
Dagstuhl Seminar Proceedings 10021, Jan. 2010

Service-oriented Architectures and (Multi-)Agent Systems Technology

DAGSTUHL SEMINAR 10021

10. JAN. 2010 – 15. JAN. 2010, SCHLOSS DAGSTUHL, GERMANY

SERVICE-ORIENTED ARCHITECTURES AND

(MULTI-)AGENT SYSTEMS TECHNOLOGY
– EXECUTIVE SUMMARY –

Monique Calisti
1
, Frank Leymann

2
, Frank P.M. Dignum

3
, Ryszard Kowalczyk

4
, Rai-

ner Unland
5

1 Whitestein Technologies AG, Pestalozzistrasse 24, 8032 Zurich, Switzerland,

mca@whitestein.com

2 University of Stuttgart &, IBM Software Group Universitätsstrasse 38, D-70569 Stuttgart,

Germany,

Leymann@iaas.uni-stuttgart.de

3 Universiteit Utrecht, Department of Information and Computing Sciences, Centrumgebouw

Noord, Padualaan 14, De Uithof, 3584CH Utrecht, The Netherlands, PO Box 80.089,

dignum@cs.uu.nl

4 Faculty of Information and Communication Technologies, Swinburne University of Technol-

ogy, PO Box 218 , Hawthorn, Victoria 3122, Australia,

rkowalczyk@swin.edu.au

5 University of Duisburg-Essen, Institute for Computer Science and Business Information Sys-

tems (ICB), Schützenbahn 70, 45117 Essen, Germany,

Rainer.Unland@icb.uni-due.de

Abstract. Service-Oriented Architecture (SOA) stands for a standards-based

and technology-independent distributed computing paradigm and architectural

style which is especially suited to meet the demands of today’s dynamic busi-

ness applications. Based on a comprehensive set of independent or at most

loosely-coupled and network-available software services SOA is supposed to

provide a platform for an efficient and effective publication, discovery, binding,

and assembly of these services.

Intelligent agents can be regarded as autonomous, problem-solving computa-

tional entities with social abilities that are capable of effective pro-active behav-

ior in open and dynamic environments. If the term entity is replaced by service

the substantial overlap in interests between both communities can easily be

imagined. Nevertheless, right now the main research focus of each community

seems to be different. The SOA community concentrates mainly on developing

service engineering methodologies. Active topics in the multi-agent systems

community are collaboration, self-organization, adaptability, flexibility, pro-

Dagstuhl Seminar Proceedings 10021
Service-Oriented Architecture and (Multi-)Agent SystemsTechnology
http://drops.dagstuhl.de/opus/volltexte/2010/2845

Service-oriented Architectures and (Multi-)Agent Systems Technology

- 2 -

activeness, and interoperability. The overlap between those two communities

and the fact that they concentrate on different research topics can definitely be

seen as a huge chance since it means that each community may be able to bene-

fit from the research efforts of the other. This seminar brought members from

both communities together in order to identify such areas of mutual benefit. Af-

ter extensive general discussions the seminar concentrated on three topics,

namely the engineering of complex distributed systems, its governance, and its

adaptability and requirements for dynamism.

Keywords: Service-oriented computing (SOC), Service-oriented architecture

(SOA), multi-agent systems (MAS), engineering complex distributed systems,

governance, adaptability, dynamism, flexibility, autonomy.

Brief, general introduction to the topic

Today’s world has become not only more complex but also much more dynamic.

From the business point of view this requires an IT that is not only affordable but also

highly flexible and adaptable. In order to achieve this, the idea of software services

composition (also called service choreography respectively service orchestration)

came up. This technique combines the best from commercial off the shelf (COTS)

software use and the individual development of exactly tailored application software.

Enterprise applications are put together by loosely integrating comparatively simple

pre-existing building blocks in an efficient and to the needs centered way. Ideally the

resulting application program will be exactly tailored to the specific needs of the un-

derlying (instance of a) business process. Moreover, it is comparatively inexpensive

in the sense that one only needs to be pay for it when it is really used. The loose cou-

pling guarantees that future additional or alternative requirements can easily be inte-

grated. Altogether, this leads to highly distributed and fluid software systems that may

even cut across the boundaries of enterprises. Software services are typically de-

signed, built, and deployed independently from each other, however, are meant to fol-

low common standards to enable dynamic interoperability and loose coupling. If we

take a look at what SOA promises to provide we find, among others, features like

flexibility, adaptability, autonomy, cooperation, and interoperability. However, if we

take a closer look at current implementations of SOA it becomes clear that some of

these features are at best in the early stage of their realization. Implemented systems

are usually static, provide comparatively little fault-tolerance and lack dynamism,

versatility, and adaptability. Moreover, it takes substantial human efforts to build such

systems. This is where agent technology can come into the picture.

An agent is an autonomous and encapsulated software system that is situated in

a particular environment. The following properties, which are often associated with

agents and multi-agent systems (MAS), seem to be especially relevant in a service-

oriented computing context:

• Autonomicity: agents act on their own without any input or direct trigger from

the outside.

Dagstuhl Seminar 10021

- 3 -

• Adaptivity: agents dynamically adapt to and learn about their environment.

• Reactivity: an agent maintains an ongoing interaction with its environment, and

timely responds to changes that occur in it

• Pro-activeness: agents generate and attempt to achieve goals and this especially

not only by reacting but by taking the initiative

• Mobility: agents move to where they are needed in order to fulfill their commit-

ments

• Goal-orientedness: an agent will act rationally in order to achieve the goals it has

defined for itself.

• Cooperation: agents coordinate and negotiate to achieve common goals. They

are self-organizing and can delegate.

• Interactivity: agents interoperate with humans, other agents, legacy systems, and

information sources

While the MAS community in general works on a large number of topics, for the pur-

pose of this seminar only the use of MAS as underlying technology for the realization

of virtual enterprises and the provision of services (by agents) is considered. If re-

stricted to this view service-oriented architecture and multi-agent systems technology

share a number of common research questions, at least on a more abstract level. Nev-

ertheless, if we take a look at the current research topics in each community, their

main focus seems to be different. Right now, the SOA community concentrates

mainly on software services engineering. Service engineering methodologies with ap-

propriate new service engineering methods, techniques and tools are developed. Ac-

tive topics in the multi-agent systems community are collaboration, interoperability,

adaptability, pro-activeness, and self-organization, even on the fly (during execution

time of a complex service). If we reduce it to a black and white view, service-oriented

computing concentrates on how services can be integrated best while the MAS com-

munity considers much more aspects like adaptability, flexibility, and dynamism in

such a service-oriented environment. In a first step, if we consider IT to be the skele-

ton of an enterprise then SOA can be seen as the bones and agent technology as the

cartilage that makes sure that the joints are properly connected, even if the mere bones

may look completely incompatible when we just look at them. Thus, agent technology

may not help to realize the core functionality of a service but it may help substantially

to wrap its functionality in a way that it becomes highly adaptable, more intelligent,

more cooperative, and self-organizing. In a second step, MAS may also help to re-

place bones that are not useful any longer. Replaceability in the sense of dynamic ser-

vice replacement on the fly, compatibility, and process conformance checks are tasks

that can be performed well by agents on a higher level than just comparing the inter-

faces of service descriptions. As can be seen from this short discussion already, both

communities can complement each other substantially if possible synergies are ex-

ploited and solutions are developed in each community that harmonize. Thus, one of

the main goals of this seminar was to bridge the gap between these communities and

to stipulate a fruitful and long-lasting collaboration.

Service-oriented Architectures and (Multi-)Agent Systems Technology

- 4 -

What follows is a list of topics where (multi-) agent systems technology has

some strong points and may be able to support SOA-related problems very well. In

the seminar we were only able to concentrate on some of these topics; others were

only touched briefly:

• Flexibility, adaptability, and dynamism

Dynamic business environments require flexible and adaptable information sys-

tems which may already pro-actively anticipate and integrate future developments.

The feature of pro-activeness of agents may help to anticipate new developments

and to continuously check service compositions in order to discover and integrate

more suitable services that may become available in the network. This also im-

plies that agents may help to better understand and classify new services since

they may be able to understand more about the semantics of a service and do not

need to rely on an interface description of a service only. This provides much

more flexibility and choices for a service composition and helps to realize features

like self-organization, self-adaptability, self-maintenance, etc. Moreover, it may

also help to provide a much more powerful service description and detection.

• Negotiation and cooperation

Closely related to the above are strongly varying user requirements for a service;

e.g., when a service involves many service requesters and providers that may

change quickly, also in their number. Conventional service composition ap-

proaches may no longer scale or respond in a timely manner. Here, new adaptive

technologies are required – agent technologies that are capable of negotiating and

collaborating to assemble services, as well as providing contextual, high-value

business services.

• Fault-tolerance

The success of service oriented applications largely depends on the capability of a

service to autonomously adapt to an environment that is not fully under control.

Since services are scattered across a network all kinds of failures may occur –

even during an execution of an enterprise application. For example, a specific sub-

service may not be available (e.g., since the node or the connection to it is down or

since the service is busy) or a used sub-service may not be able to provide what is

expected (as, e.g., defined in the quality of services agreements). In such cases

such services may dynamically be replaced by alternative ones which are detected

and deployed on the fly. Here again, intelligent agent technology may help. Of

course, this field also overlaps with the research area of autonomic computing.

• Goal-orientation

Enterprises, in order to be successful, need to posses and follow clear goals. This

needs to be properly reflected in their IT, especially since a goal is somewhat ab-

stract and its realization may change over time. Technologies may become avail-

able that better suit the goals or goals may change. Such changes put a huge bur-

den on the IT since it needs to adapt preferably automatically and within an ap-

propriate time frame. Without such an alignment, the IT cannot deliver business

values efficiently and effectively. Agent technology embodies goal orientation,

Dagstuhl Seminar 10021

- 5 -

thus may solve the problem of the alignment of information systems to business

goals.

• Mobility

The execution of a complex service may mean that a lot of data and information is

to be sent across the network. This increases the workload on the network and

may also compromise security. In order to deal with such problems the sub-field

of mobile agents emerged in the MAS community some time ago. It is to be dis-

cussed in what way the experiences gained in this field may help to provide com-

plex services more efficiently and more securely.

• Security

Security is always a hot topic, especially, when it comes to business applications.

Service composition adds to the security threats since it means that services need

to cooperate that are scattered across a network. In MAS research such issues have

already been discussed for a while, as well as security issues related to the mobil-

ity of services (mobile agents). While this is a very important field it was not pos-

sible to deal with it within the seminar due to its inherent complexity.

If we deal with service composition than three levels of abstraction can be identified.

The first level is the service itself, e.g., how it is described and how it can be discov-

ered. The second level is the composition of services, which mainly means to deal

with finding and connecting services that complement each other in a way that the

overall goal of the composite service can be achieved. The third level is the execution

of the assembled complex service.

Service description

The first level has first of all much to do with a smart and flexible (re)presentation of

the service so that it can easily be discovered and integrated into a more complex ser-

vice. This can be seen on two levels, on the level of the actual service provision and

on the level of the quality of a service. For example, the service provision may be to

find a travel connection between two cities and the quality of service might be to find

it within 2, 5, or 10 minutes (and with or without consideration of possible delays of

the actual transportation means if it is a short term booking).

The first task is the easier one. Service provision simply means to provide a

transportation service, thus, has a clear and static semantics. The service level agree-

ment is more difficult to deal with since it may be fuzzier. If I am asking for a trans-

portation means that gets me in at most two hours to B and costs less than x is it okay

to get a service that needs 124 minutes and costs x-5 €?

One of the first approaches for service discovery and service description for

Web-services were UDDI and WSDL. However, using UDDI means that services are

only described on a syntactical level. If a service is to be discovered first of all the de-

scription of the requested service needs to fit more or less exactly to the UDDI de-

scription of the service provider. Secondly, the service interface as provided by its

WSDL description needs to be understood by the service requester. If any of these

two requirements is not fulfilled service requester and service provider will not get

together. Such a low level syntactical match is a severe restriction. In order to ease the

Service-oriented Architectures and (Multi-)Agent Systems Technology

- 6 -

task of service discovery it is necessary to match service request and service offer on

a semantically higher level. For example, in a general environment like the Internet

service requester and service provider may use different terminologies (“speak differ-

ent languages (inch instead of centimeter)”, also homonyms and synonyms), may de-

scribe services slightly differently (area instead of length by width), or a service pro-

vider may offer a superset of the requested service (e.g., if one wants to buy shoes one

may search for a shoe store but a department store may solve the problem at hand as

well).

This task of intelligently and flexibly describing a service is already extensively

dealt with by the semantic Web as well as the service-oriented community, sometimes

even in collaboration with the agent community. The idea is to deploy semantically

more powerful techniques like semantic annotations and ontologies to bridge the gap

between different representations of the same service description. With ontologies the

meaning of annotations can be specified on a (semantically) higher level. Ontologies

first of all provide a vocabulary of terms. New terms can be formed by combining ex-

isting ones. The meaning (i.e., semantics) of such terms is formally specified and,

thus, can be interpreted by computers. Finally, ontologies also permit to specify rela-

tionships between terms, even across multiple ontologies. The most prominent and

probably also most advanced proposal for semantically enriched interoperability is

OWL-S. The OWL-S ontology consists of three relevant parts: the service profile, the

process model, and the service grounding. The first describes what the service does on

a semantically more advanced level, e.g. information about the limitations on applica-

bility and quality of service is also provided. The process model describes how a ser-

vice requester can interact with the service. This description includes the sets of in-

puts, outputs, pre-conditions and results of the service execution. Finally, the service

grounding specifies those details which a client needs to know in order to interact

properly with the service, e.g., communication protocols, message formats, port num-

bers, etc. Please keep in mind that ontologies permit the use of different terminology

etc. Now, if we take a look at whether agents may be helpful to describe a service the

answer is probably not much. The service-oriented community is using ontologies and

semantic annotations and the agent community has been incorporating its knowledge

in the development of these technologies. Thus, if we only consider the flexible and

semantically enriched service description agent technology may not be able to help

much further.

However, things are completely different if it comes to the second part of service

descriptions, namely service quality and service level agreements. As said already,

such descriptions can be fuzzy and it is more or less impossible to describe all possi-

ble combinations and situations beforehand. Here agents can help quite a lot since one

of their strength is their well developed capability to negotiate and to work towards

the achievement of a given goal (e.g., get a service that provides at least a given level

of quality for a given price limit). Current approaches to service-oriented architectures

typically do not cover such a dynamic convergence of service provider and service

requester.

Of course, if it comes to the question from where to get a specific service the

task of matchmaking comes into the picture. This task has been extensively dealt with

Dagstuhl Seminar 10021

- 7 -

in the agent community. Thus, it can be fulfilled by an agent extremely well since

agents can match fuzzy descriptions of services and can also proactively search for

and integrate services in their list of service descriptions.

Summary Service description:

Service composition

In an environment where many services are available the question is when and how

services should be assembled in order to permit the formation and execution of more

complex tasks. The challenge is to find the best services in the sense that they, as a

team of collaborators, solve the problem at hand as good as possible. Of course, best

is a very abstract notion; its concrete realization depends on what is considered to be

important from the service requester’s point of view, thus, may vary from execution

to execution.

Similar to programming languages it can be differentiated between two ex-

tremes: the compile time or static approach and the interpreter or flexible approach. In

the first case all concrete decisions are felt during service composition time which

means beforehand. In the second case many decisions may only be felt during the

execution time of a complex service.

In this section we will discuss the first extreme, the compile-time approach. The

interpreter approach will be discussed in the next section about service execution.

In service-oriented computing service composition tends to be treated rather like

a “compile-time approach” which means that first the complete service composition is

defined and then it may be executed as many times as requested. In the most basic ap-

proach services are selected on the basis of their interface description. If the interface

fits exactly to a request the service can be used. This exact match approach means that

services which may be more powerful than the requested service (comprise the re-

quested service) or services that are described in a different way will not be consid-

ered. This restricts the solution space substantially. With the help of semantic annota-

tions/ontologies this exact match approach can be softened so that overlaps and simi-

larities might be recognized. This increases flexibility substantially. The next level of

abstraction is to only use placeholders for services, e.g., an abstract description of the

Agent technology can help little on the level of a pure (even semantically en-

riched) description of a service since the underlying techniques like semantic

annotations or ontologies in the first instance have little to do with core agent

technology. However, depending on the standpoint it can be argued that agents

can make better use of these techniques. The situation is definitely different

when negotiation is necessary, e.g., to negotiate whether service request and

service offer fit to each other or to negotiate non functional service require-

ments like the quality of service (service level agreements). Negotiation is one

of the real strength of agents. Thus, agents can help substantially to come to

better results, e.g. better service level agreements.

Service-oriented Architectures and (Multi-)Agent Systems Technology

- 8 -

required service, and to replace it by a concrete service during execution time. This

permits to consider the actual situation during execution time, thus, allows an adapta-

tion to changing conditions. All these techniques are already exploited by more ad-

vanced service-oriented computing systems. They represent important steps in the di-

rection of flexibility and fault-tolerance. However, service-oriented computing still

has some weaknesses when it comes to non-functional requirements, especially, if

they tend to be fuzzy. This includes situations in which each actual non-functional re-

quirement is concrete but the combination of all requirements cannot all be satisfied

completely. In such situations usually even the more flexible service-oriented comput-

ing approaches will fail. Here negotiation may once again be the key to success. Ne-

gotiation, however, means that the negotiating parties do know what they are talking

about, i.e., do understand that part of the real-world they are currently dealing with.

Here the use of agents once again seems to be a huge improvement since agents are

not only strong in negotiation but are also supposed to be smart (do understand that

real-world part in which they are meant to provide services) and goal-oriented. The

latter also means that they cannot only negotiate but do it in a goal driven way which

hopefully will lead to an acceptable compromise w.r.t. to the fulfillment of more

fuzzy requirements.

Summary Service composition:

Service execution

Let us start the discussion of service execution by first discussing the other above

mentioned extreme, the interpreter approach to service composition.

Interpreter Approach:

Like with the interpreter approach here everything is again and again decided on and

laid down during run time. This means that each time a complex service is to be exe-

cuted the run time environment has to find and to compose appropriate services. The

concrete service composition may vary from execution to execution. This allows to

easily adapting the concrete instantiation of a complex service to the given reality and

this with respect to the requirements as well as to the concrete service which are to be

used to satisfy the requirements. Thus, this approach offers high flexibility and fault-

tolerance, however, may be comparatively slow and unpredictable, even non-

deterministic.

As a good comprise between both extremes more modern programming lan-

guages like Java work with a combination of compilation and interpretation. This

permits to perform many necessary and useful tasks already beforehand at compile

Service-oriented computing has already achieved quite a lot when it comes to

flexible compositions of services and/or abstract process models. Agents can

improve these efforts by adding goal-driven negotiation processes especially in

cases where fuzzy non-functional properties are to be negotiated between the

involved parties.

Dagstuhl Seminar 10021

- 9 -

time, while leaving a good amount of flexibility to the runtime environment. If this

concept is adapted to service-oriented computing only the principal underlying ser-

vices may be identified during compile time, e.g., by laying down what is to be ex-

pected by the service on an abstract level (service description, not already the identifi-

cation and assignment of a concrete service, respectively the definition of an abstract

process model). Additionally, a concrete default service may already be chosen.

However, when it comes to the actual execution the run-time environment may realize

problems (a specified default service is not available or the service can not meet the

agreed on service level agreements) in this specific execution situation, e.g., it might

be overloaded already or suffering from a slow connection. In such a case the actual

service can be replaced by a different one or relieved by additional resources and/or

services. It may even be possible that this requires that a service package (in which

the specific service is involved and which is supposed to realize a specific high-level

task) needs to be replaced by a different service package. For example, in the original

service composition for a travel arrangement there was a service for a hotel reserva-

tion, a different one for the flight reservation, and a third one for the car reservation.

Now, at run time neither the hotel service nor any direct alternative is available. Thus,

we need to step back one step to the next higher level which deals with the reservation

of the whole trip. Here, we may be able to replace the flight service and the hotel ser-

vice by a combined service that provides a flight together with a hotel. In general,

what can probably be achieved with the help of agents is a highly flexible, dynamic,

and adaptable service environment in which the high level complex service is recur-

sively subdivided into lower level more basic services. Each of these lower level ser-

vices may either be pre-defined or flexible. A pre-defined service cannot be replaced

by a different one or at least not by one that is not on the list of concrete services

specified during the creation of the service composition. To consider non-replaceable

services is necessary since sometimes services represent wrapped legacy systems

whose interface does not provide any meaningful description of the service semantics.

The flexible parts are those ones where dynamic replacement is possible during run-

time if this is required to save the successful execution of the overall business process.

Service-oriented computing has gone already a long way in supporting a flexible

and fault-tolerant execution of complex services. During the execution of a complex

service the run-time environment (process flow engine) can react in a reasonable way

to a number of failures since many systems support the definition of an extensive ex-

ception handling. However, the flexibility and fault-tolerance of a complex service

execution can substantially be improved by deploying agents. For example, if we as-

sociate an agent with every subtask of a complex task this agent can be considered to

be an expert on this subtask and can react much more focused and specific to prob-

lems during run-time than in the case of the more general, pre-defined and, thus, static

concept of exception handling. In agent-oriented approaches even a hierarchy can be

formed in the sense that basic services (which are already represented by an agent)

can be combined to a more abstract service which again is represented by an agent

and so on till a root for the service hierarchy is reached. Let us try to explain this ap-

proach by an example of a car manufacturer. Let us assume we have two big orders

by customers (e.g., an order of 2000 cars by a rental company and an order of 400

Service-oriented Architectures and (Multi-)Agent Systems Technology

- 10 -

cars by a big company like a delivery service). The execution of each such order is

subdivided into subtasks, e.g. producing the chassis, the motor and so on. The produc-

tion of the chassis is subdivide into a number of lower level tasks and so on till we get

to the basic level which may mean here the production of tires, wheels/rim and axes.

Let us assume that we have a non-functional requirement “delivery time” which

means that a penalty is to be paid if the delivery time is not met. The production of

tires etc. are subtasks which are to be executed by suppliers. In order to meet the

overall deadline an appropriately earlier deadline has to be met by the part suppliers.

Let us assume that the deadline for tires, wheels and axes is day x. If tires and axes

are delivered already three days earlier this possible advantage cannot be exploited.

However, if tires and rims are delivered earlier the car manufacturer can already start

to assemble them (and attach them to the axes if they are also available already). If

each subtask is monitored by an agent these agents can react to specific situations by

always searching for possible optimizations; in this case by negotiating a possible ear-

lier assembly of the axes.

Also, the other way round, if it turns out that one of the suppliers of tires cannot

deliver on time the associated agent can try to negotiate with other tire suppliers

whether they can help out. The underlying idea here is to solve the problem as close

to the task as possible. If the tire agent is not successful it can inform the next higher

agent (e.g., the one for the complete axes). Now this agent can search for a solution,

e.g., by considering slightly different tires (which are still allowed and are available).

Again if this agent is not successful the next level is informed. Then, if for example

the root of the order is reached and even this agent does not find a solution the fact

that a penalty is to be paid has to be accepted. But still this agent (rental cars agent)

can negotiate with another order agent (delivery cars agent) whether the penalty for its

own order may be higher than the one for the other order (assuming that both orders

deal with the same type of tire). Thus, while a penalty is to be paid at least the lowest

one will be paid. Service-oriented computing as it is normally realized right now

works with pre-defined, thus, static solutions. This can be compared by building

something with LEGO. If two pieces are to be linked either a connector is available,

even if it does not exactly fit, or these parts cannot be connected. With agents a spe-

cific individual connector can be constructed for each two pieces and this connector

can even be adapted if it turns out later on that it does not fit as properly as expected.

To summarize, such a highly dynamic environment needs the support of agent tech-

nology, especially of their negotiation skills, goal-directedness and real world knowl-

edge. In fact some work in the agent community already exists that deals with the

formation of such hierarchies (see, e.g., [1], [2]. The suggestion is to implement the

general and usually static high level goals of a company in the root agents and to in-

herit them to all subordinate agents. This means that they have to follow very clear

general rules and goals. However, as long as these general goals are not violated the

lower level agents are free to act in whatever way they believe to be the best. Of

course, this raises the question of autonomy which is one of the fundamentals of agent

technology. If we are talking about a static agent hierarchy it means that those agents

which are involved in the hierarchy had to accept to follow these rules. This was their

free decision during the time when they decided to join the hierarchy. In a more dy-

Dagstuhl Seminar 10021

- 11 -

namic environment like the Internet an abundance of agents for specific tasks can be

assumed. In such a case it does not matter whether a specific agent is willing to exe-

cute a task since many alternative agents may be available and willing to do the job.

Nevertheless, a number of open problems have still to be dealt with. First of all, in

case of a flexible service composition during run-time the question of reliability and

quality of service is always a problem since it can not always be guaranteed that in-

volved (new) agents will and can really keep their promises. Moreover, such an envi-

ronment is from the point of view of the customer non-deterministic. These facts also

mean that trust is an issue since customers usually would exactly like to know what is

going on when tasks are to be fulfilled, especially also to guarantee the quality of the

overall product.

Summary Service execution:

Literature

[1] Munindar P. Singh and Michael N. Huhns, Service-Oriented Computing: Semantics, Proc-

esses, Agents, John Wiley & Sons, Ltd, West Sussex, England, 2005

[2] Frank Dignum, Virginia Dignum, Julian Padget, Javier Vázquez-Salceda: Organizing Web

Services to develop Dynamic, Flexible, Distributed Systems; iiWAS2009, December 2009,

Kuala Lumpur, Malaysia

[3] Virginia Dignum and Huib Aldewereld: OperettA: Organization-Oriented Development

Environment? Third international Workshop on LAnguages, methodologies and Develop-

ment tools for multi-agent systems (as part of MALLOW), Lyon, France, 30 August - 2

Sept., 2010

While more advanced approaches to service-oriented computing already offer

some flexibility and fault-tolerance during service execution this area is the

one where agent technology can help the most. Agents allow specifying an ex-

treme robust and flexible execution environment which can deal with all kinds

of failures (functional and non-functional) in a flexible, smart and individual

way. However, some issues are still not solved in a completely satisfying way,

like the problem of autonomy, reliability, transparency and deterministic be-

havior.

