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Abstract. Many communication systems, distributed algorithms, or heap manip-
ulating programs are hard to verify due to their inherent unboundedness. Their
semantics can be described by evolving graphs. Graph grammars are a natural,
intuitive, and formally defined method to specify systems of evolving graphs,
whereas verification techniques for them are scarce.
We present an abstract interpretation based approach for graph grammar veri-
fication. Single graphs are abstracted in two steps. First similar nodes within a
connected component, then similar abstracted connected components are sum-
marized. Transformation rules are applied directly to abstract graphs yielding a
bounded set of abstract graphs of bounded size that over-approximates the con-
crete graph grammar semantics and can be used for further verification. Since
our abstraction is homomorphic, existential positive properties are preserved un-
der abstraction. Furthermore, we identify automatically checkable completeness
criteria for the abstraction. The technique is implemented and successfully tested
on the platoon case study.

1 Extended Abstract

We propose a new verification technique for systems with an unbounded number of
dynamically created, stateful, linked objects. Prominent examples of such systems are
communication systems with an unbounded communication topology, heap manipu-
lating programs, distributed algorithms, and ad-hoc networks. All of them prove hard
to verify. They are intuitively modeled using graph grammars, because a state of such
a system can be modeled as a node-labeled graph, hence the evolution of graphs as
a graph grammar. Graph grammars come in many flavors, and we refer to [1] for an
overview.

A graph grammar consists of a set R of transformation rules and an initial graph.
For now, the latter is fixed to be the empty graph E. Generally, the semantics [[R]] ofR,
i.e. all graphs generated by application ofR starting from E, is an infinite set of graphs
of unbounded size. Therefore, properties of [[R]] are hard to verify.

We aim at automatically computing a bounded over-approximation [[R]]α of [[R]].
Our technique is based on the abstract interpretation framework of [2]. In abstract inter-
pretation, two things need to be defined. First, an abstraction α(G) for a single graph
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G; second, an abstract transformer  α mimicking the concrete transformer  . The
latter corresponds to the application of a transformation rule.

The abstraction α(G) of graph G is computed in two steps. The first step is applied
connected component-wise. In each connected component of G, two nodes are mapped
to a summary node, if they have the same label, and if the set of labels of their respective
adjacent nodes are equal. After that, isomorphic abstract connected components are
summarized. The first step of this abstraction was inspired by the canonical abstraction
of [3].

An abstract transformation is performed by applying a concrete rule of R directly
to an abstract graph. To do so, the abstraction is locally undone to enable matching
as in concrete graphs. This process is called materialization. Materialized graphs are
transformed exactly like concrete graphs. However, the graph resulting from this con-
crete update needs to be abstracted again to guarantee the boundedness of its size. This
implies that our technique computes the over-approximation [[R]]α fully automatically
given only the set R of graph transformation rules. Interesting properties of the tech-
nique include:

– Soundness: α(G) ∈ [[R]]α for each G ∈ [[R]]
– The abstraction preserves exactly the applicability of rules for a restricted set of

rules and a precisely specified class of abstract graphs. In this case, a rule is applica-
ble to some α(G) if and only if it is applicable to all graphs H with α(H) = α(G).

– The abstraction is homomorphic thus preserving existential positive properties: A
graph that does not occur as a subgraph in [[R]]α will never occur as a subgraph of
any G ∈ [[R]].

– Completeness: three statically checkable notions of completeness are identified for
our technique; i.e. given [[R]]α, we can decide whether it is complete under these
three notions of completeness. Completeness results are rare in abstract interpre-
tation. Surprisingly, our analysis is able to decide the word problem for a certain
class of graph grammars.

Our work is in a line of research with, e.g., [4–7], where the first one is closest to our
work. It is the only other approach applying transformation rules directly to abstract
graphs. It was developed independently of our approach. The underlying abstraction
[8] relies on counting incoming and outgoing labeled edges, i.e. it is rather edge-centric
compared to our node-centric approach. The idea of materialization-update-abstract oc-
curs in [4], too, and the approach does not need unconstrained node creation. However,
our approach provides clear advantages. We are not restricted to deterministic graphs
and provide a more refined notion of summary nodes. Most importantly, our layered ab-
straction is more precise, when it comes to systems of many connected components. We
show stronger results like criteria for exact preservation of matches and even complete-
ness, and our technique is implemented. With respect to the considered graph grammars,
we are able to include a restricted form of negative application conditions, which is not
possible in the approach of [4].

Case Study: Car Platooning Our case study is taken from the California PATH project
[9], the relevant part of which is concerned with cars driving on a highway. In order to
make better use of the given space, cars heading for the same direction are supposed to
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Fig. 1. The GTS Rmerge for Platoon Merge. [Create] and [Destroy] model free agents
driving onto and off the highway; [Init1-4] initiate a merge; [Pass] hands over follow-
ers, and [Ldr2Flw] makes the back leader a follower. This rule shows an instance of a
partner constraint.

drive very near to each other building platoons. Platoons can perform actions like merg-
ing, splitting, or letting cars in and out of a platoon. There are many features that make
verification difficult: destruction and dynamic creation (i.e., driving onto and off the
highway) of cars, an evolving communication topology, concurrency. All the verifica-
tion methods developed in [9] are inappropriate, because they consider static scenarios
with a fixed number of cars and only limited concurrency.

A platoon consists of a leader, the foremost car, along with a number of followers.
A leader without any followers is called free agent and is considered a special platoon.
Within a platoon there are communication channels between the leader and each of its
followers. Inter-platoon communication is only between leaders. As a running example
the platoon merge maneuver is studied. It allows two approaching platoons to merge.
The merge maneuver is initiated by opening a channel between two distinct platoon
leaders, i.e. leaders or free agents. Then, the rear leader passes its followers one by one
to the front leader. Finally, when there are no followers left to the rear leader, it becomes
itself a follower to the front leader.

Platoons as GTS The merge maneuver is straightforward to model as GTS with cars
modeled as nodes, channels as edges, and internal states of cars as node labels. The
GTS Rmerge implementing the merge maneuver is given in Figure 1. We refer to this
figure for an intuitive understanding. We employ five node labels in Rmerge. Three of
the labels – ldr, flw, and fa– represent the states of a car being a leader, follower, or free
agent as described above. Two labels – bl and fl – are used to model situations during
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Fig. 2. A graph generated byRmerge

a merge maneuver. They distinguish the leader of the back and the front platoon in a
merge. Note that the physical position of platoons is not modeled in the GTS.

The rules [Create] and [Destroy] model free agents driving onto and off the highway.
The [Init1-4] rules model the initiation of a merge. Followers are handed over from the
back to the front leader in rule [Pass]. Eventually, after passing all followers, the rule
[Ldr2Flw] can be applied yielding another platoon. It makes use of a partner constraint
requiring the back leader not to have any followers left. Figure 2 shows a sample graph
generated by Rmerge. Subgraphs A, B, and F are free agent platoons. C and D are
well-formed platoons of three and four cars, respectively, whereas E depicts a snapshot
during a merge maneuver.

For the GTS Rmerge our analysis is complete in the strongest sense, i.e. we find
a bounded abstraction describing exactly all possible states on a highway. We are able
to show that all but two examples from our platoon benchmark are complete in the
strongest sense. One of the non-complete examples is corrupted, the other generates
platoons of even size.
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