A Petri Net Approach to Verify and Debug
Simulation Models

Peter Kemper!' and Carsten Tepper?

L College of William and Mary, Department of Computer Science
Williamsburg, Virginia 23187-8795, USA
kemper@cs.wm.edu
2 Universitit Dortmund, LS Informatik TV
D-44221 Dortmund, Germany
tepper@udo.edu

Abstract. Verification and Simulation share many issues, one is that
simulation models require validation and verification. In the context of
simulation, verification is understood as the task to ensure that an exe-
cutable simulation model matches its conceptual counterpart while vali-
dation is the task to ensure that a simulation model represents the sys-
tem under study well enough with respect to the goals of the simulation
study. Both, validation and verification, are treated in the literature at a
rather high level and seem to be more an art than engineering. This paper
considers discrete event simulation of stochastic models that are formu-
lated in a process-oriented language. The ProC/B paradigm is used as
a particular example of a class of simulation languages which follow the
common process interaction approach and show common concepts used
in performance modeling, namely a) layered systems of virtual machines
that contain resources and provide services and b) concurrent processes
that interact by message passing and shared memory. We describe how
Petri net analysis techniques help to verify and debug a large and de-
tailed simulation model of airport logistics. We automatically derive a
Petri net that models the control flow of a Proc/B model and we make
use of invariant analysis and modelchecking to shed light on the alloca-
tion of resources, constraints among entities and causes for deadlocks.
This paper is a revised version of [1].

Keywords. Discrete event simulation, verification, debugging, process
interaction, Petri net analysis

1 Introduction

Simulation is a very popular and common analysis technique to obtain quantita-
tive results for the dynamic behavior of discrete event dynamic systems. It allows
to analyse very detailed and fine grain models if necessary, which makes it the
method of choice for instance in application areas like manufacturing systems
and logistics.

Dagstuhl Seminar Proceedings 06161
Simulation and Verification of Dynamic Systems
http://drops.dagstuhl.de/opus/volltexte/2006 /708

2 P. Kemper, C. Tepper

However, large and detailed models are a challenge for verification, valida-
tion, and debugging of simulator code. The price to pay for a powerful sim-
ulation language is that debugging a model is about as difficult as debugging
software in general, and if the simulation model adopts the common and popular
process-based approach then the complexity is that of debugging multithreaded
programs. In this paper, we try to get beyond what can be achieved by syntax
checking and interactive step-by-step debugging of simulator code as it is pro-
vided by state-of-the-art simulation software. Our research has been stimulated
by a simulation study of an air cargo network. The resulting simulation model
is formulated in the ProC/B notation, a process-based graphical simulation lan-
guage. The goal of that case study is to quantify the effect of different bundling
strategies that are applied at two hubs in a network of airlines and airports for
the transportation of packets. Our interest is in the lessons learnt in the process
of creating an executable simulation model that is supposed to describe the be-
havior of a conceptual model. We recognized that once simple errors, which are
detected by a syntax and consistency check, have been corrected, there is a class
of errors that yield partial deadlocks among interacting processes and that has
its roots in constraints due to the finite capacity of passive resources and simul-
taneous allocation of multiple resources. We propose to map such a model to a
Petri net and use invariant analysis and modelchecking to identify constraints of
a model or particular submodels. The technique applies to submodels in isolation
as well as to a hierarchically structured overall model.

The paper is structured as follows. In Section 2, we briefly recall main con-
cepts of the ProC/B notation and describe a ProC/B model that is used in a
case study of air cargo traffic and that has stimulated this research. In Section 3,
we precisely specify the particular issues of model verification that we address.
Section 4 recalls Petri nets and describes how the control flow of a ProC/B
model is mapped to a Petri Net. Section 5 considers analysis issues, in Section
5.1 we recall invariant analysis and propose its use for finding constraints and for
identifying the role of resources in a ProC/B model. Section 5.2 shows to what
extend modelchecking and liveness analysis of a Petri net helps to find deadlocks
in a submodel. We conclude in Section 6.

2 Modeling Air Cargo Networks with Process Chains

An air cargo network can be organized in many ways. In [2], the potential eco-
nomic impact of various strategies for bundling traffic at hubs is evaluated with
the help of a large and detailed simulation model.

That model follows a process-based approach, where packets are entities that
travel through a network of resources from a starting airport towards a destina-
tion airport via two hubs. The model incorporates a flight schedule with exact
dates and planes of different kinds, in particular planes of different capacities.
Packets are entities that require storage space at their current location and time
to handle them with the necessary resources (personnel, fork lifts etc). The cho-
sen level of detail implied a large model that is structured into a hierarchy of 3

Petri Net Verification of Simulation Models 3

|Pr0C/B element|Symbol|Semantic for Dynamic Behavior |

Source ® process creation

Sink & process termination

Process Chain activity in a process chain, semantics:

Element (PCE) EF (stochastic) delay, service call

Sequence — |sequential order of activities, from left to right
AND-Connector synchronization of incoming activities (left) with

joint start of outgoing activities (right)
OR-Connector probab. /bool. branching, selects single activity (right),

Et triggered by termination of any activity from left
PC-Connector synchronization of processes (left side)

ﬂ”% continuation or creation of processes (right side)

Functional Unit structuring element, a form of container,
(FU) - provides services, contains resources
Server familiar queuing station

Counter familiar passive resource (semaphore etc.)

@

Table 1. Core ProC/B modeling elements: graphical denotation and semantics

levels and consists of a number of submodels. The model is open in the sense
that packets are generated at airports and terminate at their individual des-
tination airports, so the number of packets in the system is not constant and
not limited (although storage areas are). In this section, we will give more de-
tails on the model and use it as a running example to illustrate aspects of the
ProC/B modeling formalism [3]. The ProC/B formalism has been developed in
the collaborative research center “Modeling of Large Logistic Networks” (SFB
559)! at the university of Dortmund and it is dedicated towards modeling logis-
tic networks in a process-based manner. A set of software tools complement the
formalism to allow for a graphical model specification and simulative analysis of
ProC/B models. From a conceptual point of view, the ProC/B notation yields
simulation models that are service networks with active resources like queueing
servers and passive resources like storage areas where a dynamic number of en-
tities are generated at some source nodes, experience a life-cycle that follows a
given set of possibly complex patterns of behavior (called process chains, PCs),
and terminate at some sink node. Table 1 shows core ProC/B modelling ele-
ments. A Process Chain Element (PCE) is an elementary operation that can
describe a delay, or a service call to a functional unit, which is analogous to
a function call in programming, or some native code directly executed by the

! see http://www.stb559.uni-dortmund.de/index.php?lang=eng

4 P. Kemper, C. Tepper

simulation engine. Arrows connect PCEs and in this way they also define an
order among PCEs and other nodes of a ProC/B graph. Other elements as for
branching, fork and join, and dynamic creation of entities are familiar concepts
known from progamming languages.

Entities can carry parameters, so do service / function calls. Two types of
resources are given, counters (like local variables of finite domain) correspond
to passive resources, servers correspond to queueing stations and are used to
model load-dependent delays and queueing effects. An entity performs steps as
specified by its process chain. An entity may experience delays at delay PCEs
and at servers; it may be stopped for some time or forever while waiting for
a sufficient number of other entities to arrive at an AND-connector, at a PC-
connector or at a sequence with a given cardinality that carries only batches of
entities. In addition, it may also be blocked at an access operation to a counter
that would give a range violation, e.g., a counter with range {0,1,,...,5} would
block a subtraction that results in a value less than 0 and an addition that would
results in a value greater than 5.

The ProC/B formalism has two notions of hierarchy, namely a hierarchy
based on refinement of actions and a hierarchy based on inclusion of resources,
and it integrates both into a single concept, namely that of a functional unit
(FU). Fig. 1 shows a FU for a storage area which is employed in several slightly
larger versions in the air cargo model. A FU provides services that can be called
from their environment, and whose detailed behavior is defined inside its FU.
In Fig. 1, there are 4 services named in, out, content, and update Reward. The
behavior of a service is expressed again by PCs, i.e., process patterns made up of
activities. For example, service content has an (output) integer parameter that
specifies how many packets are currently on stock; it consists of 3 PCEs, where
the first allocates a semaphore, the second name read calls a service content of a
contained FU named B to obtain a value for the amount of packets on stock and
assign it to parameter amount, and the third releases the semaphore. Note, that
we had to simplifiy the store FU of the real model to match space requirements
of this paper. The motivation for using a semaphore is to ensure atomicity over
several steps performed by a particular service. Service out removes packets from
stock, content checks the number of packets on stock and updateReward updates
performance measures that shall be evaluated in a simulation run. Note that
updateReward contains PCEs with native simulator code and a state-dependent
branching connector to model a case-switch construct. Fig. 1 illustrates as well
that the hierarchy is also based on an inclusion of resources, i.e., the store FU
contains another FU B and a counter semaphore. Note that this inclusion hier-
archy must by acyclic, it does not allow for recursion.

The air cargo model has a hierarchy with 3 levels. At the top level, entities
model packets with a source and destination airport. Those entities call services
of 4 FUs. Two FUs model flight schedules for flights between hubs B and C and
between hubs and feeder airports. Furthermore, there is one FU for a hub B and
one for a hub C and all packets/entities call a service at each hub to make the
connection from hub B to hub C. Packets are transported in so-called unit load

Petri Net Verification of Simulation Models 5

devices (UIDs), which means that it is necessary to break down a incoming UID
of packets, to reorganize packets for connecting flights and to build up new UIDs
for outgoing flights. The model focuses on those procedures, hence the hub FUs
are rather complex and contain sub-FUs to model the bundling of packets in
further detail.

The goal of the simulation study was to evaluate how those processes are or-
ganized in a cost-efficient and reliable manner. The air cargo model is evaluated
by simulation. The ProC/B toolset makes use of HIT [4] as a backend simulation
engine for the quantitative analysis of ProC/B models which resulted in perfor-
mance figures and cost estimates for different configurations of the model, see
[2] for results.

Store B
Filo View Anatysio

n peotact K anabia A
@_’Oﬁ- s @1 >_?’ e)ﬁ’ a1 >3
Famaphar changs R change Hamaphar change
& oul o Soeamer RY N, enabia N =®
t’)_-’o('ﬁa-m el) a1p >{Y
Garnaphar changs Hchangs ‘Semaphar changs

contant

ralr:u;n‘"m peotact), read _N, enabia - ®
=1 (311 = (N={amounl) (317 =
Garnaphar changs B consent Fémaphar thangs

. update_Reward § peamaer R : | S N enanie ”
H—-’?ﬁ 110 P—’%m..nm,lwu{,ﬂ Elae =1 i =
Samaphor changs B content CODE Samaghor changs
‘E UpdataRaward_b : 5
ABNOTE -
CoDE

ACT=[00
oy R.l{
=
MR [1]

Bemaptn
change (=
amar

amer_or_skip

confent

Fig. 1. Definition of FU Store at hub B, invariants are highlighted

3 Problem Statement

ProC/B models formulate open systems in the sense that sources can generate
an unlimited number of entities over time. This point of view also holds for FUs
which experience an in principle unlimited sequence of calls to the set of services

6 P. Kemper, C. Tepper

they provide. A main issue for the correctness of a model is that each entity will
eventually reach a sink node - terminate in case of a process chain, return in
case of a service call. At least for a common simulative analysis of the steady
state behavior of a model, this would be considered a normal requirement.

The crux is that a performance model is used to study the impact of blocking
situations on performance measures, however that blocking should not be per-
manent. ProC/B has a number of constructs that may cause blocking: a) change
operations at counters which would lead to a range violation, e.g., removing ob-
jects from an empty buffer would be blocked till the buffer is sufficiently filled,
b) join operations given by AND-connectors and PC-connectors with several in-
coming arcs, ¢) multiplicities at arcs that require certain batch sizes to proceed.

Hence, we want to analyze a model whether it allows for (partial) deadlocks
among entities in a simulation run. Note that such liveness properties are difficult
to establish in general, hence our more modest goal is to assist a modeller in
the following way: 1) identify the role of counters, whether they are used to
model reusable or consumable resources (hammer vs nails), 2) for each process
chain and each service of a FU identify whether it can be repeated arbitrarily
often or whether there are constraints on ratios between service calls of a FU
or process chains of a model, 3) which parts of a process chain or service have
limited access due to reusable resources (like semaphores), 4) if there are parts
in a process chain or service that require simultaneous allocation of multiple
resources.

In the following section, we describe how to map the control flow of a ProC/B
model to a Petri net, such that Petri net analysis techniques can help us to
achieve those goals.

4 Mapping a ProC/B model to a Petri Net

Before we describe how a ProC/B model can be mapped to a Petri net, we briefly
recall some Petri net related terminology, see e.g., [5] for details.

PNs are directed bipartite graphs with two types of nodes called places and
transitions which are connected by arcs. A place represents a state variable
with range INy. Its graphical notation is a circle. Its current value is considered
as the number of tokens that reside at that place. A transition represents a
rule for changing those state variables that are connected to it. Its graphical
notation is a rectangle. State changes are based on addition and subtraction
of constant values. Formally, a Petri Net (PN) is defined as a 5 tuple PN =
(P, T,1-,I", My),where P = {p1,...,pn} is a finite and non-empty set of places,
T = {t1,...,tm} is a finite and non-empty set of transitions (PNT = @), I,
It : PxT — INy are backward, forward incidence functions, and My : P — INg
is the initial marking. The initial marking M, is a special case of a marking
M : P — INy. A marking M denotes that state of a Petri net, it can be
interpreted as an integer (row) vector which includes per place p one integer
value describing the number of tokens on place p. Let ot := {p € P|I~(p,t) > 0},
te := {p € P|I"(p,t) > 0} denote the input (output) places of a transition t,

Petri Net Verification of Simulation Models 7

analogously for ep := {t € T|I*(p,t) > 0}, pe := {t € T|I (p,t) > 0} for
place p. A Petri net describes a dynamic behavior, i.e., changes to the current
marking that are performed by the firing of transitions. A transition ¢ € T is
enabled at marking M, denoted by Mt >, ifft M(p) > I (p,t), Vp € P. A
transition ¢t € T that is enabled at marking M may fire and yield a new marking
M* where M‘(p) = M(p) — I~ (p,t) + I (p,t), Vp € P, denoted by Mt > M:.
The incidence matrix I is defined as a n X m matrix with | P |=n, | T |=m
and I(p,t) = It (p,t) — I~ (p,1).

Figure 2 shows a Petri net that corresponds to the FU in Fig. 1. Each place
and each transition has a unique identifier that is not given in the figure, non-
unique names are displayed instead that match corresponding elements of the
ProC/B model. The part on the top of the figure matches service in, it starts on
the left side with transition insource that has an empty preset, is thus always
enabled and its firing creates a token at place protect. Place protect is the input
to transition protect, so is place semaphoreC. Note that the places semaphore,
semaphoreC, B, and BC, are shared places, so called fusion sets, which means
there are multiple graphical representations of the same place in the graph in
order to avoid cluttering the presentation. Firing a sequence of transitions in-
source, protect, Bin, enable, insink would give the initial marking again but with
one token less at place BC and one more at B.

For the analysis of ProC/B models, we propose a mapping to Petri nets which
we briefly discuss in the following. The mapping can be done for the complete
ProC/B model or for FUs. Analysis results of the generated PN model can be
transfered back to a ProC/B model, such that a modeler need not be familar
with PN theory.

The key idea of the mapping is to translate a PCE into a place p and a
transition ¢ such that p € et. From that building brick, a sequence of two PCEs
A and B is mapped to a sequence of mappings of A and B where the transition
of A outputs a token to the input place of B. A comparison of service in in Fig.
1 with the upper part of Fig. 2 will make the approach more clear. The amount
of entities at a PCE is expressed by the marking of the place that corresponds
to that PCE. Firing of the transition describes moving of one ore more entities
to the successor PCE. Similarly, other core elements of Table 1 are mapped, e.g.,
place and transition protect correspond to PCE protect, places semaphore and
semaphoreC' correspond to counter Semaphore, and the change operation with
value 1 is described by I (semaphore, protect) = 1. Note that the limited range
of the counter variable is modeled by a complementary place semaphoreC that
gives the “free capacity” in the range of that variable. There are established
means to model Branching, Fork, Join etc operations by Petri nets, the lower
part in Fig. 2 models the state-dependent branching at the OR-connector by a
non-deterministic choice with 3 concurrently enabled transition or. Since access
to a server can only result in delays but no blocking, we map service calls to a
server just like an delay PCE by a simple place-transition sequence. Service calls
to FUs can be handled as a macro expansion,i.e., by replacing the PCE of the
call by the PC of the service and then by mapping the extended ProC/B model.

8 P. Kemper, C. Tepper

Note that internal resources of a FU are not multiplied that way but remain
shared. In our case, the service change of FU B resulted into a simple access to
a counter B, which is shared among services in and out. Due to lack of space,
we refer to [6] for more details on mapping ProC/B models to Petri nets.

The limits of the mapping are that 1) state-dependent decisions are mod-
eled by non-determinism, 2) variables and parameters are ignored, respectively
require a constant value, 3) PCEs with native code are treated by a simple tran-
sition, 4) entities are not unique objects, entities becomes tokens and thus tokens
at the same place cannot be distinguished, and 5) timing aspects are ignored.
Since we omitted any effect and impact on data structures like variables, rewards
etc, and timing, we denote this mapping a mapping of control flow rather than
a mapping of a full ProC/B model. The main motivation for the mapping is to
make use of invariant analysis which applies to Petri nets and which we discuss
next.

0/0 0/0 0/0 0/0
() ()

) D
/ N /
Bin Bin enable able inSink inSink
Jal 0/0 0/10 0/0 "

O O O O O

semaphore semaphoreC B BC semaphore semaphoreC

inSource protect

0/0

0/0 0/0 0/0 0/0
()

)
/ N /
Bout out enable able outSink outSink
il 0/0 0/10 0/0 "

outSource protect
C O O O O O
semaphore semaphoreC B BC semaphore semaphoreC
0/0 0/0 0/0 0/0
)))
/ LT N\ N\
readSource protect read read enable able' readSink readSink
0/0 il 0/0 n
semaphore semaphoreC semaphore semaphoreC

0/0

UpdateReward_a UpdateRewarth a

0/0 0/0 0/0 0/0
)
/ LT A /
updateSource protect read read or or UpdateReward_b UpdateReward_b
0/0 il /0
semaphore semaphoreC or
0/0 0/0 0/0
M) M)
/ / L N
updateSink updateSink ably enable writePeak writePeak or
7n)/0
semaphoreC semaphore

Fig. 2. PN model of FU ‘StoreB’

Petri Net Verification of Simulation Models 9

5 Analysis

We present a two-step approach. The first step (model-based analysis) focuses
on the static structure of a Petri net. In the latter step (state-based analysis), the
state space of the Petri net is generated and a liveness check or model checking is
performed. In the following, we assume a reasonably well specified model which
succeeds a simple syntax and consistency check, for instance, there is a minimal
connectivity between source and sink nodes, and we assume that services of FUs
and process chains have been tested to work at least once for a given model.

5.1 Invariant Analysis

The notion of invariants is known for long in Petri net theory, so we only briefly
recall definitions and properties. A vector v € Z",v # 0 is called P-Invariant
if vT -1 = 0 with n =| P | and I denotes the incidence matrix. A vector
w € ™ w # 0 is called T-Invariant if I - w = 0 with m =| T |. We are only
interested in semi-positive invariants, i.e., v € INJ,w € IN{J", and those places
(transitions) that have a positive value in v (w) give the support of an invariant.
Invariants are additive - the sum of invariants is an invariant again - so if a net has
at least one semi-positive invariant, then the set of invariants is infinite, which
motivates consideration of a generating set of minimal invariants. Algorithms
for the computation of that set are known, in particular [7]. The algorithm has
an exponential worst case time and space complexity but in practice, it works
extremely well and efficient in most cases.

A semi-positive P-invariant v means that the weighted number of tokens on
the support of v is constant for all reachable markings M of the net, formally,
vT'-M = vT-My = const. A semi-positive T-invariant w means that if a sequence
of transitions is fired that contains each transition ¢ as often as wy, then the
change of markings in total is zero, which means that the firing sequence is a
loop that leads back to the marking where it started. Note that a t-invariant
considers only the effect but does neither check for the enabling of transitions
nor does it give information of a possible order of transitions in that sequence.
Nevertheless, the good news is that invariants can be computed independently
from an initial marking and independently from the size of the state space, even
for unbounded nets with an infinite number of markings.

We apply invariant analysis to different parts of a Petri net that results from
mapping a ProC/B model or one of its FUs. We describe the procedure by help
of a net for our example FU as shown in Fig. 2, the analogous treatment of
process chains for a full ProC/B model is immediate.

1st step: t-invariants of a service without consideration of resources.
We start with t-invariants of a net that results from mapping a single service
without places that correspond to resources. For that service, we expect one
invariant w (several invariants in case of branching/non-deterministic choice)
that covers the net. If the net of a single service is not covered, it is likely that
there is a modeling error since that service call would at least partially retain
inside the FU. We check the values of the source and sink transitions to obtain

10 P. Kemper, C. Tepper

ratios for the input/output behavior of that service. A 1:1 ratio is considered the
normal case, however other ratios are possible. The existence or non-existence
of invariants and the ratio is reported to the modeller.

In the example, the upper most service in would yield a t-invariant with a
value 1 for transitions insource, protect, Bin, enable, and insink. Note that places
like semaphore and B are not part of the net in the 1st step.

2nd step: t-invariants of services with consideration of resources.
We check the invariants of the first step, say an invariant w, with respect to
the net of the complete FU. Let d = I - w, this vector denotes the effect of the
service and we check if there is a non-zero effect on counters which are accessed
by that service. In the example, the invariant of the upper most service obtained
in the first step is not an invariant of the complete net. It would not change the
marking of semaphore but the marking of B (and BC).

We classify those counters with a non-zero effect as consumable resources
since (depending on the sign of the entry in d) the service either produces or
consumes tokens from the place of that counter. Counters that are accessed by a
service but are effectively unchanged at termination of that service are classified
as reusable resources. In the example, we obtain that semaphore is a reusable
resource, B is a consumable resource. The terminology follows the classical con-
siderations for deadlock detection in operating systems [8]. The classification of
counters is expected to be consistent among all services and is reported to the
modeller.

If consumable resources are present, we compute t-invariants for the complete
net. In the example, this is the net as shown in Fig. 2 and for instance there
is a t-invariant that follows the flow of packets from insource to outsink. We
check if all transitions for the access to consumable resources are covered by
t-invariants. If this is not the case, there is likely an error in the model and
by reporting corresponding transitions respectively PCE elements we can give
guidance to the modeller for further investigations.

Furthermore, the net construction implies that t-invariants always need to
include some source and sink transitions. Hence, if a t-invariant w covers a
consumable resource, at least two services are involved and we can report input
output ratios for those services from the values of w. By help of the ratios
obtained in step 1, we can transform those ratios into input:input ratios between
at least two services and report those to the modeller. Those ratios formulate a
constraint on the usage of services in the long run.

The motivation behind is that consumable resources can be seen as a com-
munication between processes in a producer-consumer relationship and with a
buffer of finite capacity. The ratio among service calls for different services shows
how to use the FU without blocking effects, i.e., to retain a buffer in a reasonable
state under the assumption that it starts in a non-blocking state (not empty, not
full). The buffer capacity is able to let the producer run ahead, but not arbitrarily
far, in the long run the ratio has to hold due to blocking effects.

3rd step: check p-invariants.

We check the p-invariants of the complete net. For each counter, there is trivial

Petri Net Verification of Simulation Models 11

p-invariant on the 2 places (the counter and its complementary place) that are
generated for each counter by construction. If not, the mapping is not correctly
implemented.

In addition, each counter classified as a reusable resource will yield at least
one p-invariant that covers partly all services that access that counter. If the
counter is binary, this invariant indicates parts of services that are used in mutual
exclusion. Those areas across services can be visually highlighted to a modeller
as shown in Fig. 1 and a modeller can check whether this is intended.

In particular, this is interesting if simultaneous resource allocation takes
place. If that is the case for reusable resources, areas covered by p-invariants
of several counters will overlap. There is a classic solution for deadlock preven-
tion - reusable resources should be allocated in a given order to avoid a circular
waiting situation - which can be checked automatically with the available in-
formation on areas covered by p-invariants. It is straightforward to implement
a check for existence of an order and to highlight corresponding nodes in the
ProC/B model.

However, the presence of consumable resources adds to the complexity of
deadlock detection. If an area that is covered by a p-invariant for a reusable
resource contains access operations to a consumable resource, the model need to
be checked if the case of blocking for access to the consumable resource is handled
appropriately. This is the problem that is present in the example FU, access to
the consumable resource B takes place inside the area that is protected by the
semaphore. Fig. 1 highlights the area of the semaphore. In this respect, we got
to the point that we can highlight areas with simultaneous resource allocation
of consumable and reusable resources.

Note that this approach works for single FUs and for complete ProC/B
models. Invariant analysis focuses on critical structures due to resource alloca-
tion. Servers can be ignored, since their scheduling strategies only impose delays
but no permanent blocking (critical cases like Last-come-first-serve and priority
servers that can yield starvation are known and simple to localize). Other po-
tential causes of blocking are state-dependent behavior based on variables which
is not treated yet.

5.2 Statebased Analysis: Modelchecking for Liveness

Modelchecking techniques and the Liveness check for Petri nets takes place at
the level of the reachability set or state space of the model. Those techniques
apply to finite state spaces only.

So in our case - we have an open system of potentially infinite population -
we need to limit the number of entities to achieve a finite population and finite
state space. We obtain this at the level of a Petri net by adding an extra place
per service of an FU (or process chain in case of a complete model), source
transitions take tokens away from that place, sink transitions produce tokens to
it. The initial marking of those places limits the number of entities considered.
Arc weights for transitions can be derived from the input output ratio computed
in the 1st step of the invariant analysis in Section 4.

12 P. Kemper, C. Tepper

The crux of state-based analysis is the size of state spaces, the well-known
state space explosion. In our case, we can apply some net-level reductions up-
front to reduce the state space that we need to consider for checking liveness.
We observe for instance that mapping ProC/B models generates many simple
transitions with one input, one output place that move tokens around and that
are not critical. We make use of two rules from a set of rules defined by Berthelot
[9,10] that reduce a Petri net and retain liveness (the reduced and the original
net are both live or none). Those rules are known as Prefusion and Postfusion
rules for two transitions. We apply those rules to reduce a Petri net ahead of
a liveness computation to reduce the state space. The approach is worthwhile,
since the application of rules is computationally inexpensive and the effect on
the state space is significant. For example, if we limit the number of entities for
each service call by 2 and the capacity of the store FU by 5 for the FU in Fig.
2, we observe a reduction from 377136 to 55 states.

For the resulting net, we can generate the state space either symbolically or
explicitly and check the liveness condition for each transition. Due to lack of
space, we refer to the literature for a detailed description on Petri net analysis
techniques and only briefly comment on the results obtained for the considered
FU. The liveness check identifies a deadlock for all considered limits and gen-
erates a sequence of transitions that starts at the initial marking and leads to
the deadlock (if it is a total deadlock). In case of a partial deadlock, the firing
sequence ends at a marking from which it is impossible to enable certain tran-
sitions again. If that sequence was obtained from a reduced net, it requires an
expansion to relate to the corresponding firing sequence in the original net. The
latter sequence can be used to animate the ProC/B model [11]. In addition to
animation, a trace visualization by message sequence charts can be employed as
well; we refer to [11] for a comparison of both approaches.

In our example, that trace leads to a deadlock state where the store FU has
an internal value 0 (it is empty) and a service call out occured and blocks within
the part that is protected by the semaphore counter, hence no subsequent service
call in can allocate the semaphore and proceed to the point where the store FU
gets filled to resolve the blocking situation.

So even in the case of a limited population of entities with a small limit,
we could identify the reason for a deadlock. One solution is to carefully check
what requires protection of a semaphore and remove that protection to resolve
the deadlock problem. Note, that by checking finite subsets of the in principle
infinite state space can but need not guide us to deadlocks, however it is not
sufficient to guarantee their absence.

6 Conclusion

Simulation modeling of real world systems may yield large and complex models
of interacting processes as it is the case for model of an air cargo network that
we consider in this paper. It is formulated in the Proc/B notation and describes
an open system with infinite state space. Motivated by that model, we propose

Petri Net Verification of Simulation Models 13

Petri net analysis techniques to support debugging of ProC/B models of logistic
networks. In particular invariant analysis is useful to shed light on resource usage
and identify constraints, in addition state based analysis techniques for liveness
and modelchecking also support a modeller in finding reasons for encountering
partial deadlocks among processes in simulation runs.

References

10.

11.

. Kemper, P., Tepper, C.: A Petri net approach to debug simulation models of

logistic networks. In Troch, 1., Breitenecker, F., eds.: Proc. 5th Mathmod Vienna.
Number 30 in Series ARGESIM Reports, CD-ROM (2006)

Volker, M., Sieke, H.: Process-oriented simulation of air cargo flows within an
airport network. In: Proc. ASIM 2005, Erlangen (2005)

Bause, F., Beilner, H., Fischer, M., Kemper, P., Vélker, M.: The Proc/B Toolset
for the Modelling and Analysis of Process Chains. In T. Field, P. G. Harrison, J.
Bradley, U. Harder (eds.) Computer Performance Evaluation Modelling Techniques
and Tools (Proc. Performance TOOLS 2002) Springer, LNCS 2324 (2002) 51-70
H. Beilner, J. Mater, C. Wysocki: The Hierarchical Evaluation Tool HIT. Short
Papers and Tool Descriptions of the 7th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, Vienna (Austria)
(1994)

Murata, T.: Petri nets: Properties, Analysis and Applications. Proc. of the IEEE
77 (1989) 4 (April 1989) 541-580

Fischer, M., Kemper, P., Tepper, C., Wu, Z.: Abbildung von ProC/B nach Petri
Netzen - Version 2. Technical Report 03011, ISSN 1612-1376, Sonderforschungs-
bereich 559, Modellierung grosser Netze der Logistik, Universitdt Dortmund (2003)
Martinez, J., Silva, M.: A simple and fast algorithm to obtain all invariants of
a generalized Petri net. In C. Girault and W. Reisig, editors, Application and
Theory of Petri Nets Informatik Fachberichte 52 (1982)

Holt, R.: Some deadlock properties of computer systems. ACM Computer Surveys
4 (1972)

Berthelot, G.: Checking properties of nets using transformations. in: G. Rozenberg
(Ed.) Advances in Petri Nets 1985 Springer, LNCS 222 (1986)

Berthelot, G.: Transformations and decompositions of nets. in: G. Rozenberg (Ed.)
Advances in Petri Nets 1986 Springer, LNCS 254 (1987)

Kemper, P., C.Tepper: Visualizing the Dynamic Behavior of ProC/B Models. In
Schulze, T., Horton, G., Preim, B., Schlechtweg, S., eds.: Proc. of the 16th Con-
ference on Simulation and Visualization, Magdeburg, Germany, SCS Publishing
House (2005) 63-74

