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Abstract. The limited computational resources available on RFID tags
imply a need for specially designed authentication protocols. The light
weight authentication protocol HBT proposed by Juels and Weis seems
currently secure for several RFID applications, but is too slow for many
practical settings. As a possible alternative, authentication protocols
based on choosing random elements from L secret linear n-dimensional
subspaces of GF(2)™" (so called linear (n, k, L)-protocols), have been
considered. We show that to a certain extent, these protocols are vul-
nerable to algebraic attacks. Particularly, our approach allows to break
Cichori, Klonowski and Kutylowski’s CKK2-protocol, a special linear
(n, k, 2)-protocol, for practically recommended parameters in less than
a second on a standard PC. Moreover, we show that even unrestricted
(n, k, L)-protocols can be efficiently broken if L is too small.
Keywords. RFID authentication, HB*, CKK, CKK?

1 Introduction

RFID (radio frequency identification) tags are small devices that are
equipped with only little memory and computational power. Their
main application is the identification of objects, e.g., items in a shop-
ping basket, clothes in a washing machine, or containers in the cargo
compartment of a ship or an aircraft. RFID tags communicate with
RFID readers wirelessly with only low bandwith and over short dis-
tances. Particularly, they present identification information upon a
reader’s request. The most basic RFID tags contain a unique hard-
wired identification string, which is transmitted in plaintext. Clearly,
an adversary eavesdropping on the communication can immediately
impersonate (clone) the tag, and the tag (and more severely the ob-
ject that it is attached to) can be traced, since it always replies with
the same ID.
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In order to prevent cloning and tracing attacks and to preserve
the tagged object’s privacy, RFID tags should reveal their identi-
ties only to legitimate readers. Since most practically relevant RFID
tags are too weak to execute standard authentication protocols, al-
ternative measures are necessary. Besides technical approaches based
on blocking or disturbing the communication, light weight authen-
tication protocols and corresponding security models are intensively
discussed (see, e.g., |8, 11| or the very recent paper by Blass, Kurmus,
Molva, Noubir and Shikfa [1]). One of the most promising proposals
is the HB™ protocol due to Juels and Weis [9], which is based on the
(NP-hard) learning parity with noise (LPN) problem and currently
seems secure for many RFID applications. The most severe draw-
back of the protocol is that secure parameter combinations imply
large amounts of transmitted data. Together with the small avali-
able bandwidth in RFID communication, this may add up to au-
thentication times of a few seconds, which is inacceptable for many
applications.

As a possible alternative to the HB™ protocol, linear (n, k, L)-
protocols, i.e., light weight symmetric authentication protocols based
on methods from linear algebra, were introduced by Cichon, Klonowski
and Kutytowski in |3|. In these protocols, the secret key (the identifi-
cation information in the RFID tag) consists of the specification of L
n-dimensional linear subspaces Vy,. ..,V of GF(2)""*. The prover
(RFID tag) chooses a random [ € {1,...,L} and sends a random
w € V;. Given a message 1w € GF(2)"** the verifier (RFID reader)
accepts the proof if there is some [ € {1,..., L} such that w € V.
In [3], the CKK2-protocol, a special linear (n, k, 2)-protocol, and the
CKK?E-protocol, a special linear (n, k, L)-protocol, were suggested
for practical application.

After a detailed description of linear (n, k, L)-protocols and the
corresponding security model in Sect. 2, we show that linear (n, k, L)-
authentication protocols are vulnerable to appropriately designed al-
gebraic attacks. In particular, we present two very fast (polynomial
time) attacks against the CKK*-protocol (Sect. 3), which allow to
recover the secret key for the proposed parameters (n, k) = (128, 30)
in less than a second on a standard PC, while an earlier (exponen-
tial time) attack on CKK? published in [5] requires a couple of hours.
Concerning general linear (n, k, L)-protocols, we show in Sect. 4 that



linear (n, k, 2) protocols can be broken by solving a small number of
systems of linear equations in n(n+ 1)/2 unknowns that correspond
to overdefined systems of quadratic equations in the keybits. This
attack combines a quite obvious approach which was also used in
[1] with a special symmetrization technique and several nontrivial
transformations in order to get a modified linearized system with a
unique solution. Our technique can easily be generalized to algebraic
attacks against unrestricted (n, k, L)-protocols, in which overdefined
systems of degree-L equations have to be solved. In Sect. 5, we
discuss consequences of our results for the practical use of linear
(n, k, L)-protocols.

We have experimentally confirmed the correctness and efficiency
of our attacks with the computer algebra system Magma |2|.

2 Linear (n, k, L)-Protocols

2.1 Definitions

In a linear (n, k, L)-protocol, Alice (the verifier, e.g., an RFID reader)
and Bob (the prover, e.g., an RFID tag) share a common secret
information (the tag’s ID) from a certain keyspace. As usual, we
assume that the secret key is hardwired in the RFID tag, while Alice
has legal access to a database containing Bob’s secret information.

For a positive integer N, we denote by [N] the set {1,..., N}. The
secret keys of linear (n,k, L)-protocols consist of the specifications
of L n-dimensional linear subspaces Vi, ...,V of GF(2)"**, i.e., the
key size is L - n - k. In particular, for all [ € [L], the subspace V] is
defined by a GF(2)-linear mapping f; : GF(2)" — GF(2)* and a
permutation o; € S, such that

Vi =A{oi(v]|fi(v)),v € GF(2)"} ! (1)

Note that each n-dimensional linear subspace of GF(2)"** can be
represented by a linear mapping f and a permutation o in the above
way (see Appendix A).

! For a vector v = (v1,...,vn) and a permutation o0 € S,,, we define o(v) =
(vo(l)w”vva('m))-



In the mode of communication suggested by Cichon, Klonowski
and Kutytowski [3|, abbreviated by CKK-mode in the following, Al-
ice starts the communication by sending some signal triggering Bob
to compute a proof w of his identity. In particular, Bob computes
w = oy(ul|fi(u)) for randomly (independently and uniformly) chosen
[ € [L] and u € GF(2)™. Alice accepts a proof w if there is an [ € [L]
such that @ € Vj, or equivalently, if there is an [ € [L] such that
o1 (w) = (u, fi(u)) for some u € GF(2)".

Obviously, this protocol is vulnerable to replay attacks, since an
adversary can store a number of proofs produced by Bob and then
impersonate Bob by presenting these proofs to the verifier.

Following [9], this type of attack can be prevented using the fol-
lowing mode of communication, denoted by HBT-mode in the sequel:
Let n = 2q. Alice starts the communication by sending a randomly
chosen v € GF(2)? to Bob. Bob replies with w = o;(u||v|| fi(u, v)) for
randomly chosen [ € [L] and u € GF(2)?. Alice accepts an answer
w from Bob if there is an [ € [L] such that o= (@) = (ul|v]| fi(u,v))
for some v € GF(2)"™.

2.2 The CKK-Protocols

The protocols CKK!, CKK? and CKK% suggested by Cichon, Klonowski
and Kutytowski in [3| are restricted types of (n, k, L)-protocols. The
basic variant CKK' is the (n, k, 1)-protocol, which does not provide
any security.

The protocol CKK? is an (n, k, L)-protocol with the restriction
that f, = f and o, = o for a secret linear function f : GF(2)" —
GF(2)*, a secret permutation o, and all [ € [L]. Hence, the secret
keys have the form (f, o).

The protocol CKK? is the (n+Fk, k, 2)-protocol with the additional
properties that f; = fo = f with f only depending on the first n
inputs, and that the two permutations o; and oy are publicly known.
In particular, oy is the identity id, and o, exchanges the last two
blocks of length k of a word of length n + 2k. Hence, the secret keys
have the form

Vi = {(v]lal|p),v € GF(2)",a,b € GF(2)*,a = f(v)} ,
Va = {(v]]a||b),v € GF(2)",a,b € GF(2)*,b= f(v)} .



CKKZ2 and CKK?L- protocols were suggested for practical appli-
cation in |3|, with the parameters n = 128 and k = 30.

2.3 Security of linear (n, k, L)-Protocols and our Results

We analyze the security of (n, k, L)-protocols with respect to an ad-
versary Eve who knows that Alice and Bob communicate on the
basis of a linear (n, k, L)-protocol. In contrast to the commonly as-
sumed active adversary models (as in [1,10], for instance), Eve is
only able to eavesdrop on the communication between Alice and
Bob, and may additionally draw Bob into quality time [12], i.e., she
may force Bob to send reasonably many (usually < 25%) honest
proofs w € GF(2)"**, but she does not have any information about
the secret key shared by Alice and Bob.

Eve’s aim is to produce messages which will be accepted by Alice
with high probability. As a first consequence, the probability L27*
that a random w € GF(2)"** belongs to [J~, Vi should be suffi-
ciently small, i.e., k£ should be large enough.

In the following, we derive an upper bound for Eve’s required
effort for cloning Bob, i.e., for computing a specification of Bob’s
secret key from aset O = {w', ... w*} of observations (honest proofs
produced by Bob). Note that if s is a little larger than Ln, with high
probability the set O is complete, i.e., it contains a basis for each V],
[ € [L], and therefore determines Bob’s secret key (see Appendix A).

There are several exhaustive search strategies for computing the
secret key from a complete set of observations in 2™ time. The in-
teresting questions are whether there are strategies to compute the
secret key from a complete set of observations more efficiently, or
whether it is at least possible to efficiently distinguish a set of obser-
vations induced by a linear (n, k, L)-protocol from a truly random set
of vectors from GF(2)"**, In this paper, we answer these questions
in the affirmative.

Note that the subspaces Vi,...,V, should span the whole vec-
tor space GF(2)""* ie, Vi, ® - @V = GF(2)"**. Otherwise an
efficient distinction from the random case can be easily performed.
This implies Ln > n + k, in particular n > k for L = 2.

However, the parameter k should not be too large. Consider for
instance the case L = 2 and n = k, and take a set B of n+k random



observations which form a basis of GF(2)"**. Then B contains a
basis B’ of V; or of V5. This implies that with probability 1/2 the
expected representation length w.r.t. to B is only n/2, while the
expected representation length of a truly random vector is n. 2 Based
on this idea, we can recover the secret key efficiently.

So far, the only nontrivial cryptanalytic result concerning lin-
ear protocols is due to Golebiewski, Majcher and Zagorski [5]. They
present an attack against the CKK?-protocol, which cannot be ap-
plied to the general case. Its running time is proportional to ZI;;S (Z),

O(k) | For completeness, we describe the attack in Ap-

i.e., of order n
pendix C.

In the next section we describe two very fast attacks against
the CKK?-protocol. Their running times are dominated by the effort
required for inverting k (n X n)-matrices.

In Sect. 4 we describe an algebraic attack against general (n, k, 2)-
protocols. The idea is to generate, based on a sufficiently large set
of observations, for each output bit of the secret functions f; and
fo an appropriate overdefined system of quadratic equations in the
values of the output bits over a fixed basis. These systems will then

be solved by standard linear algebra methods.

3 Two fast Attacks against CKK2-Protocols

Let Alice and Bob share a secret key f : GF(2)" — GF(2)*, and let
Bob be designed to prove his identity by means of the CKK?-protocol.
We describe two algorithms for Eve to compute a specification of f.

3.1 The first Attack

The attack is based on a set of observations O = {(v1,a1,b1), ..., (Vm, @m, bin) }
of appropriate size. Let (c1, ..., ¢,) denote the set of hidden bits be-
hind O, i.e., f(v;) = a; if ¢; = 1 and f(v;) = b; if ¢; = 0. We compute
the hidden bits as the unique solution of a system LES of linear

% Given a GF(2)-vector space V of finite dimension m, a basis B = {v1,...,vm} of V,
and a vector v € V, we call the unique coefficient vector b = (b, ..., by ) fulfilling
v = @], bjv; the representation of v w.r.t. to B, and the number of ones in b is
called the representation length of v w.r.t. to B.



equations of moderate size. Observe that
f(vi) = cia; @ (1@ ¢;)b; for all i € [m] . (2)

The set {vy,...,v,} will be a generating system of GF'(2)". Thus, a
specification of f can be computed from the hidden bits by standard
linear algebra methods.

1. Choose an appropriate number m > n and generate a set of obser-
vations O = {(vy,a1,b1),. .., (Um, Gm,bm)}, such that vy, ... v,
form a generating system of GF(2)" and 0 ¢ O.

2. Initialize the system LFES of linear equations in the variables
Cly...,Cn with LES = ().

3. REPEAT
3.1 Choose a nontrivial linear dependency D C [m], i.e., a set

D # () fulfilling @, va = 0.
3.2 Put the k linear equations defined by @, |, caaa® (1D cq)bg =
0 into LES
4. UNTIL LES has rank m
5. Compute the vector (ci,...,¢,) as the unique solution of LES.

The correctness of the attack follows directly from (2). Some
remarks on a possible implementation can be found in Appendix D.

Our experiments show that the number of rounds necessary to
make LES of full rank is only slightly larger than n. Table 1 shows
the performance of our attack on a few example parameter combi-
nations.

Table 1. Performance of the first attack on CKK?

(n, k) |appr0x. number of 0bservati0ns|appr0x. attack time
(128, 30) 140 0.05 s
(1024, 256) 1039 2.95 s

3.2 The second Attack

Let the single output functions f1,... f*: GF(2)" — GF(2) de-
note the component functions of the secret function f, i.e., f(v) =



(f1(v),..., f¥(v)) for allv € GF(2)". The attack is based on the sim-
ple fact that if an observation (v, (a(1),...,a(k)),(b(1),...,b(k)))
satisfies a(r) = b(r) for some r € [k]|, which is true with probability
1/2, then f"(v) = a(r) = b(r). The attack is defined as follows:

1. Let ey, ..., e, denote the standard basis of GF(2)".
2. For r € [k] do
2.1 Generate a set of obsevations O, = ((vy1,r1,0r1)s - - -, (Vs ey br))
such that v, 1,...,v,, form a basis of GF(2)" and a,,(r) =
bri(r) = f"(v,;) for all i € [n].
2.2 Compute from this f"(e1),..., f"(en).

The correctness of the algorithm follows straightforwardly from
the definitions. The expected number of observaions needed for con-
structing O, is 2 - E(n), with E(n) defined as in Appendix A.

In contrast to the first attack on CKK?, we can only exploit an
observation (v, a,b) if a(r) = b(r) for some r, which implies that
the amout of data needed to recover the secret key will be higher
than before. Also the computation is a little more costly since k
Gaussian eliminations are performed to compute the functions f”
w.r.t. the standard basis. Nevertheless, the attack is still very efficient
for practically proposed parameter choices, see Table 3.2.

Table 2. Performance of the second attack on CKK?2

(n, k) |approx. number of observations|approx. attack time
(128, 30) 311 03s
(1024, 256) 2197 179 s

4  Algebraic Attacks against (n, k, 2)-protocols

4.1 Preliminaries

For describing the attack we need some simple facts on the structure
of linear subspaces.

Given a vector v € GF(2)""* a subset S C GF(2)"™ and an
index set J = {j; < ... < js} € [n+ k], we denote by v|; the



restriction of v w.r.t. J, ie, v|; = (vj,...,v;,) € GF(2)*. Further
let S|; = {v|;,v € S}. Observe that if S is a linear subspace then
so is S|;.

We denote by GF(2)7 the set of GF(2)-assignments ¢ : J —
GF(2) to J. For I,J disjoint and nonempty subsets of [n + k] and
ce GF(2)!, d € GF(2)7, we denote by cU d the unique assignment
zof I'UJ with z|; = cand z|; = d.

Let V C GF(2)"** be an n-dimensional subspace of GF(2)"*.
A nonempty index set J C [n+ k], |J| = n is called a basis set w.r.t.
V if dim(V|;) = n. For a fixed basis B = {v!,--- ,v°} of V let us
denote by M = M(V, B) the n x (n + k)-matrix formed by the rows
vt, .-, v". The following Lemma can be easiliy proved by standard
linear algebra arguments.

Lemma 1. (i) A set J C [n+ k], |J| =n, is a basis set w.r.t. V if
the n rows of M corresponding to the indices in J form a basis
of GF(2)".

(i1) If J C [n+k| is a basis set w.r.t. V then there is a linear mapping
f:GF(2)" — GF(2)* such that

V={wU f(w),w € GF(2)’}.

Note that (ii) implies that V can be represented by f and a
permutation o € S, as

V=A{o(v, f(v)),v € GF(2)"},

(take a permutation o, which maps J to {1,---,s}). Further we
obtain as a corollary

Lemma 2. If J C [n+k]| is a basis set w.r.t. V then for all i € [n+
E|\ J the following holds. There is a linear functional g : GF(2)" —
GF(2) such that for all v € V it holds that v; = g(v|;). O

4.2 Qutline of the Attack

The weakness of CKK2-protocols is that observations (v, a, b) contain
the information about f(v), the only problem is to decide whether
f(v) = a or f(v) = b. This is not the case for general (n,k,2)-
protocols; a single observation oy(v, f1(v)) does not say anything



about fo(v), and vice versa. We describe an algebraic attack based on
the observation that linear dependencies in a set of observations can
be translated into nontrivial equations in the keybits. The difference
to the attack in Sect. 3 is that we have to introduce unknowns corre-
sponding to the values fi(v%) and fy(v"), and that we get quadratic
equations instead of linear ones.

The attack is based on the following algorithm ANALY ZF,
which can be considered as an algebraic attack against (n,1,2)-
protocols with secret key (f1,01), (f2, 02), f1, fo : GF(2)" — GF(2)
linear, for which o1 = 09 = 1d.

Consider a set of observations (v!, wy), -+, (v, wy,), v) € GF(2)",
w; € GF(2) for j =1,---,m, m sufficiently large, induced by such
an (n,1,2)-protocol. The algorithm ANALY ZE computes specifi-
cations of the two linear mappings fi, fo : GF(2)" — GF(2) such
that f1(v?) = w; or fo(v/) = wj for all j =1,--- ,m, i.e., the specifi-
cations of the two secret vector spaces V; = {(v, f;(v)),v € GF(2)"}
and Vo = {(v, fa(v)),v € GF(2)"}.

The algorithm ANALY ZFE can be used to attack the general
case k > 1 as follows. Let {vl,--- o™} C GF(2)""* denote a set
of observations induced by the application of an (n, k, 2)-protocol
with a secret key Vi, V; corresponding to two n-dimensional linear
subspaces of GF[2]""* m sufficiently large.

1. REPEAT

2. Choose a set [ = {i; < is < -+ < i} C [n+ k] and some
ien+kl\I )

3. Apply ANALYZE to the transformed observations {v!, - -+ v} C
GF(2)"*, where for allv € GF(2)""* we define v = (v;,,--- ,v;,, v;).

4. UNTIL ANALYZE successfully produces specifications of two
distinct n-dimendional linear subspaces Wi, W, C GF(2)"*! given
by two linear mappings fi, fo : GF(2)" — GF(2).

Wi, W5 can be used to compute specifications of the secret n-
dimensional subspaces V; C W, and V, C W, of GF(2)"** as follows.
The probabilities for the three possible events that a random obser-
vation belongs to Wi\ Wy, resp. to Wa \ Wy, resp. to Wi N W, should
be the same and near 1/3. The first two events allow to determine if
vi eV orif vt € Vs,
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The sample size number m is determined by the minimal num-
ber of observations necessary for successfully applying ANALY ZFE.
Thus, m is much grater than 3 x E(n) (see Appendix). This implies
that with high probability, v!, -+, v™ contain subsets By C W, \ W,
and By C Wy \ Wi such that Bj is a basis of V; and B is a basis of
V.

The estimation of the success probability of the attack is based
on the hypothesis that the secret subspaces V; and V5 are randomly
and independently chosen according to the following experiment.

1. Repeat

2. Choose randomly n x n + k-matrix M over GF(2) w.r.t. the
uniform distribution.

3. UNTIL rank(M) = n.

4. Take V as the linear span of the rows of M.

Under this assumption, the probability that a fixed set I C [n+k],
|I| = n is a basis set of V; and V3 is p(n)? ~ (0.2887)% ~ 0.083 (see
Appendix A). Experiments with small values of n and k show that on
average around 12 different sets I have to be tried before finding one

which is a basis set for both V; and V5. In the following subsection
we describe the algorithm ANALY ZFE.

4.3 The Algorithm ANALYZFE

1. Choose a set O = {(v',w),..., (v",w,)} € GF(2)"! of obser-
vations such that B = {v',... 0"} forms a basis of GF(2)". For
i € [n] let z; and y; denote the variables corresponding to fi(v*)
and fy(v?), respectively.

2. For b € {0,1} let I, = {i € [n],w; = b}.

3. Forall i € [n] let t; = z; ® y;, and for all i < j € [n] let t;; =
TiyY; D T;Y;.

4. Observe that for all ¢ € [n] the equality (w; & z;)(w; & y;) = 0
holds. This implies

5. Observe that for each observation (v, w) € GF(2)"™, v ¢ B, the

following holds: If v = @, v;, (i.e., I C [n] defines the unique

11



representation of v w.r.t. B), then

(w@@@) (w@@m)zo (4)

i€l iel

Observe that relation (4) can be rewritten as a relation Tg(I, w)
in the variables ¢; and ¢, ; in the following way: If w = 0 then
relation (4) is equivalent to @,c; ziy; D, ¢, ti; = 0. Together
with relation (3) this implies €, ~;(t: ® 1) & €D, e ti; = 0 for
w = 0. Consequently, for w = 0 we define Tp(I,w) as

0 if [IN]is even
@ ti@'@ tm‘—{l if [T N 1] is odd
ieInl i<gel

Ifw = 1 then relation (4) is equivalent to 10D, ; t:OD;c g, (1D
1) ® @i jerti; = 0. Hence, for w =1 we define T(I, w) as

_JOo if|[INn1]isodd
Dre@u-{] inrlno,

ielny i<jel

Note that a relation similar to relation (4) was also exhibited in [1]
for designing an algebraic attack against so-called Fy-protocols.

1.

2.

3.

Our attack works as follows.

Let initially the system LES of linear equations in the 3(n*+n)

variables t; (i € [n]) and t;; (i < j € [n]) be empty.

REPEAT

2.1 Choose an observation (v,w), v € B U {0} and compute the
unique subset I C [n] with v = @, v".

2.2 Enlarge the system LES by the linear equation Ts(I, w).

UNTIL The system LES has :(n® + n) linearly independent

equations.

Compute by Gaussian elimination the unique solution 6 of the

system LES.

Compute from 6 the unique correct assignment to x;, y; for all

i€ [nl.

The correct assignments to the x; and y; variables (step 5 of the

algorithm) can be computed from 6 = (6;);c(,; (0i5); e, as follows.

12



For b = 0, 1 let K}, denote the set K, = {i € [n],0; = b}. We know
that for all ¢« € K; it holds that z; = y; = w;, and for all © € K;
it holds that y; = x; @ 1. This implies that for all ¢ < j in K, 6;;
satisfies

b j=zi(z; o) @zj(r; ®1) =z, Dy .

This yields a system LES* of 1/2|K;|(]K;| — 1) linear equations in
the variables x;, © € Kj, of rank |K;| — 1. As it does not matter
which of the two secret linear subspaces we denote by V; and which
by V5, we have the freedom to set xp = 0 for some fixed £ € Kj.
The system LES* together with x; = 0 yields a system of full rank
and allows to compute the correct assigment to the x;-variables by
Gaussian elimination.

4.4 Analysis and experimental Results

The background for the fact that the repeat cycle of the algorithm
ANALY ZFE is left after a finite number of rounds is that the fol-
lowing (2" — (n+ 1)) x (n(n + 1)/2)-matrix M(n) over GF(2) has
full row rank (which is not hard to show). The row indicess of
M (n) are all subsets I C [n] with |[I| > 2, the column indices are
n] U {(i,7),1 <i < j < n}. Wehave M(n);; = 1iff i € I and
M(n)rog) = 118 {i,3} C [n].

We do not give here a theoretical analysis of the expected num-
ber of rounds of the repeat cycle. Our experiments show that the
algorithm AN ALY ZFE needs only slightly more than %(n2 +n)+n
observations to compute the secret functions f; and f,. Particularly
for n = 128, in order to recover the secret functions we need approx.
8390 observations and 4 minutes.

5 Summary

We have seen that the secret key of CKK?-protocols can be computed
very quickly from a sufficiently large set of observations. This kind
of protocol should not be used in practice.

Our degree-2 algebraic attack against (n, k, 2)-protocols can be
quite straightforwardly generalized to a degree- L attack against (n, k, L)-
protocols for L > 2, which implies solving an overdefined system of

13



degree L equations. Using the technique of linearization, for n = 128
and L > 4 this means to solve a system of linear equations in more
than one billion variables, which is not feasible. It is an interesting
open question if the very symmetrically structured systems of degree-
L equations arising during a degree-L attack can be more efficiently
solved by more advanced techniques like the F4- or Fb-algorithm
or cube attacks [6,7,4]. If one could generate convincing evidence
such that algorithms cannot beat linearization attacks, then linear
(128, 30, L)-protocols could be seriously considered for practical use.

Another problem of linear (n, k, L)-protocols is the large keylength;
when using a naive implementation, the hardware size of the secret
key is nkL. Thus, it is an important question to look for special
kinds of (n, k, L)-protocols for which there are implementations of
the secret subspaces Vi,...,Vp which need significantly less than
nkL gates. One possibility is to look for efficient hardware realiza-
tions for the CKK” -protocols suggested in [3].

Our attack against (n, k, L)-protocols yields only one of the possi-
bly exponentially many equivalent representations of the secret sub-
spaces. This implies that it correctly clones the secret key only if the
CKK-mode of communication is used. When the HBT-mode is used,
Eve has to compute the specification of (f;, ;) correctly for [ € [L].
How this can be done efficiently is a subject of further research.
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A Generating a random Basis

Let us consider the following experiment.

1. Set B := 0.
2. REPEAT
2.1 Choose a random v € GF(2)" (w.r.t. the uniform distribu-
tion)
22 V.=V U{v}.
3. UNTIL V is a generating system of GF(2)".

Let p(n) denote the probability that the experiment stops after
n iterations (i.e., V is a basis of GF(2)"), and E(n) denote the
expected number of iterations of the experiment. It is known that
p(n) = 0.2887 and E(n) =~ n + 1.6067 (see, e.g., [5]).

B Some Basics on linear Subspaces

An index set I C [m] is called basis set w.r.t. V if |I| = s and
dim(V|;) = s. The following facts can be easily dervied by standard
linear algebra arguments.

Lemma 3. Let V C GF(2)™ denote an s-dimensional linear sub-
space of GF(2)™ for some 0 < s < m.
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(i) If I C [m] is a basis set w.r.t. V and J C [m]\ I, then there is a
linear mapping f : GF(2)! — GF(2)7 such that for all u € V
it holds that u|; = f(u|r).

(i) If I C [m] is a basis set w.r.t. V and J = [m|\ I, then there
is a linear mapping f : GF(2)! — GF(2)? such that V =
{vU f(v),v € GF(2)'}.

(iii) Let I, J, f be defined as in (ii) and let f only depend on a set of
indices I' C I (i.e., f(v) = f(v|p for allv € GF(2)!). Then each
subset of I\ I' is not dependent.

(i) If J C [m] is dependent and K = [m]\ J then there is a linear
mapping g : GF(2)X — GF(2)? such that V = {v U g(v),v €
GF(2)K}.

Proof. Statements (i)-(iii) can be derived by standard linear algebra
arguments. In order to prove (iv) fix a basis set I C K and a mapping
f: GF(2)! — GF(2)’ like in (i) and define g : GF(2)X —
GF(2)’ by g(v) = f(v|;) for all v € GF(2)X. O

Altogether, we obtain

Lemma 4. Each n-dimensional subspace V of GF(2)"** can be rep-
resented by a linear function f: GF(2)" — GF(2)* and a permu-
tation o of [n+ k| such that V = {(o(v, f(v))),v € GF(2)"}.

Proof. Take a basis set I C [n+m], let J = [n+m|\ I and fix a
linear mapping f as in Lemma 3, (ii). The permutation ¢ has to be
chosen in such a way that o([n]) = I. O

C The Attack of Golebiewski, Majcher and
Zagorski against the CKK?-Protocol

[5] contains the following attack against CKK? . The attack refers to
a set of observations

O = ((Ulva17b1)7 <o, U, ar, bT))

generated by Bob on the basis of a secret key (i.e. GF(2)-linear
function) f: GF(2)" — GF(2)* and hidden random bit ¢;, i.e.,

fvi) = cia; @ (1@ c)b; .
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The aim of the attack is to compute a subset I C [T such that
{vi,i € I} forms a basis of GF(2)", and to compute the correspond-
ing values ¢; for all ¢ € I. The idea of the attack is to

L. try to find a set J C [T, [J[ < k, with €@,
2. do exhaustive search in the set of all 21/l {0, 1}-assignments of .J
in order to find the set of bits {¢;,j € J} with

P (cja; @ (1@ ¢;)b;) =0,

jed

UjZO,

and to repeat these steps until a sufficiently large set of v;-vectors
with the right ¢;-bit is identified.

Step 1 is performed by choosing a basis B among the v;-vectors
and searching for a v; outside B such that v; = @, p v; for a subset
B’ C B with |B’| < k. The probability of finding such a v, is

oty =23 (")

s=0

i.e., the worst case running time has order (n/k)2¢p(n, k)~!.

D Analysis and Implementation of the Attack in
Section 3.1

We derive some restrictions for the choice of m, O and the linear
dependencies D which should minimize the number of repetitions of
the repeat cycle.

Note that the linear subsystem in step 3.2 can be written as

@cd(ad@bd):o .

deD

For D C [m] let v(D) € GF(2)™ denote the characteristic vector of
D, i.e., for all i € [m] let v(D); = 1if ¢ € D and v(D); = 0 if not.

Fort = 1,2,... let D; denote the linear dependencies chosen in
the t-th iteration of the repeat cycle. For minimizing the number of
iterations, linear dependency D, should for all £ be chosen in such a
way that
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— {v(D1),...,v(Dy)} are linearly independent,
— the set of vectors {aq @ by, d € D;} form a generating system of

[\

GF(2)k.
One way to achieve this is to

set m = n + s for appropriate s,

to choose vy, ..., v, such that they form a basis B of GF'(2)",
to choose v, 4, for t € [s] in the following way. If v, ., = @ ;s V4,
D’ C n], is the unique representation of v,,; w.r.t. B, then
{aq ® bg,d € D;} forms a generating system of GF(2)*, where
D, =D U{n+t}.

On average, we can extract vy, ..., v, from a set of E(n) obser-

vations. Note that when choosing v,.;, the expected size of D’ is
n/2. If we suppose that n/2 > E(k), we see that only a few observa-
tions should suffice for extracting a vector v,,1 fulfilling the required
conditions.

How large s should be? We suppose that the way we constructed

LES pumps enough randomness into the linear equation, so that
E(n+ s) equations should be enough for guaranteeing n + s linearly

n+C

independent equations, i.e., sk > E(n + s), which implies s > 7
for a small constant C.
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