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1 Motivation for the Seminar

Simulation has found widespread use for experimentation and exploration
of the possible impacts of a variety of conditions on a system. In contrast,
formal verification is concerned with proving or disproving the correctness of
a system with respect to a certain property, using mathematical and logical
methods.

Historically, simulation and verification evolved as two distinct disci-
plines. Simulation, artificially constructing parts of the system or its en-
vironment, aims to explore the effect of certain design decisions or envi-
ronmental conditions on system behavior. By contrast, formal verification
is concerned with proving or disproving the correctness of a system with
respect to a certain property, using mathematical and logical methods.

Despite of these different objectives, the fields of simulation and ver-
ification address similar research challenges. In particular, the need for
identifying and defining suitable models of a dynamic system under study
unifies both research fields, although modeling paradigms and employed
validation strategies vary. There are disparate approaches in the fields of
simulation and verification for validating timed, probabilistic, and hybrid
systems. Both fields address component-based and abstraction-based val-
idation techniques and face some of the same challenges — issues of state
space explosion and complexity are common.

Simulation and verification are currently moving closer together. Sim-
ulators are extended with bounded model checking techniques for increas-
ing state-space coverage, and recently developed model checking techniques
employ event-based simulation techniques. Combinations of explicit-state
simulation with symbolic-state exploration should make it possible to not
only increase coverage of explicit-state simulation, but also to use localized
symbolic simulation to drive simulations to territory in the state space that
would otherwise remain unexplored, e.g. [11]. Verification techniques can
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also be used to generate simple invariants, which are used to restrict the
search space for explicit exploration.

Particularly, in application areas like systems biology, researchers of both
fields have started identifying common problems and re-usable solutions.

2 Systems Approach

If concerned with modeling, simulating, or verifying a dynamic system, we
have to decide what general model class appears most suitable for the system
under study. The question has to be answered whether continuous systems
models, discrete event systems models, discrete stepwise systems models,
or hybrid models that combine continuous and discrete approaches will be
utilized [24]. Different model classes can be distinguished referring to the
time base (continuous or discrete), the state base (continuous, discrete or
both), and the number of interesting state changes within one time interval
(finite or infinite) [3].

During the seminar, discrete-event, e.g. [33, 41, 32, 40], and hybrid
modeling approaches, e.g. [25, 31, 38, 42|, prevailed. However, discrete
stepwise approaches, e.g. [26], were also presented. Purely continuous ap-
proaches were only discussed in relating deterministic macro models and
discrete event micro models, e.g. [29, 27].

3 Modeling, Simulation, Validation, and Verifica-
tion

The validity of models and the suitability of modeling approaches is de-
pendent on the system under study and the objective of the simulation or
verification study. Modeling means structuring knowledge about a given sys-
tem. Diverse modeling approaches exist, discrete event approaches comprise
timed automata [32], DEVS [41], term rewriting [30], and process algebras.
The latter embrace various extensions of stochastic PI [29, 36, 29] and PEPA
[28, 33]. The extensions of stochastic PI are aimed at facilitating re-use by
e.g. introducing abstract data types [36], or visual means for modeling [29].
Following the argumentation line of Wittgenstein “the limits of my language
are the limits of my thoughts”, the particular strength and limitations of the
different modeling approaches were discussed in detail, which helped foster
a working group at the seminar (see 6.3).

Although discrete event approaches dominated the seminar, also contin-
uous approaches played a role, e.g. to compare modeling approaches with
[29, 27], for a more efficient execution [28, 33], or for combining discrete and
continuous approaches [31, 37]. In [37], background traffic is produced by
continuous models, whereas that part of the dynamic system that will be
explored in detail is represented by a discrete event approach. These types



of hybrid models and, more generally, multi-level models allow to focus on
specific parts of the system on demand and are of particular interest for
systems biology [41].

Discrete event models do not necessarily mean a more concrete view of
the system, even though this is the case if combined with turning from a
macro to a micro view of the system under study, as is typically done in
systems biology [7]. So it is important to note that “eo ipso” a continuous
approach is not more abstract than a discrete event approach, nor vice versa.
Similarly, moving from a deterministic to a stochastic model might imply a
more abstract or a more concrete view on the system and its processes. How
different models are related by abstraction and refinement and what effect
this has on the simulation and verification has been subject of the second
working group (see 6.2).

Although modeling formalisms have typically roots either in simulation
or verification, the same modeling formalisms are used increasingly, e.g. in
PEPA. Still, the observation seems to hold that simulation is used for more
complex models, if we define complexity in terms of number and hetero-
geneity of subsystems and their interactions involved. Often simulation is
regarded as the technique of last resort when nothing else works.

It seems comparatively easy for the communities of simulation and veri-
fication to settle on a joint understanding of models, and important aspects
in modeling. Both communities even share controversies, like whether one
modeling formalism will suffice or multi-formalism modeling is necessary
to address the varying needs in describing complex systems. However, the
terms simulation and verification are quite differently used in both com-
munities. In the verification realm, simulation is often used synonymously
with continuous simulation, ignoring the rich pool of methods that have
been developed for discrete event modeling and simulation. In the context
of simulation, verification often means simply checking certain properties
of the system by analyzing simulation trajectories or the model structure.
Verification does neither imply the use of logical descriptions and formal
inference engines, nor the derivation of general properties

Whereas a different interpretation of simulation and verification in the
different fields as well as the difference of exploited methods still hamper an
integration of both areas, the joint desire to contribute to a better under-
standing of dynamic systems and joint application fields like systems biology
help to bridge these differences.

4 A New Area for Verification and Simulation

The goal of systems biology is to analyze the behavior and interrelationships
between entities of entire functional biological systems [12]. As the systems
under study do not support an easy experimental access and analysis, models



play an important role in gaining insight into the system’s behavior and
structure [5]. Models are evaluated by analysis, verification, e.g. [14, 20],
and simulation. Thereby, as an experimental technique, simulation takes on
the role of the in-silico pendant to the in-vivo and in-vitro experiments.

Although continuous modeling approaches still prevail, discrete event
and hybrid approaches increasingly gain ground. Generally, continuous
and deterministic macro models represented as differential equations can
be translated into stochastic, discrete-event micro models — or be executed
as such, as Gillespie showed in the 1970s [9]. Gillespie showed that, based
on exponential distributions and propensities, chemical reactions can be
correctly simulated. With this, the plethora of modeling approaches and
verification tools based on Markov Chains have found a new and exciting
application field. They form an alternative to the traditional continuous
simulation. Moreover, it has to be noted that certain phenomena depend on
stochasticity. As shown by [29], sometimes a deterministic model does not
reproduce characteristic behavior patterns of a real system, like oscillations,
whereas a stochastic model does.

In addition, the combination of discrete and continuous approaches is
starting to play a major role. Many mechanisms, e.g. enzymatic reactions,
can naturally be described as continuous macro models. However, other
phenomena such as gene regulation exhibit stochastic behavior, which is
best captured by a discrete event approach. So it seems natural to combine
different approaches for describing cellular systems.

Are biological systems by any means different from systems like com-
puter networks [37, 39] or hardware [34], and does their specification, i.e.
modeling, or their evaluation in terms of verification or simulation, require
special methods? These questions found sufficient interest to be discussed
in a separate working group (see 6.1).

5 Combinations of Simulation and Verifications

Interestingly the question of how simulation and verification can be com-
bined was not the subject of the working groups during the seminar, but
rather demonstrated in different talks [32, 39, 31]. In combining simulation
and verification, different approaches can be distinguished, e.g.

e Verification guides the simulation. Verification is used to determine
suitable parameters for executing simulations [32], in this context
counter examples play a central role.

e Simulation is used to verify certain properties. Individual trajectories
of simulation runs are checked to ascertain whether certain properties
hold or are violated [31, 39],



e Verification of certain properties uses many systematic simulation ex-
periments [31] internally. This approach can also be used to identify
suitable parameters.

Each of these was the subject of different talks given during the seminar.

5.1 Guiding simulation by verification

In different talks [32, 26] approaches were presented to guide the simulation
by verification. One of them [32] uses model checking to guide discrete event
stmulation. The mathematical workhorse for this approach is a nondeter-
ministic and stochastic model, in particular the model of a stochastic timed
automata. These models are rich in modeling power, which makes them
well-suited for diverse application areas. However, discrete-event-simulation
can be used in a meaningful way only if nondeterminism is resolved by some
means. This is where model-checking comes into play, providing examples
(or counterexamples) of interesting behavior sequences to be studied via
simulation.

5.2 Checking properties of simulation trajectories

Another possibility is to check single trajectories. Using formal run-time
verification techniques in conjunction with very detailed simulations of ad
hoc routing protocols in the NS network simulator, violations of significant
high-level protocol properties could be identified. Utilizing the interplay
between the simulation and verification engines facilitates debugging of the
model.

5.3 In-between simulation and verification

Two types of models are used in this approach — one model is the typical
simulation model that describes the rules of behavior. The other model is
comprised of logical statements that refer to general behavior observed of
the system under study. The Biochemical Abstract Machine BIOCHAM [4]
brings both together.

To a large extent, it can be shown that:

e biochemical systems can be described as transition systems (of differ-
ent kinds, with discrete or continuous dynamics),

e the biological properties known from experiments can be formalized
in Temporal Logic (propositional or with numerical constraints)

e and biological validation amounts to model checking in this setting.



This approach is used in BIOCHAM, for searching parameter values
and learning reaction rules from temporal logic properties. This has been
illustrated with models of the cell cycle control.

6 Working Groups

In addition to talks, working groups form an intrinsic part of each Dagstuhl
seminar, the themes in this case formed during the first days of the seminar.
One of the group addressed the question whether the application area of
systems biology requires specific modeling, simulation, and verification tools,
and how biological systems differ from engineered ones. Closely related to
the question of simulation and verification is the question of refinement and
abstraction, which was the subject of the second group. Refinement and
abstraction plays a crucial role, both in simulation and verification, but
even more so if both approaches are combined, as previous talks showed [31,
32, 39]. Modeling methods have a significant impact on how easily certain
phenomena can be described, influence the acceptance in the application
community, and the possibilities to be analyzed and simulated. The third
working group was dedicated to exploring the potentials and limitations of
different modeling approaches.

6.1 Working Group — Why are biological systems difficult to
model?

6.1.1 Introduction

Both science and engineering have come to rely extensively on computational
models. Models are used to structure, relate and exchange information, they
are the basis for simulation and communication. A model reflects a certain
interpretation of the investigated system. Moreover, a developed model is
most of the time related to a certain purpose, which itself may be reflected
in the type of model, in the level of abstraction and aggregation, and in the
representation of the model. Models that are simulated over time are used,
for example, to test hypotheses about dynamic behavior of systems, and to
predict the behavior of the investigated system. Model validation is another
basic task to perform since one needs to assess the validity of a model before
using it as an explanatory or a prediction tool.

Nowadays, modeling often is related to the development of models that
are executed on a computer. Such a computer based simulation of a model
can help to analyze the behavior of a dynamic system, which is of significant
interest in present-day research. Especially in the investigation of biological
systems, the use of computers in modeling, simulation, and verification has
pushed research forward and played a key role in the emergence of new
disciplines such as systems biology.



Given these developments, computational modeling has become the cen-
ter of analysis of dynamical systems. As such, it has become a task of
critical importance, which justifies efforts that take a relatively long period
of time, i.e., years, to obtain a model. To successfully exploit modeling calls
for reducing the required effort by structuring the modeling activity and
providing the modeler with as much support as possible.

Modeling is an activity that is situated somewhere within the spectrum
of theoretical modeling from first principles [8] and data-driven modeling ap-
proaches, such as system identification [15]. Clearly, some systems are more
difficult to model than others. In contrast to systems that have behavior
governed by inherent domain laws that are well studied and understood [17],
there are systems that have been found to be much more difficult to capture
in a rigid mathematical representation which ought to express the behavior
specific enough for the purposes of the modeler. Such systems are, for exam-
ple, biological systems, the stock market, and the atmosphere. The purpose
of modeling such systems may be understanding cell behavior, prediction of
cell response to a perturbation, predicting stock market development, and
forecasting the weather. This study aims to understand where this discrep-
ancy in modeling difficulty stems from, in particular with respect to systems
biology.

6.1.2 Modeling: Control Engineering of Biological Systems?

Modeling is a pervasive activity in science and engineering. In particular
in embedded control systems design, modeling is used for both capturing
the behavior of the controller as well as the device to be controlled [2]. An
embedded control system typically consists of a controller and a controlled
device, both of which are modeled (albeit in general by different modeling
formalisms). The device under control could be something mechanical, such
as a power window [16]. Fairly systematic approaches exist to deal with
these models, as there exists a good understanding of the systems they
represent. One of the reasons for this is that they have to satisfy a manifold
of domain constraints (conservation of energy and momentum, continuity of
power, etc.), which are often known in advance. Furthermore, these systems
are specifically designed to exhibit an intended behavior.

Whereas engineered systems are designed to adhere to prescribed behav-
ior, biological systems are the result of an evolutionary process. Therefore,
biological systems seem to lack the clear structure that can be found in en-
gineered systems. One of the goals of systems biology is to find possibly
existent underlying principles of biological systems. These principles may
be very different from engineered systems. For example, Rosen argued that
biological systems cannot be completely simulated, because the way they
are controlling themselves cannot be reproduced on a computer [19, 23]. To
some extent, the relation between neural networks and expert systems [18] in



computer science resembles the relation of biological systems and engineered
systems. A neural network represents implicit knowledge, its behavior can-
not be systematically derived and is difficult to explain.

In contrast, the expert knowledge model is developed based on explicit
knowledge, which allows to shed light on the solution process and there-
fore makes the expert system’s behavior observable and reconstructible.
Although the position of biological systems with respect to these two ex-
treme cases (information completely implicit or completely explicit) is not
yet clearly established, a biological system adapts its behavior similarly to
a neural network. A biological system has come about by responding to
stimuli so that it would thrive. If it did not produce beneficial behavior,
it would wither instead. The evolutionary selection process resulted in im-
plicit knowledge of appropriate responses — a knowledge which is difficult
to grasp, as it relies on slight adaptations and not on explicit rules. On
the other hand, it is increasingly clear that biological systems obey design
principles, such as the use of modularity [5].

The control engineering system has been developed based on initially
identified and fixed rules and will not exhibit behavior other than what is
intended. Any other behavior can be interpreted as erroneous. Moreover,
whereas the biological system can exhibit unpredictable behavior, the con-
trol engineering system should not.

An engineered system is typically constructed to satisfy a plurality of
well-defined requirements. In order to produce a system that satisfies these
requirements, engineers use certain techniques that allow them to compose
complex systems [22]:

e Modularity,
e Partitioning,

e Hierarchical design.

Modularity requires to rigidly define interfaces. This is important in
cases where the system as a whole is too complex to understand or to model.
Modularization, i.e. to break something down into smaller pieces, shall
help to grasp an inherent structure and is a tool to cope with complexity.
Interfaces are necessary to define a system as a set of relatively independent
entities!.

Biological systems are often interpreted to present a hierarchical orga-
nization and functioning. In the field of systems biology, the hierarchical
organization is revealed by studies focusing on different types of networks:

1We expressly distinguish between functional and behavioral. Often, a system is con-
sidered to consist of two aspects: behavioral and structural. A certain functionality can
be attributed to both aspects.



metabolic networks, protein-interaction network, signal-transduction net-
works, and genetic regulatory networks [1]. It has also been proposed that
functional modules are a critical level of biological organization [5]. How-
ever, it is not yet clear how general this modular organization is, nor how
it could be exploited in a systematic way. Even if biological systems, like
engineered systems, present some degree of modularity and hierarchical or-
ganization, a major difference between biological and engineered systems is
that the separation between the different entities appears to be much less
rigid for biological systems. Stated differently, it is in general difficult, if not
impossible, to identify well-defined interfaces for biological systems. As a
consequence, these characteristics cannot be easily exploited in the modeling
and analysis process.

As opposed to biological systems, the interface definitions of an engi-
neered system can be seen as explicit knowledge about the functionality of
its entities. Therefore, control engineering employs a well-defined system
structure, which consists of a controller and a controlled device. This allows
the controller to fulfill the prescribed behavior by analyzing past output to
compute the input [2] etc. This means, the compensating effect typically
induced by a controller can be separated from the controlled device.

This concept transfers into the biological world as well (e.g. homeostasis,
or see the approach taken in [13]). However, it is not possible to pinpoint as
clearly which elements belong to the controller and which belong to the con-
trolled device. Many components are involved in the regulation processes,
and regulation typically takes place at different levels (e.g. metabolic and
genetic, in the case of the tryptophan biosynthesis pathway). The control is
distributed over a large number of heterogeneous components.

Does the inability to separate controller and controlled device increase
the intricacy of modeling? As these two entities cannot be clearly sepa-
rated, one has to deal with them in a combined manner. This is extremely
complicated, since effects of interference might occur, which may be difficult
to identify. Biased observation is a prominent problem in many domains.
For example, the observers of a psychological group experiment must not be
part of the group, because this would have an impact on the results of the
experiment (e.g., expectancy effects).

Similarly, the inherent control of a biological system will interfere with
the measurement exaltation, which complicates modeling, because one has
to deal with the whole system. This makes techniques such as redundancy
control (e.g., inhibiting the expression of a single gene) very challenging.

6.1.3 Technological Problems

In other domains, the extensive recording of experimental data has been
proven to be a viable solution to obtain an understanding of controller and
controlled device. This separation is achieved by taking an extensive amount



of measurements from the interfaces of controller and controlled system (nu-
merical isolation).

In the context of biological systems, on a (macro-) molecular level, mak-
ing observations is particularly challenging. For example, many experiments
cannot be conducted in vivo, so that in vitro measurements are used. Fur-
thermore, a biological system has to be considered as a multiple-input and
multiple-output system in terms of control theory (e.g., one protein regu-
lates several genes and wvice versa), which complicates the interpretation of
experimental data.

Even though these problems may be solved in the future, it has to be
asked whether numerical isolation of controller and controlled device is pos-
sible in principle. Our observation is that with sufficient data of certain crit-
ical variables, we may be able to numerically analyze the system. Control
engineering techniques have been successfully applied to other applications,
notably aerospace and automotive control systems. This methodology may
well transfer successfully into the biological domain. At least, it should be
investigated if this is possible.

6.1.4 Cultural Problems

It is generally accepted that each scientific discipline entertains and prefers
specific viewpoints, methodologies, and techniques; in other words, a scien-
tific culture. While this is not a problem in itself, it may complicate the
creation of computational models by causing miscommunication and the
like.

With respect to the application of modeling and simulation in control en-
gineering, a mathematically concise description of a system’s entities can be
regarded as the common ground of both domains (e.g., finite state machines,
FSM, to model controllers, ordinary differential equations, ODE, to model
controlled devices, or hybrid approaches to combine both [21]). The avail-
ability of suitable modeling formalisms to combine computer science, control
engineering, and physics is made possible by the mathematical foundations
employed in these domains. Computer science, for example, relies heavily
on discrete mathematics (e.g., graph theory, combinatorics, etc.). Similarly,
physics models are often expressed by a set of equations (e.g., ODEs). In
biology, however, it seems as if there is no unique formalism which is able
to capture the behavior of the systems thoroughly. For example, for model-
ing of genetic regulatory networks, formalisms as diverse as graphs, logical
models, ODEs, or stochastic master equations have been proposed [5]. One
may wonder whether this lack of unifying formalism reflects the immaturity
of systems biology or the tremendous complexity of biological systems.

Even though there are formalisms to describe a certain aspect of a bio-
logical system, a biologist who is untrained with respect to mathematics may
fail to formalize a biological system, whereas a computer scientist may not
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have a sufficient understanding of the biological system, and, therefore also
be unable to formalize it. The present approach to education exacerbates
this problem by relying on very domain-specific courses, instead of regarding
interdisciplinarity as a prerequisite for future research in these areas.

6.1.5 Conclusions

This study identified several problems that hamper the application of com-
putational modeling, simulation, and verification for biological systems.
First of all, intrinsic problems of these systems have been discussed. Then,
some technological issues were briefly described and it was proposed to in-
vestigate the feasibility of control engineering methods in the context of
biological systems. A number of reasons for difficulties in understanding
and communicating between researchers with different backgrounds have
been pointed out, as they were experienced in our working group as well
(e.g., the scientific perspective in contrast to the engineer’s point of view).

Still, the new application area of modeling, simulation, and verification
may also be extremely beneficial in different contexts: While biologists try
to gain deeper insights into the biological systems they study, these insights
may be used to engineer systems that exhibit similar properties, such as
robustness and adaptivity.

6.2 Working Group - Refinement and Abstraction
6.2.1 State of the art

Abstractions are useful. They save space and time both in simulation and
verification, as well as improving clarity by concentrating on relevant aspects
of behavior.

During this Dagstuhl seminar, the usefulness and potential of abstraction
has become apparent in a number of presentations:

e Simulation trace analysis by verification techniques [31, 39]

e Abstraction refinement from verification and derivation of conceptual
model from detailed simulation [31]

e Pruning of search space by exploiting abstract model of hybrid or
discrete system [38, 26] by guiding simulation via generating schedules
32]

e Switching between levels of abstraction dynamically - possibly prop-
erty guided.

e Refinement of an abstraction by counterexamples as a form of simula-
tion
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Known successful applications of abstractions include conversions be-
tween discrete (stochastic) and continuous, integer to reals (relaxation etc.),
finite to infinite (queuing theory), infinite to finite (integer and real to
boolean).

6.2.2 The ”V” in abstraction and refinement

‘\ abstraction CEGAR
' throws away improves <
> irrelevant precision _v-~
detail

refinement
adds more
detail

abstraction preserves
properties and reduces
model size

Figure 1: The V in modeling and analysis

The process of modeling and analysis can be visualized by the following
V-shaped diagram (not to be confused with the other V diagrams out there).
V reconciles two notions of abstraction and refinement used in modeling,
simulation, and verification.

The two sides of the diagram represent different tradeoffs in the mod-
eling process, of different significance for simulation and verification. The
left side reflects the amount of detail in a model. Abstract models have
little detail, keeping them small but imprecise; additional detail increases
predictive power of the model at the cost of increase in the model size and
hence computational requirements of the model. In simulation, the accuracy
of model predictions is of primary importance, and the associated increase
in the size of the model is relatively tolerable. Thus, a typical modeling
scenario starts with an abstract model and moves downward along the left
side of the diagram until sufficient detail has been added. The reverse di-
rection plays a secondary but important role in making a sufficiently pre-
dictive model more computationally feasible. The right side of the diagram
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represents abstraction in the sense of abstract interpretation, which is an
all-important technique in verification. Abstract interpretation significantly
reduces model size, yet allows interpretation of verification results: a prop-
erty, satisfied in the abstract model, is also satisfied by the concrete model.
The reverse is not true, however, resulting in spurious counterexamples. A
typical verification scenarion, then, starts with a concrete model and per-
forms abstraction trying to reduce the model size that is manageable by
verification tools. The reverse direction here also plays secondary but im-
portant role: counterexample-guided abstraction refinement (CEGAR) hels
to add just enough detail into the abstract model to get rid of spurious
counterexamples.

6.2.3 What is lacking from the current approaches?

e Abstraction aimed at improved analyzability is often not doing a good
enough job.

e Moving between abstraction levels is often in part magic.
e Advantages of abstraction in simulation are under-explored.
e There is a distance between different approaches

— incompatible abstractions
— conflicting assumptions

— different purposes for abstraction

Often these purposes and assumptions are not documented, which
makes it harder to interpret results obtained via different level models.

e There is no hope for a general-purpose abstraction, because abstrac-
tion by definition throws away details. It is always a property-driven
abstraction. The idea of taking the property explicitly has not been
taken seriously in simulation but it has in verification (cp. artial order
techniques).

e The use of abstraction is not yet an engineering discipline. It is an
art, which requires ingenuity and custom-built solutions in most new
applications. At the same time, there are scientific disciplines - in par-
ticular, control theory - where abstraction as means of model reduction
is well understood and widely practiced.

e Some people dream of a hierarchical family of models with well-understood
embeddings between them. An example of such hierarchy are fi-
nite/timed /hybrid /stochastic automata.
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6.3 Working group — Composition and communication and
their role in modeling and analysis of dynamic systems

The focus of our group was the consideration of the features of modeling
formalisms which allow us to capture interesting and commonly occurring
features of dynamic systems. Among the issues which we wanted to discuss
were:

e Compositionality,
e Communication patterns,
e Quantitative representation of dynamics.

For each of these points we considered the modeling expression aspects but
also the differences that they incur for model evaluation and analysis.

6.3.1 State-of-the-Art

All state-of-the-art formalisms support some form of compositionality, at
least at the model construction level. For example,

parallel composition all process algebras, DEVS, state charts,

automata.
sequential composition | some process algebras, dynamic DEVS,

hybrid automata, composite states?

In process algebras, a key feature is the exploitation of the composition-
ality during analysis. This works well in classical process algebras, but is
more difficult in stochastic process algebras where, in general, exploitation
of the compositional structure depends on stricter structural conditions.

In addition, in process algebras the compositionality plays a role in ab-
straction /refinement. You can take any component and replace it by another
component with the same observable behavior and know by congruence that
the complete model behavior will also be observably equivalent. This can
be used for either abstraction or refinement.

In simulation, the compositionality can be used for partitioning the
model for parallel discrete event simulation, and for validation of compo-
nents in isolation. However, note that the consequent “validation” of the
complete model is then a matter of trust rather than a formal congruence
relation as in process algebras.

Process algebra and model checking techniques can be based on syn-
chronous communication, whereas simulation-oriented formalisms are typ-
ically based on asynchronous communication. The difference, at least partly,
comes from the focus on activities and communication or events. In discrete-
event simulation, the events are the driving force of the model evolution and
communication is viewed as the means of event dissemination. In contrast
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in the process algebra, communication is a primitive used to capture syn-
chronized activity.

Discrete event simulation has more flexibility to add more features, be-
cause the model description formalisms are more expressive, but there is a
price to pay for this in terms of problems encountered in achieving coverage
and interpretation.

6.3.2 Comparisons

We identified two different forms of abstraction: modeling abstraction and
semantic abstraction. By semantic abstraction we mean a notion of organi-
zational abstraction which chooses the level of discrimination at which you
want to represent your system. For example, at the individual or population
level. This is somehow orthogonal to the choice of the modeling abstraction,
or degree of detail that you include in your model. There is also an option
to model at a single level but to execute different parts of your model using
different semantics. For example, this is sometimes done to handle stiff sys-
tems, where fast actions are modeled in continuous deterministic semantics
but the slower actions are captured by discrete stochastic semantics.

For certain phenomena in systems biology, such as binding, synchrony
is more natural and some effort is needed to capture this successfully in
(asynchronous) discrete event simulation.

If you look at the classical domain, where we use process algebras to
describe computer interactions and you have a mediating layer, the network,
then low-level modeling seems to naturally include asynchrony and high-
level modeling seems to naturally include synchrony. When you move to the
systems biology domain, this appears to be reversed: in high-level models
asynchrony seems natural and for low-level models synchrony seems natural.

We identified a number of exemplar systems which we felt would be
useful to discriminate the modeling capabilities of the different formalisms.
There were:

e competitive binding,
e complexation,

e n-ary reactions.

6.3.3 Challenges

A major challenge is to try to ensure that compositionality is preserved as
we enrich the formalisms to address the particular needs of new application
domains.

Another significant challenge is the construction of quantitative synchro-
nizations in a process algebra setting (and other discrete event formalisms)
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which reflect the physical characteristics of the dynamic system, e.g. shape
and orientation of cooperating entities, properties of the environment in
which the synchronization is happening (temperature, pressure, acidity).

A first approach in this direction can be seen in the work on beta binders
[6]. Of course, care is also needed to avoid over-complicating models (and
modeling formalisms). Currently quantification in the formal system de-
scriptions is focused on timing and reward-based results, and considerable
extensions to existing theory will be needed in order to incorporate other
aspects.

We are already starting to see both micro and macro view models emerg-
ing, but the details of the relationships between them have not yet been fully
resolved. A better understanding here would allow more work on integration
of the two views and multi-scale modeling.

Both temporal and spatial heterogeneity are needed for some situations
in the systems biology domain (and others?). For example, currently mod-
els are built assuming a single kinetic semantics for interaction. However
there are situations where you would want to be able to mix kinetics, in
different interactions within a single system, but also possibly with respect
to a particular interaction over time.

7 Conclusions

Computational biology holds a lot of appeal for the simulation and verifica-
tion community alike. Many of the approaches that have been successfully
applied for analyzing computer networks and other systems seem to lend
themselves to biological applications. However, whether modularity and
hierarchical design are suitable means for constructing biological systems
is still controversially discussed [10]. Characteristics of biological systems,
requiring highly dynamic multi-resolution and multi-time scale models, chal-
lenge methodological developments in modeling, simulation, and verification
likewise and thus are likely to propel research in these areas.

Not only due to new emerging application areas like computational bi-
ology, research on simulation and verification is currently moving closer to-
gether. Joint problems and interest, e.g. how to deal with abstractions, the
need for adequate modeling mechanisms, including means for composition
and interaction, unify both areas and form the basis of fruitful discussions
and joint research.

Compositionality seems one of the central requirements, and ensuring
that compositionality is preserved as we enrich the formalisms to address
the particular needs of new application domains is one of the challenges.
However, more than mere compositionality is needed to soundly relate micro
and macro views of dynamic systems as required in computational biology.
By micro and macro views, different abstraction levels of the system are
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provided, and to move between them is often in part magic. Their combina-
tion in one model is hampered by incompatible abstractions, being based on
conflicting assumptions and different purposes. Often these purposes and
assumptions are not well-documented, which makes it harder to interpret
results obtained via different modeling levels. As abstraction is a property-
driven endeavor, these properties deserve more attention to facilitate the
abstraction process, inter-relating different abstractions, and the re-use and
combination of models at different levels of abstraction.

Another significant challenge is the construction of interaction patterns
which reflect the physical characteristics of the dynamic system and prop-
erties of the environment in which the synchronization is happening with-
out burdening the modeling formalism. For many cell biological systems,
synchronous interaction patterns seem currently most natural. However,
whether synchronous or asynchronous interactions patterns are more suit-
able will finally depend on the system and again the level of abstraction. In
computer interactions low-level modeling seems to naturally include asyn-
chrony and high-level modeling seems to naturally include synchrony, whereas
in computational biology this appears to be reversed.

To conclude, this interdisciplinary application area, the variety of meth-
ods and tools available, and the diverse methodological challenges still to
be addressed, makes the subject of how to build and analyze models of
dynamic systems one of the fascinating areas for computer scientists and
should be an integral part of any standard CS curriculum. Crossing the
boundaries between traditional simulation and verification, research in the
methodological realm will be propelled, and new insights into the dynamic
system under study will be achieved. Thus, the number of research projects
that combine simulation and verification and explore the inter-relationship
is likely to increase significantly within the near future.
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