
Algebrai
 Atta
ks against Linear RFIDAuthenti
ation Proto
olsMatthias Krause and Dirk StegemannTheoreti
al Computer S
ien
eUniversity of MannheimMannheim, GermanyAbstra
t. The limited 
omputational resour
es available on RFID tagsimply a need for spe
ially designed authenti
ation proto
ols. The lightweight authenti
ation proto
ol HB+ proposed by Juels and Weis seems
urrently se
ure for several RFID appli
ations, but is too slow for manypra
ti
al settings. As a possible alternative, authenti
ation proto
olsbased on 
hoosing random elements from L se
ret linear n-dimensionalsubspa
es of GF (2)n+k (so 
alled linear (n, k, L)-proto
ols), have been
onsidered. We show that to a 
ertain extent, these proto
ols are vul-nerable to algebrai
 atta
ks. Parti
ularly, our approa
h allows to breakCi
ho«, Klonowski and Kutyªowski's CKK2-proto
ol, a spe
ial linear
(n, k, 2)-proto
ol, for pra
ti
ally re
ommended parameters in less thana se
ond on a standard PC. Moreover, we show that even unrestri
ted
(n, k, L)-proto
ols 
an be e�
iently broken if L is too small.Keywords. RFID authenti
ation, HB+, CKK, CKK21 Introdu
tionRFID (radio frequen
y identi�
ation) tags are small devi
es that areequipped with only little memory and 
omputational power. Theirmain appli
ation is the identi�
ation of obje
ts, e.g., items in a shop-ping basket, 
lothes in a washing ma
hine, or 
ontainers in the 
argo
ompartment of a ship or an air
raft. RFID tags 
ommuni
ate withRFID readers wirelessly with only low bandwith and over short dis-tan
es. Parti
ularly, they present identi�
ation information upon areader's request. The most basi
 RFID tags 
ontain a unique hard-wired identi�
ation string, whi
h is transmitted in plaintext. Clearly,an adversary eavesdropping on the 
ommuni
ation 
an immediatelyimpersonate (
lone) the tag, and the tag (and more severely the ob-je
t that it is atta
hed to) 
an be tra
ed, sin
e it always replies withthe same ID.
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In order to prevent 
loning and tra
ing atta
ks and to preservethe tagged obje
t's priva
y, RFID tags should reveal their identi-ties only to legitimate readers. Sin
e most pra
ti
ally relevant RFIDtags are too weak to exe
ute standard authenti
ation proto
ols, al-ternative measures are ne
essary. Besides te
hni
al approa
hes basedon blo
king or disturbing the 
ommuni
ation, light weight authen-ti
ation proto
ols and 
orresponding se
urity models are intensivelydis
ussed (see, e.g., [8, 11℄ or the very re
ent paper by Blass, Kurmus,Molva, Noubir and Shikfa [1℄). One of the most promising proposalsis the HB+ proto
ol due to Juels and Weis [9℄, whi
h is based on the(NP-hard) learning parity with noise (LPN) problem and 
urrentlyseems se
ure for many RFID appli
ations. The most severe draw-ba
k of the proto
ol is that se
ure parameter 
ombinations implylarge amounts of transmitted data. Together with the small avali-able bandwidth in RFID 
ommuni
ation, this may add up to au-thenti
ation times of a few se
onds, whi
h is ina

eptable for manyappli
ations.As a possible alternative to the HB+ proto
ol, linear (n, k, L)-proto
ols, i.e., light weight symmetri
 authenti
ation proto
ols basedon methods from linear algebra, were introdu
ed by Ci
ho«, Klonowskiand Kutyªowski in [3℄. In these proto
ols, the se
ret key (the identi�-
ation information in the RFID tag) 
onsists of the spe
i�
ation of L
n-dimensional linear subspa
es V1, . . . , VL of GF (2)n+k. The prover(RFID tag) 
hooses a random l ∈ {1, . . . , L} and sends a random
w ∈ Vl. Given a message w̃ ∈ GF (2)n+k, the veri�er (RFID reader)a

epts the proof if there is some l ∈ {1, . . . , L} su
h that w̃ ∈ Vl.In [3℄, the CKK2-proto
ol, a spe
ial linear (n, k, 2)-proto
ol, and theCKKσ,L-proto
ol, a spe
ial linear (n, k, L)-proto
ol, were suggestedfor pra
ti
al appli
ation.After a detailed des
ription of linear (n, k, L)-proto
ols and the
orresponding se
urity model in Se
t. 2, we show that linear (n, k, L)-authenti
ation proto
ols are vulnerable to appropriately designed al-gebrai
 atta
ks. In parti
ular, we present two very fast (polynomialtime) atta
ks against the CKK2-proto
ol (Se
t. 3), whi
h allow tore
over the se
ret key for the proposed parameters (n, k) = (128, 30)in less than a se
ond on a standard PC, while an earlier (exponen-tial time) atta
k on CKK2 published in [5℄ requires a 
ouple of hours.Con
erning general linear (n, k, L)-proto
ols, we show in Se
t. 4 that
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linear (n, k, 2) proto
ols 
an be broken by solving a small number ofsystems of linear equations in n(n+1)/2 unknowns that 
orrespondto overde�ned systems of quadrati
 equations in the keybits. Thisatta
k 
ombines a quite obvious approa
h whi
h was also used in[1℄ with a spe
ial symmetrization te
hnique and several nontrivialtransformations in order to get a modi�ed linearized system with aunique solution. Our te
hnique 
an easily be generalized to algebrai
atta
ks against unrestri
ted (n, k, L)-proto
ols, in whi
h overde�nedsystems of degree-L equations have to be solved. In Se
t. 5, wedis
uss 
onsequen
es of our results for the pra
ti
al use of linear
(n, k, L)-proto
ols.We have experimentally 
on�rmed the 
orre
tness and e�
ien
yof our atta
ks with the 
omputer algebra system Magma [2℄.2 Linear (n, k, L)-Proto
ols2.1 De�nitionsIn a linear (n, k, L)-proto
ol, Ali
e (the veri�er, e.g., an RFID reader)and Bob (the prover, e.g., an RFID tag) share a 
ommon se
retinformation (the tag's ID) from a 
ertain keyspa
e. As usual, weassume that the se
ret key is hardwired in the RFID tag, while Ali
ehas legal a

ess to a database 
ontaining Bob's se
ret information.For a positive integer N , we denote by [N ] the set {1, . . . , N}. These
ret keys of linear (n, k, L)-proto
ols 
onsist of the spe
i�
ationsof L n-dimensional linear subspa
es V1, . . . , VL of GF (2)n+k, i.e., thekey size is L · n · k. In parti
ular, for all l ∈ [L], the subspa
e Vl isde�ned by a GF (2)-linear mapping fl : GF (2)n −→ GF (2)k and apermutation σl ∈ Sn+k su
h that

Vl = {σl(v||fl(v)), v ∈ GF (2)n} .1 (1)Note that ea
h n-dimensional linear subspa
e of GF (2)n+k 
an berepresented by a linear mapping f and a permutation σ in the aboveway (see Appendix A).1 For a ve
tor v = (v1, . . . , vm) and a permutation σ ∈ Sm, we de�ne σ(v) =
(vσ(1), . . . , vσ(m)).

3



In the mode of 
ommuni
ation suggested by Ci
ho«, Klonowskiand Kutyªowski [3℄, abbreviated by CKK-mode in the following, Al-i
e starts the 
ommuni
ation by sending some signal triggering Bobto 
ompute a proof w of his identity. In parti
ular, Bob 
omputes
w = σl(u||fl(u)) for randomly (independently and uniformly) 
hosen
l ∈ [L] and u ∈ GF (2)n. Ali
e a

epts a proof w̃ if there is an l ∈ [L]su
h that w̃ ∈ Vl, or equivalently, if there is an l ∈ [L] su
h that
σ−1(w̃) = (u, fl(u)) for some u ∈ GF (2)n.Obviously, this proto
ol is vulnerable to replay atta
ks, sin
e anadversary 
an store a number of proofs produ
ed by Bob and thenimpersonate Bob by presenting these proofs to the veri�er.Following [9℄, this type of atta
k 
an be prevented using the fol-lowing mode of 
ommuni
ation, denoted by HB+-mode in the sequel:Let n = 2q. Ali
e starts the 
ommuni
ation by sending a randomly
hosen v ∈ GF (2)q to Bob. Bob replies with w = σl(u||v||fl(u, v)) forrandomly 
hosen l ∈ [L] and u ∈ GF (2)q. Ali
e a

epts an answer
w̃ from Bob if there is an l ∈ [L] su
h that σ−1(w̃) = (u||v||fl(u, v))for some u ∈ GF (2)n.2.2 The CKK-Proto
olsThe proto
ols CKK1, CKK2 and CKKσ,L suggested by Ci
ho«, Klonowskiand Kutyªowski in [3℄ are restri
ted types of (n, k, L)-proto
ols. Thebasi
 variant CKK1 is the (n, k, 1)-proto
ol, whi
h does not provideany se
urity.The proto
ol CKKσ,L is an (n, k, L)-proto
ol with the restri
tionthat fl = f and σl = σ for a se
ret linear fun
tion f : GF (2)n −→
GF (2)k, a se
ret permutation σ, and all l ∈ [L]. Hen
e, the se
retkeys have the form (f, σ).The proto
ol CKK2 is the (n+k, k, 2)-proto
ol with the additionalproperties that f1 = f2 = f with f only depending on the �rst ninputs, and that the two permutations σ1 and σ2 are publi
ly known.In parti
ular, σ2 is the identity id, and σ1 ex
hanges the last twoblo
ks of length k of a word of length n + 2k. Hen
e, the se
ret keyshave the form

V1 = {(v||a||b), v ∈ GF (2)n, a, b ∈ GF (2)k, a = f(v)} ,

V2 = {(v||a||b), v ∈ GF (2)n, a, b ∈ GF (2)k, b = f(v)} .
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CKK2- and CKKσ,L- proto
ols were suggested for pra
ti
al appli-
ation in [3℄, with the parameters n = 128 and k = 30.2.3 Se
urity of linear (n, k, L)-Proto
ols and our ResultsWe analyze the se
urity of (n, k, L)-proto
ols with respe
t to an ad-versary Eve who knows that Ali
e and Bob 
ommuni
ate on thebasis of a linear (n, k, L)-proto
ol. In 
ontrast to the 
ommonly as-sumed a
tive adversary models (as in [1, 10℄, for instan
e), Eve isonly able to eavesdrop on the 
ommuni
ation between Ali
e andBob, and may additionally draw Bob into quality time [12℄, i.e., shemay for
e Bob to send reasonably many (usually ≪ 264) honestproofs w ∈ GF (2)n+k, but she does not have any information aboutthe se
ret key shared by Ali
e and Bob.Eve's aim is to produ
e messages whi
h will be a

epted by Ali
ewith high probability. As a �rst 
onsequen
e, the probability L2−kthat a random w ∈ GF (2)n+k belongs to ⋃L

l=1 Vl should be su�-
iently small, i.e., k should be large enough.In the following, we derive an upper bound for Eve's requirede�ort for 
loning Bob, i.e., for 
omputing a spe
i�
ation of Bob'sse
ret key from a set O = {w1, . . . , ws} of observations (honest proofsprodu
ed by Bob). Note that if s is a little larger than Ln, with highprobability the set O is 
omplete, i.e., it 
ontains a basis for ea
h Vl,
l ∈ [L], and therefore determines Bob's se
ret key (see Appendix A).There are several exhaustive sear
h strategies for 
omputing these
ret key from a 
omplete set of observations in 2′(n) time. The in-teresting questions are whether there are strategies to 
ompute these
ret key from a 
omplete set of observations more e�
iently, orwhether it is at least possible to e�
iently distinguish a set of obser-vations indu
ed by a linear (n, k, L)-proto
ol from a truly random setof ve
tors from GF (2)n+k. In this paper, we answer these questionsin the a�rmative.Note that the subspa
es V1, . . . , VL should span the whole ve
-tor spa
e GF (2)n+k, i.e., V1 ⊕ · · · ⊕ VL = GF (2)n+k. Otherwise ane�
ient distin
tion from the random 
ase 
an be easily performed.This implies Ln ≥ n + k, in parti
ular n ≥ k for L = 2.However, the parameter k should not be too large. Consider forinstan
e the 
ase L = 2 and n = k, and take a set B of n+k random
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observations whi
h form a basis of GF (2)n+k. Then B 
ontains abasis B′ of V1 or of V2. This implies that with probability 1/2 theexpe
ted representation length w.r.t. to B is only n/2, while theexpe
ted representation length of a truly random ve
tor is n. 2 Basedon this idea, we 
an re
over the se
ret key e�
iently.So far, the only nontrivial 
ryptanalyti
 result 
on
erning lin-ear proto
ols is due to Goªebi�wski, Maj
her and Zagórski [5℄. Theypresent an atta
k against the CKK2-proto
ol, whi
h 
annot be ap-plied to the general 
ase. Its running time is proportional to∑k−1
s=0

(

n

s

),i.e., of order nΘ(k). For 
ompleteness, we des
ribe the atta
k in Ap-pendix C.In the next se
tion we des
ribe two very fast atta
ks againstthe CKK2-proto
ol. Their running times are dominated by the e�ortrequired for inverting k (n × n)-matri
es.In Se
t. 4 we des
ribe an algebrai
 atta
k against general (n, k, 2)-proto
ols. The idea is to generate, based on a su�
iently large setof observations, for ea
h output bit of the se
ret fun
tions f1 and
f2 an appropriate overde�ned system of quadrati
 equations in thevalues of the output bits over a �xed basis. These systems will thenbe solved by standard linear algebra methods.3 Two fast Atta
ks against CKK2-Proto
olsLet Ali
e and Bob share a se
ret key f : GF (2)n −→ GF (2)k, and letBob be designed to prove his identity by means of the CKK2-proto
ol.We des
ribe two algorithms for Eve to 
ompute a spe
i�
ation of f .3.1 The �rst Atta
kThe atta
k is based on a set of observations O = {(v1, a1, b1), . . . , (vm, am, bm)}of appropriate size. Let (c1, . . . , cm) denote the set of hidden bits be-hind O, i.e., f(vi) = ai if ci = 1 and f(vi) = bi if ci = 0. We 
omputethe hidden bits as the unique solution of a system LES of linear2 Given a GF (2)-ve
tor spa
e V of �nite dimension m, a basis B = {v1, . . . , vm} of V ,and a ve
tor v ∈ V , we 
all the unique 
oe�
ient ve
tor b = (b1, . . . , bm) ful�lling

v =
Lm

i=1 bivi the representation of v w.r.t. to B, and the number of ones in b is
alled the representation length of v w.r.t. to B.
6



equations of moderate size. Observe that
f(vi) = ciai ⊕ (1 ⊕ ci)bi for all i ∈ [m] . (2)The set {v1, . . . , vm} will be a generating system of GF (2)n. Thus, aspe
i�
ation of f 
an be 
omputed from the hidden bits by standardlinear algebra methods.1. Choose an appropriate number m > n and generate a set of obser-vations O = {(v1, a1, b1), . . . , (vm, am, bm)}, su
h that v1, . . . , vmform a generating system of GF (2)n and 0 6∈ O.2. Initialize the system LES of linear equations in the variables

c1, . . . , cm with LES = ∅.3. REPEAT3.1 Choose a nontrivial linear dependen
y D ⊆ [m], i.e., a set
D 6= ∅ ful�lling⊕d∈D vd = 0.3.2 Put the k linear equations de�ned by⊕d∈D cdad⊕(1⊕cd)bd =
0 into LES4. UNTIL LES has rank m5. Compute the ve
tor (c1, . . . , cm) as the unique solution of LES.The 
orre
tness of the atta
k follows dire
tly from (2). Someremarks on a possible implementation 
an be found in Appendix D.Our experiments show that the number of rounds ne
essary tomake LES of full rank is only slightly larger than n. Table 1 showsthe performan
e of our atta
k on a few example parameter 
ombi-nations. Table 1. Performan
e of the �rst atta
k on CKK2

(n, k) approx. number of observations approx. atta
k time
(128, 30) 140 0.05 s

(1024, 256) 1039 2.95 s
3.2 The se
ond Atta
kLet the single output fun
tions f 1, . . . , fk : GF (2)n −→ GF (2) de-note the 
omponent fun
tions of the se
ret fun
tion f , i.e., f(v) =
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(f 1(v), . . . , fk(v)) for all v ∈ GF (2)n. The atta
k is based on the sim-ple fa
t that if an observation (v, (a(1), . . . , a(k)), (b(1), . . . , b(k)))satis�es a(r) = b(r) for some r ∈ [k], whi
h is true with probability
1/2, then f r(v) = a(r) = b(r). The atta
k is de�ned as follows:1. Let e1, . . . , en denote the standard basis of GF (2)n.2. For r ∈ [k] do2.1 Generate a set of obsevations Or = ((vr,1, ar,1, br,1), . . . , (vr,n, ar,n, br,n))su
h that vr,1, . . . , vr,n form a basis of GF (2)n and ar,i(r) =

br,i(r) = f r(vr,i) for all i ∈ [n].2.2 Compute from this f r(e1), . . . , f
r(en).The 
orre
tness of the algorithm follows straightforwardly fromthe de�nitions. The expe
ted number of observaions needed for 
on-stru
ting Or is 2 · E(n), with E(n) de�ned as in Appendix A.In 
ontrast to the �rst atta
k on CKK

2, we 
an only exploit anobservation (v, a, b) if a(r) = b(r) for some r, whi
h implies thatthe amout of data needed to re
over the se
ret key will be higherthan before. Also the 
omputation is a little more 
ostly sin
e kGaussian eliminations are performed to 
ompute the fun
tions f rw.r.t. the standard basis. Nevertheless, the atta
k is still very e�
ientfor pra
ti
ally proposed parameter 
hoi
es, see Table 3.2.Table 2. Performan
e of the se
ond atta
k on CKK2

(n, k) approx. number of observations approx. atta
k time
(128, 30) 311 0.3 s

(1024, 256) 2197 179 s
4 Algebrai
 Atta
ks against (n, k, 2)-proto
ols4.1 PreliminariesFor des
ribing the atta
k we need some simple fa
ts on the stru
tureof linear subspa
es.Given a ve
tor v ∈ GF (2)n+k, a subset S ⊆ GF (2)n+k and anindex set J = {j1 < . . . < js} ⊆ [n + k], we denote by v|J the
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restri
tion of v w.r.t. J , i.e., v|J = (vj1, . . . , vjs
) ∈ GF (2)s. Furtherlet S|J = {v|J , v ∈ S}. Observe that if S is a linear subspa
e thenso is S|J .We denote by GF (2)J the set of GF (2)-assignments c : J −→

GF (2) to J . For I, J disjoint and nonempty subsets of [n + k] and
c ∈ GF (2)I , d ∈ GF (2)J , we denote by c ∪ d the unique assignment
z of I ∪ J with z|I = c and z|J = d.Let V ⊆ GF (2)n+k be an n-dimensional subspa
e of GF (2)n+k.A nonempty index set J ⊆ [n+k], |J | = n is 
alled a basis set w.r.t.
V if dim(V |J) = n. For a �xed basis B = {v1, · · · , vs} of V let usdenote by M = M(V, B) the n× (n + k)-matrix formed by the rows
v1, · · · , vn. The following Lemma 
an be easiliy proved by standardlinear algebra arguments.Lemma 1. (i) A set J ⊆ [n + k], |J | = n, is a basis set w.r.t. V ifthe n rows of M 
orresponding to the indi
es in J form a basisof GF (2)n.(ii) If J ⊆ [n+k] is a basis set w.r.t. V then there is a linear mapping

f : GF (2)n −→ GF (2)k su
h that
V = {w ∪ f(w), w ∈ GF (2)J}.Note that (ii) implies that V 
an be represented by f and apermutation σ ∈ Sn+k as

V = {σ(v, f(v)), v ∈ GF (2)n},(take a permutation σ, whi
h maps J to {1, · · · , s}). Further weobtain as a 
orollaryLemma 2. If J ⊆ [n+k] is a basis set w.r.t. V then for all i ∈ [n+
k]\J the following holds. There is a linear fun
tional g : GF (2)n −→
GF (2) su
h that for all v ∈ V it holds that vi = g(v|J). ⊓⊔4.2 Outline of the Atta
kThe weakness of CKK2-proto
ols is that observations (v, a, b) 
ontainthe information about f(v), the only problem is to de
ide whether
f(v) = a or f(v) = b. This is not the 
ase for general (n, k, 2)-proto
ols; a single observation σ1(v, f1(v)) does not say anything
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about f2(v), and vi
e versa. We des
ribe an algebrai
 atta
k based onthe observation that linear dependen
ies in a set of observations 
anbe translated into nontrivial equations in the keybits. The di�eren
eto the atta
k in Se
t. 3 is that we have to introdu
e unknowns 
orre-sponding to the values f1(v
i) and f2(v

i), and that we get quadrati
equations instead of linear ones.The atta
k is based on the following algorithm ANALY ZE,whi
h 
an be 
onsidered as an algebrai
 atta
k against (n, 1, 2)-proto
ols with se
ret key (f1, σ1), (f2, σ2), f1, f2 : GF (2)n −→ GF (2)linear, for whi
h σ1 = σ2 = id.Consider a set of observations (v1, w1), · · · , (vm, wm), vj ∈ GF (2)n,
wj ∈ GF (2) for j = 1, · · · , m, m su�
iently large, indu
ed by su
han (n, 1, 2)-proto
ol. The algorithm ANALY ZE 
omputes spe
i�-
ations of the two linear mappings f1, f2 : GF (2)n −→ GF (2) su
hthat f1(v

j) = wj or f2(v
j) = wj for all j = 1, · · · , m, i.e., the spe
i�-
ations of the two se
ret ve
tor spa
es Vl = {(v, fl(v)), v ∈ GF (2)n}and V2 = {(v, f2(v)), v ∈ GF (2)n}.The algorithm ANALY ZE 
an be used to atta
k the general
ase k > 1 as follows. Let {v1, · · · , vm} ⊆ GF (2)n+k denote a setof observations indu
ed by the appli
ation of an (n, k, 2)-proto
olwith a se
ret key V1, V2 
orresponding to two n-dimensional linearsubspa
es of GF [2]n+k, m su�
iently large.1. REPEAT2. Choose a set I = {i1 < i2 < · · · < in} ⊆ [n + k] and some

i ∈ [n + k] \ I3. Apply ANALYZE to the transformed observations {ṽ1, · · · , ṽm} ⊆
GF (2)n+1, where for all v ∈ GF (2)n+k we de�ne ṽ = (vi1, · · · , vin, vi).4. UNTIL ANALYZE su

essfully produ
es spe
i�
ations of twodistin
t n-dimendional linear subspa
es W1, W2 ⊆ GF (2)n+1 givenby two linear mappings f1, f2 : GF (2)n −→ GF (2).
W1, W2 
an be used to 
ompute spe
i�
ations of the se
ret n-dimensional subspa
es V1 ⊆ W1 and V2 ⊆ W2 of GF (2)n+k as follows.The probabilities for the three possible events that a random obser-vation belongs to W1 \W2, resp. to W2 \W1, resp. to W1∩W2 shouldbe the same and near 1/3. The �rst two events allow to determine if

vi ∈ V1 or if vi ∈ V2.
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The sample size number m is determined by the minimal num-ber of observations ne
essary for su

essfully applying ANALY ZE.Thus, m is mu
h grater than 3×E(n) (see Appendix). This impliesthat with high probability, v1, · · · , vm 
ontain subsets B1 ⊆ W1 \W2and B2 ⊆ W2 \W1 su
h that B1 is a basis of V1 and B2 is a basis of
V2. The estimation of the su

ess probability of the atta
k is basedon the hypothesis that the se
ret subspa
es V1 and V2 are randomlyand independently 
hosen a

ording to the following experiment.1. Repeat2. Choose randomly n × n + k-matrix M over GF (2) w.r.t. theuniform distribution.3. UNTIL rank(M) = n.4. Take V as the linear span of the rows of M .Under this assumption, the probability that a �xed set I ⊆ [n+k],
|I| = n is a basis set of V1 and V2 is p(n)2 ≈ (0.2887)2 ≈ 0.083 (seeAppendix A). Experiments with small values of n and k show that onaverage around 12 di�erent sets I have to be tried before �nding onewhi
h is a basis set for both V1 and V2. In the following subse
tionwe des
ribe the algorithm ANALY ZE.4.3 The Algorithm ANALY ZE1. Choose a set O = {(v1, w1), . . . , (v

n, wn)} ⊆ GF (2)n+1 of obser-vations su
h that B = {v1, . . . , vn} forms a basis of GF (2)n. For
i ∈ [n] let xi and yi denote the variables 
orresponding to f1(v

i)and f2(v
i), respe
tively.2. For b ∈ {0, 1} let Ib = {i ∈ [n], wi = b}.3. For all i ∈ [n] let ti = xi ⊕ yi, and for all i < j ∈ [n] let ti,j =

xiyj ⊕ xjyi.4. Observe that for all i ∈ [n] the equality (wi ⊕ xi)(wi ⊕ yi) = 0holds. This implies
xiyi = 0 if i ∈ I0 and xiyi = 1 ⊕ ti if i ∈ I1. (3)5. Observe that for ea
h observation (v, w) ∈ GF (2)n+1, v 6∈ B, thefollowing holds: If v =

⊕

i∈I vi, (i.e., I ⊆ [n] de�nes the unique
11



representation of v w.r.t. B), then
(

w ⊕
⊕

i∈I

xi

)(

w ⊕
⊕

i∈I

yi

)

= 0 (4)Observe that relation (4) 
an be rewritten as a relation TB(I, w)in the variables ti and ti,j in the following way: If w = 0 thenrelation (4) is equivalent to⊕i∈I xiyi ⊕
⊕

i<j∈I ti,j = 0. Togetherwith relation (3) this implies⊕i∈I1∩I(ti⊕1)⊕
⊕

i<j∈I ti,j = 0 for
w = 0. Consequently, for w = 0 we de�ne TB(I, w) as

⊕

i∈I∩I1

ti ⊕
⊕

i<j∈I

ti,j =

{

0 if |I ∩ I1| is even
1 if |I ∩ I1| is odd .If w = 1 then relation (4) is equivalent to 1⊕

⊕

i∈I ti⊕
⊕

i∈I∩I1
(ti⊕

1) ⊕
⊕

i<j∈I ti,j = 0. Hen
e, for w = 1 we de�ne TB(I, w) as
⊕

i∈I∩I0

ti ⊕
⊕

i<j∈I

ti,j =

{

0 if |I ∩ I1| is odd
1 if |I ∩ I1| is even .Note that a relation similar to relation (4) was also exhibited in [1℄for designing an algebrai
 atta
k against so-
alled Ff -proto
ols.Our atta
k works as follows.1. Let initially the system LES of linear equations in the 1

2
(n2 + n)variables ti (i ∈ [n]) and ti,j (i < j ∈ [n]) be empty.2. REPEAT2.1 Choose an observation (v, w), v 6∈ B ∪ {0} and 
ompute theunique subset I ⊆ [n] with v =

⊕

i∈I vi.2.2 Enlarge the system LES by the linear equation TB(I, w).3. UNTIL The system LES has 1
2
(n2 + n) linearly independentequations.4. Compute by Gaussian elimination the unique solution θ of thesystem LES.5. Compute from θ the unique 
orre
t assignment to xi, yi for all

i ∈ [n].The 
orre
t assignments to the xi and yi variables (step 5 of thealgorithm) 
an be 
omputed from θ = (θi)i∈[n] (θi,j)i<j∈[n] as follows.
12



For b = 0, 1 let Kb denote the set Kb = {i ∈ [n], θi = b}. We knowthat for all i ∈ K0 it holds that xi = yi = wi, and for all i ∈ K1it holds that yi = xi ⊕ 1. This implies that for all i < j in K1, θi,jsatis�es
θi,j = xi(xj ⊕ 1) ⊕ xj(xi ⊕ 1) = xi ⊕ xj .This yields a system LES∗ of 1/2|K1|(|K1| − 1) linear equations inthe variables xi, i ∈ K1, of rank |K1| − 1. As it does not matterwhi
h of the two se
ret linear subspa
es we denote by V1 and whi
hby V2, we have the freedom to set xk = 0 for some �xed k ∈ K1.The system LES∗ together with xk = 0 yields a system of full rankand allows to 
ompute the 
orre
t assigment to the xi-variables byGaussian elimination.4.4 Analysis and experimental ResultsThe ba
kground for the fa
t that the repeat 
y
le of the algorithm

ANALY ZE is left after a �nite number of rounds is that the fol-lowing (2n − (n + 1)) × (n(n + 1)/2)-matrix M(n) over GF (2) hasfull row rank (whi
h is not hard to show). The row indi
ess of
M(n) are all subsets I ⊆ [n] with |I| ≥ 2, the 
olumn indi
es are
[n] ∪ {(i, j), 1 ≤ i < j ≤ n}. We have M(n)I,i = 1 i� i ∈ I and
M(n)I,(i,j) = 1 i� {i, j} ⊆ [n].We do not give here a theoreti
al analysis of the expe
ted num-ber of rounds of the repeat 
y
le. Our experiments show that thealgorithm ANALY ZE needs only slightly more than 1

2
(n2 + n) + nobservations to 
ompute the se
ret fun
tions f1 and f2. Parti
ularlyfor n = 128, in order to re
over the se
ret fun
tions we need approx.8390 observations and 4 minutes.5 SummaryWe have seen that the se
ret key of CKK2-proto
ols 
an be 
omputedvery qui
kly from a su�
iently large set of observations. This kindof proto
ol should not be used in pra
ti
e.Our degree-2 algebrai
 atta
k against (n, k, 2)-proto
ols 
an bequite straightforwardly generalized to a degree-L atta
k against (n, k, L)-proto
ols for L > 2, whi
h implies solving an overde�ned system of

13



degree L equations. Using the te
hnique of linearization, for n = 128and L ≥ 4 this means to solve a system of linear equations in morethan one billion variables, whi
h is not feasible. It is an interestingopen question if the very symmetri
ally stru
tured systems of degree-
L equations arising during a degree-L atta
k 
an be more e�
ientlysolved by more advan
ed te
hniques like the F4- or F5-algorithmor 
ube atta
ks [6, 7, 4℄. If one 
ould generate 
onvin
ing eviden
esu
h that algorithms 
annot beat linearization atta
ks, then linear
(128, 30, L)-proto
ols 
ould be seriously 
onsidered for pra
ti
al use.Another problem of linear (n, k, L)-proto
ols is the large keylength;when using a naive implementation, the hardware size of the se
retkey is nkL. Thus, it is an important question to look for spe
ialkinds of (n, k, L)-proto
ols for whi
h there are implementations ofthe se
ret subspa
es V1, . . . , VL whi
h need signi�
antly less than
nkL gates. One possibility is to look for e�
ient hardware realiza-tions for the CKKσ,L-proto
ols suggested in [3℄.Our atta
k against (n, k, L)-proto
ols yields only one of the possi-bly exponentially many equivalent representations of the se
ret sub-spa
es. This implies that it 
orre
tly 
lones the se
ret key only if theCKK-mode of 
ommuni
ation is used. When the HB+-mode is used,Eve has to 
ompute the spe
i�
ation of (fl, σl) 
orre
tly for l ∈ [L].How this 
an be done e�
iently is a subje
t of further resear
h.A
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onsider the following experiment.1. Set B := ∅.2. REPEAT2.1 Choose a random v ∈ GF (2)n (w.r.t. the uniform distribu-tion)2.2 V := V ∪ {v}.3. UNTIL V is a generating system of GF (2)n.Let p(n) denote the probability that the experiment stops after
n iterations (i.e., V is a basis of GF (2)n), and E(n) denote theexpe
ted number of iterations of the experiment. It is known that
p(n) ≈ 0.2887 and E(n) ≈ n + 1.6067 (see, e.g., [5℄).B Some Basi
s on linear Subspa
esAn index set I ⊆ [m] is 
alled basis set w.r.t. V if |I| = s and
dim(V |I) = s. The following fa
ts 
an be easily dervied by standardlinear algebra arguments.Lemma 3. Let V ⊆ GF (2)m denote an s-dimensional linear sub-spa
e of GF (2)m for some 0 < s < m.
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(i) If I ⊂ [m] is a basis set w.r.t. V and J ⊆ [m] \ I, then there is alinear mapping f : GF (2)I −→ GF (2)J su
h that for all u ∈ Vit holds that u|J = f(u|I).(ii) If I ⊂ [m] is a basis set w.r.t. V and J = [m] \ I, then thereis a linear mapping f : GF (2)I −→ GF (2)J su
h that V =
{v ∪ f(v), v ∈ GF (2)I}.(iii) Let I, J, f be de�ned as in (ii) and let f only depend on a set ofindi
es I ′ ⊂ I (i.e., f(v) = f(v|I′ for all v ∈ GF (2)I). Then ea
hsubset of I \ I ′ is not dependent.(iv) If J ⊆ [m] is dependent and K = [m] \ J then there is a linearmapping g : GF (2)K −→ GF (2)J su
h that V = {v ∪ g(v), v ∈
GF (2)K}.Proof. Statements (i)-(iii) 
an be derived by standard linear algebraarguments. In order to prove (iv) �x a basis set I ⊆ K and a mapping

f : GF (2)I −→ GF (2)J like in (i) and de�ne g : GF (2)K −→
GF (2)J by g(v) = f(v|I) for all v ∈ GF (2)K. ⊓⊔Altogether, we obtainLemma 4. Ea
h n-dimensional subspa
e V of GF (2)n+k 
an be rep-resented by a linear fun
tion f : GF (2)n −→ GF (2)k and a permu-tation σ of [n + k] su
h that V = {(σ(v, f(v))), v ∈ GF (2)n}.Proof. Take a basis set I ⊆ [n + m], let J = [n + m] \ I and �x alinear mapping f as in Lemma 3, (ii). The permutation σ has to be
hosen in su
h a way that σ([n]) = I. ⊓⊔C The Atta
k of Goªebi�wski, Maj
her andZagórski against the CKK2-Proto
ol[5℄ 
ontains the following atta
k against CKK2 . The atta
k refers toa set of observations

O = ((v1, a1, b1), . . . , vT , aT , bT ))generated by Bob on the basis of a se
ret key (i.e. GF (2)-linearfun
tion) f : GF (2)n −→ GF (2)k and hidden random bit ci, i.e.,
f(vi) = ciai ⊕ (1 ⊕ ci)bi .
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The aim of the atta
k is to 
ompute a subset I ⊆ [T ] su
h that
{vi, i ∈ I} forms a basis of GF (2)n, and to 
ompute the 
orrespond-ing values ci for all i ∈ I. The idea of the atta
k is to1. try to �nd a set J ⊆ [T ], |J | ≤ k, with⊕j∈J vj = 0,2. do exhaustive sear
h in the set of all 2|J | {0, 1}-assignments of Jin order to �nd the set of bits {cj , j ∈ J} with

⊕

j∈J

(cjaj ⊕ (1 ⊕ cj)bj) = 0 ,and to repeat these steps until a su�
iently large set of vi-ve
torswith the right ci-bit is identi�ed.Step 1 is performed by 
hoosing a basis B among the vi-ve
torsand sear
hing for a vj outside B su
h that vj =
⊕

i∈B′ vi for a subset
B′ ⊆ B with |B′| < k. The probability of �nding su
h a vj is

p(n, k) = 2−n

k−1
∑

s=0

(

n

s

)

,i.e., the worst 
ase running time has order (n/k)2kp(n, k)−1.D Analysis and Implementation of the Atta
k inSe
tion 3.1We derive some restri
tions for the 
hoi
e of m, O and the lineardependen
ies D whi
h should minimize the number of repetitions ofthe repeat 
y
le.Note that the linear subsystem in step 3.2 
an be written as
⊕

d∈D

cd (ad ⊕ bd) = 0 .For D ⊆ [m] let v(D) ∈ GF (2)m denote the 
hara
teristi
 ve
tor of
D, i.e., for all i ∈ [m] let v(D)i = 1 if i ∈ D and v(D)i = 0 if not.For t = 1, 2, . . . let Dt denote the linear dependen
ies 
hosen inthe t-th iteration of the repeat 
y
le. For minimizing the number ofiterations, linear dependen
y Dt should for all t be 
hosen in su
h away that
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� {v(D1), . . . , v(Dt)} are linearly independent,� the set of ve
tors {ad ⊕ bd, d ∈ Dt} form a generating system of
GF (2)k.One way to a
hieve this is to1. set m = n + s for appropriate s,2. to 
hoose v1, . . . , vn su
h that they form a basis B of GF (2)n,3. to 
hoose vn+t for t ∈ [s] in the following way. If vn+t =

⊕

d∈D′ vd,
D′ ⊆ [n], is the unique representation of vn+t w.r.t. B, then
{ad ⊕ bd, d ∈ Dt} forms a generating system of GF (2)k, where
Dt = D′ ∪ {n + t}.On average, we 
an extra
t v1, . . . , vn from a set of E(n) obser-vations. Note that when 
hoosing vn+t, the expe
ted size of D′ is

n/2. If we suppose that n/2 ≥ E(k), we see that only a few observa-tions should su�
e for extra
ting a ve
tor vn+t ful�lling the required
onditions.How large s should be? We suppose that the way we 
onstru
ted
LES pumps enough randomness into the linear equation, so that
E(n + s) equations should be enough for guaranteeing n + s linearlyindependent equations, i.e., sk ≥ E(n + s), whi
h implies s ≥ n+C

k−1for a small 
onstant C.
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