Self-Healing and Recovery Methods and their

1

Classification

Onn Shehory, Josu Martinez, Artur Andrzejak,
Cinzia Cappiello, Wlodzimierz Funika, Derrick Kondo,
Leonardo Mariani, Benjamin Satzger, Markus Schmid

Abstract
This document summarizes the results of the Working Group 1 - “Self-
Healing and Recovery” - within the Dagstuhl Seminar 09201 “Self-Healing
and Self-Adaptive Systems” (organized by A. Andrzejak, K. Geihs, O.
Shehory and J. Wilkes). The seminar was held from May 10th 2009 to
May 15th 2009 in Schloss Dagstuhl — Leibniz Center for Informatics.

Introduction

The self-healing and recovery work group has undertaken to examine a sample
of techniques and technologies in the field and devise a taxonomy according to
which these can be classified. Specifically, it was suggested that, at a high level,
self-healing and recovery methods and architectures can be classified according
to the following:

Recovery action suggested by the method. Several such actions are listed
in proceeding sections. At a high level, these can be classified into failure
removal, alleviation, learning for future cases, etc.

Preconditions and requirements subject to which the method is to be
applied. For instance, some methods require specific instrumentation of
the target system.

The stage of system lifecycle in which the method is applicable. For
instance, many methods apply to systems in production environments,
whereas others may apply to coding and testing stages, or design time.

Technology and language constraints. Some methods are applicable only
to one language or only to one system architecture (e.g, Java and SOA),
whereas others are more generic in scope.

The type of failure addressed by the method. Some methods address
functional failures whereas others address performance failures. Some are
very specific, whereas others are very generic, etc.

Dagstuhl Seminar Proceedings 09201
Combinatorial Scientific Computing
http://drops.dagstuhl.de/opus/volltexte/2009/2108



e The effect of the method on the healed system and its environment. For
example, some methods change the system’s code thus affecting, e.g., ac-
tions scheduling.

e The ease of deployment and use of the method. For example, some meth-
ods may require expert knowledge to work with, whereas others may be
accessible to novices. Some methods may work automatically or semi-
automatically, while other may be operated manually.

We view the above classification as a rough starting point aimed at facili-
tating discussion on a self-healing taxonomy. It is by no means complete, and
can surely be improved.

2 Self-Healing and Recovery Approaches

In what follows we provide descriptions of both generic approaches and specific
methods for self-healing and recovery.

2.1 Computational Reflection and Control Loops

To be self-healing, a system must have some reflective capabilities [1]. First,
it must be able to perform introspection. That is, it must constantly monitor
the running state of the system to identify any anomalous behaviour during
its operation. Second, whenever any failure is detected, it must execute some
intercession actions, i.e., carry out a certain procedure to recover from the failure
and repair faults without interrupting any of the functional services it provides,
so that it returns back to a stable state. This generic approach to software
self-healing is also widely in the field of control theory

In similarity to reflection, a large body of research on control theory [2,
3| has suggested that self-* properties, and in particular self-healing, can be
modelled, and then implemented, as a control loop. Such a control loop includes
a monitoring component, an analysis component, a decision making component,
and an actuation component. Self-healing thus includes monitoring of the healed
system, analysis of the monitored data to identify problems, decision upon the
healing action to be performed, and performance of this action. The results
of the action will feed into the monitoring component, thus closing the control
loop, allowing feedback and improvement of the healing.

Examples of such loops can be found in multiple specific self-healing solution
as well as a few generic architectures. For example, see the Panacea architecture
in [4].

3 Existing Self-Healing Approaches

The contents of this section are a part of the doctoral thesis of one of the authors
(Josu Martinez) and have been published in [5].



Most of the already existing self-healing solutions differ in the intercession
mechanisms they use. Gosh et al. [6] surveyed in 2006 some of the strategies
used by other researchers to accomplish failure recovery. However, some other
techniques of interest were not taken into account in their study. The following
list summarizes four generic categories of failure recovery identified so far and
briefly exposes some of the reviewed techniques:

3.1 Redundancy Techniques

Nagpal et al. [7] suggest a self-assembly mechanism based on an agent entity that
replicates components to replace dead neighbours and enables recomposition of
entire structures. Another strategy inspired from biology is providing the system
with the ability of replicating cells in excess to combat external intrusions [8].
Finally, one of the techniques used in Recovery-Oriented Computing (ROC)
[9] consists on isolating faulty components and replacing them with redundant
ones.

3.2 Architecture Models and Policies

Some component-based frameworks support interchangeable architectural styles
to suit performance deviations. Two examples are Rainbow [10] and Madam [11]
Rainbow statically associates a set of action rules for each of the pre-identified
failure causes. Madam uses some utility functions to select the most suitable
architectural variant to repair the fault.

Dashofy et al. [12] have developed an infrastructure that supports dynamic
reconfiguration of connector links. They also provide a tool that enables the
system to merge the architecture description of the running system and the
description of the architectural changes to be executed to effect the repair plan.

Huang [13] uses Java-like recipes to specify the different components and con-
nections between them. Then, a synthesizer component analyses these recipes to
decide which component and connections suit the environmental circumstances
of the system.

Georgiadis et al. [14] posit that it is possible to dynamically bind components
while fulfilling architectural constraints (akin to architectural styles) defined by
human administrators. Each component has a manager part that automatically
binds its required methods to remote interfaces of methods provided by other
components at runtime.

De Lemos and Fiadeiro [15] suggest a framework that performs some dy-
namic reconfiguration of the system through atomic operations. This approach
consists on isolating the failing component and substituting it with another
that offers alternative services, even if in a downgraded mode, and adapting
the connector among them so that the services provided by the new component
satisfies the expectations of its consumers. A configuration layer defines rules
for controlling the evolution of the system.

Some other approaches [16, 17] replace services or components by equivalent
ones. In these systems failing components are substituted by others that provide



equivalent functionality. Some decision policies determine which alternative
component replaces the original one.

Another type of replacement is hot-swapping of components [18], accom-
plished by inter-positioning of code or by replacement of code. Components are
dynamically replaced depending on certain attribute values described by system
administrators (e.g., size of accessed files) by optimized or newer ones. A me-
diator object swaps different implementations depending on the circumstances
of the environment. This mediator is actually interposed between the two im-
plementations. Interposition wrappers enable components to extend or modify
their interfaces without requiring to rewrite any code.

Shin and Hoon [19] propose that each component of the system communi-
cates with others using self-healing connectors similar to component ports. If
one of the objects of any of these two entities fails a reconfiguration plan is
constructed, all the objects associated with the anomalous object are blocked
and the affected components notified so that they also generate a repair plan
if needed. Once the paralysed objects are fixed, communications with other
components are re-established.

More recent studies [20, 21] adopt Case-Based Reasoning (CBR) to provide
failure recovery. The system collects symptoms of failures and stores them
in a problem experience repository as case-solution pairs. The hypothesis of
this technique claims that similar problems may be resolved by applying the
same type of solution. Similarly to the previous approach, Littman et al. [22]
use a reinforcement learning algorithm that enhances the efficiency in selecting
the appropriate remedy actions that may heal the system from failures in its
operation.

Fuad and Oudshoorn [23] have implemented a priority-based fault-action al-
gorithm. In this approach all the faults are described by pre-conditions, remedial
actions and post-conditions. Every remedial action has a priority level associ-
ated to it. This work also offers a way of dynamically providing self-healing
capabilities to already built applications.

Kephart and Chess [24] suggest the use of negotiation theory. Violations of
the Service Level Agreement (SLA) reached between two components are con-
sidered operational failures. Remedies to resolve this type of issue are various:
asses a penalty, renegotiate the agreement, take technical measures or terminate
the agreement.

3.3 Component Micro-Rebooting

Faulty modules are micro-rebooted independently and automatically to avoid
fault propagation whenever they are suspected of not functioning properly [25,
26]. The efficiency of this technique resides on the fact that re-starting single
components takes less time than rebooting the whole system. A hierarchy of
different restart groups of components is created. This strategy allows the sys-
tem to tolerate successive re-starts at multiple levels. Thus, rebooting a high
level component in the hierarchy may take a longer time than re-starting a lower
level component, but the recovery of the former is of a higher confidence.



3.4 SOA-based Process Reorganization

Service-Oriented Architectures (SOA) is a flexible coordination paradigm that
enables components to export and discover services over the network [27]. Simi-
larly to the approach presented in this document, the main purpose of SOA is to
provide service publication, discovery, selection and binding [28]. As an exam-
ple of a service binding mechanism, Baresi et al. [29] describe business processes
using directed graphs, and propose a technique to apply transformation rules to
autonomously modify the topology of the graphs at runtime. These rules trans-
form a single node into a sequence of various nodes, into a parallel composition
of two nodes, or into a branch. There are also rules to transform sequences,
parallel compositions and branches into single nodes. To make it feasible, all
the services have to be formally described using pre- and post-conditions.

4 Concluding Remarks

The self-healing and recovery workgroup has studied several methods. One of
the results of this study was the recognition that the terminology is not well
defined. Specifically, describing a method or comparing it to another is not a
simple task. The time and effort afforded during the Dagstuhl seminar could
not suffice to overcome this difficulty. However, by recognizing it we have set
a research challenge to the reference community. We have also provided an
initial, rough set of properties to be examined when classifying and comparing
self-healing methods. We have further listed a sample set of technologies to
be examined. We leave for future work the systematic classification of these
methods and the development of a richer and finer self-healing taxonomy.

5 Future Plans

The self-healing and recovery workgroup has established the following goals
for future activities: collect information on available self-healing solutions, case
studies and benchmarks; classify these according to the taxonomy; write a sur-
vey paper using the collected and classified data.

To achieve these goals, the following actions are planned: set up a wiki
hosting service, linked to the Dagstuhl seminar page; refine and extend the
taxonomy dimensions and individual categories; add solutions and case studies
as found and needed. Finally, these will serve as input for the planned survey

paper.

References

[1] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B.H.C. Cheng, “Composing
adaptive software”, IEEE Computer, vol. 37, no. 7, pp. 56-64, July 2004.



2]

3]

[4]

[5]

[6]

7]

8]

9]

[10]

[11]

[12]

[13]

Yixin Diao, Joseph L. Hellerstein, Sujay S. Parekh, Rean Griffith, Gail E.
Kaiser, and Dan B. Phung, “Self-managing systems: A control theory
foundation”, ECBS, pp. 441-448, 2005.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury,
Feedback Control of Computing Systems, John Wiley & Sons, 2004.

D. Breitgand, M. Goldstein, E. Henis, O. Shehory, and Y. Weinsberg,
“PANACEA — Towards a Self-healing Development Framework”, in Pro-
ceedings of the 10th IFIP/IEEE international symposium on Integrated Net-
work Management, Munich, Germany, 2007.

Josu Martinez, “Functionality recomposition-based self-healing”, Ph.d.
proposal document, University College Dublin, Ireland, November 2008.

Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya,
“Self-healing systems - survey and synthesis”, Decission Support Systems,
vol. 42, pp. 2164-2185, 2007.

Radhika Nagpal, Attila Kondacs, and Catherine Chang, ‘“Programming
methodology for biologically-inspired self-assembling systems”, in AAAIT
Spring Symposium on Computational Synthesis: From Basic Building
Blocks to High Level Functionality, March 2003.

Selvin George, David Evans, and Steven Marchette, “A biological program-
ming model for self-healing”, in SSRS’03: Proceedings of the 2003 ACM
workshop on Survivable and self-regenerative systems, New York, NY, USA,
2003, pp. 72-81, ACM.

Berkeley /Stanford, “Recovery-Oriented ~ Computing (ROC)”,
http://roc.cs.berkeley.edu, 2008.

David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl,
and Peter Steenkiste, “Rainbow: Architecture-based self adaptation with
reusable infrastructure”, IEEE Computer, vol. 37, no. 10, pp. 46-54, Octo-
ber 2004.

Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil
Lund, and Eli Gjorven, “Using architecture models for runtime adaptabil-
ity”, IEEE Software, vol. 23, no. 2, pp. 62—70, 2006.

Eric M. Dashofy, Andre van der Hoek, and Richard N. Taylor, “Towards
architecture-based self-healing systems”, in WOSS°02: Proceedings of the
first workshop on Self-healing systems, New York, NY, USA, 2002, pp. 21—
26, ACM.

An-Cheng Huang, Building self-configuring services using service-specific
knowledge, PhD thesis, Pittsburgh, PA, USA, 2004.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Ioannis Georgiadis, Jeff Magee, and Jeff Kramer, “Self-organising software
architectures for distributed systems”, in WOSS°02: Proceedings of the first
workshop on Self-healing systems, New York, NY, USA, 2002, pp. 33-38,
ACM.

Rogério de Lemos and José Luiz Fiadeiro, “An architectural support for
self-adaptive software for treating faults”, in WO0SS’02: Proceedings of
the first workshop on Self-healing systems, New York, NY, USA, 2002, pp.
39-42, ACM.

Nathan Combs and Jeff Vagle, “Adaptive mirroring of system of systems
architectures”, in WOSS°’02: Proceedings of the first workshop on Self-
healing systems, New York, NY, USA, 2002, pp. 96-98, ACM.

Ada Diaconescu and John Murphy, “Automating the performance man-
agement of component-based enterprise systems through the use of redun-
dancy”; in ASE’05: Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering, New York, NY, USA, 2005, pp.
44-53, ACM.

Jonathan Appavoo, Kevin Hui, Craig A. N. Soules, Robert W. Wisniewski,
Dilma M. Da Silva, Orran Krieger, David J. Edelsohn, Marc A. Auslan-
der, Ben Gamsa, Gregory R. Ganger, Paul McKenney, Michal Ostrowski,
Bryan Rosenburg, Michael Stumm, and Jimi Xenidis, “Enabling autonomic
behavior in systems software with hot-swapping”, IBM Systems Journal,
vol. 42, no. 1, 2003.

Michael E. Shin and Jung Hoon An, “Self-reconfiguration in self-healing
systems”, in EASE’06: Proceedings of the Third IEEE International Work-
shop on Engineering of Autonomic & Autonomous Systems, Washington,
DC, USA, 2006, pp. 89-98, IEEE Computer Society.

Stefania Montani and Cosimo Anglano, “Achieving self-healing in service
delivery software systems by means of case-based reasoning”, Applied In-
telligence, vol. 28, no. 2, pp. 139-152; 2008.

M.J. Khan, M.M. Awais, and S. Shamail, “Enabling self-configuration in
autonomic systems using case-based reasoning with improved efficiency”,
March 2008.

M.L. Littman, N. Ravi, E. Fenson, and R. Howard, “Reinforcement learning
for autonomic network repair”, ICAC’04: Proceedings of the International
Conference on Autonomic Computing, pp. 284-285, May 2004.

M. Muztaba Fuad and Michael J. Oudshoorn, “Transformation of existing
programs into autonomic and self-healing entities”, in ECBS’07: Proceed-
ings of the 14th Annual IEEE International Conference and Workshops on
the Engineering of Computer-Based Systems, Washington, DC, USA, 2007,
pp- 133-144, IEEE Computer Society.



[24]

[25]

[26]

[27]

[28]

[29]

J.O. Kephart and D.M. Chess, “The vision of autonomic computing”, IEEE
Computer, vol. 36, pp. 41-50, January 2003.

David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike
Chen, James Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman,
Matthew Merzbacher, David Oppenheimer, Naveen Sastry, William Tet-
zlaff, Jonathan Traupman, and Noah Treuhaft, “Recovery oriented com-
puting (roc): Motivation, definition, techniques and case studies”, Tech.
Rep., Berkeley, CA, USA, 2002.

Jeffrey O. Kephart, “Research challenges of autonomic computing”’, in
ICSE’05: Proceedings of the 27th international conference on Software en-
gineering, St. Louis, MO, USA, 2005, pp. 1522, ACM.

Francesco Nachira, “Digital business ecosystems”, http://www.digital-
ecosystems.org/book/de-book2007.html, 2007.

M. P. Papazoglou and D. Georgakopoulos, “Service-oriented computing”,
Communications of the ACM, vol. 46, no. 10, pp. 4654, October 2003.

Luciano Baresi, Carlo Ghezzi, and Sam Guinea, “Towards self-healing ser-
vice compositions”, in PriSE’04: First Conference on the Principles of
Software Engineering, 2004, vol. 42, pp. 27—46.





