

Position paper for the End-User Software Engineering Dagstuhl Workshop (Feb. 2007)

Meta-User Interfaces for Ambient Spaces:
Can Model-Driven-Engineering Help?

Joëlle Coutaz
Université Joseph Fourier, Lab.Informatique de Grenoble (LIG)

385 rue de la Bibliothèque, BP 53, 38041 Grenoble Cedex 9, France
joelle.coutaz@imag.fr

PERSONAL WORK RELEVANT TO THE WORKSHOP
My goal is to develop concepts and techniques that allow
users to control and understand the ambient interactive
spaces in which they live. With ambient computing, we are
shifting from the control (and understanding) of systems
and applications confined to a single computer to that of a
dynamic computational aura where the boundaries between
the physical and the digital worlds are progressively
disappearing, where everything is highly dynamic and
adaptive.

As a result, the pre-packaged well-understood solutions
provided by shells and desktops that allow end-users to
control their computing environments are inadequate for a
continuous moving universe. To address this problem, I
propose the concept of meta-UI. In addition, user interfaces
that used to be defined once for ever for a well-identified
context of use, must evolve dynamically. In my research
group, we are addressing this problem under the umbrella
of UI plasticity. Our approach to UI plasticity brings
together MDE (Model Driven Engineering) and SOA
(Service Oriented Architecture) within a unified framework
that covers both the development stage and the runtime
phase of interactive systems.

META-UI
A meta-UI is a special kind of end-user development
environment whose set of functions is necessary and
sufficient to control and evaluate the state of an interactive
ambient space. This set is meta- because it serves as an
umbrella beyond the domain-dependent services that
support human activities in this space. It is UI-oriented
because its role is to allow users to control and evaluate the
state of the ambient interactive space. By analogy, a meta-
UI is to ambient computing what desktops and shells are to
conventional workstations.

As shown in Fig. 1, a meta-UI is characterized by its
functional coverage in terms of services such as object
discovery and coupling, and object types. Objects discovery
allows users (and the system) to be aware of the objects that
can be coupled. By coupling objects, users (and the system)
build new constructs whose components play a set of roles

(or functions). In conventional computing, roles are
generally predefined. In ambient computing, where
serendipity is paramount, assigning roles to objects
becomes crucial. For example, Bob and Jane meeting in a
café use spoons and lumps of sugar to denote the streets
and buildings of the city they are talking about. Bob
couples a spoon with the table by laying it down on the
table while uttering “this is Champs-Elysées”. The system
can then discover the presence of the spoon and assign it
the role of interaction resource (phicon). By doing so, Bob
has dynamically defined a mixed-by-contruction object.

Fig. 1. A dimension space for meta-UI’s.

UI re-distribution is another important generic service to be
provided in ambient spaces. It denotes the re-allocation of
UI elements of the interactive space to different interaction
resources. For example, the GUI of a web site may
dynamically switch from a centralized rendering on a PC
screen to a distributed UI between a PDA and a wall-
mounted display. In turn, UI re-distribution may require UI
re-moulding, that is the capacity of the UI to reconfigure
itself or to be reconfigured (under end-user’s control) by
suppressing, adding, and/or re-organizing UI elements.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1082

Services and objects are invoked and referenced by the way
of an interaction technique (i.e. a UI) that provides users
with some level of control (observability only, traceability
over time, and controllability or programmability). An
interaction technique is a language (possibly extensible)
characterized by the representation (vocabulary) used to
denote objects and functions as well as by the way users
construct sentences and assemble them into programs
(including how they select/designate objects and functions).

Given the role of a meta-UI, the elements of the interaction
technique of the meta-UI cohabit with the UI’s of the
domain-dependent services that it governs. The integration
level expresses this relationship: all or parts of the UI
elements of the meta-UI are embedded with (or weaved
into) the UI components of the domain-dependent services.
For example, Collapse-to-zoom uses the weaving approach.
Alternatively, UI elements of the meta-UI services may be
external, i.e. not mixed with the UI components of the
domain-dependent services.

MDE and SOA
MDE aims at integrating different technological spaces
using models, models transformations and mappings as key
mechanisms. SOA defines the appropriate meta-model for a
particular class of models: the runtime components. The
flexibility offered by SOA fits our requirements for
dynamic UI re-distribution and UI re-molding.

Fig. 2 An interactive system is a graph of models related by
mappings and transformations.

As shown in Fig. 2, an interactive system is a graph of
models that expresses and maintains multiple perspectives
on the system. As opposed to previous work, an interactive
system is not limited to a set of linked pieces of code.
Models developed at design-time, which convey high-level
design decision, are still available at runtime. A UI may
include a task model, a concept model, an Abstract UI
model (expressed in terms of workspaces), and a Concrete
UI model (expressed in terms of interactors) all of them
linked by mappings. Tasks and Concepts are mapped to
entities of the Functional Core of the interactive system,

whereas the Concrete UI interactors are mapped to I/O
devices (interaction resources) of the platform. Mappings
between interactors and I/O devices support the explicit
expression of centralized versus distributed UIs.

Transformations and Mappings are models as well
expressed in ATL (QVT could be an option as well). In the
conventional model-driven approach to UI generation,
transformation rules are diluted within the tool. Model
transformers are encapsulated as services within a
middleware infrastructure that includes services to support
context awareness, UI re-moulding and UI re-distribution:
The situation synthesizer computes the current situation
from the information provided by observers. An evolution
engine elaborates a reaction in response to the new
situation. For example, “if a new PDA arrives, move the
control panel to the PDA”. The evolution engine identifies
the components of the UI that must be replaced and/or
suppressed and provides the configurator with a plan of
actions. The Configurator executes the plan. If new
components are needed, these are retrieved from the
storage space by the component manager. Components of
the storage space are described with conceptual graphs and
retrieved with requests expressed with conceptual graphs.
By exploiting component reflexivity, the configurator stops
the execution of the “defectuous” components specified in
the plan, gets their state, then suppresses or replaces them
with the retrieved components and launches these
components based on the saved state of the previous
components. The components referred to in the action plan
do not necessarily exist as executable code. They may
instead be high-level descriptions such as task models. If
so, the configurator relies on models transformers to
produce executable code.

We are currently experimenting the flexibility provided by
the interplay between modeling an interactive system as a
graph of models, the existence of a meta-UI and of UI
transformers encapsulated as OSGi services. In our
example of a Home Control Heating System (HHCS), the
user’s task is to set the temperature of the rooms of the
home. The meta-UI provides the end-user with access to the
task and the platform models. For example, the platform
model indicates that a PC HTML and a PC XUL are
currently available in the home. By selecting a task of the
task model then selecting the platform(s) on which the user
would appreciate to perform the selected task, the UI is re-
computed and redistributed on the fly.

ISSUES TO BE DISCUSSED
Programming (and debugging) ambient spaces is yet
another challenge. Embracing this challenge as a whole
may be too complex. Shall we study it based on a
classification of ambient spaces (e.g., domestic, public,
mobile settings, a day of “my” life, etc.). By extension,
what is the problem space of EUSE? How does current
approaches cover the problem space? And then, what is the
solution space?

2

REFERENCES
In addition to the classics (A. Cypher, B. Myers, H.
Lieberman, etc.), I would like to suggest the following ref.
related to ambient spaces as well as to our own work on UI
plasticity and meta-UI.

1. L. Balme, A. Demeure, N. Barralon, J. Coutaz, G.
Calvary. CAMELEON-RT: a Software Architecture
Reference Model for Distributed, Migratable, and
Plastic User Interfaces. In Proc. second European
Symposium on Ambient Intelligence, EUSAI 2004,
LNCS 3295, Markopoulos et al. pp. 291-302

2. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, J. Vanderdonckt. A Unifying Reference
Framework for Multi-Target user interfaces.
Interacting with Computers, Special Issue on

Computer-Aided Design of User Interface, 15(3),
Elsevier Publ., June 2003, pp. 289-308.

3. Coutaz J. Meta-User Interface for Ambient Spaces,
Invited talk. In proceedingd TAMODIA’06, Hasselt,
Belgium, October 2006, Springer LNCS publ., p. 1-15.

4. Dey, A., Hamid, R., Beckmann, C., Li, Y., Hsu, D., a
CAPpella: Programming by Demonstration of Context-
Aware Applications, In Proceedings of the ACM
SIGCHI’04, Vienne, 33-40.

5. Sohn, T.Y., Dey, A.K., iCAP: An Informal Tool for
Interactive Prototyping of Context-Aware
Applications. In Proceedings of the International
Conference on Pervasive Computing 2006. Dublin,
Ireland, May 2006, 974–975.

3

