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1 Introduction

Stochastic process algebras (e.g. PEPA [10], EMPA [1], TIPP [9]) emerged about
15 years ago as system description techniques for performance modelling. They
have enjoyed some considerable success in this arena. For example, PEPA has
been used to study the performance of a wide variety of systems [12, 2, 3, 18, 13].

This analysis has been based on the generation of a continuous time Markov
chain (CTMC) underlying the labelled transition system of the process algebra
model, derived via the interleaving structured operational semantics. The CTMC
facilitates steady state and transient analysis numerically. From these distribu-
tions many performance metrics can be derived, such as utilization, throughput,
and mean time to congestion. Unfortunately, as with all state-based modelling
techniques, CTMCs, and consequently stochastic process algebras, suffer from
problems of state space explosion. Such models can be regarded as being at the
individual level as all details of all the components of the model are recorded in
the state of the model and its subsequent analysis.

Although developed for performance modelling of computer and communica-
tion systems, stochastic process algebras have proved to be useful for modelling
other systems as well. In particular, in recent years there has been considerable
interest in using stochastic process algebras and similar formalisms for express-
ing models for systems biology [16, 17, 4, 6]. These models also exhibit problems
of state space explosion, as both the types of components and the number of
components of each type are typically large.

In recent work we have been exploring an alternative mapping from a system
description in the PEPA stochastic process algebra. In this mapping we aim to
capture the behaviour of PEPA components at a population level. Rather than
capturing individual behaviours as happens in the CTMC semantics, we instead
map to a set of non-linear ordinary differential equations (ODEs) [5, 11]. This
incurs some loss of information with respect to, for example, the steady state
probability distribution of the CTMC. Nevertheless the solution of the set of
ODEs can still give us useful quantitative information about the system.

2 Individual vs. Population models

In most performance models the focus is on the individual entities within the
model. These individuals may be customers or tasks within the system, as well as
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the software and/or hardware entities of which the system is comprised. However
in many modern systems the number of types of entities is not necessarily very
big, while the number of entities of each type is large. This suggests that it may
be better to instead view the system in terms of a small number of populations
rather than individuals.

Of course making this switch to the population level results in some loss of
information. It is no longer possible to precisely record the state of each entity.
This information is aggregated into information about the statistics of the state
of the population to which the entity belongs. However, for some performance
measures at least, this population level view is sufficient. Such an abstract view
has previously been adopted in the diffusion approximation technique for queue-
ing networks [14, 15].

These alternative styles of model are already available in the systems biology
arena:

Stochastic Simulations (Gillespie et al. [7]) are individual-based models in
which each molecule is treated separately;

Ordinary Differential Equations (ODEs) are population-based models in
which populations of molecules are represented abstractly as concentrations.

We view these not as competing approaches but as alternative analysis tech-
niques and we would like access to both whilst also being able to carry out
process algebra-based analyses such as model checking. We have modified ver-
sions of the PEPA workbench [8] which will extract underlying models amenable
for three distinct forms of analysis, representing different interpretations of the
PEPA system description:

– CTMC model suitable for numerical solution for steady state and transient
analysis or model checking against properties expressed in the CSL modal
logic;

– A representation of a CTMC suitable for simulation using Gillespie’s stochas-
tic simulation technique;

– A set of ODEs which may be solved numerically using a variety of techniques.

The BioCHAM formalism offers a similar spectrum of interpretations and
analysis techniques [6].

3 Deriving the ODEs

In this section we give a brief overview of how a set of ODEs may be derived from
a PEPA model. The interested reader is referred to [11] for more details. There
are two crucial steps. The first is to establish a more abstract representation
of the state of the system than that typically used as the basis for Markovian
analysis. The second is to assume that state change is a continuous rather than
a discrete process.

When taking the population view of the system, rather than record the local
state of each entity (current derivative) and treat the global state as the complete
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set of local states, we instead record the local state of each subpopulation (the
number of each possible derivative currently exhibited) and treat the global
state as the set of subpopulation states. Thus we first identify the distinct entity
types within the system and the local states or derivatives of each one. Each such
derivative is associated with an entry in a state count vector. The number in the
corresponding place in the vector records the current number of derivatives of
that type.

This represents a considerably more compact state representation when there
are more repeated copies of components, than there are local derivatives. How-
ever this state representation is still inherently discrete. The population view
is really obtained when we make the assumption that these state variables are
subject to continuous, rather than discrete, change. The evolution of each count
variable can then be described by an ODE. Note that there is an implicit as-
sumption being made here that the rate of the activity is deterministic rather
than exponentially distributed.

The PEPA definitions of the component specify the activities which can
increase or decrease the number of components exhibited in the current state.
For any derivative the entry activities are those that bring the component into
this state, while the exit activities are those enabled in this state and when
performed result in a change of derivative. The cooperations show when the
number of instances of another component will have an influence on the evolution
of this component. This will introduce non-linearity into the set of ODEs.

Let us consider one entry of the state count vector: N(Cij
, t) denotes the

number of Cij
derivatives at time t.

Consider the change in a small time δt:

N(Cij
, t + δt) − N(Cij

, t) =

−
∑

(α,r)∈Ex(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl

, t))
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entry activities

δt

Dividing by δt and taking the limit, δt −→ 0 we obtain:

dN(Cij
, t)

dt
= −

∑
(α,r)∈Ex(Cij

)

r × min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

+
∑

(α,r)∈En(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

In practice we do not wish to derive the system of ODEs representing a
PEPA model from first principles in this way. Instead the derivation proceeds
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Fig. 1. Alternative representations and the relationships between them

via an intermediate data structure, termed the activity matrix, which records the
influence of each activity on each component type/derivative. The matrix has
one row for each component type and one column for each activity type. One
ODE is generated corresponding to each row of the matrix, taking into account
the negative entries in the non-zero columns as these are the components for
which this is an exit activity [11].

4 Conclusions

The use of stochastic process algebra models for Markovian based modelling is
well-established, but hampered by the problem of state space explosion. In some
models the problems arise because there are many instances of components of the
same type. In this case the use of more abstract mathematical models which focus
on the statistics of the population rather than the individuals seems promising.
We have recently established a mapping to such a mathematical model for the
stochastic process algebra PEPA [11]. This is an alternative, not a replacement
for existing techniques.

We are currently exploring the relationship between models derived in this
way and other models which can be derived from the PEPA description. Our
PEPA models of biochemical pathways have been experimenting with different
levels of abstraction. Whereas treating each molecule in the system as a distinct
entity or component in the model corresponds to the stochastic simulation view
of the system, we have developed models with discrete levels of concentration,
corresponding to the ODE view [4]. These models can also be interpreted as
CTMCs and we are investigating the relationship between the ODE and the
CTMC obtained in these cases (see Figure 1).
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