A Methodology to Improve Dependability in Spreadsheets

Margaret Burnett
Oregon State University
burnett@eecs.oregonstate.edu

1 Introduction

Spreadsheets are one of the most commonly used end-
user programming environments. As such, there has
been significant effort on the part of researchers and
practitioners to develop methodologies and tools to
improve the dependability of spreadsheets.

Our work has focused on the development of the
“What You See Is What You Test” (WYSIWYT)
family of techniques. WYSIWYT is designed to be
seamlessly integrated into a spreadsheet environment
and the user’s development processes. It uses visual
devices that are integrated into the user’s spreadsheet
to guide the process of finding and fixing problems
with the spreadsheet.

There are three major components to the WYSI-
WYT methodology: a testing and debugging
methodology, an assertions mechanism, and the
“Surprise-Explain-Reward” strategy.

2 Testing and Debugging

Methodology

WYSIWYT provides a testing and debugging
methodology [3]. As the user edits their spreadsheet
they are provided with visual devices indicating the
“testedness” (coverage relative to an underlying data-
flow adequacy criterion) of the cells and the spread-
sheet and the ability to mark the values in cells as
correct or incorrect. If the user marks a cell’s value
as correct, the testedness of the contributing cells is
updated as is the testedness of the spreadsheet. If,
instead, the user marks a cell’s value as incorrect, ad-
ditional information is displayed to the user about the
“fault likelihood” of cells based on the number of cor-
rect and incorrect values to which they contribute[4].
Figure 1 shows our visual devices in the Excel spread-
sheet language.

In addition to tracking testedness and fault likeli-
hood, WYSIWYT includes a “Help-Me-Test” feature

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007 /1088

Marc Fisher II, Gregg Rothermel
University of Nebraska - Lincoln
{mfisher, grother}@cse.unl.edu

that generates new test cases to cover unexercised
portions of the spreadsheet [2] or replays test cases
to re-validate changed portions of the spreadsheet.

3 Assertions Mechanism

WYSIWYT also includes an assertions mechanism
where users can supply a valid range of values for
a cell [1]. These ranges are then propagated through
dependent cells using interval arithmetic techniques,
and conflicts between user-supplied ranges, propa-
gated ranges and cell values are displayed to the user.

The assertions mechanism interacts with Help-Me-
Test in two ways. User-supplied ranges on cells whose
formulas are simple data values are used to limit the
inputs used when generating new test cases. Help-
Me-Test then attempts to generate test cases that
violate the ranges on formula cells as they indicate
that the user has an error either in a formula or a
range.

4 Surprise-Explain-Reward

A key strategy in getting end users to effectively
utilize the WYSIWYT methodology is Surprise-
Explain-Reward [5]. Surprise-Explain-Reward relies
on a user’s curiosity about features in the environ-
ment. According to research about curiosity, if the
user is surprised by something, such as the check-
boxes in the spreadsheet, the surprise can arouse the
user’s curiosity, potentially causing the user to seek
an explanation.

All features and feedback must therefore be able to
explain themselves. These explanations must do two
things: first, make the user aware of why the item
is worthy of further attention (i.e., make the rewards
clear), and second, help the user make an informed
judgment as to whether the reward is worthwhile.
Users explore a feature by viewing its explanation, on
demand, via tool tips and other low-cost mechanisms.

A | B | ¢ |WWpEE| E | F | & | | I | J | K | L |
I Quiz_1 Quiz_2 | Quiz_3 Quiz_4 ExtraCredit Min Average | ExtraCredit Award Above Average = Improvement Letter Grade
2 |Amanda 0 56 78 80 0] 30 71.3 71.3 no TE3 B-
3 |Amy) 89 a7 31 6] ezl 89,32 as 3 yes [] 94.3[[2] A
4 |Andy 45 57 56 57 18z] 45 53 3] £33 no £33 C
5 |Bob 0 34 K] 67 17 anfl 45 5[l 45.3][7] no 7] 50317 D
B [Christina a7 a7 80 81 P | G277 G27JE yes 2] 82717 B
7 |David 89 67 88 a9 P | g5.7]% a1 7|l yes 2] 91.7|12] A
B |James 34 55 56 M o 9L 34 o | -) |) B] | e
9 |Jane a3 89 76 a0 197 7e|lE 89,02 B90f] yes [z] 89.0[[# porrect. This cellis
10 |Jone 3 &9 70 75 R |2 5.0 10| yes & 1.0 (¢ 3 00% tested.
11 |Kristen 78 89 88 a0 07 7]l 23.0)[7] 29.0) 2] yves [7] ga.0)2] B+
12 |htary) 85 90 31 21 35 59.7 527 yves 927 A
13 [May a1 57 fat a0 el =7 |3) |) | & s [7] [1] B+
14 [Mally 15 57 1 59 21120 as]lE] 53 | g2 7] i [7] == | E] o
15 |Pater 6 &7 63 75 19 spflv] 70.0fL2] 70.0f 2 1o [z]e 75.0[l B
15 |Average 625|720l 72| 77a|E 201 [sa 8|2 75 5|2 5.7
17

Figure 1: WYSIWYT Devices in the Excel Spreadsheet Environment

The reward in the explanation informs the user
when weighing costs, benefits, and risks in deciding
how to complete a task. By providing users a projec-
tion of future benefits, they can better assess if the
cost of using the feature is worth their time. If all
goes well, if the user follows up as advised in the ex-
planation, rewards will ensue, such as an increase in
testing coverage or the discovery of an error.

5 Future Work

Our most recent research continues to investigate
Surprise-Explain-Reward, focusing primarily on the
explanations aspect. We are doing significant experi-
mental prototyping and empirical work to understand
what end-user programmers actually want to know
when debugging, how explanations provided by the
system can help them, and how they might be able
to help each other. We are thus looking into strate-
gies end-user debuggers follow, whether the system
helps to support these strategies, and whether the ex-
planations are helpful in improving their debugging
strategies.

We are also interested in aspects of the end-user
software engineering lifecycle beyond testing and de-
bugging, and how to support them.

References

[1] M. Burnett, C. Cook, and G. Rothermel. End-
user software engineering. Communications of the
ACM, 47(9):53-58, September 2004.

[2] M. Fisher II, G. Rothermel, D. Brown, M. Cao,
C. Cook, and M. Burnett. Integrating automated
test generation into the wysiwyt spreadsheet test-
ing methodology. ACM Transactions on Soft-
ware Engineering and Maintenance, 15(2):150—
194, April 2006.

[3] G. Rothermel, M. Burnett, L. Li, C. DuPuis,
and A. Sheretov. A methodology for testing
spreadsheets. ACM Transactions on Software En-
gineering and Maintenance, 27(1):110-147, Jan-
uary 2001.

[4] J. Ruthruff, S. Prabhakararao, J. Reichwein,
C. Cook, E. Creswick, and M. Burnett. Interac-
tive, visual fault localization support for end-user
programmers. Journal of Visual Languages and
Computing, 16(1-2):3-40, February/April 2005.

[5] A. Wilson, M. Burnett, L. Beckwith, O. Granatir,
L. Casburn, C. Cook, M. Durham, and G. Rother-
mel. Harnessing curiosity to increase correctness
in end-user programming. In Proceedings of the
ACM SIGCHI Conference on Human Factors in
Computing Systems, pages 305-312, April 2003.

