspective

Industry 4.0 [5]–[7], [26], 5G networks [8]–[10], avionics

[4], and healthcare [14] are a few examples of critical en-

vironments in which there are plans to adopt service-based

paradigms powered by K8s. In these contexts, a systematic

analysis of failure modes is needed. Among several striking

failures reported in blogs [18]–[23], an interesting example is

that of a Reddit compute cluster, in which a node relabeling

enforced by a Kubernetes update led to 314 minutes of cluster

downtime due to a system-wide network failure [21].

As ways to reduce failure-related risks, in several pub-

lications [19], [20] companies mention the use of custom

fire-drill tests and gameday testing, which deliberately create

disruption in K8s to test the orchestrator response and to train

cluster operators to do timely troubleshooting. However, these

tests differ between companies and do not seem systematic.

No established methodology, such as failure mode and effect

analysis, field failure data analysis, or Chaos engineering, is

mentioned. The literature has focused on i) testing of K8s

controllers through the discovery of bugs related to distributed

system threats, leveraging the injection of probable yet simple

faults, e.g., network partitioning, crash, and stale states [27]–

[34]; and ii) assessing, through fault injection, the resiliency

of deployed applications [35]–[37].

Hence, there is a gap in the systematic assessment of the

fault tolerance of K8s itself, in terms of component resiliency

and recovery capability. In our preliminary experiments, we

applied Chaos engineering to K8s components with available

tools, but the system was always recovering. Indeed, Chaos

engineering injects faults/errors (e.g., latencies, crashes, HTTP

errors) that are agnostic of the microservices and effective in

a complex interaction topology. In K8s, the limited number

of components makes simple errors well-tolerated. Mutiny

instead injects state alterations through incorrect values in

the data on the datastore. Mutiny can be integrated into

the testing clusters and/or in Chaos engineering processes to

systematically evaluate the response to orchestration errors

under realistic workloads and train the cluster operators. Our

methods can be extended to custom components, heavily used

by companies [38], and to other orchestration systems that

rely on a main data store containing the whole cluster state

and state reconciliation loops [3].

C. Kubernetes

K8s handles several resource kinds (e.g., Pod, ReplicaSet,
and Node). For each resource kind, there are multiple resource
instances. A Pod is a set of containers deployed in an isolated

environment with some hardware resources allocated. The

Pods are stateless or store their states externally (e.g., in

volumes). A ReplicaSet ensures that a desired number of Pod
replicas (i.e., Pods running the same application) is running

at any one time. A Deployment manages rolling updates of

the container images and the replica number of a ReplicaSet.

A DaemonSet is similar to a Deployment, but it spawns Pods

on every Node (defined later) that satisfies the constraints. A

Service provides a single network endpoint to load-balance

requests among a set of Pods characterized by a given Label.
We use the term service for a deployed application that

responds to client requests. A Node is either a control plane

2

Fig. 1: Architecture of K8s.

node or a worker node of the cluster, characterized by a

state and available resources. All resource instances carry

some metadata, like Annotations and Labels, which provide a

flexible mechanism to associate resource instances with each

other and to define custom information and behaviors.

K8s components are loosely coupled and include (Figure 1)

i) Etcd, a key-value store guaranteeing sequential consistency

to the data of the state of the cluster; ii) kube-apiserver
(hereafter, Apiserver), which exposes the API, allowing users

to interact with the cluster and interconnecting the control

plane components; iii) kube-scheduler (hereafter Scheduler),

which assigns the Pods to Nodes based on resource requests,

availability, and constraints; and iv) kube-controller-manager
(hereafter, Kcm), which reconciles the current cluster state

with the desired one. The Apiserver communicates with two

components deployed on each Node: i) the kube-proxy, which

maintains the virtual networks, connecting Pods and Services;

and ii) the Kubelet, which sends Node heartbeats and manages

the lifecycle of the assigned Pods, restarting them if they are

unhealthy. By extension, we consider as part of K8s also

coreDNS and the network manager. They are, respectively,

a service providing name translation to the Pods, and a

DaemonSet managing networking between Nodes.

The components can be seen as stateless services that indi-

rectly communicate by storing data on Etcd. They hold a cache

and can be restarted at any time, fetching necessary data from

Etcd. The Apiserver is the only component communicating

with Etcd; the others send requests to Apiserver and observe

state changes. An event or request can update the state ci
(desired or current) by modifying data on Etcd. All interested

components are notified, and they react by creating, deleting,

or updating the dependent resource instances, enforcing a

linear sequence of state changes, i.e., [ci, ck, ..., cj].

D. Resiliency strategies in K8s

In the following, we provide a non-exhaustive list of strate-

gies that K8s uses to increase its resiliency.

• Support for optional redundant control plane on different

nodes for availability: Etcd, Kcm, and the Scheduler can work

in a leader-follower scheme. Etcd uses the Raft consensus

algorithm [39] and quorum reads among the replicas. The Kcm

and the Scheduler use leader election so that there is only one

active replica at a time.

• Level-triggered reconciliation and stateless components:

decisions are based on the current and desired states [40], and

the messages exchanged between components are states, not

commands. This guarantees easy recovery if restarts occur.

• Independent components to foster failure isolation: the

control plane components are deployed as independent Pods.

A failed component can be restarted by the Kubelet without

affecting the other components.

• Circuit breakers that prevent a repeatedly failing operation

from overloading the system with a cascading effect. For

example, when a Pod fails several consecutive times, it is

restarted with increasing back-off delays.

• Timeouts in the communications between components to

release resources in a timely manner if failures occur.

• MaxUnavailability to guarantee a minimum number of

available replicas during rolling updates of Deployments,

limiting the impact of incorrect updates.

• Server Side Apply prevents unauthorized entities from

modifying fields of data structures not owned by them.

• Full disruption mode that stops Pod evictions when all

Nodes are reported as unhealthy, since the issue could be in

the heartbeat reporting mechanism itself.

• Deletion of undecryptable resources (i.e., resources that

cannot be deserialized due to protocol errors) to prevent a

failure during retrieval of the resource lists containing it.

III. FIELD FAILURE DATA ANALYSIS (FFDA)

This section analyzes data on real-world K8s failures col-

lected in [18]. The aim is a qualitative analysis to categorize

K8s faults, errors, and failures, and to identify fault/error

propagation patterns that lead to system/application failures.

From the analysis it emerges that errors or misconfigurations

in subsystems like networking or replication control can cause

cluster-wide failures. A quantitative analysis of the available

failure data is not feasible because i) the failures reported (e.g.,

in online blogs) by companies are a subset (e.g., the most

impactful) of all failures that happened in different systems;

ii) the lack of a systematic approach to data collection may

mean failures go unreported; and iii) the available failure

descriptions frequently do not provide relevant failure details

and data, hindering a traditional FFDA. Nonetheless, the

analysis is useful to analyze and classify the most relevant

and impactful error/failure patterns in the wild and inform the

design of a fault/error injection campaign.

Figure I provides a Fault-Error-Failure dependency chain

derived from 81 failure instances analyzed.

A. Orchestrator-level failures

An orchestrator-level failure (OF) is a misbehavior of the

orchestration system that may or may not have an impact

on applications. Based on our analysis of the failure data,

we classified the K8s failures into the following categories:

Timing Failure (Tim), Less Resources (LeR), More Resources
(MoR), Service Network (Net), Stall (Sta), and Cluster
Outage (Out) (see Figure I (c)). Despite being relative to

the K8s failure dataset, the failure categories do not depend

on any specific feature of K8s and can be used with other

orchestration systems as well.

In our classification, we explicitly differentiate between

Cluster Outage (Out) and Stall (Sta) failure types: a Cluster

Outage implies that a majority of services are down, while a

Stall implies that currently running services are still up, but

3

Fault Fault Description
Wrong

Autoscale

Trigger

Autoscaling of Pods or Nodes is

based on misleading information

Race

Condition

Concurrent actions whose final re-

sult depends on timing. E.g., in

routing tables/connections

Unverifiable

Certificate

Certificates cannot be verified or

recognized (e.g., cert. rotation)

Bug Bug in K8s, third-party, plugins, or

underlying code (runtime, OS)

Human

Mistake

Incorrect command or configura-

tion including: 1) bad resource

sizing of components or apps, 2)

wrong or badly tuned settings

Unmanaged

Upgrade

System specification or implemen-

tation changes, failing regression

Overload Too many Pods or Pods with too

many resources for a cluster/Node

Low-Level

Issues

Faulty hardware or related drivers

Failing

Application

Misbehaving application causing

many events and/or failing Pods

(a)

Error Error Description
State

Retrieval

Irretrievable, stale, or cor-

rupted state due to unavail-

ability, delays or user com-

mands

Misbehav-

ing Logic

Components behave differ-

ently from expected, affecting

the reconciliation actions

Communi-

cation

Networking delays or failures:

DNS, routing, load balancing

Resource

Exhaustion

Affected amount of avail-

able computational resources:

number of available Nodes,

Node/control plane resources,

etc.

Control

Plane

Availabil.

Unhealthy control plane com-

ponents are slowed down or

cannot take actions

Local to

worker

Nodes

Errors in underlying software:

container runtime, OS, image

availability

(b)

Failure Failure Description
None

(No)

System recovered without any consequences,

timely reaching the correct steady state

Timing

Failure

(Tim)

The creation/update of Pod or other resources

took significantly longer than expected, e.g.,

due to component restarts or overfilled queues.

Less

Resources

(LeR)

One or a reduced number of services at steady

state have permanently allotted less resources

than planned, e.g. Pod number or Pod resources

More

Resources

(MoR)

One or a reduced number of services has tem-

porarily or permanently allotted more resources

than needed, e.g. Pod number or Pod resources

Service

Network

(Net)

One or a reduced number of services have

a correct amount of resources allotted, but

incorrectly networked

Stall

(Sta)

Cluster’s ability to react to changes was

compromised, but already-running services re-

mained unaffected: e.g., new Nodes and Pods

not spawned or configured.

Cluster

Outage

(Out)

A significant number or all the running services

are compromised and unable to respond to

application clients anymore

(c)

TABLE I: Fault-Error-Failure chain of real-world Kubernetes failures. Failures are listed in order of increasing severity.

Fig. 2: Example cluster outage Out failure. A timeout during the control plane startup caused an intermittent Apiserver

downtime. This caused Kubelets to be unable to report Node health, leading to a massive Node deletion and recreation by the

Google Kubernetes Engine (GKE) autoscaler.

that the cluster’s ability to react to changes (e.g., new user

requests or a Node failure) is limited. In an environment with

limited evolution, services could remain healthy. Importantly,

error patterns that lead to Out and Sta failures can be similar.

For example, spawning an infinite number of Pods can lead to

a Sta or Out depending on the Pod priority: preemptive Pods

evict all the lower-priority Pods, leading to an Out failure.

We consider the MoR failure type to be more severe than

LeR because even if LeR impacts the application SLOs,

allotting more resources carries higher costs and risks related

to computing resource exhaustion or system overload.

The differences between LeR, Net, and Sta are mainly in

the scale of the failure impact. LeR and Net impact a limited

number of services, while Out compromises one of the vital

cluster functionalities, impacting almost every running service.

For example, a stuck Node might impact a few services,

depending on its size, but it does not lead to a system outage.

B. Orchestrator-level faults and errors

15 failures in total were Out. Hence, they are not infrequent

but a major concern. The most severe faults/errors that caused

them had the following causes (in parentheses, the categories

from Figure I(a,b)): i) network manager failures that impacted

the entire cluster (Communication); ii) massive numbers of

unhealthy or deleted Nodes (Resource Exhaustion); iii) erro-

neous commands that deleted namespaces, clusters, or Etcd

data (Human Mistake→State Retrieval); and iv) preemptions

caused by infinite spawning (Resource Exhaustion). For exam-

ple, Figure 2 illustrates a failure in which a fault hindered the

Node heartbeat reporting, leading to massive Node deletion

by the Google K8s Engine autoscaler, even if the Nodes were

correctly running the applications [22].

1) Fault/error propagation:

F3 - Misconfigurations

Misconfigurations can easily saturate all computing resources and
overload the system, which does not detect hazardous user com-
mands when managing resources at scale.

Misconfigurations (Human Mistake in Figure I(a)) caused

33 of the failures in our data set. 10 of them consisted of

bad resource sizing of Nodes and services. If services had too

few resources, the application failed (Human Mistake), if they

had too many resources, Nodes failed (Overload→Resource

Exhaustion). Specifically, 19 faults were misconfigurations of

K8s, 3 misconfigurations of plugins, and 11 misconfigurations

of external software. 13 incidents involved errors caused by

bugs in K8s code (5), external software (4) (e.g., underlying

OS), plugins (1), or custom code (3). Capacity issues were re-

4

sponsible for 21 failures; 11 of which were due to an overload

of control plane components (Overload, Failing Application,

Human Mistake→Control Plane Availability), which failed to

reconcile the cluster state in a timely manner.

19 incidents involved a range of communication errors

(Communication in Figure I(b)): DNS resolution, a misbehav-

ing network manager, blackholes, latencies, and connection

errors. They were caused by underlying OS race conditions

or bugs, certificate rotations, human mistakes, or unmanaged

upgrades. DNS-related issues have been deemed the most

painful by multiple companies [17], [20].

Various incidents were caused by multiple interacting fac-

tors, which are troublesome in conditions rarely met in testing.

Often, the alleged root cause of observed failures is a guess,

which could be a propagated error of the actual unknown root

cause. At other times, it is difficult to derive a cause from

the available “story-telling”. The lack of control motivated us

to perform a systematic injection campaign in a controlled

environment to better understand the system behavior.

IV. EXPERIMENTAL METHOD

Fig. 3: Fault injection framework.

This section presents our fault/error injection framework (in

Figure 3), including workloads, the injector Mutiny, the fault-

/error injection campaign manager, and the data collection.

A. Mutiny!

Mutiny is an injector that can be integrated into K8s

to alter the messages exchanged between components and,

consequently, the current or desired cluster state. Since K8s

components are stateless and level-triggered (§II), all the

system state is confined to Etcd, making it a dependability

bottleneck that can induce failures in any subsystem that

stores state information on Etcd. We do not care about the

possible root causes of alterations: hardware faults, software

bugs, misconfigurations, or other causes that somehow store

an incorrect value. Our fault/error injection framework al-

lows us to systematically inject faults/errors into Etcd and

assess system response (in terms of the orchestration actions

and application behavior) in a controlled environment. The

evaluation is systematic because the framework can introduce

faults/errors in all data stored on Etcd under a controlled

workload. We show (as discussed in §V) that Etcd alterations

can recreate a majority (54/81) of real-world failures analyzed

in §III. For example, Nodes can become unhealthy because of

a failing Apiserver or a bug in the Kubelet [22], [41]. Although

the subtle behavior of a bug cannot be replicated, the injections

can replicate the effect of having an unhealthy Node, e.g.,

targeting the heartbeat reporting system.

Three attributes characterize each fault/error injected by

Mutiny: location (where?), type (what?), and trigger (when?).

� Where is defined by a communication channel, a resource

kind, and either a field value or the serialization protocol bytes

of a message. We distinguish two types of communication

channels: i) those from Apiserver to Etcd, or ii) those from

another component to Apiserver. By injecting the data in the

transactions from the Apiserver to Etcd, we directly alter the

current or desired cluster state. This emulates faults/errors

that originate in the Apiserver or in other components but

propagate undetected to Etcd. With replicated control planes,

the fault/error is injected before the consensus algorithm is

run, so that all Etcd replicas agree on the value.

Messages directed from other components to the Apiserver

undergo authentication, authorization, and admission control.

Hence, a corruption of a message in this channel can make the

message invalid and cause it to be rejected by the Apiserver.

Admission control can change the message content, even

through custom code, possibly introducing errors.

� What consists of a value and fault/error type between

bit-flip, data-type set, and message drop.

A bit-flip is an easy way to alter a correct value without

understanding its semantics, and hence allows for extensive

fault/error injection campaigns. If the value must match reg-

ular expressions or ranges, the injected value is, with high

probability, still valid but incorrect. Bit-flip faults in Etcd data

were also reported by users [42].

A data-type set triggers data validations and integrity checks

by setting extreme, invalid, or wrong values, dependent on

the field type. Such values might include empty strings, 0 for

integers, or unsupported values for fixed-set values.

A message drop emulates a state update that did not happen

for some reason: a failed request, software bug, updated system

specification, or data loss [43]. It aims to stress the resiliency

of level-triggered reconciliation. It is a commonly assumed

failure mode in distributed systems [44].

� When is defined by the occurrence of messages related

to the same resource instance sent by the injected component,

i.e., the index in the chain [cfi , ..., c
f
j], where cfi...j are the state

changes (see §II-C) in which the injection target appears. The

injection may have different effects depending on the current

state of the instance and the next state changes. Moreover, a

different occurrence index can correspond to a different action

performed by the software, e.g., resource instance creation vs.

update. This can influence the transiency of the effect.

B. Workloads

� The orchestration workloads perform operations on

a service application used by a client to create activity in

the orchestration system 1. The workloads include i) deploy,

1We used synthetic workloads because there is a lack of benchmarks dedi-
cated to the orchestration system. Well-known benchmarks for cloud microser-
vices (e.g., DeathStarBench [45]) do not necessarily generate representative
orchestration activity (i.e., that activates many orchestration functions).

5

Fig. 4: Experimental workflow.

which creates new Deployments and related Pods; ii) scale-up,

which increases the replica number of existing Deployments;

and iii) failover, in which a Node failure is simulated through

a NoExecution taint, forcing the Pods running on the Node to

be respawned onto available Nodes. The workloads are applied

by kbench [46] acting as a cluster user (see Figure 1).

� The service application is a service exposed to the client.

Its characteristics define the orchestration functionalities used.

� The application client (AC) sends requests to the service

application for a fixed period, monitoring its availability and

response times.

C. Campaign manager

The campaign manager coordinates fault/error injection

experiments, following the workflow in Figure 4. First, we

record the fields of the resource instances sent to Etcd during

the execution of a nominal orchestration workload, which

comprises deploying, scaling, and updating Node states. Later,

the injection campaign is generated, and the campaign man-

ager drives the injection experiments.

� The injection campaign includes injection experiments

targeting i) a field of a message, ii) its serialization bytes, or

iii) a whole message (for message drops). For each recorded

integer field, we flip a low- and a high-order bit (respectively,

1st and 5th), and we set the 0 data value. The reason for

flipping those bits is that exchanged messages are serialized

with the Protobuf protocol, and most such encoded integers

are long one byte, with the 8th bit used as a continuation bit.

For each recorded string field, we flip the least significant

bit of the first two characters, and we set the empty string

data value. Injecting the least significant bit of a character still

results in a character, and hence valid strings. Boolean fields

are inverted. For each field, we ran an injection experiment

for the occurrence indexes 1, 2, and 3.

For each recorded resource kind, we performed a set of in-

jections targeting random serialization Protobuf bytes to assess

the system’s response to incorrectly structured messages.

For each recorded resource kind, we performed a message

drop injection for the occurrence indexes from 1 to 10.

After the listed injections, we derived a set of critical
fields, i.e., fields that caused Out, Sta, or unavailable service

failures. We performed additional injection experiments with

data-set values specific to the semantics of each critical field.

Failure category Failure Definition
No significant im-

pact (NSI)

The service is available and the response times seen by

the AC are not significantly different from golden runs

Higher response

times (HRT)

The service is available and the response times seen by

the AC are significantly higher from golden runs

Intermittent avail-

ability (IA)

The application client experiences intermittent error

responses from the service not due to request timeouts

Service

unreachable (SU)

From a certain instant in time, the service is unreach-

able to the AC

TABLE II: Client failure categories

� An injection experiment is composed of the following

phases (Figure 4): K8s cluster restart, fault/error injection

scenario set-up, application client workload start, injector

programming, orchestration workload execution, and data col-

lection. In each experiment, a single fault/error was injected.

To restart the cluster, all the Nodes leave the cluster, the

control plane Node resets the cluster and creates a new one,

and, finally, all the Nodes join the newly created cluster.

The scenario setup creates all the resource instances that are

required by the orchestration workloads before the injection.

Then, the application client workload starts performing

requests to the service application. Next, the campaign man-

ager configures the injection trigger by sending the triplet

(where, when,what) in an HTTP request to the injected

component. Mutiny is implemented as a package in the K8s

source tree. Any component can call it (with instrumentation

< 10 LoC) to tamper a message serialized with Protobuf. For

bit-flip and data-type set injections, Mutiny de-serializes the

message, modifies the content, and re-serializes it, replacing

the original. For message drop injections, the calling function

returns without any error before sending the message. In each

experiment, we perform a single fault/error injection.

� The data collection retrieves the logs of K8s control

plane components (with verbosity level set at 6, i.e., debug),

Kbench logs, response latencies experienced by the application

client, and, finally, the metrics gathered from Prometheus with

node exporter and kube-state-metrics as sources.

V. EXPERIMENTAL RESULTS

In this section, we describe the results of the fault/error

injection campaign. The experiments’ aims were to understand

K8s’s resiliency to faults/errors, pinpoint the inherent weak-

nesses of K8s that can trigger severe failures, and characterize

the impact of orchestration failures on services.

A. Experimental setup and parameters

Our experimental setup consisted of a cluster running K8s

v1.27.4 in the default kubeadm configuration. The cluster

included 1 control plane Node and 4 worker Nodes, one of

which was used for the application client and monitoring Pods

The network manager was flannel v1.1.2. The cluster featured

the default resiliency strategies described in §II-D. Unless

differently specified (see §V-C1) the cluster was managed by a

single control plane Node running all control plane Pods (de-

fault configuration [47]). Although production environments

commonly use multiple control plane Nodes, this improves the

availability in case of a Node crash but provides no protection

6

Deploy Scale Failover
NSI HRT IA SU NSI HRT IA SU NSI HRT IA SU

No 1617 (62.2%) 84 (3.2%) 0 0 1382 (54.5%) 77 (3.0%) 0 0 2652 (72.7%) 137 (3.8%) 11 (0.3%) 0

Tim 28 (1.1%) 1 0 0 40 (1.6%) 8 1 0 18 (0.5%) 11 (0.3%) 2 0

LeR 109 (4.2%) 138 (5.3%) 4 5 432 (17.0%) 63 (2.5%) 0 0 59 (1.6%) 10 (0.3%) 1 0

MoR 368 (14.2%) 12 (0.5%) 2 0 303 (12.0%) 41 (1.6%) 7 0 531 (14.6%) 31 (0.8%) 0 0

Net 14 (0.5%) 7 6 107 (4.1%) 28 (1.1%) 46 (1.8%) 10 (0.4%) 0 8 48 (1.3%) 40 (1.1%) 1

Sta 81 (3.1%) 4 0 0 81 (3.2%) 5 0 0 66 (1.8%) 8 0 0

Out 10 (0.4%) 1 0 1 8 1 0 1 7 2 2 4

TABLE III: Mapping between orchestrator failures (OF) and client failures (CF). Percentages are of the total number of

injections performed for that given workload. Percentages of single-digit numbers are omitted for readability.

from faulty values on the datastore. Indeed, the Kcm and

Scheduler have only one active replica at any time, while

the datastore replicas agree on the faulty value. The nodes

were virtual machines (8 CPU, 4 GB RAM, Ubuntu 20.04,

Linux kernel v5.4, containerd v1.7) communicating through

an internal network, on top of VirtualBox 6 hypervisor in a

cloud-tier environment (Intel Xeon E5-2695), where no other

user application was running.

Based on the amount of resources of our setup, we

parametrized the workloads as follows: the “deploy” workload

created three Deployments, each with two replicas; the “scale-

up” workload scaled two Deployments from two replicas each,

to three replicas each, after 10 seconds to four each, and after

another 10 seconds to five each; and the “failover” workload

deals with three running Deployments with two replicas each.

Kbench waited up to 40 seconds for each request to be

completed. The service application was a Flask webserver,

which read a seed for random numbers from a Volume during

the startup, and responded to clients with the result of ran-

dom computations. Its Pods had CPU and memory resource

requests and limits, and default priority. The web server was

stateless and did not require coreDNS name resolution. The

application is used to trigger orchestration activity, through

the workloads defined in §IV-B: a stateful application with

complex topology would complicate the application failure

patterns but not the orchestration system ones. The application

client sent 20 requests/second for 30 seconds.

B. Analysis of data from fault/error injection campaign

We consider two levels of failures: orchestration-level fail-

ures (OF, §III), and client-level failures (CF). CFs reveal the

fault/error impact on application clients (AC) in terms of

performance and availability. For both OFs and CFs, if a

failure belonged to more than one category, we classified it

as the most severe failure category.

In Table II, we introduce the categories of client failures:

no significant impact (NSI), higher response times (HRT),

intermittent availability (IA), service unreachable (SU). For

each workload, we collected data from 100 golden runs

without any faults/errors injected.

� To classify orchestration-level failures, for every golden

run we collected the number of ready replicas for each

ReplicaSet, and the number of Service endpoints, every 3

seconds. We collected Kbench statistics regarding the number

of Pods created/scheduled/running and the Pods’ total startup

times, as defined in [46]. We classify the failures as follows,

recalling Figure I (c).

Tim failure: A service Pod is restarted, or the z-score

relative to the golden distribution of either the worst Pod total

startup time or the last Pod creation time is greater than 3.

LeR failure: The number of ready replicas, created Pods,

or endpoints is stable and lower than the baseline.

MoR failure: The number of ready replicas, created Pods,

or endpoints is higher than the baseline.

Net failure: The number of ready replicas and Pods is

correct, but some are not reachable or used in load-balancing.

Sta failure: There is an uncontrolled Pod spawn, control

plane Pods are stuck, or networking Pods fail.

Out failure: All the ReplicaSets are unreachable (including

Prometheus), the DNS Pods fail, or the networking Pods fail

and cause a disruption of the service application.

� To classify client-level failures, we create a time series

for each golden run containing the response time latency of

the requests, ordered by the time of sending. We padded

with 0 the response times of failed requests. We computed

a baseline time series for each workload by averaging the

golden run time series. We measured the Mean Absolute Error

(MAE) between each golden run time series and the baseline

time series, obtaining a distribution of golden-run MAEs. For

each injection experiment, we computed the MAE between

the experimental time series and the baseline, and computed

the z-score of the MAE against the distribution of golden-run

MAEs. The z-score quantifies the impact on the application

client (see Figure 5). We classify the failures as follows.

HRT failure: The z-score is greater than 2.

IA failure: The application client experiences intermittent

errors not due to timeouts.

SU failure: An application has no response from the service.

C. Results

We performed a total of 8,782 injection experiments based

on the campaign described in §IV-C, targeting the communica-

tion between the Apiserver and Etcd in order to directly alter

Fig. 5: On the left, a golden run time series (z score = −0.2).

On the right, an injection time series (z score = 11.0)

7

the stored state and efficiently trigger failures, as mentioned in

§IV-A. Exactly one fault/error was injected in each experiment.

The results are summarized in Tables III, IV, and V. Ta-

ble III describes the propagation of OFs to CFs. For example,

the cell intersecting the column HRT and row MoR contains

the number of MoR failures that caused HRT. Tables IV,

and V divide failures by workload and injection type, with

percentages of categories, e.g., 2.8% of experiments are Sta.

WL Injection Perf. Orchestration-level Failures (OF)
No Tim LeR MoR Net Sta Out

Bit-flip 1563 1097 17 135 210 58 45 1

Value set 900 484 12 111 172 70 40 11Deploy

Drop 136 120 0 10 0 6 0 0

Bit-flip 1522 950 29 260 190 45 47 1

Value set 872 387 17 224 161 35 39 9Scale

Drop 140 122 3 11 0 4 0 0

Bit-flip 2132 1610 13 5 424 33 42 5

Value set 1288 972 18 64 130 62 32 10Failover

Drop 229 218 0 1 8 2 0 0∑
8782 5960 109 821 1295 315 245 37

% 100% 67.8% 1.2% 9.4% 14.8% 3.6% 2.8% 0.4%

TABLE IV: Statistics on orchestrator-level (OF) failures ob-

served in fault/error injection experiments.

WL Injection Perf. Client-level Failures (CF)
NSI HRT IA SU

Bit-flip 1563 1386 132 5 40

Value set 900 720 105 6 69Deploy

Drop 136 121 10 1 4

Bit-flip 1522 1379 133 10 0

Value set 872 772 91 8 1Scale

Drop 140 123 17 0 0

Bit-flip 2132 1989 132 9 2

Value set 1288 1139 100 46 3Failover

Drop 229 213 15 1 0∑
8782 7842 735 86 119

% 100% 89.2% 8.4% 0.9% 1.4%

TABLE V: Statistics on client-level (CF) failures observed in

fault/error injection experiments.

1) Analysis of OF and CF failures:

F1 - System-wide failures

3.2% of the performed injections of one value propagated to a
system-wide failure, despite the resiliency strategies. 24.2% of in-
jections resulted in service under/over provisioning, 3.6% in service
networking problems. ∼70% of performed injections have no effect
because they are either i) detected and mitigated by the health
checks, like heartbeats; or ii) mitigated by natural system behavior
(e.g., the value is overwritten).

In our experiments, a non-negligible number (3.2%, last

two columns of Table IV) of fault/error injections of a single

bit-flip or value set resulted in Sta and Out failures. Sta
failures were caused by i) a control plane overload due to

uncontrolled replication of resource instances (e.g., Pods); ii)

a Scheduler or Kcm that was unable to obtain a leadership

role and perform state changes; or iii) a failure or deletion

of networking Pods. On the other hand, the causes of cluster

outages were i) uncontrolled replication of resource instances;

ii) misconfigured networking daemons that caused a global

network outage; or iii) failed or deleted coreDNS Pods.

An incorrect value error may occur for any of several

reasons, but particularly interesting is the case of injections

affecting the serialization protocol. They usually cause the

resource instance to become undecryptable and be deleted

(see §II), but in some cases, the resource instance remains

decryptable and wrong. Because of how the protocol works,

an injection can move a value from one field to another, and a

required field could remain empty and trigger failures. In the

table below, there is an example of uncontrolled replication.

Example of uncontrolled replication

A single-bit corruption of the labels that associate a Pod

with a DaemonSet leaves the Kcm unable to identify the

Pods belonging to the DaemonSet. That causes new Pods to

be spawned, in an infinite loop. The system is overloaded

and all the cluster computing resources are filled up. The

DaemonSet Pods have high scheduling priority, so they

terminate all application Pods to claim resources. Eventually,

the disk of the control plane Node can fill up, stalling Etcd.

Our results indicate that 3.6% of injections resulted in

service networking problems (column 5 in Table IV), 24.2%
in service under/over provisioning (column 3,4).

∼70% of faults/errors across the three workloads had no

perceivable effect (first column in Table IV). Both the injec-

tions recovered and the ones not activated belonged to this set.

We define an injection as activated when the injected resource

instance is requested after the injection. The activation rate is

82%. We have no control over the activation of a single field.

Examples of system recovery include i) overwriting of the

injected data field with a correct value that is still stored some-

where in the system (e.g., some ReplicaSet fields, which cause

a ReplicaSet recreation or the PodIP, which is overwritten

by the correct value sent by kubelets) or ii) the corrupted

data have no immediate effect but remain latent. For example,

some data-structures have a versioning number. If the Kcm

does not detect any change in the number, it does not process

the instance, preventing the injected value from being used.

However, a subsequent update of the versioning number (e.g.,

by another request) triggers the errors caused by the injected

value. For example, several injections targeting the networking

DaemonSets can lead to a Sta or Out if triggered.

Injections classified as No mostly did not propagate to

clients (see No-NSI cell in Table III). However, some of them

led to HRT client failure. Those cases could be attributed to the

natural nondeterministic timing behavior of the orchestrator.

Fig. 6: Impact on app. client measured through z-scores.

8

A non-negligible number (10.8%, last three columns of

Table V) of injections impact the clients. Figure 6 shows the

z-scores of response times observed by the clients for different

fault/error types injected at the orchestrator level.

Timing failures generally have a limited impact on clients,

but under the “failover” workload, they can introduce a

significant delay (reflected by a high z-score) because of

control plane Pods’ restarts. Scheduler restarts were caused by

injections into the nodeName field of an existing Pod, which

changed the value to a non-existing nodeName.

Below, an example of this phenomenon.

Example of timing failure

The Scheduler detects a mismatch between the data in Etcd

and its cache and, assuming a cache corruption, restarts.

After a new leader Scheduler is elected (after 20 seconds,

in the standard configuration), it starts scheduling Pods. The

corrupted Pod remains pending for ∼50 seconds, until the

Kcm deletes it and creates another one.

Less resources failures can have severe impacts on response

times when the difference between the expected and used

numbers of Pods is significant. We observed that part (∼40%)

of MoR failures represent a negligible threat to clients because

they are transient and involve little extra resource consump-

tion. (The Pod number at steady state is correct, but the

number of Pods spawned is greater than expected by less than

three.) Interestingly, MoR failures can negatively impact the

clients as well. When the system does not detect the resource

overprovisioning for a service and uses less resources than

allotted, a LeR and MoR failures are caused at the same time.

Example of undetected overprovisioning

When the namespace field of a Deployment is corrupted

during the scale-up of the service application, fewer Pods are

spawned, causing longer response times. Upon deletion of

the resource instances, K8s starts reconciling a residual cor-

rupted Deployment that is not even listed anymore, spawning

Pods in the terminating state in an infinite loop. When the

rates of terminated and created Pods become similar, the

system reaches an equilibrium, but Etcd is filling up.

Service networking failures (Net) induce the majority of

intermittent failures for clients (IA), and complete service

outages (SU). Almost all SUs happen under deploy (see

Table III); the injections with index 1 during the deploy are

create transactions, making the unwanted value changes barely

detectable, unlike the injections in the following updates. Sta
failures may or may not impact the application client response

times, as said in §III-A, although the system eventually gets

to a degraded state. Finally, Out failures in our data do not

always impact response times because the service application

does not require the DNS. This makes error propagation from

the orchestrator to the clients difficult to identify.

We repeated the injections targeting the critical data fields

(360 in total; see §V-C2) in a cluster with three control plane

Nodes with an Etcd replica on each control plane Node. The

results show no significant difference from the previous ones.

The only component that actually works in a replicated fashion

is Etcd, and values were injected before getting to it. A few

additional experiments also showed that corrupting the data

in Etcd at rest has a different propagation pattern from our

injections because of the Apiserver cache. The cache is used

intensively, and it is refreshed with Etcd data when needed,

e.g., getting a resource instance. If the refresh does not happen

before an update, the injected value in Etcd is overwritten, and

a complete component restart may be needed to pick up the

injected value. Furthermore, quorum reads mitigate corrupted

values. In conclusion, i) corruption at rest is less likely to

cause issues than errors that happen before a transaction; and

ii) a corruption of the cache may overwrite a correct value on

the data store if the right sequence of requests is triggered.

2) Critical field analysis:

F2 - Dependency relationships

51% of fault/error injection experiments that caused critical failures
targeted the fields managing the dependency relationships among
resource instances, revealing an inherent data weakness.

We analyzed the fields that caused the most severe failures

when injected, i.e., Sta, Out, or SU. 377 injections were

derived, which all affected the same 34 fields of different

resource kinds. Out of them, 8 are related to metadata and

26 to technical specifications.

A subset of fields is important because it constitutes the way

in which K8s keeps track of the associations between multiple

dependent resource instances of different kinds. These include:

i) owner relationships with references to other resource in-

stances, and ii) label relationships that use matching labels

and selectors to create dynamic relationships. labels, managed-
by, targetRef, and ownerReferences are metadata, while label

selectors are specification fields. In total, 20 fields out of 34
belong to this subset, representing 187 injections out of 360.

The injections that triggered uncontrolled replication of objects

belong to this category, revealing an issue in K8s: although

these fields are important for the functioning and represent a

risk because of the associated possible failures, there are not

enough resiliency strategies in place to recover the system in

case of errors. Other relevant fields (124 injections total) are

name, namespace, and uid, which are the fields used by K8s

to identify a resource and appear in its URL. The remaining

fields include 5 related to networking (protocols, addresses,

and ports); the replica number; and 2 specification fields of

images and commands that prevent the start of critical Pods.

3) User error analysis:

F4 - User unawareness

The reconciliation of the observed cluster state and the desired state
is postponed to a later time. If the state of the system diverges and
never reaches the desired state because of failures, the user may
be unaware of it unless proper monitoring alerts are set.

Figure 7 shows the number of injection experiments with

failed user requests to the Apiserver (indicated by the Error
label) as a fraction of the total number of fault/error injection

9

Fig. 7: Number of total injection experiments vs. injection

experiments in which the cluster user received an error (Error)

in response to requests to the Apiserver.

experiments, distinguished by orchestration failure types. For

most fault/error injections that lead to erroneous data store

states and failures, the user does not receive any warning or

error notification from the Apiserver. The “scale” workload

shows that a significant number of experiments return errors.

The reason is that the workload generates multiple successive

requests related to the same resource instances. In this context,

a fault/error may compromise the resource integrity, triggering

errors in subsequent requests. In the case of the “deploy”

and “failover” workloads, the majority of errors (29/32) were

due to injections in the serialization protocol that prevented

decoding and operations on the object. The reason for the

small number of errors is the delayed reconciliation of the

cluster state and the desired state on the data store (see §I).

The Apiserver only acknowledges receiving a request for a

modification of values in Etcd. This does not imply that the

cluster state changed.
4) Injection propagation analysis:
We performed a batch of experiments to understand which

injected data values coming from other components can be

detected and blocked by the Apiserver validation layer. We

used Mutiny to inject bit-flips into the messages sent towards

the Apiserver by the Kcm, the Scheduler, and the Kubelet,

and we checked through logging whether the injected values

reached Etcd. The experiment was also intended to indicate

the robustness of the client input validation. The experimental

setup is the same of the campaign described in §V-C.

Kcm Scheduler Kubelet

Inj. Prop Err. Inj. Prop Err. Inj. Prop Err.

Deploy 468 165 38 40 9 8 69 34 7

Scale 472 165 26 40 9 8 69 31 5

Failover 382 136 29 30 9 6 69 29 5

TABLE VI: Results of the propagation experiments. Inj.: the

number of injections performed. Prop: values propagated to

Etcd. Err.: an error was logged due to a wrong value. The Kcm

has more injections performed because it manipulates multiple

types of resources and updates larger numbers of fields than

the other two components.

The fault/error injections targeted the same set of message

fields as our previous injection campaign. Table VI shows the

results from those experiments. We observed that for 12 of the

critical data fields (previously analyzed), the validation mech-

anisms failed to capture data corruption, i.e., the corrupted

Error Error Subcategories
State Re-

trieval

State corrupted, erased, stale, unretrievable

Misbehav.

Logic

Wrong label, Wrong replica value, Request rejected, Lost update,

Controller loop not executed, Relationship broken
Commun.

Problems

Connection delay, Wrong IP address, DNS resolution delay, DNS not
resolving, Uneven load balancing, Endpoint delete after Pod kill, Routes
dropped, New Nodes’ routes not configured, Routes not updated

Capacity

Exceed

Overcrowding, Cluster out of resources, Worker nodes cannot join,

Worker nodes unhealthy
CP

Availab.

CP Pods crash loop, CP Pods hang, CP Pods deleted, CP overload

Local to

Nodes

Kubelet delayed, Container runtime failure, Pods not ready, Image Pull
Error, Slow/throttling

Failure Failure Subcategories
Cluster

Outage

Cluster-wide networking drop, Cluster-wide networking intermittent,

Massive Service Deletion, DNS resolution failure
Stall Control Plane stuck, Control Plane slow, Control Plane quorum

unreachable, New Services network not configurable, New Nodes
network not reconfigurable

Service

Networking

Service Networking Drop Permanent, Service Networking Drop
Intermittent, Service Networking Delay

More Res. Pods not deleted, Too many Pods created, More Pods Transient,
More Resources Per Pod

Less Res. Pods deleted, Pods not created, Pods crashloop, Less Resources Per
Pod

Timing Pods’ Creation Delayed, Pods Restart

TABLE VII: Comparison between injections and the real

world. Bold indicates what Mutiny can replicate, and italics
indicates what is triggered by Mutiny and not present in the

real world.

inputs propagated from the Kcm without being intercepted

and caused failures like SU. The reason is that the Apiserver

performs general validations, e.g., regex matching or border-

case testing, but is not able to detect valid but wrong values.

Fortunately, the Apiserver is able to validate some of the fields

that can cause severe error patterns. For example, the Apiserver

detects and prevents the propagation of a namespace that does

not match the URL or label selectors that do not match the

template labels of the same resource instance, a condition

that triggers the infinite Pod spawn. Values from the Kubelet,

which may be more likely to be compromised, impact only

the Node itself or a single Pod, presenting a low risk.

VI. DISCUSSION

A. How can we improve testing?

Table VII shows failures triggered by Mutiny compared to

failures reported in the real world. Our injector easily triggers

errors related to logic, capacity, and control plane availability.

On the other hand, it fails to trigger several errors local to the

worker Nodes, because those errors are mainly due to local

configurations and underlying software (e.g., kernel, runtimes)

problems. For example, it falls short in inducing delays caused

by DNS resolution, connection errors, arbitrary numbers (dif-

ferent from 1 and all) of unhealthy Nodes, and transient and

intermittent network failures in general. Nonetheless, almost

all failure subcategories can be covered. At any rate, our

aim is not to create a one-size-fits-all injector, but rather to

provide a framework capable of triggering unforeseen error

patterns to test the system response and provide insights that

can be used to devise methods for mitigating or recovering

from potential failures. Currently, companies use well-known

10

techniques for testing applications’ resiliency (e.g., Chaos

engineering), but there is limited understanding of how to

test the resiliency of the platform itself. At the moment, the

responsibility for setting up proper monitoring alerts to detect

failures and enforce manual mitigation belongs to cluster

operators. Sometimes custom code is employed to prevent

past failures from happening again; for example, validation of

namespace deletion can prevent accidental deletion of a non-

empty namespace together with all its Pods. However, a post-

incident manual procedure or code customization cannot be the

answer to a trend that sees the use of K8s as a cloud OS for

more critical scenarios with tight non-functional requirements.

Systematic orchestration resiliency tests should become an

integral part of the development process to get quantitative

metrics of resiliency strategies in place. A set of injectors,

such as network and OS-level injectors, can be used in

testing clusters in a Chaos-engineering fashion to train human

operators and improve handbooks containing procedures to

follow when a failure occurs. With a real workload, Mutiny

would introduce errors in a set of events that rarely happen,

but that can be troublesome (e.g., updates of networking

ConfigMaps, certificates, and secrets). This would trigger

new failure patterns not reflected in our experiments, due to

simple workloads. For each critical failure pattern, appropriate

and systematic countermeasures should be designed before

deployment in production environments.

Findings like F1 and the systematic orchestration resiliency

tests are not specific to K8s: they descend from the inherent

problem that these systems control resources at a huge scale.

The proposed fault-injection methodology can be ported

to other orchestration systems, as they all share common

architectural principles: the study in [48] compares several

orchestration frameworks (e.g., K8S, Docker Swarm, Mesos,

Autora, Marathon), observing that all of them keep applica-

tions in their desired state by comparing the monitored state

and the desired state. Moreover, controllers use a data store

(e.g., Etcd, Consul, or Zookeeper) for storing the states.

B. What can we do about failures?

� The system design can be improved in terms of data

validation for critical resources and fields. In K8s there is a

massive use of labels because of their flexibility in grouping

and selecting resources. We showed that this flexibility comes

at the expense of resiliency because it is hard to validate their

custom values. Recall the Reddit [21] failure discussed earlier,

in which a single label tore down the entire cluster network.

Hence, updates to critical fields and resources (e.g., control

plane Pods or Nodes) should be logged. In case of logging

subsystem failure, additional data sources (e.g., Prometheus)

can be used to detect the change. Upon a change, system

behavior should be monitored to detect any degradation of

the system’s health, so it is possible to roll back changes to

critical fields. Moreover, stricter checks can be enforced: e.g.,

scaling of coreDNS to 0 should be denied, while adding the

MaxUnavailability parameter could prevent outages. Logs can

be used to derive a nominal behavior of the system. Mutiny can

be used to conduct a log analysis to check what K8s logs under

injection, to possibly improve the logging when no traces of

failures/errors are found. To this aim, K8s auditing (currently

a beta feature [49]) can be used together with injections.

Then, methods like model checking and runtime verification

can be used to validate data exchanged between components

and detect anomalies. Log analysis can be used to derive de-

pendability measurements for each K8s component and assess

failure propagation patterns among them. The analysis can

help to spot the most problematic components. For instance,

our experiments showed that components running validations

or controlling scaling and cluster-wide configurations (i.e.,

Apiserver, Kcm, and network managers) can be troublesome,

other than the centralized state itself which represents the main

dependability bottleneck.

Although the analysis in §V-C4 reveals that data-validation

mechanisms can prevent some severe failures, it is not enough

to validate the data only once. If for some reason an incorrect

value gets to Etcd (perhaps introduced by the Apiserver

itself), escaping data validation, no circuit breaker, or other

resiliency strategies mitigate the impact on the system. Real-

world incidents have proven that incorrect data can escape

data validation, causing, for example, uncontrolled replication

of resources. Circuit breakers must thus be systematically

designed to cover all the resource kinds that can cause overload

errors, for example, when the relationship between resource

instances is broken. Furthermore, when writing custom con-

trollers, the replication management must be designed resilient

to a variety of faults/errors. Simple data redundancy mecha-

nisms, like redundancy codes on critical fields, can protect

the cluster from hardware faults with a negligible overhead in

terms of resource usage (the critical fields are < 10% of total).

� Cluster managers, since a single error can disrupt

an entire cluster, should prefer multiple clusters rather than

a reduced number of high-scale clusters to contain error

propagation; at the cost of additional control plane Nodes

and management complexity. Cluster managers should set

and test upper resource limits in terms of Pod resources,

number of Nodes in the cluster, request rates, and number of

spawned Pods. Namespace features can limit resource counts

and quotas [50] to somehow partition different tenant/service

types and mitigate failures. Cluster managers must be aware

of the default parameters and the software specification in

non-nominal conditions. Mechanisms like MaxUnavailability,

MaxSurge (i.e., maximum Pod number that can be created over

the desired one), and backoff timers should be tuned thinking

at failures, despite slowing down daily operations. From a

security perspective, access to Etcd must be strictly guarded by

authentication and firewalls. K8s configures Etcd with client

authentication, but not rarely administrators directly connect

to Etcd. K8s security features can reduce the attack surface

from unauthorized users, but cannot prevent errors generated

in the authorized clients, e.g., Apiserver or Kcm.

Capacity-related failures in real-world incidents have been

caused by misconfigurations and human mistakes more often

than by internal system errors. User requests that can overload

11

the system should be blocked, e.g., reject the spawning of a

large number of Pods without resource limits or slow down

evictions due to preemption by a new deployment.

VII. RELATED WORK

A. Dependability assessment for cloud systems

Software and hardware injections have been debated for a

long time [51]–[53]. The authors of [54] analyze production

failures in cloud systems, arguing that they cannot be under-

stood by analyzing a single system in isolation. Hence, they

introduce the concept of cross-system interaction failures and

discuss potential mitigations. The authors of [55] use FFDA

to analyze the failures of the Blue Waters supercomputer. The

authors of [56] describe dependability bottlenecks through

stochastic models of two software-defined network (SDN)

controllers. SDNs feature a distributed control plane, like

container orchestration systems. Several papers have studied

the availability assessment for cloud and edge computing [57]–

[61]. The most common approaches use analytical models like

Markov chains or Petri nets, and rely on field measurements.

B. Fault injection in cloud systems

The authors of [27] created a testing framework for custom

K8s controllers by perturbing the controller’s view of the

current cluster state through stale-state, crash, and unobserved

states. That was followed by [28], which describes how end-to-

end tests can be generated to trigger state changes from states

different from the initial one. Oracle state checking is used

to detect misbehavior. The approach described in [29] looks

for crash-recovery bugs in distributed systems by injecting

crashes at precise points identified through the analysis of

meta-information used by nodes. Similarly, in [30], time-

of-fault bugs are found by identifying conflicting operations

based on correct runs, and exploiting the ones not covered

by fault-tolerance mechanisms. The authors of [31] injected

network partitions to discover partition bugs. The injections are

performed when consistency invariants are violated. Simple

random partitions were found to be useful in [33] in which

the probability bounds for discovering bugs are derived. The

authors of [32] argue that partial histories, including staleness,

time traveling, and observability gaps, are an inherent threat to

distributed systems that locally cache their state, as K8s does.

The above work all aimed to expose flaws by leveraging

the inherent weaknesses of distributed systems and injecting

simple faults (e.g., crash and stale states) in strategic ways.

Unlike previous studies of operating systems [62]–[64] and

past cloud platforms [65], [66], the above publications do

not provide a systematic assessment of failures and resiliency.

Unlike them, we focus on fault tolerance, assuming the pres-

ence of residual bugs or even components that are flawless

but can nevertheless lead to system failures. The authors of

[36] used fault injection to study the effectiveness of K8s at

handling the aging and faults of deployed microservices, and

concluded that probes fall short in detecting several failure

modes. In 2016, Netflix introduced Chaos engineering [35],

which automatically, randomly, and deliberately introduces

faults through injections in production systems to find and

improve dependability bottlenecks. Chaos engineering effec-

tiveness relies on the simple fault/error model that can be ap-

plied without being aware of services’ semantics, highlighting

the bottlenecks of complex system topology. Unlike us, those

efforts focused on the resiliency of deployed services (§II-D),

while we claim that chaos-engineering–like methods should be

applied to the components of the orchestration system itself,

which are fewer and with known interaction patterns. This

allows taking advantage of the architecture to inject tailored

faults/errors.

C. Fault-tolerant designs in orchestration systems
Papers [67], [68] provide reviews of fault-tolerance methods

in cloud environments. In [69], Byzantine fault tolerance is

integrated into the K8s control plane through state machine

replication. The work in [70] does something similar for SDN

control planes, while [71] introduces state machine replications

for the applications deployed in K8s. However, state machine

replication cannot mitigate common cause failures, e.g., de-

terministic failures due to misconfigurations, mistakes, bugs,

and upgrades. The authors of [72] describe how violations of

invariants can be used to detect deterministic bugs, and how

semantic-equivalent input transformation through symbolic

execution can be performed to recover dynamically.

VIII. CONCLUSION

We classified real-world incidents to analyze how Kuber-

netes fails, and we described a fault injection campaign we

performed that altered the data representing the cluster state to

reproduce some incidents and also trigger new error patterns.

We introduced a failure model for orchestration systems that

we used to analyze our experimental results. Although K8s re-

siliency strategies can tolerate quite a lot of errors, the system

is sensitive to state alterations, and a single bad value can cause

overloads and cluster-wide failures. The mechanisms enabling

flexible relationships among resource instances can cause such

critical failures. Hence, injection-based testing is essential to

proactively assess orchestration resiliency, guide the design

of failure mitigation actions, and set up monitoring alerts.

Nonetheless, a systematic design of resiliency mechanisms is

required to prevent system-wide failures.

ACKNOWLEDGMENTS

We thank the reviewers, S. Cui, H. Qiu, H. Sreejith, A.

Patke, P. Cao, J. Applequist, and K. Atchley for the insightful

comments on the early drafts. We acknowledge the early

participation of Larisa Shwartz (IBM) and Saurabh Jha (IBM)

in the conceptualization of fault injection methods for Kuber-

netes; and Chandra Narayanaswami (IBM) for his continued

insights and support on related system issues. This work is

partially supported by the National Science Foundation (NSF)

under grant No. 2029049; by the IBM-ILLINOIS Discovery

Accelerator Institute (IIDAI); a gift from Nokia Bell Labs

Core Research; and by the Italian Ministry of Enterprises

and Made in Italy (MIMIT) under the GENIO Project (CUP

B69J23005770005). In memory of Fabio Barletta.

12

REFERENCES

[1] A. Khan, “Key characteristics of a container orchestration platform to
enable a modern application,” IEEE cloud Computing, vol. 4, no. 5, pp.
42–48, 2017.

[2] M. A. Rodriguez and R. Buyya, “Container-based cluster orchestration
systems: A taxonomy and future directions,” Software: Practice and
Experience, vol. 49, no. 5, pp. 698–719, 2019.

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, omega, and kubernetes: Lessons learned from three container-
management systems over a decade,” Queue, vol. 14, no. 1, pp. 70–93,
2016.

[4] Windriver. Containers at the Intelligent Edge. https://www.windriver.
com/resource/containers-at-the-intelligent-edge. Accessed April 24,
2024.

[5] J. Mellado and F. Núñez, “Design of an IoT-PLC: A containerized pro-
grammable logical controller for the industry 4.0,” Journal of Industrial
Information Integration, vol. 25, p. 100250, 2022.

[6] M. Barletta, M. Cinque, L. De Simone, and R. D. Corte, “Criticality-
aware monitoring and orchestration for containerized industry 4.0
environments,” ACM Transactions on Embedded Computing Systems,
vol. 23, no. 1, pp. 1–28, 2023.

[7] B. Johansson, M. Rågberger, T. Nolte, and A. V. Papadopoulos, “Kuber-
netes orchestration of high availability distributed control systems,” in
2022 IEEE International Conference on Industrial Technology (ICIT).
IEEE, 2022, pp. 1–8.

[8] Linux Foundation. Nephio: Cloud Native Network Automation. https:
//nephio.org/about/. Accessed April 24, 2024.

[9] A. E. Ferguson, J. Larrea, and M. K. Marina, “Corekube: An efficient,
autoscaling and resilient mobile core system,” in The 29th Annual
International Conference On Mobile Computing And Networking. ACM
Association for Computing Machinery, 2023, pp. 1–15.

[10] R. Botez, J. Costa-Requena, I.-A. Ivanciu, V. Strautiu, and V. Dobrota,
“SDN-based network slicing mechanism for a scalable 4G/5G core
network: A kubernetes approach,” Sensors, vol. 21, no. 11, p. 3773,
2021.

[11] A.-W. Colombo, S. Karnouskos, and J.-M. Mendes, “Factory of the
future: A service-oriented system of modular, dynamic reconfigurable
and collaborative systems,” in Artificial intelligence techniques for
networked manufacturing enterprises management. Springer, 2010, pp.
459–481.

[12] J. Morgan, M. Halton, Y. Qiao, and J. G. Breslin, “Industry 4.0 smart
reconfigurable manufacturing machines,” Journal of Manufacturing Sys-
tems, vol. 59, pp. 481–506, 2021.

[13] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & information systems engineering, vol. 6, pp. 239–242,
2014.

[14] P. P. Ray, D. Dash, and D. De, “Edge computing for internet of things: A
survey, e-healthcare case study and future direction,” Journal of Network
and Computer Applications, vol. 140, pp. 1–22, 2019.

[15] Cloud Native Computing Foundation. (2022) Kubernetes Certified Dis-
tributions. https://www.cncf.io/certification/software-conformance/. Ac-
cessed April 24, 2024.

[16] C. N. C. Foundation, “CNCF Annual Survey 2021,” https://www.cncf.
io/reports/cncf-annual-survey-2021/, 2022, accessed April 24, 2024.

[17] L. Bernaille and R. Boll, “10 Ways to Shoot Yourself in the Foot with
Kubernetes,” https://www.youtube.com/watch?v=QKI-JRs2RIE, 2020,
accessed April 24, 2024.

[18] hjacobs, “Kubernetes Failure Stories,” https://k8s.af/, 2023, accessed
April 24, 2024.

[19] Airbnb, “10 More Weird Ways to Blow Up Your Kubernetes,” https:
//www.youtube.com/watch?v=4CT0cI62YHk, 2021, accessed April 24,
2024.

[20] S. Visvanathan and N. Venkatachalam, “101 Ways to “Break
and Recover” Kubernetes Cluster,” https://www.youtube.com/watch?v=
likHm-KHGWQ, 2018, accessed April 24, 2024.

[21] J. Howard, “You Broke Reddit: The Pi-Day Outage,”
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you broke
reddit the piday outage/, 2023, accessed April 24, 2024.

[22] Venafi, “How a Simple Kubernetes Admission Webhook Lead to a
Cluster Outage,” https://venafi.com/blog/gke-webhook-outage/, 2019,
accessed April 24, 2024.

[23] Google. (2022) All incidents reported for Google Kubernetes
Engine . [Online]. Available: https://status.cloud.google.com/products/
LCSbT57h59oR4W98NHuz/history

[24] M. Barletta, “Mutiny,” https://dessert.unina.it:8088/marcobarlo/mutiny
”Mutiny-Scripts” https://dessert.unina.it:8088/marcobarlo/
mutiny-scripts, note = ”Accessed April 24, 2024”,, 2023.

[25] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
configuration changes in context to prevent production failures,” in 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 2020, pp. 735–751.

[26] M. Barletta, M. Cinque, and C. Di Martino, “SLA-Driven Software
Orchestration in Industry 4.0,” IEEE Internet of Things Magazine, vol. 5,
no. 4, pp. 136–141, 2022.

[27] X. Sun, W. Luo, J. T. Gu, A. Ganesan, R. Alagappan, M. Gasch,
L. Suresh, and T. Xu, “Automatic reliability testing for cluster manage-
ment controllers,” in 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), 2022, pp. 143–159.

[28] J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen,
and T. Xu, “Acto: Automatic end-to-end testing for operation correctness
of cloud system management,” in Proceedings of the 29th Symposium
on Operating Systems Principles, 2023, pp. 96–112.

[29] J. Lu, C. Liu, L. Li, X. Feng, F. Tan, J. Yang, and L. You, “Crashtuner:
detecting crash-recovery bugs in cloud systems via meta-info analysis,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), 2019, pp. 114–130.

[30] H. Liu, X. Wang, G. Li, S. Lu, F. Ye, and C. Tian, “FCatch: Automat-
ically detecting time-of-fault bugs in cloud systems,” ACM SIGPLAN
Notices, vol. 53, no. 2, pp. 419–431, 2018.

[31] H. Chen, W. Dou, D. Wang, and F. Qin, “Cofi: consistency-guided fault
injection for cloud systems,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020, pp.
536–547.

[32] X. Sun, L. Suresh, A. Ganesan, R. Alagappan, M. Gasch, L. Tang, and
T. Xu, “Reasoning about modern datacenter infrastructures using partial
histories,” in Proceedings of the Workshop on Hot Topics in Operating
Systems, 2021, pp. 213–220.

[33] R. Majumdar and F. Niksic, “Why is random testing effective for
partition tolerance bugs?” Proceedings of the ACM on Programming
Languages, vol. 2, pp. 1–24, 2017.

[34] R. Meng, G. Pı̂rlea, A. Roychoudhury, and I. Sergey, “Distributed system
fuzzing,” arXiv preprint arXiv:2305.02601, 2023.

[35] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35–41, 2016.

[36] J. Flora, P. Gonçalves, M. Teixeira, and N. Antunes, “A study on the
aging and fault tolerance of microservices in kubernetes,” IEEE Access,
vol. 10, pp. 132 786–132 799, 2022.

[37] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer,
“FIRM: An intelligent fine-grained resource management framework for
slo-oriented microservices,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). Banff, Alberta:
USENIX Association, Nov. 2020, pp. 805–825.

[38] H. Jacobs, “Kubernetes Failure Stories, or: How to Crash Your Cluster,”
https://www.youtube.com/watch?v=LpFApeaGv7A, 2019.

[39] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX annual technical conference (USENIX ATC
14), 2014, pp. 305–319.

[40] J. Bowes, “Level Triggering and Reconcil-
iation in Kubernetes,” https://hackernoon.com/
level-triggering-and-reconciliation-in-kubernetes-1f17fe30333d, 2020,
accessed April 24, 2024.

[41] Zalando, “Let’s talk about Failures with Kubernetes -
Hamburg Meetup,” https://www.slideshare.net/try except /
lets-talk-about-failures-with-kubernetes-hamburg-meetup, 2019,
accessed April 24, 2024.

[42] K. repository users, “Kubernetes Issue 69579 ,” https://github.com/
kubernetes/kubernetes/issues/69579, 2018, accessed April 24, 2024.

[43] C. Melanie and S. A. Bruce, “10 Weird Ways to Blow Up Your
Kubernetes,” https://www.youtube.com/watch?v=FrQ8Lwm9 j8, 2020,
accessed April 24, 2024.

[44] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi, “Failure detectors in
omission failure environments,” Cornell University, Tech. Rep., 1996.

[45] delimitrou, “DeathStarBench,” https://github.com/delimitrou/
DeathStarBench, accessed April 24, 2024.

13

[46] VMware Tanzu. k-bench. https://github.com/vmware-tanzu/k-bench.
Accessed April 24, 2024.

[47] Kubernetes, “Kubernetes docs - components,” https://kubernetes.io/docs/
concepts/overview/components/, 2023.

[48] E. Truyen, D. Van Landuyt, D. Preuveneers, B. Lagaisse, and W. Joosen,
“A comprehensive feature comparison study of open-source container
orchestration frameworks,” Applied Sciences, 2019.

[49] Kubernetes, “Kubernetes docs - scuring a cluster,” https://kubernetes.io/
docs/tasks/administer-cluster/securing-a-cluster/, 2023.

[50] K. developers, “Resource quotas,” https://kubernetes.io/docs/concepts/
policy/resource-quotas/, 2024, accessed April 24, 2024.

[51] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[52] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Computing Surveys
(CSUR), vol. 48, no. 3, pp. 1–55, 2016.

[53] R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Martins, and
H. Madeira, “Injection of faults at component interfaces and inside the
component code: are they equivalent?” in Proceedings of Sixth European
Dependable Computing Conference (EDCC). IEEE, 2006, pp. 53–64.

[54] L. Tang, C. Bhandari, Y. Zhang, A. Karanika, S. Ji, I. Gupta, and T. Xu,
“Fail through the cracks: Cross-system interaction failures in modern
cloud systems,” in Proceedings of the Eighteenth European Conference
on Computer Systems, 2023, pp. 433–451.

[55] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 610–621.

[56] P. Vizarreta, K. Trivedi, V. Mendiratta, W. Kellerer, and C. Mas-
Machuca, “Dason: Dependability assessment framework for imperfect
distributed sdn implementations,” IEEE Transactions on Network and
Service Management, vol. 17, no. 2, pp. 652–667, 2020.

[57] P. Maciel, J. Dantas, C. Melo, P. Pereira, F. Oliveira, J. Araujo, and
R. Matos, “A survey on reliability and availability modeling of edge,
fog, and cloud computing,” Journal of Reliable Intelligent Environments,
pp. 1–19, 2021.

[58] H. Khazaei, J. Mišić, V. B. Mišić, and N. B. Mohammadi, “Availability
analysis of cloud computing centers,” in Proceedings of IEEE Global
Communications Conference (GLOBECOM). IEEE, 2012, pp. 1957–
1962.

[59] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi, “Scalable
analytics for IaaS cloud availability,” IEEE Transactions on Cloud
Computing, vol. 2, no. 1, pp. 57–70, 2014.

[60] L. De Simone, M. Di Mauro, R. Natella, and F. Postiglione, “A latency-
driven availability assessment for multi-tenant service chains,” IEEE
Transactions on Services Computing, vol. 16, no. 2, pp. 815–829, 2022.

[61] M. Faraji Shoyari, E. Ataie, R. Entezari-Maleki, and A. Movaghar,
“Availability modeling in redundant openstack private clouds,” Software:
Practice and Experience, vol. 51, no. 6, pp. 1218–1241, 2021.

[62] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang, “Characterization of
linux kernel behavior under errors,” in Proceedings of International
Conference on Dependable Systems and Networks. IEEE Computer
Society, 2003, pp. 459–459.

[63] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun, “Experimental analysis
of the errors induced into linux by three fault injection techniques,” in
Proceedings of the 2002 IEEE International Conference on Dependable
Systems and Networks (DSN). IEEE, 2002, pp. 331–336.

[64] D. Cotroneo, R. Natella, and S. Russo, “Assessment and improvement
of hang detection in the linux operating system,” in 2009 28th IEEE
International Symposium on Reliable Distributed Systems. IEEE, 2009,
pp. 288–294.

[65] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,
“How bad can a bug get? an empirical analysis of software failures in
the openstack cloud computing platform,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
200–211.

[66] X. Ju, L. Soares, K. G. Shin, K. D. Ryu, and D. Da Silva, “On fault
resilience of openstack,” in Proceedings of the 4th annual Symposium
on Cloud Computing, 2013, pp. 1–16.

[67] M. A. Shahid, N. Islam, M. M. Alam, M. Mazliham, and S. Musa, “To-
wards resilient method: An exhaustive survey of fault tolerance methods
in the cloud computing environment,” Computer Science Review, vol. 40,
p. 100398, 2021.

[68] P. Kumari and P. Kaur, “A survey of fault tolerance in cloud computing,”
Journal of King Saud University-Computer and Information Sciences,
vol. 33, no. 10, pp. 1159–1176, 2021.

[69] G. M. Diouf, H. Elbiaze, and W. Jaafar, “On byzantine fault tolerance in
multi-master kubernetes clusters,” Future Generation Computer Systems,
vol. 109, pp. 407–419, 2020.

[70] E. Sakic, N. Deric, E. Goshi, and W. Kellerer, “P4bft: Hardware-
accelerated byzantine-resilient network control plane,” in 2019 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2019, pp.
1–7.

[71] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. S. de Souza,
“State machine replication in containers managed by kubernetes,” Jour-
nal of Systems Architecture, 2017.

[72] Z. Zhou, T. A. Benson, M. Canini, and B. Chandrasekaran, “Tardis:
A fault-tolerant design for network control planes,” in Proceedings of
the ACM SIGCOMM Symposium on SDN Research (SOSR), 2021, pp.
108–121.

14

