Exploiting Domain-Specific Structures For

End-User Programming Support Tools

*

— Position Paper —

Robin Abraham

Martin Erwig

Oregon State University

1. PROGRAMMING LANGUAGE
RESEARCH FOR SPREADSHEETS

In previous work we have tried to transfer ideas that
have been successful in general-purpose programming lan-
guages and mainstream software engineering into the realm
of spreadsheets, which is one important example of an end-
user programming environment. More specifically, we have
addressed the questions of how to employ the concepts of
type checking, program generation and maintenance, and
testing in spreadsheets. While the primary objective of our
work has been to offer improvements for end-user produc-
tivity, we have tried to follow two particular principles to
guide our research.

(1) Keep the number of new concepts to be learned by end
users at a minimum.

(2) Exploit as much as possible information offered by the
internal structure of spreadsheets.

In the following we will illustrate our research approach with
several examples.

The idea behind the UCheck system [8] is to interpret the
labels in a spreadsheet as annotations akin to type decla-
rations in traditional programs. By identifying rules that
express how labeled cells can be combined in formulas in a
meaningful way, the information about cell labels can then
be exploited to check the consistency of spreadsheet formu-
las [13]. To make this approach feasible we needed a way to
automatically infer the information about which labels are
to be used as type information and which cells are annotated
by which labels [1], because a tool that required a spread-
sheet user to annotate a spreadsheet with this information
would probably not be very widely used due to the high ad-
ditional cost involved. We have also begun to investigate
ways to infer from the inconsistent use of labels in formulas
suggestions for changes in formulas that can be reported to
the end user [3].

We have also investigated a different approach to type
checking that is based on the traditional notion of types,
extended by a concept of formula shapes [6]. In addition
to finding errors in spreadsheets, this approach can also be
used to infer spreadsheet models, an aspect to be discussed
below.

A strong point about the type checking approaches is that
they operate fully automatically—all an end user has to do

*This work is partially supported by the National Science
Foundation under the grant ITR-0325273 and by the EUSES
Consortium (http://EUSESconsortium.org).

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1086

is to click a button, and sources of potential errors are found
and highlighted instantly. At the same time, this advantage
can also mean a drawback since end users might rely too
much on the system, in particular, they might assume that
their spreadsheet is correct when UCheck does not report
an error, not knowing or ignoring the fact that automatic
type checking cannot be complete in the sense of finding
all errors in a program. Therefore, other methods to find-
ing errors are needed to complement automatic type check-
ing. One example is the WYSIWYT approach, invented by
Rothermel, Burnett, and others [15], which supports end
users with systematically testing their spreadsheets. An im-
portant objective of testing is to achieve sufficient coverage
of the program being tested. Supporting the user in finding
test cases attaining high coverage is the goal of automatic
test case generators.

We have developed one such tool called “AutoTest” [4],
which generates test suites that obtain 100% DU-coverage
(for reachable code). This is an improvement over a previ-
ous approach, “Help Me Test”, that was developed for the
WYSIWYT framework [14]. AutoTest is also considerably
more efficient than Help Me Test.

Once a user has identified through testing that a cell con-
tains a wrong value, the next problem is to find out where
the error is located in the spreadsheet and how to correct
it. To this end, we have developed a method called “goal-
directed debugging”, or “GoalDebug”, which asks the user
for a correct value for that cell and then computes a ranked
list of suggested changes for formulas, each of which would
cause the specified target value to be computed [2]. These
changes can be automatically applied, which eliminates a
whole class errors introduced by end users during the edit-
ing of formulas. Using a systematic study based on mutation
testing, we have found that GoalDebug consistently presents
the correct changes among the most highly ranked sugges-
tions [7].

While all the previously mentioned approaches try to de-
tect errors, the goal of the Gencel system [11] is to prevent
the introduction of errors into spreadsheets. The system is
based on a concept of templates that capture the potential
evolution of a spreadsheet over time. Changes to spread-
sheets, such as insertion and deletion of (groups of) rows
and columns are controlled by these templates that ensure
the formulas will always be adjusted correctly. In fact, we
can prove that spreadsheets maintained by Gencel based on
these templates are always free from type, range, and ref-
erence errors [12]. Templates have a visual representation
that is almost identical to the notation known to end users



from spreadsheets [9] and can be created using a visual ed-
itor. We have also developed a method to infer templates
from existing spreadsheets, which facilitates the use of Gen-
cel for legacy spreadsheets [5]. The templates inferred by
our system have been judged by experts to be better than
those developed by novice and even expert users. We have
extended the Gencel model to include more high-level mod-
eling features while still retaining its visual attractiveness.
The resulting ClassSheets model [10] also allows the integra-
tion of spreadsheet modeling into the UML modeling pro-
cess.

All of our approaches to improve the quality of spread-
sheets essentially exploit in some way or another the

e simplicity of the spreadsheet language, and
e embedding of computations in a spatial grid.

These two aspects allow the reasoning to be (a) simple
enough because complicated language features, such as re-
cursion and nested scope, need not be addressed and (b)
supported by the spatial structure exhibited by the arrange-
ment of cells.

2. FUTURE RESEARCH

Research for general-purpose languages has been quite
successful and has produced important results from which
most professional programmers benefit today. An example
are the sound type systems now to be found in mainstream
programming in languages, such as Java.

We have demonstrated with UCheck that it is indeed pos-
sible to bring the benefits of tools successfully employed
in general-purpose languages to the realm of spreadsheets.
Similarly, the Gencel/ClassSheets systems show that the
idea of high-level modeling, as known from UML, can be
employed successfully in the spreadsheet domain.

These experiences suggests as a successful strategy for fu-
ture research:

Redesign methods known from general-purpose
languages for end-user programming domains
by exploiting application-specific structures and
practices.

In the spreadsheet domain, the spatial layout of cells entails
the practice of end users to place closely related items in the
same area, or in the same row or column. It is this combina-
tion of spatial structure and corresponding user practice that
lets tools like UCheck or GoalDebug work so well. There-
fore, identifying and exploiting such links might be a key
step in designing successful end-user programming tools.

Example areas for new potential spreadsheet tools to be
investigated are refactoring, version control, and use cases,
to name just a few.

We believe that the successful transfer of concepts also
requires a critical mass of researchers working in that area,
which is currently hardly the case. Therefore, a second goal
should be the following.

Persuade programming language and software
engineering researchers to participate in the de-
velopment of tools for end-user programming.

The three most relevant papers are the following.

e UCheck, JVLC 2007 [§]
e Gencel, JFP 2006 [12]
e GoalDebug, ICSE 2007 [7]

3. REFERENCES

[1] R. Abraham and M. Erwig. Header and Unit Inference
for Spreadsheets Through Spatial Analyses. In IEEE
Int. Symp. on Visual Languages and Human-Centric
Computing, pages 165-172, 2004.

[2] R. Abraham and M. Erwig. Goal-Directed Debugging
of Spreadsheets. In IEEFE Int. Symp. on Visual
Languages and Human-Centric Computing, pages
37-44, 2005.

[3] R. Abraham and M. Erwig. How to Communicate
Unit Error Messages in Spreadsheets. In 1st Workshop
on End-User Software Engineering, pages 52-56, 2005.

[4] R. Abraham and M. Erwig. AutoTest: A Tool for
Automatic Test Case Generation in Spreadsheets. In
IEEE Int. Symp. on Visual Languages and
Human-Centric Computing, pages 43-50, 2006.

[5] R. Abraham and M. Erwig. Inferring Templates from
Spreadsheets. In 28th IEEE Int. Conf. on Software
Engineering, pages 182-191, 2006.

[6] R. Abraham and M. Erwig. Type Inference for
Spreadsheets. In ACM Int. Symp. on Principles and
Practice of Declarative Programming, pages 73-84,
2006.

[7] R. Abraham and M. Erwig. GoalDebug: A
Spreadsheet Debugger for End Users. In 29th IEEE
Int. Conf. on Software Engineering, 2007. to appear.

[8] R. Abraham and M. Erwig. UCheck: A Spreadsheet
Unit Checker for End Users. Journal of Visual
Languages and Computing, 18(1):71-95, 2007.

[9] R. Abraham, M. Erwig, S. Kollmansberger, and
E. Seifert. Visual Specifications of Correct
Spreadsheets. In IEEFE Int. Symp. on Visual
Languages and Human-Centric Computing, pages
189-196, 2005.

[10] G. Engels and M. Erwig. ClassSheets: Automatic
Generation of Spreadsheet Applications from
Object-Oriented Specifications. In 20th IEEE/ACM
Int. Conf. on Automated Software Engineering, pages
124-133, 2005.

[11] M. Erwig, R. Abraham, I. Cooperstein, and
S. Kollmansberger. Automatic Generation and
Maintenance of Correct Spreadsheets. In 27th IEEE
Int. Conf. on Software Engineering, pages 136-145,
2005.

[12] M. Erwig, R. Abraham, S. Kollmansberger, and
I. Cooperstein. Gencel — A Program Generator for
Correct Spreadsheets. Journal of Functional
Programming, 16(3):293-325, 2006.

[13] M. Erwig and M. M. Burnett. Adding Apples and
Oranges. In 4th Int. Symp. on Practical Aspects of
Declarative Languages, LNCS 2257, pages 173-191,
2002.

[14] M. Fisher, G. Rothermel, D. Brown, M. Cao, C. Cook,
and B. Burnett. Integrating Automated Test
Generation into the WYSIWYT Spreadsheet Testing
Methodology. ACM Trans. on Software Engineering
and Methodology, 15:150-194, 2006.

[15] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets.
ACM Transactions on Software Engineering and
Methodology, pages 110-147, 2001.



